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Resumo 

 

A Leucemia Linfoblástica Aguda de Células T (LLA-T) é um cancro pediátrico agressivo 

que resulta da expansão clonal de células progenitoras de linfócitos T, cuja diferenciação se 

encontra bloqueada em diferentes estádios de desenvolvimento. Embora os regimes 

quimioterápicos actuais sejam bastante eficazes, culminando numa taxa de cura de cerca de 

80% em crianças, existe ainda um número significativo de doentes que recidivam. Para além 

disso, os regimes intensivos de quimioterapia estão normalmente associados a efeitos 

secundários consideráveis a médio e longo prazo. Por esta razão, urge desenvolver terapias 

com maior especificidade para as células leucémicas, reduzindo toxicidade e consequentes 

efeitos secundários. Para tal é necessário melhorar o nosso conhecimento sobre as causas, 

fisiologia e regulação da LLA-T, em particular através da identificação de alvos moleculares e 

vias fundamentais para a progressão da doença. 

 TAL1 é um factor de transcrição essencial para a função das células estaminais 

hematopoiéticas. No entanto, a expressão de TAL1 decresce rapidamente nos progenitores 

destinados a originar células T. Assim, quando expresso de forma aberrante nos precursores 

de células T, TAL1 desempenha claramente uma função oncogénica. De facto, a sobre-

expressão de TAL1 ocorre em mais de 60% dos casos de LLA-T.  

Os microRNAs (miRNAs) são espécies de RNAs não-codificantes de pequena dimensão 

que regulam negativamente a expressão genes codificantes de proteínas. A sua acção é 

mediada pela inibição da tradução ou aumento da degradação dos RNAs mensageiros, 

resultando num decréscimo da proteína alvo. O envolvimento dos miRNAs na regulação da 

carcinogénese é largamente reconhecido, nomeadamente devido à sua capacidade de 

inibição da expressão de oncogenes ou supressores tumorais, resultando na prevenção ou 

promoção, respectivamente, do desenvolvimento tumoral. Tal como para outros tipos de 

cancro, vários miRNAs foram identificados e a sua função descrita como importante em LLA-

T. 

O trabalho desenvolvido no âmbito desta tese tem como objectivo caracterizar a rede 

de interacções entre TAL1 e microRNAs. Desta forma, esperamos contribuir para a 
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compreensão dos mecanismos pelos quais TAL1 promove o desenvolvimento de leucemia. 

Através da identificação de novos genes promotores dos efeitos de TAL1 ou envolvidos na 

regulação deste oncogene esperamos identificar potenciais alvos moleculares para 

intervenção terapêutica em LLA-T. Para além disso, pretendemos contribuir para o 

conhecimento geral da biologia e fisiologia dessa doença.  

 Na maioria dos casos de LLA-T os mecanismos subjacentes à expressão ectópica de 

TAL1 estão ainda por elucidar. Uma das questões colocadas nesta tese visa esclarecer se a 

sobre-expressão de TAL1 em LLA-T pode resultar ou ser potenciada pela desregulação de 

determinados miRNAs. Esta hipótese implica por outro lado que a diminuição dos níveis de 

TAL1 durante o normal desenvolvimento de células T resulta de um decréscimo que é, em 

parte, dependente de microRNAs. De forma a verificar se assim é de facto, analisámos 

ratinhos com uma deleção condicional da enzima DICER, que consequentemente não 

expressam miRNAs em precursores T, e verificámos que timócitos de ratinhos deficitários 

para DICER expressam níveis aumentados do transcrito de Tal1 em relação a ratinhos 

controlo. De seguida, realizámos estudos bioinformáticos para prever os miRNAs que se 

podem ligar ao transcrito humano do gene TAL1 e compilámos uma lista de possíveis 

candidatos. Através de um sistema repórter baseado na expressão de luciferase, 

confirmámos as possíveis interacções miRNA/TAL1. Desta forma seleccionámos os miRNAs 

com relevância biológica que levaram a uma redução na expressão do repórter em pelo 

menos 25%: miR-101, miR-520d-5p, miR-140-5p, miR-448 e miR-485-5p. De seguida, 

validámos a interacção destes miRNAs com o transcrito de TAL1 através da mutação dos 

elementos reconhecidos por miRNAs e desta forma confirmámos que os miR-101 e miR-140-

5p regulam TAL1 através dos locais previstos. De forma a avaliar a importância fisiológica da 

interacção miRNA/TAL1, sobre-expressámos os miRNAs candidatos em linhas celulares de 

LLA-T. Verificámos que a sobre-expressão de miR-520d, miR-101, miR-140, miR-485 e miR-

448 em diferentes linhas celulares resultam na inibição da expressão de TAL1 a nível do 

transcrito e proteína. Por outro lado, também observámos que a inibição dos miR-520d-5p e 

miR-101 endógenos é responsável pelo incremento da proteína TAL1. Através da 

comparação da expressão dos miRNAs miR-101, miR-140-5p, miR-448 e miR-485-5p entre 
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células de pacientes com LLA-T e células de medula óssea normal, verificámos que a 

expressão dos microRNAs se encontra diminuída em relação aos controlos. Estes resultados 

vão ao encontro da nossa hipótese de que um decréscimo de expressão de miRNAs que 

regulam TAL1 pode ser, pelo menos parcialmente, responsável pela expressão aberrante de 

TAL1 em LLA-T. O nosso trabalho demonstra também que TAL1 é regulado de forma pos-

transcricional por miRNAs.  

Apesar de se conhecer há muito a relevância de TAL1 na biologia da LLA-T, pouco se 

sabe sobre os genes alvo da sua função como regulador transcricional e do contributo destes 

genes para o desenvolvimento leucémico. Uma outra questão que procurámos resolver no 

âmbito deste trabalho foi perceber se TAL1 regula a expressão de genes de miRNAs 

potencialmente relevantes para o desenvolvimento leucémico. Para tal, analisámos o perfil 

de expressão de miRNAs dependente de TAL1 e identificámos os miRNAs cuja expressão 

variou de forma significativa após sobre-expressão de TAL1 numa linha celular LLA-T. Os 

resultados obtidos foram validados através da sobre-expressão ou silenciamento de TAL1 em 

linhas celulares de LLA-T, confirmando que a expressão dos miR-135a, miR-223 e miR-330-3p 

é activada por TAL1, enquanto a expressão de miR-146b-5p e miR-545 é inibida. Para além 

disso verificámos que a o TAL1 se liga a uma região no genoma 3.5000 nucleótidos a jusante 

do local de início de transcrição do miR-223, indicando que existe uma regulação directa da 

transcrição deste miRNA por TAL1. O facto de TAL1 activar a expressão de miR-223, que 

outros demonstraram inibir o supressor tumoral FBXW7, sugere que o TAL1 se encontra no 

centro de uma rede transcricional que envolve a estabilização de proteínas com importantes 

funções oncogénicas em LLA-T. Curiosamente, a anotação funcional dos alvos já validados 

dos miRNAs regulados por TAL1 revelou a prevalência de processos biológicos relacionados 

com inflamação e cancro. Em conclusão, identificámos um conjunto de genes não-

codificantes regulados por TAL1, implicando pela primeira vez genes de miRNAs na rede 

transcricional a jusante de TAL1 cujo papel pode ser relevante no contexto da hematopoiese 

normal e do desenvolvimento de LLA-T.  

  Finalmente direccionámos a nossa investigação para os efeitos moleculares e 

funcionais da desregulação do miR-146b-5p por TAL1 em LLA-T. Os nossos resultados 
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sugerem que TAL1 inibe transcricionalmente o miR-146b-5p de forma directa. Para além 

disso, apesar de não termos encontrado diferenças na viabilidade e proliferação das células, 

demonstrámos que a inibição do miR-146b-5p tem como consequência uma melhoria das 

capacidades de migração e invasão das células de LLA-T. Estes resultados sugerem que o miR-

146b-5p poderá ter uma função supressora tumoral. Em concordância com esta 

possibilidade, as células leucémicas de pacientes com LLA-T expressam significativamente 

menos miR-146b-5p do que as células de dadores saudáveis, indicando que a diminuição da 

expressão deste miRNA poderá ser benéfica para as células tumorais. Para além disso, 

observámos que a sobre-expressão de miR-146b-5p em células humanas de LLA-T aumentou 

a sobrevivência de ratinhos num modelo de xenotransplante de leucemia humana. Desta 

forma, os nossos resultados sugerem que o miR-146b-5p é um alvo transcricional de TAL1 

com relevância funcional. A redução dos níveis de expressão deste miRNA poderá contribuir 

para a LLA-T através da regulação da mobilidade das células leucémicas e da agressividade da 

doença.  

