
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

COOPERATIVE TESTING
OF MULTITHREADED JAVA APPLICATIONS

Miguel Ângelo Marques Simões

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

2014

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

COOPERATIVE TESTING
OF MULTITHREADED JAVA APPLICATIONS

Miguel Ângelo Marques Simões

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

Dissertação orientada pelo Prof. Doutor Francisco Cipriano da Cunha Martins
e co-orientada pelo Prof. Doutor Eduardo Resende Brandão Marques

2014

Agradecimentos

Agradeço aos meus orientadores, professores Eduardo Marques e Francisco Martins,
pela constante disponibilidade, apoio e suporte para o desenvolvimento deste trabalho de
modo a torná-lo o melhor possı́vel. Aprendi imenso no desenrolar deste trabalho e grande
parte devo-o a eles.

Agradeço imenso à minha famı́lia, pois sem ela não teria sido possı́vel chegar onde
cheguei. Aos meus pais, Fernando Simões Ferreira e Maria de Fátima Figueiredo, agrade-
ço todo o apoio, motivação e também pelos sacrifı́cios que fizeram para me permitir
chegar até aqui. Agradeço também à minha e irmã e sobrinho, Tânia e Rodrigo, pelo
apoio constante e que nunca me deixaram de animar. A todos eles, muito obrigado.

Por fim, mas não menos importante, quero agradecer a todas as pessoas, que ao longo
do meu percurso académico me ajudaram e apoiaram. Em especial a quatro pessoas
que já me acompanham à algum tempo e tornaram tudo mais fácil. Ao João Caetano e
Filipe Lemos pela companhia e ajuda em muitos trabalhos tanto da licenciatura, como de
Mestrado, e por uma amizade pela qual tenho muito valor. E também à Lara Caiola e
César Santos por toda a amizade e apoio que deram durante o mestrado e principalmente
no desenvolvimento da tese. Todos eles foram importantes para chegar aqui.

iii

Aos meus pais, avós, irmã e sobrinho.

Resumo

Para desenvolver programas concorrentes, o modelo de programação prevalente é o
uso de threads. Uma thread define uma linha de execução sequencial num programa,
em que partilha o espaço de memória com todas as outras threads que estão a executar
o programa ao mesmo tempo. Além de memória partilhada, as threads de um programa
também interagem mediante primitivas de concorrência como locks ou barreiras. O uso
de threads é suportado por alguma das linguagens de programação mais conhecidas e
utilizadas, como por exemplo, o Java ou C.

Em programas multithreaded, erros de programação são fáceis de cometer, com o uso
de memória partilhada e primitivas de interacção. Por exemplo, a partilha de memória
entre as threads pode levar a condições de corrida sobre os dados (data races), e inerente
inconsistência de valores para os mesmos. Outro problema tı́pico é a ocorrência de im-
passes (deadlocks) no uso de primitivas de concorrência, como locks, que não permitem
que uma ou mais threads progridem na sua execução. Quando um bug se manifesta,
um programador normalmente tenta determinar manualmente a sua origem, através de
técnicas de debugging, e/ou executa o conjunto de testes associados ao programa, ob-
servando em quais testes são reportados erros. Frequentemente, estas duas abordagens
falham para programas multithreaded.

A razão para estas dificuldades é que numa execução com múltiplas threads as mudanças
de contexto acontecem de forma não-determinista, o que torna impossı́vel observar e con-
trolar de forma precisa o fluxo de execução e escalonamento de threads associado. Ao
mesmo tempo, os bugs tipicamente apenas se manifestam num sub-conjunto de todos
os escalonamentos possı́veis, e com frequência apenas em escalonamentos bastante es-
pecı́ficos e difı́ceis de reproduzir. Um teste de software pode ser repetido imensas vezes,
sem expor um bug. Se e quando este é detectado, pode ser extremamente difı́cil identificar
e replicar o fluxo de execução ocorrido. Até padrões de bugs relativamente simples são
difı́ceis de detectar e replicar com precisão (por exemplo, ver [9]).

Esta tese trata do problema geral de testar programas concorrentes escritos em Java [16],
de modo a que bugs possam ser descobertos e replicados de forma determinista. A nossa
abordagem passa pela execução de testes de software com semântica cooperativa [23, 24].
A observação fundamental subjacente ao uso de semântica cooperativa é que as mudanças

vii

de contexto relevantes entre threads acontecem apenas nos pontos de potencial inter-
ferência entre estas, tais como o acesso a dados partilhados ou o uso das primitivas para
concorrência, chamados yield points cooperativos. Uma execução é considerada cooper-
ativa se o código entre dois yield points consecutivos da mesma thread executa de forma
sequencial como uma transação, sem qualquer interferência de outras threads.

A semântica cooperativa pode ser explorada para testes de software deterministas, em
que a reproducibilidade de execução é garantida, e a cobertura sistemática do espaço de
estados de escalonamento possa ser efectuada. A ideia base é executar as threads com
semântica cooperativa, por forma a que a execução repetida de um teste possa explorar o
espaço de estados de forma controlada e customizada, e até eventualmente exaustiva. Esta
técnica é usada em algumas ferramentas [3, 7, 17] para programas concorrentes escritos
em C/C++.

Nesta tese nós apresentamos o desenho, implementação e avaliação de uma ferramenta
de testes cooperativa para programas concorrentes escritos em Java. A ferramenta desen-
volvida chama-se Cooperari e está disponı́vel em https://bitbucket.org/edrdo/Cooperari .
Tanto quanto pudemos determinar pela avaliação do estado da arte, trata-se da primeira
ferramenta de testes cooperativos para programas em Java. As contribuições desta tese
são as seguintes:

• A ferramenta instrumenta o bytecode Java da aplicação, por forma a interceptar
yield points na execução, e a tornar a execução cooperativa. Os yield points su-
portados concernem operações sobre monitores Java (operações de locking e prim-
itivas de notificação), operações do ciclo de vida de uma thread definidos na API
java.lang.Thread, e ainda acessos (de leitura e escrita) a campos de objectos ou
posições de vectores. A instrumentação dos yield points é definida recorrendo à
linguagem AspectJ [14].

• Para a execução cooperativa definimos um ambiente de execução, que compreende
um escalonador (scheduler) cooperativo e uma implementação cooperativa de mon-
itores Java e operações do ciclo de vida de uma thread. O escalonador cooper-
ativo condiciona o escalonador nativo da máquina virtual Java (que se mantém
activo), por forma a se obter uma semântica cooperativa na execução. Aquando
da intercepção de um yield point, o escalonador cooperativo toma controlo da
execução, e deterministicamente seleciona a próxima thread que irá executar.

• Desenvolvimento de duas polı́ticas de cobertura. A escolha feita num passo de
escalonamento é determinado pela polı́tica de cobertura do espaço de estados de
escalonamentos. A primeira delas simplesmente escolhe a próxima thread a exe-
cutar de forma pseudo-aleatória, sem manter estado entre várias execuções de um
programa/teste; para execução determinista, o gerador de números aleatórios é ini-
cializado com uma semente fixa. A outra polı́tica mantém um histórico de decisões

viii

https://bitbucket.org/edrdo/Cooperari

de escalonamento anteriores, por forma a evitar decisões repetidas de escalona-
mento para o mesmo estado do programa.

• Implementação de mecanismos de monitorização em tempo de execução para a
deteção de data races e alguns tipos de deadlock. É assinalado um erro quando
na monitorização do acesso aos dados é verificado que para a mesma variável ou
posição do vector está a ser acedido por duas threads, em que uma delas está a
escrever e a outra está a escrever ou ler. Nós detectamos deadlocks verificando
se existe ciclos nas dependências dos locks ou se alguma thread está bloqueada
eternamente pois está à espera de uma notificação.

• A ferramenta está integrada com o JUnit [20], o popular ambiente de testes para
programas Java. Os programadores de testes podem usar a ferramenta JUnit da
forma usual, recorrendo apenas a anotações adicionais às classes de teste. Na nossa
ferramenta adicionamos novas anotações no JUnit, como por exemplo a definição
da pasta que se deve instrumentar, o critério de avaliação para os testes e ainda uma
que define que a execução irá ser cooperativa (execução por nós desenvolvida).
Após a execução de um teste, a nossa ferramenta detecta se ocorreu um erro, se sim
termina a execução, se não irá executar mais testes até cobrir a polı́tica ou então ter
atingido o número máximo de execuções.

• A ferramenta foi avaliada com exemplos de programas multithreaded retirados dos
repositórios ConTest e SIR, referenciados na literatura. No caso geral, a ferramenta
consegue detectar e replicar deterministicamente os bugs dos programas em causa,
em contraste a testes com execução preemptiva que na vasta maioria dos casos não
o consegue fazer.

O trabalho levou à publicação do seguinte artigo em conferência internacional com
revisão de pares:

Cooperari: A Tool for Cooperative Testing of Multithreaded Java programs, Eduardo R.
B. Marques, Francisco Martins, and Miguel Simões. In: Proceedings of the 2014 Inter-
national Conference on Principles and Practices of Programming on the Java platform:
Virtual machines, Languages (PPPJ’14), Krakow, Poland, Sept. 23–26, 2014, pp. 200-
206, 2014, ISBN 978-1-4503-2926-2, ACM New York, NY.

Palavras-chave: testes de software, semântica cooperativa, threads, Java

ix

Abstract

Software bugs are easy to introduce in multithreaded programs, resulting in well-
known errors, such as data races in the use of shared memory among threads, or deadlocks
when using multithread primitives like locks. These bugs are hard to detect, replicate,
and trace precisely, and are typically manifested only for a subset of all possible thread
interleavings, many times even for a very particular thread interleaving. At the same
time, given the non-determinism and irreproducibility of scheduling decisions at runtime,
it is generally hard to control and observe thread interleaving and explore the associated
state-space appropriately, when programming/executing software tests for a multithreaded
program.

This thesis presents Cooperari, a tool for deterministic testing of multithreaded Java
programs, based on the use of cooperative semantics. In a cooperative execution, threads
voluntarily suspend at interference points (e.g., lock acquisition, shared data access),
called yield points, and the code between two consecutive yield points of the same thread
always executes serially as a transaction. A cooperative scheduler takes over control at
yield points and deterministically selects the next thread to run. A program test runs
multiple times, until it either fails or the state-space of thread interleavings is deemed as
covered by a configurable policy that is responsible for the scheduling decisions. Beyond
failed assertions in software tests, some types of deadlock and data races are also detected
by Cooperari at runtime.