Em conclusão, o trabalho apresentado nesta tese estabelece a existência de uma 

relação recíproca entre TAL1 e microRNAs que envolve a regulação epigenética de TAL1 por 

miRNAs a jusante e a regulação transcricional de miRNAs por TAL1 a montante. Por outras 

palavras, os nossos estudos contribuem para o esclarecimento dos mecanismos conducentes 

à expressão anómala de TAL1 em LLA-T bem como dos mecanismos tumorigénicos a jusante 

de TAL1, nomeadamente no que respeita à identificação de genes de miRNAs alvo de 

regulação transcricional por TAL1. A pertinência destes estudos para intervenção terapêutica 

para benefício dos pacientes de LLA-T é um desafio para o futuro, para qual o nosso trabalho 

serve como ponto de partida.  
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Abstract 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive childhood malignancy in 

which the transformed clone is arrested during T-cell development. Despite significant 

improvements in treatment outcome that led to rates of cure close to 80% in children, 

survivors tend to face long term complications and develop serious secondary health 

problems. Therefore, the current challenge is to develop more efficient therapeutic 

strategies that target the leukemia cells in a more specific way, diminishing the toxic effects 

of the treatment. To achieve this, it is essential to improve our knowledge regarding the 

causes, pathophysiology and regulation of T-ALL, in particular by identifying the molecules 

and pathways fundamental for leukemia progression.  

TAL1 is an important transcription factor for the maintenance of hematopoietic stem 

cells and regulation of early hematopoiesis, being rapidly down-regulated upon T-cell lineage 

commitment. Aberrant expression of TAL1 in committed T-cell precursors is associated with 

leukemia and TAL1 is a well-established T-ALL oncogene, being over-expressed in more than 

60% of T-ALL patients. 

MicroRNAs (miRNAs) are small, non-coding RNAs that primarily function as 

endogenous translational repressors of protein-coding genes. They decrease the expression 

of numerous genes by preventing translation or promoting mRNA degradation. The 

involvement of miRNAs in the regulation of cancer progression is well-established, namely by 

down-regulating the expression of key oncogenes or tumor suppressors and thereby 

preventing or promoting tumorigenesis, respectively. Similar to other cancers, several miRNA 

genes have been identified and revealed in the context of T-ALL. 

In this thesis, we aimed to characterize the network of interactions between TAL1 and 

microRNA genes. In doing so, we sought to contribute to the understanding of the 

mechanisms by which TAL1 promotes T-cell leukemia. By identifying novel genes acting as 

effectors of TAL1 or involved in the regulation of this major T-cell oncogene, we wish to 

contribute to the overall knowledge of T-ALL biology and pathophysiology and to identify 

potential molecular targets for therapeutic intervention in this malignancy.  
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The mechanisms leading to aberrant activation of TAL1 in the majority of T-ALL 

patients who lack chromosomal rearrangements remain essentially unknown. Whether 

dysregulation of enhancer/promoter interactions, epigenetic alterations or deregulated 

trans-acting mechanisms lead to a disease-causing regulatory variant is still unsolved. We 

hypothesized that TAL1 levels decrease during normal T-cell development at least in part due 

to miRNA-dependent down-regulation, in which case TAL1 over-expression in some T-ALL 

cases should be the consequence of deregulated miRNA expression. To address this question, 

we analyzed conditional Dicer knockout mice and found that thymocytes lacking the 

expression of miRNAs expressed significantly more Tal1 transcript than controls, suggesting 

that TAL1 could be regulated post-transcriptionally by miRNAs during normal thymic 

development. By performing computational prediction of miRNAs that bind to the human 

TAL1 mRNA we then compiled a list of miRNAs that are candidates to regulate TAL1 

transcript. Using a luciferase reporter system we confirmed the candidate miRNA/TAL1 

mRNA interactions and selected miRNAs that significantly lowered the reporter expression in 

at least 25%: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p.  We further 

validated the interaction of the selected miRNAs with TAL1 by mutating the miRNA 

recognizing element (MRE) in the 3’UTR and confirmed that miR-101 and miR-140-5p target 

TAL1 mRNA in the predicted sites. Next, we evaluated the physiological importance of the 

miRNA/TAL1 mRNA pairs. Over-expression of miR-520d, miR-101, miR-140, miR-485 and miR-

448 in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 

transcript and protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 

protein expression. Importantly, we found that the expression of miR-101, miR-140-5p, miR-

448 and miR-485-5p was decreased in T-ALL patient specimens as compared to normal bone 

marrow samples. These findings favor our hypothesis that aberrant down-modulation of 

miRNAs that target TAL1 during early T-cell development could be, at least in part, 

responsible for ectopic expression of TAL1 in some T-ALL cases.  

TAL1 appears to be on the top of a transcriptional network that, in transformed 

thymocytes, drives the expression of genes involved in abnormal proliferation, differentiation 

and survival. Yet, the pathways downstream of TAL1 that contribute to leukemia 
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development are still poorly characterized. Having that in mind, miRNA genes are attractive 

candidates to fulfill the role of TAL1 targets with important consequences for 

leukemogenesis. Through characterization of a TAL1-dependent microRNA gene expression 

profile, we identified miRNAs whose expression changed significantly upon TAL1 over-

expression in a T-ALL cell line. The microRNA screen profile results were then validated upon 

enforced expression or silencing of TAL1 in additional T-ALL cell lines, confirming that miR-

135a, miR-223 and miR-330-3p were up-regulated by TAL1, whereas miR-146b-5p and miR-

545 were down-regulated. Furthermore, we verified that TAL1 binds to a genomic area 

3.5kbs upstream of the miR-223 transcription start site, which indicates that miR-223 is a 

direct target of TAL1 in T-ALL. The fact that TAL1 positively regulates miR-223, which others 

have shown to down-regulate the tumor suppressor FBXW7, indicates that TAL1 is at the 

core of a transcriptional network involving (de)stabilization of important proteins with 

oncogenic impact in T-ALL. Interestingly, functional annotation of validated target genes of 

the TAL1-regulated miRNAs that we identified revealed that these should regulate biological 

processes related to inflammation and cancer. Overall, we identified for the first time a set of 

non-protein coding TAL1 target genes, implicating microRNA genes as part of the 

transcriptional network downstream of TAL1 whose role may be important in the context of 

hematopoiesis and T-cell leukemogenesis.  

Finally, we focused on miR-146b-5p and evaluated the functional and molecular 

effects of its deregulation by TAL1 in the context of T-ALL. Our results point to a direct down-

regulation of miR-146b-5p by TAL1. Moreover, although no clear differences were found 

concerning cell viability or proliferation, miR-146-5p reduced expression improved the 

migration and invasion capacities of T-ALL cells. Therefore, miR-146-5p appears to have a 

tumor suppressor function in vitro. In line with these results, we verified that leukemia cells 

from T-ALL patients express significantly lower levels of miR-146b-5p than normal control 

samples. This further suggests that reduced expression of miR-146b-5p might be beneficial 

for T-ALL cells. In agreement, we showed that over-expression of miR-146b in human T-ALL 

cells significantly increased the survival of recipient mice in a xenotransplant model of human 

leukemia. In summary, our results suggest that miR-146b-5p is a functionally relevant TAL1 
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microRNA target gene, whose down-regulation may contribute to T-ALL by modulating 

leukemia cell motility and disease aggressiveness.  

Overall, the work presented in this thesis establishes the existence of a dual-way talk 

between TAL1 and microRNA genes in a manner that involves the upstream epigenetic 

regulation of TAL1 by specific miRNAs and the downstream transcriptional regulation of 

miRNA genes by TAL1. In other words, our studies contribute to the understanding of the 

mechanisms involved in TAL1 over-expression in T-ALL and to the clarification of the 

tumorigenic network downstream from TAL1, namely concerning the identification of miRNA 

genes transcriptionally regulated by TAL1. Whether the interactions identified here may be 

explored therapeutically for the benefit of T-ALL patients remains a challenge for the future. 
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Hematologic malignancies 

Hematopoiesis (from the greek Haema – ‘blood’ and poiese – ‘to make’) is the 

developmental process that originates all cells from the blood. The process starts with a 

pluripotent stem cell (hematopoietic stem cell or HSC) that resides in the bone marrow of 

adult mammals. HSCs originate progenitor cells that become progressively restricted to 

several or single lineages and have the capacity to differentiate into all the cell lineages from 

the hematopoietic system, including erythrocytes, megakaryocytes, basophils, eosinophils, 

neutrophils, monocytes (commonly known as myeloid cells), and lymphocytes [1, 2].  

Hematologic malignancies designate tumors from blood cell origin and they can be 

subdivided in leukemia and lymphoma. Leukemic cells have origin in cells from the bone 

marrow and can be found in circulation in the peripheral blood, whereas lymphoma is a 

tumor from the lymphatic system and tends to produce tumor masses. Leukemias can be 

classified as lymphoid or myeloid according to the lineage of origin of the malignant cells. 

Leukemias from lymphoid origin are subdivided into B-cell or T-cell leukemias, depending on 

the lymphoid cell they are originated from. Leukemias can be further classified into acute or 

chronic. Acute leukemias presents rapid proliferation of immature blast cells, while chronic 

leukemias are characterized by a slower and indolent progression of more mature cells [1]. 

 

Childhood acute leukemia 

Childhood acute leukemia is the most prevalent pediatric malignancy representing 

31% of all new cancer cases per year in the US (~ 3.250 cases), with a rate of incidence of 30–

45 per one million children per year [3, 4]. Overall, in Europe, leukemia represents about 

one-third of cancers in children bellow 15 years and the risk of a newborn to develop 

leukemia is about 0.08% [5]. These statistics represent an annual European incidence of 

childhood leukemia of 44 cases per million, being 35.9 per million of ALL (acute lymphoblastic 
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leukemia) and 6.5 per million of AML (acute myeloid leukemia) [5] (data from 1988 to 1997). 