The tool integrates with the popular JUnit framework for Java software tests, and
was evaluated using standard benchmark programs. Cooperari can find, characterize, and
deterministically reproduce bugs that are not detected under unconstrained preemptive
semantics.

Keywords: Software testing, Cooperative semantics, Threads, Java

xi

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement and approach . 2
1.3 Contributions . 2
1.4 Thesis structure . 3

2 Background and related work 5
2.1 Multithreaded Java programs . 5
2.2 Bug patterns . 7
2.3 Cooperative semantics . 8
2.4 Cooperative testing tools . 8
2.5 Randomized scheduling . 9
2.6 Other approaches . 9

3 The Cooperari testing tool 11
3.1 The Cooperari framework . 11

3.1.1 Yield point instrumentation . 12
3.1.2 Cooperative execution environment 12
3.1.3 Testing environment . 13

3.2 Using Cooperari . 13
3.2.1 Dining Philosophers . 13
3.2.2 Semaphore bug example . 15

4 Design and implementation 19
4.1 Yield point instrumentation . 19

4.1.1 Instrumentation pattern . 19
4.1.2 Lock/monitor yield points . 20
4.1.3 Thread-lifecycle yield points . 21

xiii

4.1.4 Data access yield points . 21
4.2 Cooperative execution environment . 22

4.2.1 Overview . 22
4.2.2 The cooperative scheduler . 22
4.2.3 Cooperative implementation of multi-threading primitives 23

4.3 Test execution and state-space exploration 24
4.3.1 Overview . 24
4.3.2 The random coverage policy . 25
4.3.3 The history-dependent policy 26

4.4 Runtime monitoring mechanisms . 27
4.4.1 Deadlock detection . 27
4.4.2 Race detection . 28

5 Evaluation 31
5.1 Benchmark programs . 31
5.2 Results . 32

5.2.1 Test setup . 32
5.2.2 Bytecode Instrumentation time 32
5.2.3 Test execution . 33

6 Conclusion 35

Bibliography 39

xiv

xvi

List of Figures

2.1 Semaphore example . 6
2.2 Multithreaded bug examples . 7

3.1 The Cooperari framework . 11
3.2 Dining philosophers example . 14
3.3 Cooperative execution for the dining philosophers 15
3.4 Buggy semaphore example and test . 16
3.5 Cooperative execution for the semaphore test 17

4.1 Sample AspectJ instrumentation code 20
4.2 Implementation of cooperative scheduling 23
4.3 Implementation of monitor operations 24
4.4 Code for the random coverage policy . 25
4.5 Runtime monitoring of deadlocks and data races 27

xvii

List of Tables

4.1 Lock/monitor yield points . 21
4.2 Thread-lifecycle yield points . 21
4.3 Data access yield points . 22

5.1 Program descriptions . 32
5.2 Bytecode instrumentation time . 33
5.3 Benchmark results . 34

xix

Chapter 1

Introduction

1.1 Motivation

The still-prevalent programming model for enabling concurrency in software pro-
grams at large is the use of threads. A thread defines a sequential line of execution in a
program, that shares a common memory address space with all other threads in the same
program that execute concurrently. Beyond shared memory, threads in a multithreaded
program communicate using a number of well-established primitives such as locks, bar-
riers, or atomic memory updates. The thread model is supported by some of the most
well-known and used programming languages, like Java or C.

Programming mistakes are easy to make in multithreaded programs. The use of shared
memory and other multithreading primitives requires careful attention and craft by a soft-
ware developer. For instance, data races or deadlocks in the use of multithreading primi-
tives are well-known problems. When a bug is manifested, a software developer typically
tries to manually debug the program at stake and/or execute test suites associated to the
program and observe which tests happen to fail. Frequently, both of these approaches
cannot uncover bugs.

The reason for these difficulties is that a multithreaded system’s scheduler typically
performs context switches in a non-deterministic and irreproducible manner. As a result,
it becomes impossible to control and observe thread interleaving appropriately. At the
same time, multithreaded bugs are typically manifested only for a subset of all possible
schedules, frequently relying on a very particular thread interleaving. Software tests may
be repeated many times without exposing the bug (i.e., reproducing the schedules of inter-
est). If and when the bug is exposed, it is in any case hard to trace the associated program
behaviour and replicate it again. Also, the use of a debugger typically interferes with the
program schedule itself, making some bugs, so-called “heisenbugs”, also hard to observe
and reproduce manually. Even simple bug patterns may be elusive to detect and replicate
precisely (e.g., see [9]).

1

Chapter 1. Introduction 2

1.2 Problem statement and approach

This thesis deals with the general problem of testing multithreaded programs writ-
ten in the Java programming language [16], such that program bugs are uncovered in
deterministic/reproducible manner, and can also be traced in program execution without
ambiguity.

Our approach is to conduct software tests that execute with cooperative semantics [23,
24]. The key observation underlying cooperative semantics is that a context switch can be
made at any point during program execution, but the relevant context switches are only
those that cause thread interference, e.g., access to shared data or the use of multithreading
primitives, so-called cooperative yield points. A program’s execution is cooperative if the
code between two yield points of the same thread executes serially as a transaction without
any interference from other threads.

Cooperative semantics may be exploited for software testing to attain a reproducible
and systematic coverage of the state-space of thread schedules, e.g., as in a number of
tools [17, 3, 7] that work for multithreaded C/C++ programs. The idea is to schedule
threads cooperatively, such that (deterministic) context switches are only done at yield
points. Repeated executions of a program (test) may then potentially explore the state-
space of thread schedules in a customized manner.

1.3 Contributions

The general contribution of this thesis is the design, implementation and evaluation
of a tool for cooperative testing of multithreaded Java applications. The tool is called
Cooperari and is available for download at https://bitbucket.org/edrdo/Cooperari. To the
best of our knowledge, it is the first cooperative testing tool for the Java programming
language. In detail, the contributions are summarized as follows:

• Cooperari instruments Java application byte code such that yield points defining
thread interference are intercepted and executed cooperatively. The instrumentation
of yield points is specified using AspectJ [14].

• For cooperative execution, a runtime system is defined comprising a cooperative
scheduler, and a cooperative implementation of multithreading primitives of Java
monitors and thread lifecycle operations.

• Runtime monitoring mechanisms have been implemented for the detection of data
races and some forms of deadlock.

• The tool integrates with JUnit [20], the popular testing framework for Java. Test
programmers can use the traditional JUnit framework with little extra effort.

https://bitbucket.org/edrdo/Cooperari

Chapter 1. Introduction 3

• Two coverage policies for the exploration of the state-space of thread schedules
have been implemented: a memoryless pseudo-random choice of threads, and a
history-dependent policy that maintains a record scheduling decisions that persists
across test trials,

• The tool has been evaluated using standard benchmark examples from literature.

In significance of these contributions, the following peer-reviewed publication de-
scribing Cooperari was presented at an international conference during the thesis period:

Cooperari: A Tool for Cooperative Testing of Multithreaded Java programs, Eduardo R.
B. Marques, Francisco Martins, and Miguel Simões. In: Proceedings of the 2014 Inter-
national Conference on Principles and Practices of Programming on the Java platform:
Virtual machines, Languages (PPPJ’14), Krakow, Poland, Sept. 23–26, 2014, pp. 200-
206, 2014, ISBN 978-1-4503-2926-2,ACM New York, NY.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 (“Background and related work”) provides background on Java multi-
threading and multithreaded program bug patterns, and surveys related work.

• Chapter 3 (“The Cooperari testing tool”) describes the main features of Cooperari
from a user’s perspective.

• Chapter 4 (“Design and implementation”) describes the design and implementation
of Cooperari.

• Chapter 5 (“Evaluation”) provides an evaluation of Cooperari using benchmark pro-
gram examples.

• Chapter 6 (“Conclusion”) makes a final discussion and highlights directions for
future work.

Chapter 1. Introduction 4

Chapter 2

Background and related work

2.1 Multithreaded Java programs

In this section we provide an overview of the core multithreading primitives in the
Java language and API [16], as defined by the java.lang.Thread and java.lang.Object

classes, plus the built-in support for locks using synchronized blocks.

Multithreaded programming introduces new kind of errors, such as race conditions,
deadlocks, and memory consistency. To avoid them we need to properly synchronize our
Java objects or methods to allow mutual exclusive access of the critical section to two
threads.

The Java scheduler is typically preemptive. Preemptive schedulers are driven by the
notion of prioritized computation, i.e the thread with the highest priority should always be
the one currently using the processor. If the scheduler has a timer interrupt it will decide
which thread is next to run non-deterministically and resume that thread for some constant
period of time. When the thread has executed for that time period it will be suspended,
i.e. originates a context switch, and the next thread scheduled will be resumed.

In Fig. 2.1a we have a implementation of a semaphore. A semaphore represents a
non-negative integer that can only be atomically incremented or decremented, using up()

and down() respectively. Lines 6–9, 12, 14 are synchronized blocks to the object. Before
entering their critical section, the thread needs to acquire the lock on the object. The
critical section will be only executed by one thread at a time for the object that is locked,
ensuring that we have mutual exclusion. Synchronization is also used to prevent simulta-
neous access by multiple threads to the same data, for example the access to the variable
value (lines 7, 8 and 12).

Line 9 is the termination of a synchronized block, when the thread reaches this point,
the lock on the object at stake is released. The lock can also be released if any error or
exception occurs. After the lock release, if there are other threads waiting to acquire that
lock, one of them is subsequently chosen non-deterministically by the JVM and acquires
the lock.

5

Chapter 2. Background and related work 6

1 class Semaphore {
2 private int value;
3 Semaphore(int initial) {
4 value = initial ;
5 }
6 int getValue() {
7 return value;
8 }
9 void down() throws

InterruptedException {
10 synchronized (this) {
11 while (value == 0) {
12 wait () ;
13 }
14 value = value − 1;
15 }
16 }
17 void up() {
18 synchronized (this) {
19 value = value + 1;
20 if (value == 1) {
21 notify () ;
22 }
23 }
24 }
25 }

(a) Semaphore implementation

1 static class Client extends Thread {
2 private Semaphore sem;
3 Client (Semaphore sem) { this.sem = sem; }
4 public void run() {
5 try {
6 sem.down();
7 // do some work ...
8 sem.up();
9 }

10 catch(InterruptedException e) { }
11 }
12 }
13 static final int N = ...;
14 @Test public final void test () {
15 Semaphore sem = new Semaphore(N−1);
16 Client [] c = new Client[N];
17 for (int i=0; i < N; i++) {
18 c[i] = new Client(sem);
19 c[i]. start () ;
20 }
21 for (int i=0; i < N; i++) {
22 c[i]. join () ;
23 }
24 assertEquals(N−1, sem.getValue());
25 }

(b) Semaphore test

Figure 2.1: Semaphore example

The purpose of condition based methods, wait () (line 7) and notify () (line 14) is to
coordinate access to synchronized code blocks between two threads that require each
other to perform some functionality. In the example, this means that if the value of the
semaphore is 0 then the thread needs to wait until the value is bigger then 0 (line 7). The
notification is only made (line 14), if the semaphore value is equal to 1 (line 13).

When the wait () (line 7) is executed it releases the lock on the object, and suspends
the thread until a notification is delivered by other threads for the object through notify () ,
notifyAll () , or spurious wakeup [16] event takes place. When the notify () (line 14) is

made, one of the threads that are suspended in the wait call will be resumed, this choice
is made non-deterministically by the JVM.

The test shown in Fig. 2.1b creates a semaphore with an initial value of N−1 (line 15),
that is shared by N Client threads (line 18). When a thread starts its execution (line 19),
it will execute the run() method (line 4). All critical section (line 7), is surrounded by a
semaphore (line 6 and 8), the semaphore is used to guarantee mutual exclusion.

At the end of the test, a join () (line 23) is made, to make the test to wait until all
threads terminate their execution, and then an assertion is made to verify if the semapho-
re’s value is equal to the initial one N−1 (line 20), if so the test passes. Otherwise, the test
fails giving a assertion error.

Chapter 2. Background and related work 7

2.2 Bug patterns

void up() {
value = value + 1;
if (value == 1) notify () ;
}

(a) Unsynchronized data access

void up() {
value = value + 1;
synchronized (this) {

if (value == 1) notify () ;
}
}

(b) Partially unsynchronized data access

void up() {
synchronized (this) {

value = value + 1;
}
synchronized (this) {

if (value == 1) notify () ;
}
}

(c) Two-stage access pattern

void up() {
synchronized (this) {

value = value + 1;
}
if (value == 1)

synchronized(this) {
notify () ;
}

}

(d) Two-stage access and unsynchronized access

Figure 2.2: Multithreaded bug examples

In Figure 2.2, we illustrate some multithread bugs with some variations of the up()

method of the semaphore example back from the previous section.

In (a), the up() method does not acquire any lock. This may result in data races that
will render the semaphore’s value inconsistent. Furthermore, if the notify () method is
called, it will necessarily throw an exception, since calling this method requires a lock on
the target object. Fragment (b) fixes the later issue, but still lets the semaphore value be
accessed without any synchronisation.

In (c), we have a more subtle bug, known as a two-stage access bug pattern [9]. The
operations are synchronized, but in two steps. Imagine the case where the semaphore
value is 0, and one thread in hanging on down(), Now, two other threads may execute the
first synchronised step and take the semaphore value from 0 to 2, if they yield just before
entering the second synchronized step. The fragment in (d) a variation of (c), with an
additional unsynchronised access to to the semaphore value.

Simple bug patterns like this have been characterised in literature, e.g., see [9] for
a taxonomy of concurrent bugs patterns that occur in practice. Some buggy code may
execute for quite some time without notice but are eventually manifest—this is actually
the case of (a) and (b)— while others are very hard to occur and detect—the case of (c)
and (d). In Chapter 3, we present the use of Cooperari over example (d) in detail.

Chapter 2. Background and related work 8

2.3 Cooperative semantics

The use of cooperative scheduling rests on the premise of semantics preservation.
An execution is cooperative if it ensures that the code between two yield points of the
same thread executes serially as a transaction without any interference from other threads.
The execution of a program under cooperative semantics should be equivalent to that
obtained using a traditional preemptive scheduler. This happens if the considered yield
points characterize all possible thread interference, a property Yi et al. call cooperability
[24, 23]. The authors define a formal framework to reason on cooperative semantics of
Java programs, along with tools COPPER and SILVER for formal analysis of programs.

COOPER is a dynamic analysis tool that detects cooperability violations by observing
an execution trace of the target program, and uses a graph-based algorithm to verify that
this observed trace is serializable. It reports an error if the yield annotations are not
sufficient to capture all thread interference. After that, it verifies if the program is correct
using cooperative reasoning. To place yield annotations automatically in the program,
they developed SILVER, a yield inference tool. One of SILVER main objectives is to
insert yield annotations as less as possible, to do so it only adds one when it is strictly
necessary, to reduce the number of possible executions paths for analysis. .

2.4 Cooperative testing tools

CHESS [17] is a tool for multithreaded Windows programs. It operates as a state-
less model checker, enumerating all possible thread schedules, while a test repeatedly
executes. CHESS relies on thin wrappers for multithreading primitives to identify non-
deterministic choices at yield points, and various techniques to curb state-explosion such
as iterative preemption bounding.

Cloud9 [3] is a parallel symbolic execution engine for multithreaded C POSIX pro-
grams. During state-space exploration for symbolic assertion checking, Cloud9 relies on
cooperative scheduling and a cooperative/symbolic implementation of a portion of the
POSIX system calls, in particular for the pthreads API.

CONCURRIT [7] is a tool for C++ multithread programs, employing a DSL for im-
posing thread schedule constraints. Tests execute repeatedly, with the guidance of a model
checker that covers all schedules defined by the DSL constraints. The execution is coop-
erative, relying on yield calls at execution points in user-level code specified by the DSL
(specific details are given in [5]).

Compared with these tools, Cooperari works for Java programs, and allows a partial
exploration of possible thread schedules through a deterministic pseudo-random search
and a structural program coverage criterion. Like CHESS and Cloud9, Cooperari enables
cooperative execution of multithreading primitives, while CONCURRIT just works for
user-placed yield points.

Chapter 2. Background and related work 9

2.5 Randomized scheduling

Randomized scheduling works by causing interference to the native multithreaded
scheduler, trying to “shake” it to produce meaningful context switches in hotspots where
bugs may occur. The base technique can be effective to expose bugs, but works non-
deterministically.

Rstest [22], transforms a Java program, by inserting calls (“noise”) with a scheduling
function at selected points. The scheduling function either does nothing or causes a non-
deterministic context switch. They use static analysis to reduce the number of inserted
calls to the scheduling, and it does not reduce the probability of detecting deadlocks and
assertion violations. Rstest analyses bytecode and monitors for violations of the classifi-
cation of objects as unshared, i.e., if the object is accessed by at most one thread. Rstest
does not have heuristics.

ConTest [6, 15, 18], inserts calls to the scheduling function at all concurrent events, in
particular, the events whose order determines the result of the program. ConTest executes
sleep instructions before and after concurrent events. ConTest contains two tools: Erase+
is able to detect data races; AtomRace is able to detect not only data races, but also
more general bugs cause by violation of atomicity preemptions. ConTest developed a
plug-in that is able to heal bugs (that remain in an application even when it is deployed),
automatically at runtime. The plug-in does not remove bugs from the code but it prevents
their manifestation.

PCT [4] is a randomized scheduler for finding concurrency bugs, it uses a randomized
algorithm for concurrency testing. PCT repeatedly runs a given test program with sup-
plied inputs. In each test run, it randomly schedules the threads of the program. All the
runs are independent, and so it can increase the probability of finding bugs.

CALLFUZZER [13] employs biased random scheduling to verify if warnings reported
by a predictive program analysis are real bugs, a technique known as active testing. It
works in two phases: first uses static or dynamic analysis to identify potential concurrency
bugs, in the second phase active testing uses a randomized thread scheduler to verify if
warnings reported by a predictive program analysis are real bugs, to take care of them
they implemented a Hybrid data race, Atomizer algorithm to detect atomic violations and
iGoodlock to detect deadlocks. CALFUZZER pauses a thread when it reaches a statement
involved in a potential concurrency bug and determines if this statement is benign or
harmful (e.g., causes an exception). The tool is available for Java language.

2.6 Other approaches

MultithreadedTC [19] is a framework that allows a test designer to exercise a specific
interleaving of threads in an application. It features a personal clock (not the computer
clock) that allows test designers to coordinate threads even in the presence of blocking and

Chapter 2. Background and related work 10

timing issues. The clock advances only when all threads are blocked; test designers can
delay operations within a thread until the clock has reached a desired tick. IMUnit [12]
achieves the same effect as MultithreadedTC, but through annotations that define a kind
of temporal logic, and works for Java. The tool also incorporates a translation tool to
convert Java sleep-based tests into event-based tests.

Chapter 3

The Cooperari testing tool

In this chapter we provide an overview of the testing framework provided by the Co-
operari tool. We start with a description of the Cooperari framework and its main features
(Section 3.1). We then discuss the use of Cooperari resorting to two examples (Sec-
tion 3.2).

3.1 The Cooperari framework

instrumented
bytecode

cooperative
scheduler

cooperative
threads

cooperative
execution layer

yield resume

AspectJ yield
point specs.

AspectBench
 Compiler (abc)

OFFLINE
INSTRUMENTATION

COOPERATIVE
EXECUTION

ENVIRONMENT

JUnit test runner

test
failure

OR
full

coverage
?

NO: repeat YES:
proceed

to next test

execution
completed

JUnit test code

test execution

yield point handling

 TEST
ENVIRONMENT

coverage
policy

application
bytecode

Figure 3.1: The Cooperari framework

The overall architecture of Cooperari is depicted in Figure 3.1. It comprises the fol-

11

Chapter 3. The Cooperari testing tool 12

lowing three main parts :

1. the offline instrumentation of JVM bytecode in support of cooperative execution;

2. a runtime execution environment that is responsible for handling the actual execu-
tion of an application with cooperative semantics;

3. and a testing environment that triggers the execution of application tests.

Next, we provide an overview of how these parts work and relate to each other.

3.1.1 Yield point instrumentation

To attain cooperative execution, Cooperari instruments the JVM bytecode of Java
classes that are of interest. The instrumentation takes care of transforming potential thread
interference points into thread yield points for cooperative execution.

To accomplish instrumentation, Cooperari makes use of AspectJ [14], in particular
of the AspectJ AspectBench Compiler (abc) [1], as illustrated in Figure 3.1, top-right.
The basic idea is to define (aspect-oriented style) code that is triggered when a thread
interference point is reached. The instrumented code will then seek to render the pro-
gram execution cooperatively. In what concerns the Cooperari user, the instrumentation
is automatic, transparent, and no AspectJ knowledge is required.

The yield points defined through bytecode instrumentation overall comprise:

• Java lock/monitor operations: lock acquisition, lock release, plus calls to wait () ,
notify () , and notifyAll () in class java.lang.Object;

• Thread lifecycle methods: methods that affect the behavior or govern the interac-
tion of threads in class java.lang.Thread, including start () , stop, join , interrupt ,
and sleep.