Of concern is the fact that the incidence of leukemia has risen continuously approximately 

1% per year over the past two decades [4]. In Europe specifically, the average annual 

increase of incidence is 0.6% for leukemia in general and 0.8% for ALL [5]. This is in 

accordance to the observation that the incidence of childhood cancer — not only leukemia — 

has been increasing in developed countries.  

In the past 50 years the development of more efficient therapies increased the five-

year event-free survival rate to around 80% for children (and nearly 40% for adults) [6], but 

survivors face long term complications and morbidities [7] and develop serious health 

problems within 30 years of their initial diagnosis [8]. In fact, the risk of chronic health 

conditions is high, particularly for second cancers (breast, colorectal and skin cancer), 

cardiovascular disease, renal dysfunction, severe musculoskeletal problems, and endocrine 

pathologies (premature gonadal failure, thyroid disease, osteoporosis, and hypothalamic and 

pituitary dysfunction) [7]. Therefore the current challenge in the field is to develop more 

efficacious therapies, biologically targeted and with decreased toxicity rates. A better 

comprehension of the pathogenesis of the disease, namely molecular analysis of the 

common genetic alterations in leukemic cells may be the solution. This could provide a better 

understanding of why some cases fail to respond to chemotherapy and improve selective 

targeting of leukemic cells without long-term effects on the normal tissues. 

Leukemia is believed to be the product of two or more molecular alterations that give 

the cell the capacity to proliferate while maintaining an immature state. Because they are 

originated from precursor blood cells, leukemic cells have an intrinsic ability for intra and 

extravasation, movement in the bloodstream and capacity to proliferate. The known causes 

for leukemia origin explain less than 10% of the cases, and include ionizing radiation and 

congenital genetic syndromes that predispose to the disease such as Down's, 

neurofibromatosis, Fanconi's anemia, and Bloom's Syndrome [3]. The high degree of cellular 

division during hematopoiesis creates a scenario whereby perturbation via environmental 

insults including chemicals may induce mutations. The only validated environmental cause so 

far for leukemia is ionizing radiation from diagnostic imaging during pregnancy or atomic 
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bomb exposure during childhood, but other suspected causes include the diet of the mother 

and child, parental smoking, pesticides and household chemicals, traffic fumes, and 

immunologic modifiers [3].  

Childhood leukemia (2 to 10 years) is dominated by a pre-B-lymphocytic phenotype, 

called common acute lymphoblastic leukemia or B-cell cALL subtype (characterized by the 

cell markers CD19 and CD10) [7], with an age peak at 2–3 years [5]. Adult leukemias differ 

substantially from their childhood equivalents. For example, chronic lymphocytic leukemia 

(CLL), not found at all in children, is the most prevalent leukemia subtype in adults. In 

addition, adults present more frequently with myeloid leukemias than children and the 

molecular phenotypes – chromosomal aberrations, mutations – displayed by the leukemic 

cells are different between the two age groups [3].  

 

Acute Lymphoblastic Leukemia  

Acute lymphoblastic leukemia (ALL) is a hematologic cancer originated from the 

malignant transformation of a lymphoid precursor that is blocked at an immature stage of 

the lymphoid differentiation. The rates of cure (absence of disease for at least 10 years) are 

about 80% for children and 40% for adults, already including the very few relapse cases that 

respond well to a second round of therapy [6].  

ALL can arise in T- or B-cell precursors, hence being classified as T-ALL or B-ALL, 

respectively, which can be further subdivided according to specific genetic abnormalities [8] 

(Figure 1.1). The most common genetic events leading to ALL include aberrant expression of 

proto-oncogenes, translocations leading to fusion transcription factors or activated signaling 

kinases, hyperdiploidy, deletions in cell cycle checkpoint genes, and mutated genes in pro-

proliferative pathways [6]. These genetic alterations allow the hematopoietic stem cells or 

progenitors to overcome and subvert their intrinsic controls for cellular function, blocking the 

differentiation process and conferring them unlimited capacity for self-renewal and the 

ability to escape from death signals.  
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Currently almost all patients with ALL can be classified according to specific genetic 

abnormalities. Despite the important prognostic value and therapeutic implications of single 

primary somatic genetic abnormalities, experimental models favor the concept of 

cooperative mutations being necessary to promote leukemia. The MLL translocations may 

constitute an exception, given that they are highly transforming and the leukemia induced 

has very short latency and lower number of accumulated lesions [8, 9]. However, in general 

the mutations associated with leukemia appear insufficient to cause disease by themselves 

and require a second hit event. In fact, some of the common genetic mutations in leukemia 

where shown to be present already during the fetal period. For instance, the rate incidence 

of most frequent translocations in AML - TEL-AML1 in ALL and AML1-ETO – in the cord blood 

from normal born children is around 1%, a frequency that is 100-fold greater than the risk of 

developing the corresponding leukemia [10]. This means that a significant proportion of the 

population carries pre-leukemic clones that are not necessarily translated to a foreseeable 

diagnosis of leukemia. In what concerns leukemia relapse, it was shown that, in the majority 

of the cases, the clone responsible for the relapse retains (some of) the lesions present at 

diagnosis while acquiring additional genetic aberrations. In other words, the predominant 

clone at relapse already exists in the majority of the cases as a minor sub-clone within the 

diagnostic sample before the initiation of therapy. Cases where the relapse clone has distinct 

genetic lesions unrelated to the primary leukemia constitute a minority [11]. 

In the case of pediatric B-ALL, the most frequent genetic defects observed in leukemic 

blasts are gains or losses of whole chromosomes and/or translocations (Figure 1.1). Actually, 

hyperdiploidy (more than 50 chromosomes) characterizes more than 25% of ALL cases [6, 7]. 

Additionally, translocations affecting hematopoietic transcription factors (TF) or oncogenes 

are key events and include the frequent translocation t(12;21) TEL-AML1 (or ETV6-RUNX1), 

present in almost one quarter of the cases; the translocation t(1;19) TCF3-PBX1; the t(9;22) 

BCR-ABL1 and rearrangements of the MLL gene. These genetic alterations also define the 

main biological subgroups and have prognostic impact [12]. Moreover, more than two thirds 

of children with B-ALL have genetic defects that perturb the lymphoid maturation process by 

affecting several TF responsible for lineage commitment of lymphocytes, differentiation, 
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repression of alternative lineages, and/or lymphocyte maturation. These include PAX5, the 

most commonly affected (30% of the cases), IKZF (Ikaros), EBF1 (Early B-factor 1), LEF1 

(Lymphoid Enhancer Factor 1), IKZF3 (AIOLOS) and E2A (TCF3) [12, 13]. 

 

Figure 1.1 – Estimated frequency of specific genotypes in childhood ALL.  

The genetic lesions that are exclusively seen in cases of T-cell ALL are indicated in bold (TAL1, HOX 11, 
MLL-ENL, LYL1 and HOX11L2). Adapted from [11].  
 
 

Diagnosis and Treatment  

 The symptoms of childhood ALL depend of the degree of disruption of normal 

hematopoiesis due to bone marrow infiltration by leukemic blasts or infiltration of other 

extra-medullary sites. Typical symptoms include fever, pallor, fatigue, bruises, enlargement 

of liver, spleen, and lymph nodes, and bone pain, the majority of them due to anemia (low 

erythrocyte counts) and thrombocytopenia (low platelet count). The diagnosis is established 

when at least 25% leukemic blasts are present in the bone marrow [14]. The advances in 

chemotherapy over the last 50 years allow for an actual cure rate for ALL approaching 90% in 
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many developed countries. In fact, the developments in the treatment of ALL makes it one of 

the most successful stories of modern medicine: the 10 year survival rate increased from 11 

to 90% in almost 50 years (total therapy studies data from St. Jude Children’s Research 

Hospital between 1962 and 2007) [8]. This improvement was possible by introduction of risk-

adjusted intensive multi-agent chemotherapeutic regimens, involving the use of 

glucocorticoids and other drugs such as vincristine, asparaginase, methotrexate and/or 

anthracyclines, and additional radiotherapy and/or hematopoietic stem cell transplantation  

for specific subgroups of patients [14].   

The recent enhancement in treatment outcome for BCR/ABL-positive ALL patients 

[14] that received an ABL tyrosine kinase inhibitor (Imatinib) serves as a remarkable proof of 

concept of the clinical advantages of the use of oncogenic pathway-directed therapy and 

more personalized targeted therapies in ALL [8]. Patient differences in drug metabolism and 

pharmacokinetics have also been incorporated in recent trials. The idea is to personalize the 

amount of therapeutic agent administered in accordance to the ability of each patient to 

clear the drugs or to the genotype of their leukemic cells, without compromising efficacy of 

ALL treatment [8]. 

T-cell Acute Lymphoblastic Leukemia  

T-ALL is much less frequent than ALL from B-Cell origin, representing only 15% of 

childhood and up to 25% of adult ALL [6]. Perhaps for this reason it has historically deserved 

less attention from researchers and is frequently included several times as a small part of 

large studies in general ALL, not being treated as an independent entity.  