• Read or write accesses to object fields or arrays;

3.1.2 Cooperative execution environment

Cooperari enables a special execution environment for application code to run coop-
eratively, shown in Figure 3.1 (top-left). The main components of this environment are a
set of cooperative threads, a cooperative execution layer, and a cooperative scheduler.

The cooperative threads runs the application code that has been instrumented. When
a thread reaches a yield point, instrumented bytecode gets executed such that control is
delegated to the cooperative execution layer in place of normal execution. The two core
actions performed at this point by the cooperative execution layer are causing the cur-
rent thread to voluntarily stop execution (yield) and invoking the cooperative scheduler.

Chapter 3. The Cooperari testing tool 13

The cooperative scheduler will then select the thread to be resumed next, according to a
specified policy, discussed further on. This type of operation guarantees a cooperative ex-
ecution: only one thread is active at any time, and that the code between two yield points
executes serially as a transaction.

In complement to the core tasks for cooperative execution, the cooperative execution
layer also embeds monitoring modules for detecting deadlocks and race conditions. Their
use is discussed in the discussion of the examples in Section 3.2.

3.1.3 Testing environment

The Cooperari framework is completed by a testing environment (Figure 3.1, bottom),
whose role is to execute application tests, written using the JUnit testing library for Java.

Each individual test trial triggers the launch of a cooperative execution environment,
corresponding to one execution of application code. Trials of each test are repeated until
either a trial fails (e.g., due to a failed test assertion, or to a detection of a deadlock)
or the configurable coverage policy determines that no further trials should be executed.
The coverage policy configured for a test suite also defines the scheduling function to be
used by the cooperative scheduler. At this point we implemented two policies: a pseudo-
random (deterministic) choice of thread to run coupled with a bound on the maximum
number of test executions, and a history-dependent policy that tries to avoid repeated
scheduling decisions.

3.2 Using Cooperari

3.2.1 Dining Philosophers

We first discuss the use of Cooperari with the classic dining philosophers problem.
The formulation is well-known, and illustrates deadlocks due to resource sharing in a
concurrent setting. A group of N philosophers sits at a round table where N forks are
placed in between each plate. To eat, a philosopher has to have both forks, first he grabs
his left fork and then his right one. After eating, a philosopher puts both forks down. The
philosophers get stuck if they all simultaneously grab the left fork, leaving no right fork
available to be picked by anyone. No philosopher may thus progress, defining a deadlock.

In line with the dining philosophers’ formulation, the code in Figure 3.2 defines a
Philosopher Java class, and a TestPhilosophers test suite.

In Figure 3.2a, we can see that a Philosopher object is created using supplied left and
right fork objects, and that the run() method defines the behavior of the philosopher. To
grab a fork, a philosopher acquires a lock to the corresponding object, making use of a
synchronized block within the run() method. The fork acquisition is defined at lines 12–
16 for the left fork and 13–15 for the right fork. The two synchronized blocks are nested,

Chapter 3. The Cooperari testing tool 14

1 package philosophers;
2 class Philosopher implements Runnable {
3 private Object left , right ; // forks
4 private boolean thoughts = false;
5 private boolean food = false;
6 Philosopher(Object left , Object right) {
7 this . left = left ;
8 this . right = right ;
9 }

10 public void run() { // 1. think
11 thoughts = true;
12 synchronized(left) {// 2. get left fork
13 synchronized(right) {// 3. get right
14 food = true; // fork and eat
15 } // 4. release right fork
16 } // 5. release left fork
17 }
18 boolean hadThoughts() { return thoughts;}
19 boolean hadFood() { return food; }
20 }

(a) Philosopher code

1 @RunWith(CTestRunner.class)
2 @CTestOptions(coverage=RANDOM,

instrument=‘‘philosophers’’)
3 public class TestPhilosophers {
4 static final int N = ...;
5 @Test public void testDinner() {
6 Object f [] = new Object[N];
7 for (int i = 0; i < N; i++)
8 f [i] = new Object();
9 Philosopher[] p = new Philosopher[N];

10 for (int i=0; i < N; i++)
11 p[i] = new Philosopher(f[i], f [(i+1)%N]);
12 runThreads(p);
13 for (int i=0; i < N; i++) {
14 assertTrue(p[i]. hadThoughts());
15 assertTrue(p[i]. hadFood());
16 }
17 }
18 }

(b) Dining philosophers test

Figure 3.2: Dining philosophers example

implying that the right fork is only acquired after the left one, and, in the end, that the right
fork is released before the left one. If the code in run() runs to completion, the thoughts

and foods fields, initially set to false, will have been set to true.

The code of Figure 3.2b is that of a JUnit test class, TestPhilosophers, with a test
method called testDinner. The test method first defines the round table setup comprising
N forks and N philosophers (lines 7–11), represented by variables f and p, respectively.
After this setup, a call to runThreads(p) is made to execute the N philosopher threads;
runThreads is an utility method in the Cooperari API that performs the launch of a set
of threads, followed by a wait for the termination of all of them. When all the threads
complete, a sequence of JUnit-style assertions (14–16) verifies that each philosopher had
a round of thought and food.

A normal execution does not uncover the dining philosophers deadlock in a vast ma-
jority of executions. For example, we observed that a deadlock is reached only once every
20000 executions of testDinner for N=2, and failed to observe deadlock at all for N=3.

To execute the dining philosophers test cooperatively, the TestPhilosopher class must
be appropriately annotated. The @RunWith(CTestRunner.class) annotation (line 1) sets
JUnit to use Cooperari’s custom test runner (CTestRunner). In complement, the @CTestOptions

annotation (line 2) defines options for cooperative execution: the coverage =RANDOM

option specifies that pseudo-random, deterministic scheduling decisions should be made
at yield points, and the instrument=‘‘philosophers’ ’ option indicates the Java package
whose classes should be instrumented for cooperative execution. The Cooperari test run-
ner will repeatedly execute each test in the suite, testDinner alone in this case, until it
either fails or reaches a maximum number of trials (by default 1000). The output of an

Chapter 3. The Cooperari testing tool 15

execution is as follows, considering N=3 in the test code.
Instrumented code must be generated, please wait.
Changes have been detected.
Instrumentation completed in 5486 ms.
testDinner: executed 3 times in 68 ms [failed]
Failure trace for testDinner written to
’ log/TestPhilosophers testDinner.trace. txt ’
There was 1 failure :
1) testDinner(TestPhilosophers)
DeadlockError: L0/T0/Philosopher.java:13
> L1/T2/Philosopher.java:12
> L2/T0/Philosopher.java:12
> L0/T1/Philosopher.java:12

The execution above starts by performing bytecode instrumentation. This takes more
than 5 seconds, but the instrumentation will be triggered just once, so long as the source
bytecode does not change. The actual test execution is done afterwards, reporting a failure
after 3 trials of testDinner in 68 milliseconds. A DeadlockError exception is reported,
referring to a lock acquisition cycle involving the three threads, identified as T0/1/2, and
three fork objects, identified as L0/1/2.

The test execution output also informs the location of a cooperative trace file, where
the detailed thread schedule can be inspected. The contents are shown in Figure 3.3. In
the listing, the lock acquisition yield points are identified by monitorenter, the name of the
JVM bytecode instruction that is executed for that purpose. In the beginning, all threads
are initially suspended (steps 1–3). After startup, thread 1 is allowed to run for two steps
(4–5): the first step takes the thread to the point of left fork acquisition, and the second
one (with the left fork lock now effectively acquired) to the point of right fork acquisition.
Thread 1 then yields, and the same pair of steps is allowed in succession for threads 2
(6–7) and 0 (8–9). A deadlocked state is thus reached, as every philosopher holds the left
fork, but neither is able to acquire the right one.

<step> <thread> <yield point>
1 0 [begin]
2 1 [begin]
3 2 [begin]
4 1 monitorenter(L0) Philosopher.java:12
5 1 monitorenter(L2) Philosopher.java:13
6 2 monitorenter(L1) Philosopher.java:12
7 2 monitorenter(L0) Philosopher.java:13
8 0 monitorenter(L2) Philosopher.java:12
9 0 monitorenter(L1) Philosopher.java:13

L0

L1

L2T0

T1

T2

(4) (5)

(6)

(7)

(8)

(9)

Figure 3.3: Cooperative execution for the dining philosophers

3.2.2 Semaphore bug example

We now go back to the semaphore example, introduced in Chapter 2. The example
concerns a bug in the semaphore implementation in method up(), actually variant (d)
method in the Figure 2.2 in Section 2.2. We show the full (but this time buggy) semaphore

Chapter 3. The Cooperari testing tool 16

class again and an associated test in Fig. 3.4. The example will illustrate different types
of yield points and deadlocks, as well as data race detection by Cooperari. The test shown
creates a semaphore with an initial value of N−1, shared by N Client threads. Each thread
proceeds (in the run() method) by decrementing the semaphore, doing some work, and
incrementing the semaphore back before terminating. At the end, the test passes if the
semaphore’s value is equal to the initial one, N−1.

1 class Semaphore {
2 private int value;
3 Semaphore(int initial) { value = initial ; }
4 int getValue() { return value; }
5 void down() throws InterruptedException {
6 synchronized (this) {
7 while (value == 0) { wait () ; }
8 value−−;
9 }

10 }
11 void up() {
12 synchronized (this) { value++; }
13 if (value == 1) {
14 synchronized (this) { notify() ; }
15 }
16 }
17 }

(a) Buggy semaphore

1 static class Client implements
Runnable {

2 private Semaphore sem;
3 Client (Semaphore sem) { this.sem =

sem; }
4 public void run() {
5 try {
6 sem.down();
7 // do some work
8 sem.up();
9 }

10 catch(InterruptedException e) { }
11 }
12 }
13 static final int N = ...;
14 @Test public final void test () {
15 Semaphore sem = new

Semaphore(N−1);
16 Client [] c = new Client[N];
17 for (int i=0; i < N; i++) c[i] = new

Client(sem);
18 runThreads(c);
19 assertEquals(N−1, sem.getValue());
20 }

(b) Semaphore test

Figure 3.4: Buggy semaphore example and test

As explained earlier in Section 2.1 the semaphore class employs the condition-based
wait () and notify () methods associated to Java monitors, the core synchronization primi-
tives used by Java applications and thread-safe Java API classes (along with notifyAll ()).

In the semaphore code of Fig 3.4 (a), the up() operation only calls notify () when
the semaphore increments to 1 (lines 13–14). The code would be correct if a single
synchronized block covered all instructions in up(). Instead, two blocks of the kind
are used, a “two-stage access” pattern [9]. Moreover, the notification event relies on an
unsynchronized read access to value (line 13), which may race with simultaneous write
accesses. It is then possible that two or more increments in up() take the semaphore value
from 0 to a value greater than 1. A required notification, in case some thread is blocked
in down(), may be skipped and, as a result, a waiting thread may block forever. Skipped
notifications would also be possible if the read access to value was part of the second
synchronized block, but the purpose of the example is also to illustrate data races.

Cooperari detects the race condition and the wait deadlock, considering the yield
points defined by lock acquisition and release, wait () , notify () , and the read/write ac-

Chapter 3. The Cooperari testing tool 17

cesses to the semaphore value. The output of an execution for N=3 is as follows:
Race: T0 at Semaphore.java:12 over Semaphore.value
Race: T1 at Semaphore.java:13 over Semaphore.value
Failure trace for test written to

’ log/examples.semaphore.TestSemaphore test.trace.txt’
test : executed 36 times in 578 ms [failed]
1) test (examples.semaphore.TestSemaphore)

WaitDeadlockError: { T2/Semaphore.java:7 }

The output reports a race over the semaphore field and a test failure due to a WaitDeadlockError

for a thread identified as T2. A fragment of the cooperative trace is shown in Figure 3.5,
where each step is annotated with pending reads and writes (r/w) for the semaphore
value. In the execution at stake, thread 0 and 1 (T0, T1) completed down(), thus value will
be 0, and began executing up(), whilst thread 2 (T2) is executing down(). At step 23, T0

and T1 are suspended at the first lock acquisition point in up(), and T2 is blocked at the
call to wait () in down(). In steps 23–27 and 28–31, T0 and T1 are in succession able to
acquire the lock, increment the semaphore value, relinquish the lock, and suspend again
before reading value. When they do, just before terminating (steps 32 and 33), value is 2,
hence they fail to deliver the notification to T2. Thus, T2 will block forever on wait () . The
deadlock is detected at this point. As for the race, it is signaled at step 29, for a pending
write by T0 and a pending read by T1.

<step> <thread> <yield point> # r /w
15 0 monitorenter(L0) Semaphore.java:12 # {}/{}
...
22 1 monitorenter(L0) Semaphore.java:12 # [value=0]
23 2 wait(L0) Semaphore.java:7 #
24 1 get(Semaphore.value) Semaphore.java:12 # 1/{}
25 1 set(Semaphore.value) Semaphore.java:12 # {}/1
26 1 monitorexit (L0) Semaphore.java:12 # [value=1]
27 1 get(Semaphore.value) Semaphore.java:12 # 1/{}
28 0 get(Semaphore.value) Semaphore.java:12 # 0,1/{}
29 0 set(Semaphore.value) Semaphore.java:12 # 1/0 [race]
30 0 monitorexit (L0) Semaphore.java:12 # [value=2]
31 0 get(Semaphore.value) Semaphore.java:13 # 0,1/{}
32 0 <end> # {}/{};read 2; no call to notify ()
33 1 <end> # read 2; no call to nofity ()

Figure 3.5: Cooperative execution for the semaphore test

Chapter 3. The Cooperari testing tool 18

Chapter 4

Design and implementation

4.1 Yield point instrumentation

This chapter describes the main aspects in the design and implementation of Cooper-
ari. We first describe the instrumentation of yield points for cooperative execution (Sec-
tion 3.1.2). We then turn to the main components of the runtime system for cooperative
execution: the cooperative scheduler (Section 4.2), the cooperative implementation of
multithreading primitives (Section 4.2.3), and state-space exploration during test execu-
tion (Section 4.3). The chapter ends with a description of the runtime detection mecha-
nisms for deadlocks (Section 4.4.1) and races (Section 4.4.2).

As overviewed in Chapter 3, Cooperari employs AspectJ specifications for specifying
yield points and instrumenting corresponding application bytecode. We do so in con-
junction with the AspectBench Compiler (abc) [1]. The motivation for using abc is the
built-in support by the tool for AspectJ extensions related to lock acquisition and release
instructions, described in [2]. We next describe the general pattern of instrumentation and
the instrumentation of several types of yield points.

4.1.1 Instrumentation pattern

Let us first introduce some aspect-oriented programming terminology to explain the
use of AspectJ. AspectJ code is organized in aspects, each of which may contain a col-
lection of advices. An advice intercepts the execution of program at special points, called
join points, and induces the execution of some code in association to the advice. For
this, the specification of an advice comprises a set of pointcut conditions to intercept join
points, and a block of code that is executed whenever a join point is intercepted.

The pattern of instrumentation employed by Cooperari is illustrated by the AspectJ
code listed in Figure 4.1. Three advices are shown for: lock acquisition, specified by
pointcut lock () (lines 1–5); the second for lock release, specified by pointcut unlock()

(lines 6–10); and calls to the Thread.holdsLock() (11–16). In the first two advices, the
lock () and unlock() pointcuts employed are AspectJ extensions for intercepting lock ac-

19

Chapter 4. Design and implementation 20

1 void around(Object o) : lock () && args(o) {
2 CThread t = getCThread(thisJoinPoint, o);
3 if (t != null) t .cMonitorEnter(o);
4 else proceed(o);
5 }
6 void around(Object o) : unlock() && args(o) {
7 CThread t = getCThread(thisJoinPoint, o);
8 if (t != null) t .cMonitorExit(o);
9 else proceed(o);

10 }
11 boolean around(Object o) :
12 call (boolean Thread.holdsLock(Object)) && args(o) {
13 CThread t = CThread.intercept(thisJoinPoint, o);
14 if (t != null) return t .cHoldsLock(o);
15 else return proceed(o);
16 }

Figure 4.1: Sample AspectJ instrumentation code

quisition/release instructions [2]. In all three cases, the pointcut specifications are com-
plemented by the use of the around keyword, specifying that advice code should run in
place of the join point, i.e., program execution will be diverted to the advices’ code in
place of the original one that associates to the join points1.

Looking at the advices’ code in Figure 4.1, we see that they follow the same pattern.
Each of them first determines if the current thread is subject to cooperative semantics,
through a call to getCThread(). The arguments given to this function are used only to
initialize profile information of the yield point, if one is at stake. If the current thread
is subject to cooperative semantics (t != null), then execution will be diverted to a call
in the Cooperari runtime, e.g., cMonitorEnter() (line 3), the first advice will execute in
place of the monitorenter JVM instruction for lock acquisition. Otherwise (if t == null),
the proceed AspectJ keyword (lines 4, 9, 15) specifies that the join point should execute
normally. The latter case is due to the possibility that instrumented code may run non-
cooperatively at some stages of execution, particularly within a JUnit runner thread before
or after the invocation of method runThreads(), responsible for creating a cooperative
thread environment.

4.1.2 Lock/monitor yield points

Table 4.1 shows the defined aspects for monitor acquisition, release, and condition-
based synchronization.

The Object.wait(long) and Object.wait(long,int) call is executed within the coopera-
tive framework, but not deterministically, because its completion depends on the elapsed
time measured by the JVM. In complement, the tool intercepts thread state methods, like
Thread.holdsLock(), to maintain the cooperative semantics coherent, even if this call is
not a yield point.

1Among several other AspectJ variations, it is also possible to trigger advice code before or after a join
point is reached.

Chapter 4. Design and implementation 21

Yield point Pointcut definition
monitorenter JVM instruction lock ()
monitorexit JVM instruction unlock()
Thread.holdsLock() call (boolean Thread.holdsLock(Object))

Object.wait
Object.wait () call (void Object.wait())
Object.wait(long) call (void Object.wait(long))
Object.wait(long,int) call (void Object.wait(long, int))

Object. notify () call (void Object.notify ())
Object. notifyAll () call (void Object. notifyAll ())

Table 4.1: Lock/monitor yield points

4.1.3 Thread-lifecycle yield points

Thread lifecycle methods, are methods that affect the behavior of the threads.
Thread.start () , Thread.stop(), Thread.join() and Thread.interrupt () are the core methods
for thread creation and thread interruption. Table 4.2 shows the aspects defined to cover
this methods and how the pointcuts were defined.

As the Object.wait () call; Thread.sleep and Thread.join(long), Thread.join(long, int)

also belong to time-based functions, so they do not execute deterministically, because they
depend on the elapsed time of the JVM.

Such as Thread.holdsLock(), Thread.getState() call is intercepted to maintain the co-
operative semantics coherent.

Yield point Pointcut definition

Thread.sleep
Thread.sleep(long) call (void Thread.sleep(long))
Thread.sleep(long,int) call (void Thread.sleep(long,int))

Thread.interrupt () call (void Thread.interrupt ())
Thread.interrupted() call (boolean Thread.interrupted())
Thread.isInterrupted() call (boolean Thread.isInterrupted())
Thread.stop() call (void Thread.stop())

Thread.join
Thread.join() call (void Thread.join())
Thread.join(long) call (void Thread.join(long))
Thread.join(long,int) call (void Thread.join(long,int))

Thread.getState() call (Thread.State Thread.getState())

Table 4.2: Thread-lifecycle yield points

4.1.4 Data access yield points

There is a main difference between this yield points and the ones described in sec-
tions 4.1.2 and 4.1.3. The difference is that all the other aspects use the keyword around,
but in the data access yield points we use the keywords before and after . This keywords
refer that before and after a write or read access we have a yield point, to check if in

Chapter 4. Design and implementation 22

some point of the program, we have a simultaneous write/read or write/write on the same
variable by different threads. In table 4.3, we demonstrate the yields that were defined to
cover all the data accesses.

Yield point Pointcut definition
field read get()
field write set ()
array read arrayget()
array write arrayset ()

Table 4.3: Data access yield points

4.2 Cooperative execution environment

4.2.1 Overview

The creation of a cooperative execution environment is triggered by a call to the
runThreads() Cooperari API function, typically invoked from a test suite. The call takes
an argument, which can either be an array of objects of type java.lang.Runnable. Ob-
jects of this kind define method run() with no arguments, which is supposed to define
the execution flow of a thread. If the array supplied to runThreads() has length n, then n

cooperative threads will be started and executed to completion.
A cooperative execution environment comprises the interaction of cooperative threads

launched trough runThreads() with a cooperative scheduler and a cooperative implemen-
tation of multithreading primitives. This happens thanks to the bytecode instrumentation,
described earlier in Section 4.1, which intercepts thread execution appropriately at yield
points.