T-ALL patients belong to the high-risk group and tend to associate with poor 

prognosis. Nonetheless, the overall survival rate is about 80% in childhood and 40-60% in 

adult T-ALL cases [15]. Although adjustment of the intensity of chemotherapy to risk category 

improved outcome of T-ALL patients, these still have increased risk for induction failure, early 

relapse, and isolated CNS relapse [16]. Contrary to B-ALL, a big proportion of T-ALL cases 

(50%) present with a normal karyotype. In fact, translocations leading to the activation of a 
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small number of oncogenes occur in 25–50% of T-ALL cases. Other genetic abnormalities 

include frequent micro-deletions leading to the loss of tumor suppressor genes. The events 

driving a full malignant phenotype in T-ALL include also over-expression of oncogenes, 

defects in the cell cycle control, aberrant activation of protein kinases, and activating 

mutations of NOTCH1 [17].  

In terms of immunophenotype, cytogenetic and molecular genetic abnormalities, T-

ALL is a very heterogeneous disease, which is in agreement with the very distinct clinical 

outcomes observed in T-ALL patients treated with the same intensive multidrug regiments. 

The organization of T-ALL subgroups is mainly based on the immunophenotype, being the 

classification proposed by the European Group for the Immunological Characterization of 

Leukemia (EGIL) the most commonly used in Europe [18] (Table 1.1).  

 

 

Table 1.1 - Immunophenotypic classification of T-ALL.  

 
Immature T-ALL 

Cortical T-ALL 

 EGIL T-III 
Mature 

Markers 
pro-T-ALL 
EGIL T-I 

Immature 
T-ALL 

EGIL T-II 
smCD3- smCD3+ 

T-ALL 
EGIL T-IV 

TdT ++ ++ ++ ++ ++ 

HLA-DR + - - - - 

CD34 + - - - - 

CD1 - - ++ ++ - 

CD2 + ++ ++ ++ ++ 

cCD3 ++ ++ ++ ++ ++ 

CD5 - ++ ++ ++ ++ 

CD7 ++ ++ ++ ++ ++ 

CD4-/CD8- ++ + - - - 

CD4+/CD8- - ± ± ± ± 

CD4-/CD8+ - ± ± ± ± 

CD4+/CD8+ - - + + ± 

smCD3 - - - ++ ++ 

TCRαβαβαβαβ - - - + + 

TCRγδγδγδγδ - - - + + 

 
Based on [17, 19]. -: <10% of leukemias are positive; ±: 10-25% of leukemias are positive; +: 25-75% of 

leukemias are positive; ++: >75% of leukemias are positive. In the case of TCRαβ, 60-70% of SmCD3+ 

EGIL T-III and EGIL T-IV leukemias are positive. In the case of TCRγδ, 30-40% of SmCD3+ EGIL T-III and 
EGIL T-IV leukemias are positive. 



Introduction 

32 

The T-ALL cases are identified by the cytoplasmic expression of CD3 (cCD3). Based on 

the expression of CD2, CD7, CD1 and surface membrane-bound CD3 (smCD3), T-ALL can be 

subdivided into major groups. The immature group, EGIL-TI or pro-T-ALL expresses only CD7 

(cCD3+/CD7+). The pre-T-ALL or EGIL-TII subgroup is further characterized by the expression 

of CD2 and/or CD5 and/or CD8; a significant proportion of these cells do not express 

cytoplasmic T-cell receptor beta chains (cTCRβ), and frequently co-express precursor markers 

such as CD13, CD33, CD56 or CD34. Intermediate or cortical T-ALL or EGIL-TIII cases express 

CD1a, and are frequently double-positive for CD4/CD8, and partly positive for smCD3. Lastly, 

mature T-ALL or EGIL IV is characterized by the presence of surface CD3 and absence of 

CD1a. The surface CD3 expressing cases can be further sub-divided into group a or b, 

depending on whether they express TCRαβ or γδ, respectively [17, 19]. 

 

Normal T-cell development 

T-ALL arises from the clonal expansion of a lymphoid precursor that is transformed 

and blocked at a certain stage of differentiation. The genetic alterations acquired by the 

leukemic blasts also confer them self-renewal capacity, enhanced proliferation and survival. 

Thus, to better understand the molecular mechanisms behind T-cell malignancy one should 

have a clear comprehension of normal T-cell development (Figure 1.2). 

Lymphopoiesis is the process by which the mature populations of T, B and NK (natural 

killer) cells are originated from multipotent hematopoietic stem cells (HSCs) [20]. T-cell 

development starts in the bone marrow where the HSCs reside in a favorable niche. These 

cells have the capacity of self-renewal and differentiation into any hematopoietic lineage 

[21]. The long-term repopulating HSCs (LT-HSCs) give rise to short-term (ST)-HSCs, 

characterized by limited self-renewal activity, and to multipotent progenitors (MPPs). MPPs 

can commit to either common lymphoid progenitors (CLP), restricted to give rise to all 

lymphoid cells, or to common myeloid progenitors (CMP), which will originate all cells from 

the myeloid lineage [2]. It is not yet clear which BM hematopoietic progenitor is the bona 

fide T-lymphocyte progenitor, but this will migrate from the bone marrow into the thymus as 



Introduction 

33 

early T-cell lineage progenitor (ETP) and further commit to T-cell differentiation. Some 

studies showed that when CLPs enter into the thymus, they are still able to differentiate into 

B, T, NK or dendritic cells [20, 22]. 

This input of progenitor cells from the bone marrow to the thymus is essential to 

maintain T-cell development [23]. Briefly, the ETPs in the thymus represent the first stage 

(DN1) of the double negative fraction, thus called because of the undetectable expression of 

the surface markers CD4 and CD8. DN1 cells (CD3- CD4- CD8-CD34+) progress in 

development by down-regulation of the stem marker CD34, up-regulation of CD5, CD1a, CD4 

and by the rearrangement of the T-cell receptor (TCR). The TCR is a heterodimer composed 

by two transmembrane chains: either the combination of αβ or γδ chains is possible. Each 

chain has a variable and a constant domain [17, 22]. The γδ T-cells originate at the end of 

DN2 stage [20, 22, 24] following rearrangement of the δ (in the DN1 stage) and γ (DN2 stage) 

genes. However, most T-cell precursors do not originate this lineage, but rather αβ T-cells. 

During the transition from DN3 to DN4, the cells start to rearrange the β locus of the TCR. 

The genomic locus encoding each of the TCR possible chains is composed of several gene 

clusters corresponding to the Variable (V), Diversity (D), Joining (J) and Constant (C) regions 

of the chain. Thus, a random choice between the various V-, D-, J segments and through the 

deletion or addition of extra nucleotides at the junctions of the segments, mediates the vast 

repertoire of antigens that can be recognized by each individual TCR. This process follows a 

strict order of gene rearrangements and the recombinase-activating genes RAG-1 and RAG-2 

are essential for the rearrangement of variable region genes and the development from the 

DN3 stage onwards [17, 22]. Despite being highly regulated, subversion of these 

recombination events is associated with translocations involving the TCR loci in T-ALL, as will 

be latter discussed. 

At the immature single positive (ISP) stage the pre-T cells acquire the surface 

expression of the pre-TCR (constituted by a productively rearranged TCRβ chain and an 

invariant form of the TCR called the pre-Tα -encoded by the gene PTCRA) and expression of 

CD4 co-receptor (CD8 in the mouse). The assembly of the pre-TCR is essential to progression 

to the double positive (DP; CD4+CD8+) stage and the pre-TCR-derived signals allow intense 
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cellular expansion and suppression of cell death [25]. As a result DP cells comprise the 

majority (~90%) of the cells in the adult thymus. The subsequent rearrangement of the TCRA 

genes allows the expression of a mature αβ-TCR. Is through the variable region of the mature 

αβ-TCR that T-cell recognize small peptides bound to antigen-presenting molecules, the MHC 

class I and MHC class II molecules, expressed in antigen-presenting cells [26].  

 

 

 

Figure 1.2 - Stages of hematopoiesis and T-cell development 

Bone-marrow HSCs exit the quiescent ‘niche’ and differentiate to become multipotent progenitors 
(MPPs). MPPs further commit to the lymphoid lineage generating CLPs. These subsets migrate to the 

thymus (as ETPs) and commit to the T‑cell lineage, progressing through the double negative (DN; CD4–

CD8–) stages, DN2, DN3 and DN4. Upon successful recombination at the T‑cell receptor β (TCRB) locus, 

pre‑T cells acquire surface expression of the pre-TCR that promotes massive proliferation and 
differentiation. Pre-TCR-selected cells reach the double positive (DP; CD4+CD8+) stage, at which point 
they are subjected to positive and negative selection. Selected cells then exit the thymus as single 
positive (SP) CD4+ or CD8+ T cells. Adapted from [22]. 
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The DP thymocytes are programed to undergo apoptosis unless they are rescued by 

the survival signals mediated by TCR recognition with moderate affinity of self-MHC/self-

peptide molecules on thymic epithelial cells. This process is called positive selection, and the 

cells that do not detect any antigen die by neglect. On the other hand, DP cells with high TCR 

affinity to self-MHC complex are eliminated by apoptosis (negative selection) to avoid 

autoreactivity. This double selection process assures the generation non-self-reactive 

thymocytes that recognize self-MHC molecules and the production of antigen-specific single 

positive (SP) mature T-cells with high CD3/TCRαβ expression [17, 26]. Mature SP T-cells are 

then divided in two classes that are distinguished by the CD4 or CD8 membrane co-receptor 

expression, which translates in different functions in the immune system. In a simplistic view, 

CD4+ or helper T-cells recognize MHC II-bound peptides, derived from extracellular sources 

and regulate the immune response of B cells, other T cells and the activity of cells of the 

innate immune system. The CD8+ or cytotoxic T-cells recognize MHC I-bound peptides, 

derived from proteins synthesized within the cell, and are involved in the lysis of infected or 

transformed cells [26] (Figure 1.2). 