4.2.2 The cooperative scheduler

The cooperative scheduler is a special thread, whose role is to decide which appli-
cation thread should be active at any given time. To ensure cooperative semantics, only
one cooperative thread can be active at any time, and thread context switches are only
performed at instrumented yield points. Hence, a cooperative thread voluntarily suspends
its execution when it reaches a yield point. The cooperative scheduler assumes control
at this point, deciding the next thread to run, and resuming the execution of the chosen
thread. The built-in JVM scheduler is conditioned in this process by the actions of the
cooperative scheduler and cooperative threads.

The main implementation of the cooperative scheduling scheme is shown in Fig-
ure 4.2. It comprises the implementation of primitives cYield() and cResume() in a class

Chapter 4. Design and implementation 23

1 private boolean yield;
2 public void cYield() {
3 ... // yielding
4 yield = true;
5 syncYield() ;
6 while (yield) {
7 LockSupport.park();
8 }
9 syncResume();

10 ... // resumed
11 }
12 public void cResume() {
13 ...
14 yield = false;
15 LockSupport.unpark(this);
16 }

(a) Thread yield and resumption

1 CoveragePolicy policy;
2 List<CThread> ready;
3 ...
4 public void cStep() {
5 ...
6 syncYield() ;
7 CThread t =
8 policy .decision(ready);
9 t .cResume();

10 syncResume();
11 ...
12 }

(b) Scheduler step

Figure 4.2: Implementation of cooperative scheduling

called CThread 4.2a, representing the operation of cooperative threads, and a primitive
cStep in a class CScheduler 4.2b, for the cooperative scheduler operation.

A thread yield is accomplished through a voluntary call to cYield() (Figure 4.2a) by
a cooperative thread. The thread starts by enabling a yield condition variable (line 4) and
synchronizes with the scheduler with a call to syncYield() (line 5), a barrier handshake.
Essentially, this makes the scheduler aware of the thread yield. The thread then calls
the LockSupport.park() Java API method, preventing its execution by the built-in JVM
scheduler; the JVM scheduler could otherwise break the cooperative scheduling intent.

In synchrony with the thread yield procedure, the cooperative scheduler works as
follows within cStep() (Figure 4.2b). It begins by acknowledging a thread yield through
a call to syncYield() (line 6). It then employs the coverage policy in place, policy, to
select the next thread t to run amongst the ready thread set ready (lines 7–8). Finally, the
scheduler executes t .cResume() to resume the chosen thread.

The resumption process in cResume(), executed by the scheduler thread, disables a
thread’s yield condition (line 14) and allows the thread to be picked up again by the JVM
scheduler through a call to the LockSupport.unpark() Java API method (line 15). These
two steps are exactly the reverse the thread yield procedure. When the thread resumes
again, it will complete the execution of cYield() in which it blocked. The resumption pro-
cess ends with a synchronization handshake between thread and scheduler, syncResume()

in 4.2a and 4.2b.

4.2.3 Cooperative implementation of multi-threading primitives

The multithreaded primitives where implemented in CThread class, helped by a CMonitor

class for representing monitors, and a COperation base class that implements the behavior
of primitives. Each primitive executes an action before its suspension and another after

Chapter 4. Design and implementation 24

resumption.
For instance, the CThread.cMonitorEnter() method (Fig. 4.1) is used by Cooperari for

lock acquisition. It is implemented by first initializing a COperation object for the new
monitor acquisition, after the initialization a cYield() is invoked to suspend the thread
execution and when it is resumed (through cResume()) the thread completes the lock
acquisition on the object.

1 class CMonitor {
2 // Reference count.
3 int refCount;
4 // Owner thread
5 CThread owner;
6 // Wait count
7 int waitCount;
8 // Notification epoch
9 long nEpoch;

10 // Notification queue
11 Queue<Integer> nQueue;
12 }

(a) Monitor data

1 void init (Object o) {
2 m = getMonitor(o);
3 m.refCount++;
4 }
5 CState getState() {
6 return
7 m.owner == null ?
8 CREADY : CBLOCKED;
9 }

10 void complete(CThread t) {
11 m.owner = t;
12 }

(b) Lock acquisition

Figure 4.3: Implementation of monitor operations

Fig. 4.3 demonstrates part of the support for monitor operations. The CMonitor class
(Fig. 4.3a) is used for distinct types of COperation corresponding to monitor acquisition,
release, notification, and wait wakeup. In Fig. 4.3b is showed the support for lock ac-
quisition. As illustrated, each operation comprises initialization (lines 1–4), state report
(lines 5–9) and completion methods (lines 10–12). A thread can only resume its exe-
cution, if the operation is on a ready state (CREADY, line 8). In the lock acquisition
operation, a monitor for o is created in the getMonitor(o) (line 2) call, if there are no pend-
ing locks on o. If there already exists a monitor on the object o, the reference counter
for the monitor object is incremented (line 3). The same counter is decremented in the
completion of lock release, and the monitor is deleted when the reference counter gets the
value 0. A CREADY state is signaled when the monitor has no owner, letting the thread
be considered for execution. The thread may go back to a CBLOCKED state, if another
thread is chosen instead by the scheduler and acquires the lock, this happens if there exists
more than one thread blocked in the lock acquisition on the same object. In the comple-
tion stage of the operation (lines 10–12), the owner of the monitor is the thread that was
chosen by the scheduler to run (line 11).

4.3 Test execution and state-space exploration

4.3.1 Overview

When Cooperari is used for a JUnit test suite, the suite must be configured with a
coverage policy using a pre-defined value for the coverage setting of the @CTestOptions.

Chapter 4. Design and implementation 25

The role of the coverage policy is to guide thread scheduling in each test trial, in interface
with the cooperative scheduler, and maintain state across multiple trials of each test to
determine for how long test trials should be repeated, according to some criterium of
state-space exploration. Two coverage policies are implemented so far in Cooperari: a
pseudo-random choice of threads combined with a fixed bound on the number of test
trials, and a history-dependent policy that tries to avoid repeated scheduling decisions for
the same program state.

Test execution proceeds as follows. After executing a test trial, the Cooperari test
runner evaluates if the test failed. If so, no more trials are executed for that test. Otherwise,
the coverage policy is queried to determine if the associated coverage criteria has been
satisfied. If not, the trial is repeated, otherwise no more trials are executed and the test is
considered as passed (no failures will have been detected in this case). This functionality
is embedded in Cooperari’s extension of the default JUnit test runner.

Meanwhile, during each trial, more precisely during the execution of a cooperative ex-
ecution environment through runThreads(), the cooperative scheduler will interface with
the coverage policy for the test suite at each scheduling step to determine the thread to
run at each yield point, the policy .decision() call back in Figure 4.2 (Section 4.2.2).

4.3.2 The random coverage policy

1 public class RandomCoveragePolicy implements CoveragePolicy {
2 private final int maxRuns; // Maximum number of test executions.
3 private int runs; // Executions so far .
4 private Random pRNG; // Pseudo−random number generator.
5 public RandomCoveragePolicy(Class<?> testClass, Method m,

CTestOptions options) {
6 runs = 0;
7 maxRuns = options.maxRuns();
8 pRNG = new Random(0); // uses a fixed seed for repeatable tests
9 }

10 public void onTestFinished() { runs++; }
11 public boolean done() { return runs >= maxRuns; }
12 public CThread decision(List<CThread> readyThreads) {
13 return readyThreads.get(pRNG.nextInt(readyThreads.size()));
14 }
15 ...
16 }

Figure 4.4: Code for the random coverage policy

The simplest coverage policy implemented within Cooperari is the random coverage
policy, activated using the coverage=RANDOM setting for @CTestOptions. The policy
employs a pseudo-random generator for thread scheduling decisions, and a runtime pa-
rameter that bounds the maximum number of test trials, configured by the maxRunsPerTest

setting in @CTestOptions (1000 by default if omitted). During a scheduling step, a thread
is chosen randomly, without any recall of past decisions. The decision is deterministic
across test sessions however, since the random number generator is always initialized

Chapter 4. Design and implementation 26

with a fixed seed. After each test trial, the number of test trials executed so far is com-
pared with the maximum number of trials to determine if there is no need for more test
trials.

The code for the random policy is shown in Figure 4.4. For the most part, the code
should be self-explanatory, and illustrates the general traits of the extensible framework
for coverage policies. The decision() method is used by the cooperative scheduler to ob-
tain the next thread to run at each yield step. The onTestFinished() and done() methods
are respectively used by the Junit runner to notify a test trial conclusion, and query if the
coverage criterium has been satisfied. These methods are defined originally in abstract
form by the CoveragePolicy Java interface in the Cooperari API. Regarding determin-
ism for the policy at stake, observe that the pseudo-random generator, an instance of
java. util .Random, is always initialized with fixed seed 0. This will guarantee a deter-
ministic sequence of scheduling decisions (so long as the remaining system runs deter-
ministically as well, of course).

4.3.3 The history-dependent policy

The second policy implemented in Cooperari is a history-dependent one. This policy
maintains a history of scheduling decisions across test trials in order to avoid repetition
of behavior for the same program state. The history record works in conjunction with a
program state abstraction and an equivalence relation between such program state abstrac-
tions, a form of dynamic partial order reduction [10], that helps reducing the state-space
of possible thread schedules and tries to avoid scheduling decisions that commute.

The policy works as follows. The state of ready threads is represented by program
state s = {(n1, pc1), . . . , (nk, pck)}, a set where each each (n, pc) ∈ s defines n > 0

threads suspended at location pc, where pc corresponds to the stack trace information
obtained via Thread.getStackTrace() augmented with information for the current yield
point. History is maintained as a set of pairs (s, pc), where s is an abstract program state
and pc is a program location representing a past scheduling decision. At each step, for
state s, the policy deterministically tries to find a thread t at location pc such that (s, pc) is
not part of the history set. If so, it decides on scheduling t. If all the choices have already
been made, then the selection proceeds as in the random coverage policy.

Note that the history-dependent policy cannot guarantee an enumeration of all thread
schedules. Firstly, no backtracking mechanism ensures a visit to states where past unex-
plored scheduling decisions lie. To have a backtracking mechanism, a model checker
could integrate orthogonally with the remaining infrastructure of Cooperari, e.g., see
[7, 17]. Secondly, the program state abstraction scheme may also filter out relevant thread
schedules, given that it is strictly based in structural program information (information for
the stack trace and yield points of thread), ignoring data values for instance.

Chapter 4. Design and implementation 27

4.4 Runtime monitoring mechanisms

Cooperari uses runtime monitoring to detect two common problems in multithreaded
programs: deadlocks and data races. A deadlock occurs whenever one or more threads is
hanged on a synchronization point and unable to progress. A data race occurs whenever
a thread writes a data item that is being accessed (read or written) simultaneously by
another thread. We describe the support for detecting these events within Cooperari.

public class DeadlockDetector {
private final

ResourceGraph<Monitor> graph = new
ResourceGraph<>();

private final
IdentityHashMap<CThread,LinkedList<Monitor>>

lockChain = new
IdentityHashMap<>();

...
public void onMonitorEnter(CThread t,

Monitor m) {
LinkedList<Monitor> chain =

lockChain.get(t);
if (chain == null) {

chain = new LinkedList<>();
chain.add(m);
lockChain.put(t , chain);

} else {
Monitor from = chain.getLast() ;
graph.addEdge(from, m);
List<Monitor> deadlock =

graph.findCycle(m);
if (!deadlock.isEmpty()) {

// Deadlock detected, error handling
omitted

...
} else {

chain.addLast(m);
}
}
}
public void onMonitorExit(CThread t) {

LinkedList<Monitor> chain =
lockChain.get(t);

Monitor m = chain.removeLast();
if (! chain.isEmpty()) {

graph.removeEdge(chain.getLast(), m);
} else {

lockChain.remove(t);
}
}
}

(a) Deadlock detection code

public class RaceDetector {
private final HashMap<Data, Status>

monitoring = new HashMap<>();
...
private void beginWrite(Data d) {

Status status = monitoring.get(d);
if (status == null) {

// No previous info for data item.
status = new Status();
monitoring.put(d, status) ;

}
status.incrementWriters();
}
private void endWrite(Data d) {

Status status = monitoring.get(d);
if (status.decrementWriters() == 0) {

// Call returns reference count (readers
+ writers) .

// If 0, information can be discarded.
monitoring.remove(d);

}
if (status.raceCondition()) {

log(new RaceError(CThread.self(),
d. object, d. key)) ;

}
}
...

}

(b) Race detection code

Figure 4.5: Runtime monitoring of deadlocks and data races

4.4.1 Deadlock detection

Cooperari is able to detect deadlocks using two mechanisms. The first mechanism
consists of a simple check conduced by the cooperative scheduler. Whenever a scheduling

Chapter 4. Design and implementation 28

step is invoked, the state of all cooperative threads is inspected. If all these threads are in
a blocked state, then by definition there is a deadlock. This mechanism only works if all
the threads are really blocked, however a deadlock will not be detected for a strict subset
of the threads, except for deadlocks involving lock acquisition in the manner described
next.

The second mechanism detects deadlocks due to cyclic lock acquisitions, as in the
dining philosophers example of Chapter 3. As locks are acquired and released, a resource
graph [11] is maintained to detect any cyclic dependency expressed by lock acquisitions.

The graph works in conjunction with a chain of lock acquisitions maintained per each
thread. Edges are added to the graph in the initialization stage of lock acquisitions, and
removed in the completion stage of lock releases. For a thread t locking monitor m the
monitoring information is updated as follows:

1. If t owns no locks, i.e., the lock chain of t is empty, the edge t → m is added to the
graph;

2. If the lock chain of t ends with m’, i.e., the last lock obtained by t is m’, an edge m’

→ m is added to the graph.

In both the two cases above, m is also appended to the lock chain of t . In reverse man-
ner, when t releases m, the added edge and the lock chain’s tail are removed. Deadlocks
are easily monitored by checking for the existence of cycles in the graph.

In line with the above reasoning, the code listing in Figure 4.5a depicts the relevant
fragments for deadlock detection. The lock chain and resource graph are represented
respectively by variables chain and graph. The code executed for lock acquisition and
release is defined by methods onMonitorEnter() and onMonitorExit().

4.4.2 Race detection

Cooperative scheduling naturally exposes races conditions, whenever they may hap-
pen, as illustrated by the semaphore example in Chapter 3.

For race detection, Cooperari records information about pending read and write yield
points for each data item, which can either be an object field or an array position. When
a thread yields on a (read or write) data access, we increment a read or write counter
for the data item, and the same counter is decremented when the thread resumes. A
race is signaled whenever a completing write detects a pending read or write, or when a
completing read detects a pending write. The information for a data item is discarded if
both read and write counters reach 0, meaning that there are no pending operations for
that data item.

The listing in Figure 4.5b shows a fragment of the code that implements the race
detection scheme. The listing comprises the methods that are executed whenever a write

Chapter 4. Design and implementation 29

access for a data item initiates, beginWrite(), and completes, endWrite(). The code to deal
with read accesses is similar.

Chapter 4. Design and implementation 30

Chapter 5

Evaluation

This chapter describes the evaluation of Cooperari using a set of multithreaded Java
program, mostly taken from the ConTest [8] and the SIR [21] benchmark suites. The
examples at stake were previously employed in the evaluation of tools for verification and
testing of multithreaded Java programs.

We begin with a summary description of the benchmarks and their preparation for
evaluation (Section 5.1). We then provide and discuss the results for the benchmarks
(Section 5.2), covering the effort of bytecode instrumentation, the ability of the system
to detect bugs versus a normal testing environment, and a comparison between the two
coverage policies implemented in the system so far.

5.1 Benchmark programs

The evaluation covered 12 multithreaded program examples, identified in Table 5.1.
The examples are from the ConTest suite [8] and the SIR repository [21], as identified
in the table, plus the dining philosophers and semaphore examples of Chapter 3. Some
ConTest examples are also in the SIR repository, and we used the SIR versions in those
cases.

The SIR/Contest test subjects’ original code was used, and associated test programs
were converted into JUnit tests that employ Cooperari. All tests are parametric in the
number of threads. The bugs at stake comprise deadlocks for Bank, Clean, Dining
Philosophers, Piper, and Semaphore, and failed test assertions for the remaining exam-
ples. Monitor-based synchronization primitives are employed in all benchmarks except
for Apache Common Lang, Merge Sort, and Reorder, where plain data races lead to failed
test assertions.

31

Chapter 5. Evaluation 32

Benchmark Description Bug(s)
Alarm Clock [21] A NullPointerException is thrown in some executions

due to data races and and bad use of monitors.
Data Race

Apache Common Lang [21] The hash code of an of object may yield different re-
sults for different threads due to a data race.

Data Race

Bank [8] A bank account object is changed by multiple threads,
and the balance becomes inconsistent due do a data
race. The threads may also deadlock.

Deadlock

Clean [8, 21] Bad use of monitor notifications leads to deadlock. Deadlock
Dining Philosophers Example from Section 3.2.1. Deadlock
Linked List [8, 21] A non-synchronized operation for a linked list opera-

tion leads to data inconsistency.
Data Race

Merge Sort [8] Data races during array sorting conducted by multiple
threads.

Data Race

Piper [8, 21] Producer-consumer simulation of an airplane ticket
reservation system. The same seat may be allocated
to more than one thread, while others deadlock.

Deadlock

Reorder [8, 21] Data race between threads leads to an inconsistent state
for an object.

Data Race

Semaphore See Section 3.2.2. Deadlock
Two Stage [8, 21] It’s a reader and a writer, that share the same data, and

the data can be inconsistent.
Data Race

Wrong Lock [8, 21] A wrong lock is obtained, leading to an unsynchro-
nized access/race for a data value.

Data Race

Table 5.1: Program descriptions

5.2 Results

5.2.1 Test setup

The results for our benchmark evaluation were conducted using a standard Java 7
JVM, with a dual-core 3 GHz CPU and 4 GB of RAM. The times we report were measured
through command-line scripts.

5.2.2 Bytecode Instrumentation time

The first set of results concerns the time for bytecode instrumentation in each of the
benchmarks, as performed by the abc compiler guided by Cooperari’s yield point specifi-
cations in AspectJ. These results are shown in Table 5.2, listing the lines of code (LOC)
and the instrumentation time in seconds per benchmark, as well as the LOC-time ratio.

Overall, the instrumentation time is less than 30 seconds in all cases, and the time-
LOC ratio is between approx. 5 and 15 LOC/s. A yield point count and a yield point-time
ratio, in place of LOC and LOC/s, would be more appropriate measures in principle, but
we could not obtain that information from the abc runtime, and we did not also conduct a
manual count of the yield points. Still, the numbers already indicate that bytecode instru-
mentation can be a costly process. Recall however that the instrumentation is conducted
only once until the test subjects’ code changes. Hence, the instrumentation effort can be

Chapter 5. Evaluation 33

Benchmark LOC Time(s) LOC/s
Alarm Clock 210 18.9 11.11

Apache Common Lang 398 26.0 15.31
Bank 77 11.7 6.58
Clean 63 11.4 5.53

Dining Philosophers 29 5.6 5.18
Linked List 150 13.3 11.28
Merge Sort 98 12.1 8.10

Piper 102 14.0 7.29
Reorder 48 11.0 4.36

Semaphore 29 5.6 5.18
Two Stage 70 13.3 5.26

Wrong Lock 63 12.5 5.04

Table 5.2: Bytecode instrumentation time

amortized by the repetition of the tests over time.

5.2.3 Test execution

We executed the benchmark tests, using three distinct configurations. Two configu-
rations employ cooperative execution: the first one uses the history-dependent coverage
policy, the second uses the random coverage policy. The remaining configuration em-
ploys unconstrained scheduling of threads. The unconstrained execution is enabled using
coverage=NONE in the CTestOptions annotation for a JUnit test class; the runThreads()

Cooperari API method executes unmodified bytecode in this case.
For each of the configurations and benchmarks, we varied the number of threads

from 2 to 32 and took the measures listed in Table 5.3. For each case, the results in-
dicate the number of test trials executed, on top for each entry, and the execution time in
seconds, at bottom. The times and test trials in the unconstrained execution are the av-
erage of 10 executions for each case. The number of trials for the cooperative execution
cases does not vary, but the times are again the average of 10 executions. Entries in italic
for some 2-thread settings (Alarm Clock, Piper, and Semaphore) indicate that the bug at
stake is guaranteed not to occur, hence 1000 test trials are expected. Bold entries indicate
that the bug may occur but is not reproduced after 1000 trials.

The first key observations relate to the comparison of effectiveness between coopera-
tive and unconstrained test execution. Generally, we can conclude that cooperative execu-
tion exposes bugs that unconstrained execution cannot, as the former only failed to expose
bugs after 1000 trials for the dining philosophers’ 32-thread case and the semaphore’s 16
and 32 thread cases; these two benchmarks require a very precise schedule for deadlock,
as discussed in Chapter 3. In contrast, unconstrained execution worked only for the Clean
and Piper examples. Moreover, cooperative testing requires a relatively small number of
trials in many of the benchmarks.