The commitment of progenitor cells to the T-cell lineage depends on signals from the 

microenvironment and contact with thymic epithelial stromal cells. These cells produce 

essential growth factors, such as interleukin 7 (IL7) [27], which are required for survival and 

proliferation of human T-cell precursors. Moreover, the contact with the NOTCH ligands 

expressed by stromal cells is vital to the early developmental program [28, 29]. Later on, 

differentiation-inducing signals are generated by the TCR, upon pre-TCR expression. The TCR 

signaling is very important for thymocyte survival and is mediated by downstream effectors 

that include the tyrosine kinases LCK, FYN and ABL1, the kinases ZAP-70 and PI3K, the RAS-

MAP kinase pathway, the anti-apoptotic transcription factor NFκB and cyclin D3. The 

activated signaling cascades induce the transcription of various genes promoting clonal 

expansion of the antigen-reactive T-cell [26]. 
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Genetic abnormalities in T-ALL 

T-ALL and the subversion of the normal T-Cell development  

The aberrant expression of T-cell oncogenes (mainly transcription factors) is a very 

common event in T-ALL (80%), without a detectable causal cytogenetic abnormality in the 

chromosomal locus of these genes [30]. Moreover, T-ALL gene expression studies revealed 

that the signatures associated with activation of oncogene expression in leukemic cells can 

be interpreted in the light of the block at particular stages of normal thymopoiesis and that 

the oncogene-driven gene expression profiles can be associated with the immunophenotypic 

classification of T-ALL discussed above: the LYL1 signature associates with immature 

thymocytes (pro-T-ALL); activation of TLX1, TLX3, NKX2.1 and NKX2.2 [31] homeobox genes 

are characteristic of CD1a/CD4/CD8+ early cortical thymocyte T-ALL; and high TAL1 

expression to late cortical CD4/CD8/CD3+ T-ALL [30]. Recently, a new subtype of T-ALL has 

been defined by a specific gene-expression signature and distinct immunophenotype, termed 

early T-cell precursor (ETP-ALL), encompassing up to 15% of T-ALL patients. This subtype is 

characterized by diverse genetic alterations, absence of surface CD1a and CD8 and weak 

expression of CD5 and expression of stem-cell or myeloid markers. Moreover, ETP-ALL is 

associated with an increased risk of therapy failure [32, 33]. 

Expression analysis of TCR, pre-TCR and RAG-1 in T-ALL samples confirms that it 

reflects the stages of normal T-lymphoid maturation [34]. In fact, 50% of TCRαβ lineage T-

ALLs that express pre-TCR, RAG-1, pTα, and cytoplasmatic TCRβ are CD1a+ CD4/8+ double-

positive, without TCRD deletion, similar to a physiological population undergoing or having 

just undergone β selection. On the other hand, the majority of T-ALLs from the TCRγδ lineage 

have only TCRβ DJ rearrangement, are negative for pTα, TdT and RAG-1. Nonetheless, 40% of 

TCRγδ T-ALLs express pTα, TdT, and RAG-1, and are CD4 CD8 DP with TCR β V(D)J 

rearrangements. Around 30% of T-ALL cases express surface CD3 without TCRβ 

rearrangement, and non-T-cell restricted markers such as CD34, CD13, CD33, and CD56 

corresponding to non-restricted thymic precursors. Not all features of T-ALL can be explained 

on this basis, nevertheless T-ALLs largely represent physiological T-lymphoid maturation, and 
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understanding the differences allow the distinction of physiological and leukemogenic 

profiles [34]. 

Besides the mutually exclusive oncogenic lesions involved in T-ALL ontogenesis, a 

number of recurrent cytogenetic and molecular alterations, common to all molecular 

subtypes, are observed. These are responsible for the deregulation of several critical cellular 

processes, such as cell cycle signaling, cell growth and proliferation, chromatin remodeling, T 

cell differentiation and self-renewal (such as those affecting NOTCH1, CDKN2A/B, FBXW7, 

PTEN and others discussed below). 

 

Cytogenetic abnormalities  

 The analysis of cytogenetic abnormalities has led to a better understanding of the 

molecular causes of T-ALL. These genomic relocations typically juxtapose the strong 

promoter and enhancer elements of TCR genes with developmentally important 

transcription factor genes, such as the basic helix–loop–helix family members TAL1, TAL2, 

LYL1 and BHLHB1; the LIM-only domain genes LMO1 and LMO2; the homeobox genes HOXA- 

HOXD, HOX11, HOX11L2 and NKX family; and oncogenes MYC, MYB, and NOTCH1, leading to 

the up-regulated expression of these genes [17, 35-37]. Fusion events involving TCR genes can 

also be found involving potential oncogenes other than TF, such as IL7R and PLAG1 [36]. 

In fact, 35% of translocations found in T-ALL cases are associated with the TCR loci, 

involving rearrangement of the human chromosome 7 (TCRB and TCRG) or chromosome 14 

(TCRA and TCRD) with the genes mentioned and other unknown partner genes (5–10% of the 

cases) [35]. This results most probably because during TCR rearrangement other regions in 

the genome have an open chromatin configuration and become susceptible to the activity of 

the RAG1 and RAG2 enzymes. Noteworthy, some of these events only have an oncogenic 

phenotype when associated with other genomic aberrations, suggesting that other pathways 

have to be subverted for leukemogenesis to occur [22]. Translocation events not affecting 

TCR genes include the translocations involving the MLL gene with different partner genes and 

accounts for 8% of T-ALL cases [38]. More frequent, the translocation t(10;11)(p13;q14) 

encoding CALM-AF10 and restricted to the TCRγδ lineage is present in 10% of T-ALL cases 
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[39]. Although more uncommon, translocations involving the ABL1 gene, such as the 

t(NUP214-ABL1) are present on amplified episomes of about 6% of T-ALL cases [40]. 

T-cell transcription factor oncogenes can be activated as result of other genetic 

rearrangements, such as generation of fusion genes that encode a chimeric protein with 

oncogenic properties, mostly due to translocations but also to micro-deletions [17]. These 

include the SIL-TAL1 fusion gene found in 9–30% of childhood T-ALLs as a result of a micro-

deletion in the TAL1 locus that fuses the TAL1 coding region to the SIL regulatory elements. 

This is one of the most recurrent fusion events in T-ALL [36]. In addition, cryptic deletions in 

chromosome 11p13 lead to the activation of the proximal LMO2 promoter in approximately 

4% of pediatric patients [41]. With the advent of whole transcriptome sequencing 

techniques, new fusion genes were detected (SSBP2-FER and TPM3-JAK2) that encode for 

typical tyrosine-kinase fusions that join the tyrosine-kinase domain of JAK2 or FER to the 

dimerization units of TPM3 or SSBP2, respectively [36]. Although rare, additional fusions not 

involving the TCR genes but also leading to the ectopic expression of oncogenic transcription 

factors can be found in T-ALL and include PLAG1, MEF2C, ZNF219, and BMI1 genes [36]. 

Another genomic event leading to oncogene over-expression is the phenomenon of 

gene duplication that was found for the MYB oncogene in around 8% of T-ALL individuals [36, 

42]. Additionally, deletions involving the loss of tumor suppressor genes are also found in this 

hematological malignancy, being the most frequent the loss of the INK4/ARF locus at 

chromosome 9p2, a region coding for important proteins in the cell cycle regulation [43]. In 

addition, small deletions and/or insertions such as those involved in NOTCH1 activating 

mutations [44] and gain of function mutations in cytokine receptors and tyrosine kinases, 

namely IL7R [45] and JAK3 [46], also occur in T-ALL with oncogenic driving force. 

Recently, the use of techniques of whole transcriptome sequencing to comprehend 

the mutational spectrum of T-ALL patients and cell lines has further confirmed that leukemia 

is caused by a mixture of gene fusions, over-expression of transcription factors and 

cooperative point mutations in oncogenes and tumor suppressor genes [36, 47]. Hence, over-

expression of TF, such as TLX1/3 and TAL1, combined with NOTCH1 activating mutations, 

additional mutations affecting chromatin modifiers [48], signaling factors specially those 
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involved JAK-STAT signaling pathway [46], tumor suppressor genes (like TP53, PTEN, WT1) 

and mutations in ribosomal genes like RPL5 and RPL10 [47] define a more updated view in 

the field of the pediatric T-ALL genome [36].   

 

Cell cycle defects  

Overcoming cell cycle progression controls and checkpoints, with consequent 

propagation of genomic instability and uncontrolled cell division, is one of the hallmarks of 

cancer [49]. Thus, mutations affecting proteins controlling cell cycle transitions and 

checkpoints, and DNA damage mediated responses are common events in cancer, and 

leukemia is not an exception.  

The negative regulator of the cell cycle p16INK4A (CDKN2A) inhibits the cyclin D-

dependent kinases (CDKs) CDK4 and CDK6. These kinases contribute to the release from a 

quiescent cell state (G0) into G1 and subsequent commitment to the cycle by inactivating the 

retinoblastoma protein (RB), which in turn regulates the entry into the S phase of the cell 

cycle. Interestingly, the p14ARF (CDKN2A) gene is transcribed from the same locus as 

p16INK4A but originates the tumor suppressor ARF by an alternative reading frame. ARF is 

involved in cell cycle regulation by inhibiting MDM2, a negative regulator of the major tumor 

suppressor p53 that targets p53 to degradation. Association of ARF with MDM2 results in p53 

up-regulation and p21 (CDKN1A) activation. In turn, p21 which is a CDK inhibitor, mediates 

cell cycle arrest in G1 allowing either DNA repair or programed cell death [50].  

In T-ALL, the most frequent genomic anomaly detected is a deletion affecting the 

INK4/ARF locus on chromosome 9p21. The inactivation of p16/p14 is found in 70% of the 

patients due to deletion, mutation or hypermethylation [43, 51] and also by transcriptional 

and post-transcriptional inhibition [17]. The vast majority of pediatric T-ALL cases display 

functional inactivation of these cell cycle regulators, making the RB and p53 pathways very 

attractive to be therapeutically targeted [51]. This assumes an even higher importance by the 

fact that homozygous INK4/ARF locus deletion in T-ALL has unfavorable prognostic value, 

with a significantly lower 5-year disease-free survival [52] and by the fact that the majority of 

TAL1+ and HOX11+ T-ALL cases present with homozygous deletion of p16 [51]. Furthermore, 
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a chromosomal translocation targeting the CCND2 (Cyclin D2) locus at 12p13 and TCRB or 

TCRA/D loci leads to a strong up-regulation of the protein in T-ALL. Cyclin D2 activity is 

required for G1/S cell cycle transition, and its high expression was associated with TAL1+, 

TLX1+ or TLX3+ molecular subtypes, NOTCH1 mutation and INK4A deletion [53].  

Finally, transcription factor modulation can also disrupt cell cycle control in T-ALL, as 

will be detailed later. Briefly, CALM-AF10 T-ALLs over-express BMI1, which controls cellular 

proliferation by suppressing p16; enforced TAL1 expression negatively regulates p16 gene 

through interfering with the E-box sequences of the promoter; and HOX11 interacts with the 

protein phosphatases PP2A and PP1 disrupting a G2/M cell-cycle checkpoint [17]. 

 

Aberrant signaling 

It is important to note that the genetic alterations found in T-ALL and responsible for 

the irregular transcriptional programs frequently lead to the abnormal activation of signaling 

pathways crucial to proliferation and death escape of leukemic cells [54]. Besides cell 

intrinsic lesions, also environmental stimuli are important in triggering oncogenic signals that 

promote T-ALL expansion [55]. In this regard, signaling transduction pathways are key 

effectors in regulation of T-cell viability, proliferation and immune response, namely as 

important downstream effectors of the TCR signaling and membrane receptors that transmit 

environmental cues. Therefore it is not surprising that certain signaling pathways are 

aberrantly activated in T-ALL due to chromosomal translocations, creation of chimeric fusion 

genes, point mutations and deletion of negative regulators [17]. Below, we will briefly 

mention some of the most important deregulated signaling pathways in T-ALL. 

The ubiquitously expressed tyrosine kinase ABL1 can be part of the highly 

transformative BCR-ABL1 fusion kinase, characteristic of chronic myeloid leukemia, and also 

found in 25% of precursor B-ALL, but very infrequent in T-ALL (less than 1% of the cases). 

More frequent in T-ALL is the NUP214-ABL1 fusion, found in up to 6% of T-ALL cases, also 

characterized by up-regulation of TLX1 or TLX3 and deletion of INK4A locus [40]. Other 

fusions involving ABL1 occur very rarely in T-ALL, like the ETV6-ABL1 [56] and the EML1-ABL1 

gene fusion [57]. All these fusions result in constitutive activation of ABL1, leading to 



Introduction 

41 

enhanced survival and proliferation. Another member of the signaling cascade downstream 

of the TCR and upstream of ABL1 is the protein tyrosine kinase LCK. In rare cases of T-ALL, the 

translocation t(1;7)(p34;q34) that juxtaposes LCK to the TCRB locus was described, leading to 

overexpression of this kinase [58].  

 The Janus kinase (JAK) family of tyrosine kinases plays an important role in 

transmitting signals from cytokine receptors to downstream effectors, being therefore very 

important for core biological processes such as apoptosis, differentiation, proliferation and 

also immune responses [54]. In childhood T-ALL, a fusion of the ETS-variant gene 6 (ETV6) to 

JAK2 originates a chimeric fusion protein with constitutive tyrosine kinase activity and 

transformative capacity in transgenic mice [59]. Moreover, mutations in JAK1 were described 

in 18%-27% of adult and 2% of pediatric patients with T-ALL and were associated with poor 

response to therapy and overall poor prognosis [60, 61]. Recently, activating JAK3 mutations 

were described in 7% of T-ALL patients [46]. In addition, activating mutations in JAK1 and 

JAK3 have also been reported in ETP-ALL [32]. Recently, we and others discovered gain-of-

function mutations in the gene coding for the α chain of the IL7 receptor. These mutations 

result in constitutive activation of the JAK/STAT signaling in approximately 10% of T-ALLs, 

reinforcing the importance of this signal transducing pathway in T-ALL [32, 45, 62]. IL7 

receptor mutations are sufficient to induce cell transformation and tumor formation and one 

possible way for therapeutic targeting of IL-7R-mediated signaling in T-ALL involves 

pharmacological inhibition of JAK1 activation [45].  

The small GTPases of the RAS family (N-RAS, K-RAS and H-RAS) are anchored at the 

cellular membrane. They have a pivotal role in transmitting survival signals coming from 

cytokines and growth factors that bind to membrane receptors, to downstream transduction 

pathways via MAP kinases and other effector proteins [63]. In T-ALL, activating mutations of 

N-RAS have been detected in 10% of pediatric patients [64]. Moreover, in 50% of T-ALL 

patients, the level of RAS activation in leukemic blasts exceeds those of the normal cell 

counterpart, supporting a role for RAS activation in this malignancy [63]. Recently, it was 

found that the immature/ETP subtype of T-ALL is specially characterized by activating 
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mutations in genes regulating cytokine receptor and RAS signaling (in 67% of the cases), 

involving NRAS, KRAS but also FLT3,IL7R, JAK3, JAK1, SH2B3 and BRAF [32]. 

NOTCH1 encodes a transmembrane receptor that regulates normal T cell 

development and hematopoietic stem cell maintenance [65]. Despite the fact that 

translocations involving NOTCH1 are very rare in human T-ALL, more than 50% of the 

patients possess activating mutations involving either the extracellular heterodimerization 

domain (44%), resulting in ligand independent intracellular Notch domain (ICN), or mutation 

in the C-terminal PEST domain of NOTCH1 (30%), resulting in extended half-life of ICN, or 

even both events (17%) [44]. Patients harboring NOTCH1 activating mutations belong to all 

major molecular oncogenic subtypes, TAL1+; LYL1+; HOX11+; MLL-ENL+; CALM-AF10+, which 

may indicate that they occur very early in T-cell differentiation [44]. Given that NOTCH 

proteins (NOTCH 1—4) are indispensable for the commitment of hematopoietic progenitors 

to the T-cell lineage, the fact that NOTCH is so broadly activated in T-ALL establishes another 

parallelism between T-cell development and the induction of T-ALL.  

Several groups identified the oncogenic transcription factor MYC as a direct 

transcriptional target of NOTCH1 in T-ALL through the NOTCH1-binding sites present in the 

MYC promoter [66-68]. Furthermore, NOTCH1 activates NF-κB signaling pathway [69], and 

more than 40% of the potential NOTCH-responsive genes are regulators of cell metabolism 

and protein biosynthesis [66]. One example is the PI3K–AKT pathway, controlled by NOTCH 

signaling through the down-regulation of the phosphatase PTEN (phosphatase and tensin 

homologue) that in turn negatively regulates PI3K signaling [70]. Moreover it was shown that 

active NOTCH1 directly regulates IL-7Rα gene (IL7R) transcription in thymocytes and T-ALL 

cells and that IL-7R signaling (through PI3K-AKT and JAK-STAT pathways) is important for 

proliferation of NOTCH-dependent T-ALL cells [71]. Furthermore, the E3 ubiquitin ligase 

FBW7 (F-box and WD repeat domain containing 7) responsible for targeting important cell-

cycle regulators (MYC, JUN and cyclin E) to degradation, can bind to NOTCH1 PEST domain, 

regulating its stability [72, 73]. Actually, around 20% of T-ALL patients have inactivating 

mutations in the FBW7, revealing its tumor suppressor role in this disease [73]. 
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Finally, one of the most important signaling pathways subverted in T-ALL includes the 

PI3K-AKT-mTOR axis and the tumor suppressor gene PTEN. PI3K (Phosphatidylinositol-4.5-

bisphosphate 3-kinase) is a key effector kinase downstream of the TCR signaling but also of 

many other surface receptors. Together with mTOR (mammalian target of Rapamycin), PI3K 

regulates essential cellular processes such as viability, proliferation, and differentiation [54]. 