Regarding execution times, the overhead imposed by cooperative execution is notice-

Chapter 5. Evaluation 34

Benchmark Hist. dep. coverage Random coverage Unconstrained execution
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Alarm Clock 1000 7 3 1 2 1000 8 13 8 6 1000 ——– 1000 ——–
64.9 1.4 1.1 0.7 1.2 62.3 1.4 2.2 1.9 1.8 51.0 51.4 51.6 52.0 52.7

Apache Common
Lang

1 1 1 1 1 1 1 1 1 1 ——– 1000 ——–
0.2 0.3 0.4 0.6 0.8 0.2 0.2 0.4 0.5 0.8 0.3 0.6 0.9 1.4 2.2

Bank 1 1 1 3 1 1 1 1 2 1 ——– 1000 ——–
0.1 0.2 0.4 1.0 1.0 0.1 0.2 0.3 1.1 1.0 1.4 1.5 1.9 2.6 3.7

Clean 3 4 2 1 1 21 2 1 1 1 25 3 1 1 1
0.4 2.0 1.7 1.4 1.6 2.9 0.9 1.1 1.3 1.6 0.1 0.1 0.1 0.1 0.1

Dining
Philosophers

2 9 48 581 1000 4 13 165 1000 1000 ——– 1000 ——–
0.1 0.2 1.0 18.8 189.4 0.1 0.2 2.4 23.8 46.2 0.3 0.4 0.8 1.3 2.3

Linked List 2 1 1 1 1 2 4 1 1 1 ——– 1000 ——–
0.1 0.2 0.4 1.0 1.2 0.1 0.2 0.1 0.2 0.4 0.1 0.6 0.9 1.4 1.7

Merge Sort 99 117 95 54 4 99 11 51 14 35 ——– 1000 ——–
4.6 6.8 17.7 26.9 3.2 4.2 2.5 4.6 3.5 9.5 0.3 0.4 0.7 1.3 2.3

Piper 1000 2 2 1 1 1000 3 1 1 1 1000 2 1 1 1
7.7 0.3 0.3 0.6 0.8 7.2 0.1 0.2 0.4 0.7 0.7 0.1 0.1 0.1 0.1

Reorder 50 13 4 7 20 2 23 26 17 10 ——– 1000 ——–
0.4 0.2 0.2 0.5 1.5 0.1 0.3 0.7 0.8 0.9 0.3 0.4 0.8 1.4 2.3

Semaphore 1000 37 137 1000 1000 1000 8 249 1000 1000 1000 ——– 1000 ——–
6.5 0.7 2.7 34.4 73.1 6.0 0.2 2.4 32.1 63.0 0.3 0.5 0.8 1.2 1.9

Two Stage 52 57 11 15 28 324 141 157 92 46 ——– 1000 ——–
1.1 1.9 1.1 0.3 3.2 3.6 2.5 3.6 0.3 4.0 0.3 0.4 0.7 1.3 2.4

Wrong Lock 5 1 2 7 1 5 1 2 3 1 ——– 1000 ——–
0.1 0.1 0.2 0.9 0.5 0.1 0.1 0.2 0.5 0.5 0.3 0.4 0.8 1.3 2.2

Table 5.3: Benchmark results

able, particularly in the 1000-trial runs, e.g., approximately 20 times slower than uncon-
strained execution for the 2-thread setting in the semaphore example. This is due to the
execution of instrumented code and the internal Cooperari support for cooperative execu-
tion. The issue is mitigated however by the execution of a smaller number of trials in all
other cases.

Finally, we can compare the use of the history-dependent and random policies. The
history-dependent policy tries to avoid repeated scheduling decisions, and in doing so it
limits their state-space. The random coverage however seems to have the benefit of ex-
ploring different slices of that state-space earlier in some cases. In terms of test trials,
the history-dependent policy clearly performs better in the Dining Philosophers and Two
Stage benchmarks, but the random coverage policy has comparable performance other-
wise. The other observation is that the history-dependent policy certainly involves more
computational effort, due to its internal book-keeping, and as result, the test execution
times are generally higher for a similar number of test trials with the random policy.

Chapter 6

Conclusion

We presented Cooperari, a testing tool for multithreaded Java software, based on co-
operative semantics. The tool was implemented with the following core aspects: the
instrumentation of thread interference points for cooperative execution; an execution en-
vironment established by a cooperative scheduler, a cooperative implementation of mul-
tithreading primitives, and runtime detection of deadlocks and races; and an environment
for reproducible tests, in association to custom coverage policies for the exploration of the
state-space of thread schedules. We validated the initial prototype using two state-space
coverage criteria and a set of standard benchmark examples.

Our main conclusion is drawn from the benchmark evaluation. The use of cooperative
semantics provides an appropriate approach for reproducible and deterministic testing
of multithreaded code. By comparison, unconstrained preemptive semantics provides a
much weaker alternative for robust testing, as it failed to expose bugs in most cases.

In the future, we plan to extend and analyze the tool and the use of cooperative se-
mantics in a number of ways, as follows:

• Conducting a more in-depth analysis of the use and the effectiveness of cooperative
testing, e.g., performing a comparison to other related approaches such as random-
ized scheduling, and considering larger, real-word applications;

• Covering a wider set of multithreading Java primitives, e.g., atomic operations,
barriers, futures, amongst others in the feature-rich java. util .concurrent API;

• Implementing and analyzing further coverage policies for state-space exploration,
e.g., taking the stateless model-checking approach of other tools [3, 7, 17];

• Reaching a more stable state of development, such that it can be used reliably as a
pedagogical tool in the software testing course at FCUL (“Verificação e Validação
de Software”);

• And developing an Eclipse IDE plugin, for simpler use and configuration of Coop-
erari software tests.

35

Bibliography

[1] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. Abc: An extensible aspectj compiler. In Proceedings of the
4th International Conference on Aspect-oriented Software Development, AOSD ’05,
pages 87–98. ACM, 2005.

[2] Eric Bodden and Klaus Havelund. Aspect-Oriented Race Detection in Java. IEEE
Trans. Software Eng., 36(4):509–527, 2010.

[3] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, pages 183–198, New York, NY,
USA, 2011. ACM.

[4] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. A randomized scheduler with probabilistic guarantees of finding bugs. In
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XV, pages 167–178. ACM,
2010.

[5] Jacob Burnim, Tayfun Elmas, George Necula, and Koushik Sen. CONCURRIT:
Testing Concurrent Programs with Programmable State-Space Exploration. In Pro-
ceedings of the 4th USENIX Conference on Hot Topics in Parallelism, HotPar,
page 16. USENIX Association, 2012.

[6] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel
Ur. Framework for testing multi-threaded java programs. Concurrency and Compu-
tation: Practice and Experience, 15(3-5):485–499, 2003.

[7] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. CONCURRIT: a
domain specific language for reproducing concurrency bugs. In Proceedings of the
34th ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI, pages 153–164, 2013.

37

Bibliography 38

[8] Yaniv Eytani and Shmuel Ur. Compiling a benchmark of documented multi-threaded
bugs. In IPDPS. IEEE Computer Society, 2004.

[9] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent Bug Patterns and How to
Test Them. In Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, IPDPS, page 286. IEEE Computer Society, 2003.

[10] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 110–121. ACM, 2005.

[11] Richard C. Holt. Some deadlock properties of computer systems. ACM Comput.
Surv., 4(3):179–196, 1972.

[12] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou Luo, Grigore Rosu, and
Darko Marinov. Improved multithreaded unit testing. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE, pages 223–233. ACM, 2011.

[13] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. CalFuzzer: An Ex-
tensible Active Testing Framework for Concurrent Programs. In Proceedings of the
21st International Conference on Computer Aided Verification, CAV, pages 675–
681. Springer-Verlag, 2009.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G Griswold. An overview of AspectJ. In ECOOP 2001—Object-Oriented
Programming, pages 327–354. Springer, 2001.

[15] Bohuslav Krena, Zdenek Letko, Yarden Nir-Buchbinder, Rachel Tzoref-Brill,
Shmuel Ur, and Tomás Vojnar. A Concurrency Testing Tool and Its Plug-Ins for
Dynamic Analysis and Runtime Healing. In Proceedings of the 9th International
Workshop, RV, pages 101–114. Springer Berlin Heidelberg, 2009.

[16] Doug Lea. Concurrent Programming in Java. Second Edition: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 1999.

[17] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI, pages 267–280. USENIX
Association, 2008.

Bibliography 39

[18] Yarden Nir-Buchbinder and Shmuel Ur. ConTest listeners: a concurrency-oriented
infrastructure for Java test and heal tools. In Fourth International Workshop on
Software Quality Assurance: In Conjunction with the 6th ESEC/FSE Joint Meeting,
SOQUA, pages 9–16. ACM, 2007.

[19] William Pugh and Nathaniel Ayewah. Unit testing concurrent software. In Pro-
ceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ASE, pages 513–516. ACM, 2007.

[20] Junit. http://junit.org.

[21] Software-artifact Infrastructure Repository. http://sir.unl.edu.

[22] Scott D. Stoller. Testing Concurrent Java Programs using Randomized Scheduling.
Electr. Notes Theor. Comput. Sci., 70(4):142–157, 2002.

[23] Jaeheon Yi, Tim Disney, Stephen N. Freund, and Cormac Flanagan. Cooperative
types for controlling thread interference in Java. In Proceedings of the 2012 In-
ternational Symposium on Software Testing and Analysis, ISSTA, pages 232–242.
ACM, 2012.

[24] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. Cooperative reasoning for
preemptive execution. In Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming, PPoPP, pages 147–156. ACM, 2011.

http://junit.org
http://sir.unl.edu

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem statement and approach
	Contributions
	Thesis structure

	Background and related work
	Multithreaded Java programs
	Bug patterns
	Cooperative semantics
	Cooperative testing tools
	Randomized scheduling
	Other approaches

	The Cooperari testing tool
	The Cooperari framework
	Yield point instrumentation
	Cooperative execution environment
	Testing environment

	Using Cooperari
	Dining Philosophers
	Semaphore bug example

	Design and implementation
	Yield point instrumentation
	Instrumentation pattern
	Lock/monitor yield points
	Thread-lifecycle yield points
	Data access yield points

	Cooperative execution environment
	Overview
	The cooperative scheduler
	Cooperative implementation of multi-threading primitives

	Test execution and state-space exploration
	Overview
	The random coverage policy
	The history-dependent policy

	Runtime monitoring mechanisms
	Deadlock detection
	Race detection

	Evaluation
	Benchmark programs
	Results
	Test setup
	Bytecode Instrumentation time
	Test execution

	Conclusion
	Bibliography