When activated at the cell membrane, PI3K allows the anchoring of the Ser/Thr kinase AKT 

[74]. AKT mediates pro-survival and pro-proliferative signals by inhibiting through 

phosphorylation Bad, GSK3, FOXOs and caspase-9, by activating through phosphorylation 

mTOR, and by the release of transcription factors such as NF-κB [55]. The negative regulators 

of this pathway, PTEN and SHIP, inhibit the activation of AKT [74]. Furthermore, genetic 

abnormalities in PTEN, PI3K, and AKT genes are found in roughly 50% of T-ALL patients [75], 

strengthening the importance of this oncogenic pathway in this malignancy, and inactivation 

of PTEN without genomic alteration of its locus, contributes to the hyperactivation of 

PI3K/Akt in primary T-ALL samples [76]. Thus, therapeutic inactivation of PI3K pathway is 

currently under consideration for T-ALL treatment. In fact, the use of Rapamycin, an mTOR 

inhibitor, promotes apoptosis of T-ALL blasts [77] and pharmacological inhibition of PI3K 

increases apoptosis and arrests the cell cycle in T-ALL cells [78] and can prevent 

chemoresistance to drugs currently used [70].  

 

Epigenetic alterations 

Mutations involving epigenetic modifying genes are common events in AML, but less 

common in ALL. Nevertheless, the most immature subtype of T-ALL, the ETP-ALL, which is 

characterized by a mutational spectrum more similar to myeloid leukemia and hematopoietic 

stem cells, has a prevalence of inactivating mutations (in 48% of the cases) in genes involved 

in histone modification, such as EZH2, EED, SUZ12, SETD2 and EP300 [32]. 

The polycomb repressive complex 2 (PRC2) is responsible for a major repressive 

chromatin modification, H3K27me3, and consists of SUZ12, EED, EZH2 and RbAp48. 

Deleterious mutations in PRC2 genes were found mainly associated with the immature type 

of T-ALL but not with more differentiated cases [32]. In fact, loss-of-function mutations and 
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deletions of EZH2 and SUZ12 genes were found in 25% of T-ALL patients from an adult 

cohort, consistent with a tumor suppressor role for PRC2 in T-cell transformation [48]. 

Another factor, PHF6, a PHD-containing factor with a proposed role in epigenetic 

regulation, was found mutated and deleted in 16% of pediatric T-ALL cases, almost 

exclusively in male patients. In childhood T-ALL, PHF6 mutations correlate with the aberrant 

expression of the homeobox oncogenes TLX1 and TLX3. Despite the uncertain function of 

PHF6, proteins with PHD domains are associated with readout of methylation marks present 

at histone residues, thus having a role in the chromatin structure [79].  

 

T-ALL specific transcription factor oncogenes 

T-ALL is characterized by the recurrent over-expression of a specific set of 

transcription factors, namely TLX1, TLX3, TAL1, LMO, HOXA, LYL1 and NKX family members, 

each defining a distinctive gene expression signature that identifies molecular subtypes in T-

ALL [30]. Besides gene rearrangements, disruption of regulatory pathways that normally 

tightly restrict the expression of transcription factors during normal thymopoiesis, can also 

be involved in the pathogenesis of T-ALL. In fact, different T cell oncogenes (HOX11, TAL1, 

LYL1, LMO1, and LMO2) are often aberrantly expressed in the absence of chromosomal 

abnormalities [30]. Therefore, it has been proposed that the disruption of gene silencing 

mechanisms that normally down-regulate them during normal T-cell development may 

explain these cases [80].  

The basic helix–loop–helix (bHLH) family of transcription factors is found commonly 

deregulated in T-ALL. The bHLH motif enables these TF to homo or hetero-dimerize through 

the HLH domain and to bind to DNA through the basic regions of the dimerized proteins. The 

bHLH family is divided in two classes: class A, that includes E2A and HEB (named the E 

proteins), that are widely expressed as homodimers or heterodimers with other bHLH 

proteins; and class B, that includes LYL1, TAL1, TAL2 and bHLHB1, that only heterodimerize 

with class A bHLH proteins and are expressed in a tissue-specific manner [81].  

The E proteins are very important transcription factors in thymocyte development. 

They bind to the DNA specifically in E-Box sequences (CANNTG), many of which are located in 
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enhancers of T-cell lineage restricted genes, like CD4 and PTCRA [82]. The E2A codes for two 

bHLH products, E12 and E47, by alternative splicing. These are critical for proper early B-cell 

commitment and development but also for the earliest stages of T-lineage development. Loss 

of E2A results in block in early T-cell development and in development of murine T-cell 

malignancies of immature phenotype, consistent with a tumor suppressor role [83]. Besides 

pTα expression, E2A proteins regulate also V(D)J recombination and the expression of RAG 

and, in this manner, regulate the thymic development before the formation of pre-TCR [83]. 

They act by inhibiting cell cycle progression in thymic precursors prior to TCRβ expression 

[84]. Moreover, reintroduction of E47 or E12 in lymphoma cells originated by the loss of the 

E2A proteins induces programmed cell death [85], reinforcing their tumor suppressor role in 

leukemia. Furthermore, enforced expression of the inhibitor of E proteins Id1 in T-cells 

induces massive apoptosis of differentiating T-cells leading to an accumulation of CD4 and 

CD8 double negative thymocytes with multipotent progenitor cell markers. Id1 transgenic 

mice frequently develop T-cell lymphoma with long latency, reinforcing the role of E proteins 

as regulators for normal T-cell differentiation and tumor suppression [86].  

On the contrary, class B bHLH proteins LYL1, TAL1, TAL2 and bHLHB1 are not 

expressed in the normal thymic development, but are found commonly ectopically expressed 

in T-ALL, acting as oncogenes [87]. These proteins bind to E proteins and recognize the same 

E box elements. For this reason it has been proposed that ectopic expression of class B bHLH 

proteins interferes with the normal activity of the class A proteins during thymic 

development, and this would in part explain their oncogenic properties. For instance, in 

mouse cells the E2A/HEB transcriptional activity is repressed by heterodimerization with 

TAL1, which should be down-regulated before pTα expression, impacting on differentiation 

of the immature T-cells [82]. 

LYL1 (lymphoblastic leukemia-derived sequence 1) is not expressed in normal T-cell 

precursors. However, it is present in T-ALL as the result of a rare translocation with the TCRB 

gene driving its constitutive expression [88]. In addition, ectopic expression of LYL1 is also 

found in a subset of T-ALL patients without genetic abnormalities, defining an immature DN 

stage of the disease, with expression of stem and myeloid markers. It has been proposed that 



Introduction 

46 

the unfavorable clinical outcome associated with this subtype of T-ALL may be the 

consequence of the up-regulation of anti-apoptotic genes (e.g. BCL2) characteristic of early 

precursors [30]. Transgenic mice over-expressing LYL1 develop T-cell and B-cell leukemia 

over one year, characterized mainly by DP T-cells and mature B-cells, suggesting a role for 

LYL1 in the induction of T- and B-cell leukemia. It has also been proposed that excess of LYL1 

blocks the dimerization of E2A, inhibiting the regulatory activity of E2A on the CD4 promoter 

and other E2A/HEB target genes that were found down-regulated [89].  

The most commonly aberrantly expressed bHLH protein in childhood T-ALL is TAL1, a 

subject that will be further detailed below. Nevertheless, TAL2 and BHLH1 are also found up-

regulated in T-ALL due to translocations that juxtapose their coding sequence with TCRB [90] 

or TCRA [91] loci, respectively. The homology of their bHLH domain with TAL1 domain 

suggests a common mechanism in T-ALL promotion. In this regard, ectopic expression of 

TAL2 or BHLH1 inhibited E2A-mediated transcription activation [91], suggesting that binding 

to E proteins might also be the way these proteins exert a leukemogenic effect.  

The LIM-only domain proteins LMO1 and LMO2 do not interact directly with the DNA, 

but instead form stable transcriptional complexes with bHLH proteins like TAL1 and LYL1 

[92]. This is consistent with the fact that the ectopic expression of these TF is frequently 

associated with deregulated expression of TAL1 (LMO1 and 2) and/or LYL1 (LMO2) [31]. 

Although translocations involving juxtaposition of LMO1/LMO2 to the TCRA/D locus occur in 

9% of pediatric T-ALL, and cryptic deletions leading to loss of a negative regulatory region 

upstream of LMO2 occur in only 4% of pediatric patients [41], the aberrant expression of LIM 

domain proteins can be found in up to 45% of T-ALL cases [30, 80]. LMO1 and LMO2 are 

expressed in hematopoietic stem cells and are normally down-regulated as hematopoietic 

precursors commit and progress through to the lymphoid lineage. In contrast, LMO2 is 

indispensable for erythroid development in mice, where it takes part on an oligomeric DNA-

binding complex that includes GATA1, TAL1, LDB1 and E2A [93]. Notably, ectopic LMO2 

expression in CD34+ progenitor cells causes an incomplete inhibition at DN stages of 

thymocyte development and a severe block at the ISP stage, disrupting normal T-cell 

differentiation [94]. In mice, ectopic expression of LMO proteins gives rise to an immature 
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DN leukemia but with a long latency, suggesting that LMO proteins are necessary but not 

sufficient to cause leukemia in mouse models [95, 96]. In fact, other studies have shown that 

other aberrantly expressed oncogenes, such as TAL1, are needed to accelerate the leukemia 

[92, 97]. Moreover, TAL1 and LMO2 are commonly found co-expressed in human leukemia 

and the cases with ectopic expression of LMO proteins or TAL1 cluster together in what 

regards to gene expression profiles [30].  

The involvement of LMO2 in the pathogenesis of T-ALL had important insights from 

an unfortunate event associated with retrovirus-based gene therapy trials for X-linked Severe 

Combined Immunodeficiency (SCID-X1). In several cases, the retroviral construction carrying 

the IL2RG gene integrated near the LMO2 locus leading to aberrant activation of LMO2 in the 

retrovirally-transduced hematopoietic precursors transplanted into the patients. 

Consequently, four of the 11 patients receiving gene therapy developed a T-ALL-like disease 

[98], suggesting that, in agreement with its frequent ectopic expression in T-ALL patients, 

LMO2 is in fact able to drive leukemogenesis in humans.  

Homeobox (HOX) genes are crucial regulators of body patterning and organogenesis 

during embryonic development. There are two classes of homeobox genes: Class I, which 

includes HOXA–D members; and Class II, which includes TLX1 and TLX3. Class I HOX genes 

encompass 39 genes dispersed in four HOX clusters (A–D). HOXA genes (A7, A9, A10, and 

A11) are expressed during the early stages of human T-cell development [99]. In T-ALL, HOXA 

genes, HOXA10 and HOXA9 can be found up-regulated due to translocations involving the 

TCRB enhancer in about 3% of patients. These cases are arrested in an immature DP stage 

before β selection [100]. Altogether, a subgroup of HOXA expressing T-ALL comprehends the 

TCR-HOXA, the MLL-translocated and CALM-AF10 translocated T-ALL, and a few cases 

without these rearrangements, suggesting a more general pathogenic role of HOXA 

deregulation in the genesis of T-ALL [30, 100].  

Increased expression of the class II orphan homeobox HOX11 (TLX1) can result from 

the juxtaposition with promoter elements of TCRA and B, loss of negative regulatory 

elements upstream of the promoter of TLX1 or other activating mechanisms in the absence 

of genetic rearrangements [80]. Overall, TLX1 is ectopically expressed in 5-10% of pediatric T-
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ALL patients. These cases are characterized by an early cortical phenotype. Genes expressed 

in association with this cluster are related with increased cell proliferation and absence of 

ectopic expression of anti-apoptotic genes, making these cases more responsive to drug-

induced programmed cell death, resulting therefore with a better clinical outcome [22, 30].  

The HOX11L2 (TLX3) transcription factor is highly expressed in 20–25% of pediatric T-

ALLs due to the translocation juxtaposing TLX3 to the distal region of BCL11B, which is 

strongly expressed during T-cell differentiation [101]. Several other type of rearrangements 

with rare incidence involving TLX3 have been reported [102]. The in vivo role of aberrant 

TLX3 expression in T-ALL remains to be clarified, but it is known that TLX3+ T-ALL cases 

cluster together with TLX1+, with analogous gene expression signatures and associated 

additional genetic events, suggesting similar mechanisms of action [30, 79, 100].  

In an attempt to reveal underlying oncogenic alterations that are still unknown for 

40% of pediatric T-ALL cases, a recent study identified two T-ALL clusters characterized by 

high expression of the homeodomain transcription factors NKX2-1/NKX2-2 or high expression 

of the MADS-box transcription factor MEF2C, both representing 20% of all T-ALL cases [31]. 

  The T-ALL cases with rearrangements involving NKX2-1/NKX2-2 cluster together with 

TLX1-rearranged cases to form the ‘proliferative cluster’. This cluster is associated with high 

expression of proliferation genes, expression of CD1a, ectopic expression of NKX2-1 or NKX2-

2 and cortical arrest [31]. Interestingly, the NK-like homeobox transcription factor NKX3-1 

was previously shown to have an oncogenic role in T-ALL as a direct TAL1 target gene [103]. 

The second cluster identified includes cases with a very immature immunophenotype, with 

prevalent CD34 expression, and CD13 and/or CD33 myeloid markers [31], which appears to 

largely coincide with the previous description of ETP-ALL, and is characterized by several 

rearrangements that directly or indirectly activate MEF2C [33]. Moreover, this ‘immature 

cluster’ has a high expression of the transcription factors LYL1 and LMO2 that were shown to 

be regulated by MEF2C, thus concordant with previously described LYL1 signature (pro-T-

ALL) [30]. MEF2C is a key regulator of normal lymphoid development activated by PU.1. It is 

expressed in normal pre-DN1 and DN1 human thymocytes and absent past the DN2 stage. 
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Therefore, MEF2C represents a newly found oncogenic transcription factor in T-ALL and 

down-regulation of MEF2C in a T-ALL cell line reactivates differentiation [31]. 

 

The TAL1/SCL oncogene 

The TAL1 gene product is a serine phosphoprotein and basic helix-loop-helix (bHLH) 

transcription factor known to regulate embryonic hematopoiesis. TAL1, also named SCL 

(stem cell leukemia), is the most commonly aberrantly expressed transcription factor in 

childhood T-ALL with increased transcript levels found in more than 60% of the patients, 

depending on the cohort considered [30, 104]. The blasts of the majority of these patients 

are devoid of obvious genetic alterations in TAL1 locus that could explain its up-regulation. 

TAL1 was for the first time related to T-ALL with the discovery of recurrent non-

random translocations juxtaposing the TAL1 gene to the strong regulatory elements that 

drive the expression of the TCRA/D gene in the 14q11 locus. This translocation 

t(1;14)(p34;q11) is found only in 3% of children with T-ALL [105]. Other rare translocations 

targeting TAL1 have also been described [106] but only in individual cases. The most common 

chromosomal alteration involving the TAL1 locus is the already mentioned SIL-TAL1 gene 

fusion, also called Tal1d, which is found in 10-25% of the patients [107, 108]. Interestingly, 

only 25% of the patients harbor DNA rearrangements that activate TAL1 transcription [104]. 

Thus, the majority of the patients with high TAL1 levels lack cytogenetic or molecular 

evidence of gene variants affecting TAL1.  

Gene expression signature studies revealed that high TAL1 expression is associated 

with an arrest of the leukemic blasts in a late cortical double positive stage of thymocyte 

differentiation. This is evidenced by up-regulation of LCK, TCRA, TCRB, CD2, CD6, and CD3E. 

Moreover, TAL1 over-expression was also associated with proto-oncogenes such as CBFA2 

(AML1) and the MYB-related gene MYBL2, receptor genes such as IL8R and CSFR1, the anti-

apoptotic gene BCL2A1, and frequent co-expression of the transcription factors LMO1/LMO2 

[30]. The fact that TAL1+ blasts up-regulate anti-apoptotic proteins normally induced by TCR 

signaling in the late cortical stage offers a plausible explanation for the less favorable 
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outcome observed in the TAL1+ subgroup in some studies. In fact, some of these patients 

demonstrate also an increased risk of failure to achieve complete remission, hinting for a 

possible role of TAL1 mediated genetic program in primary drug resistance  [30]. However, in 

latter reports, high TAL1 levels were again related with immunophenotypically advanced T-

ALL cases, but were instead associated with a good outcome [109, 110].  

Despite the strong evidence for TAL1 involvement in T-ALL ontogeny, the first mouse 

models generated to access Tal1 oncogenic potential failed to develop disease, either by 

using mouse bone marrow reconstitution models with early hematopoietic progenitors 

expressing Tal1 [111] or transgenic mice models in which Tal1 expression was directed to the 

T cell lineage using the CD2 enhancer [92, 112]. In these early reports it was suggested that 

additional genetic abnormalities are required besides Tal1 ectopic expression to originate 

leukemogenesis. In fact, there are several reports of additional abnormalities, frequent in 

leukemia and other cancers, that accelerate the onset of Tal1 induced murine leukemia, such 

as casein kinase IIα (CKIIα) over-expression [113], p53 deficiency [114], N-ras over-expression 

[115], or loss of the Ink4 locus [116]. Additionally, mice with Tal1 expression regulated by the 

CD2 enhancer did not develop leukemia unless they were crossed with CD2-lmo2 transgenic 

mice resulting in late onset T-cell leukemia [92]. Despite the strong evidence for a 

collaborative effect of aberrant expression of TAL1 and LMO proteins, other mouse models 

show that Tal1 is able to transform thymocytes without ectopic activation of Lmo2 or Lmo1, 

for instance by interfering with E47/HEB function [117]. This is also true in the human 

disease, given that even if the majority of TAL1+ T-ALL cases also have high expression of 

LMO2, not all human T-ALL patients who express TAL1 express LMO1 or LMO2 [30]. 

Moreover, it was shown that over-expression of Tal1 alone can be transforming in transgenic 

mice were Tal1 expression is under the control of the Lck promoter that directs high level 

expression of the transgene to thymocytes [113, 114]. In fact these mice died of clonal T 

lymphoblastic lymphoma or leukemia, evocative of the pathology of the human disease, but 

with a low penetrance, since only 28% of the animals developed disease within one year 

[113, 117]. Importantly, in vitro primary lymphocyte cultures showed partial independence 

from exogenous growth stimuli and increased resistance to apoptosis [114]. The thymocytes 



Introduction 

51 

of the Lck-Tal1 transgenic mice presented a developmental block at the DN2 stage. The 

reduction in Rag2 and pre-Tα observed in this model might explain, at least in part, the 

developmental abnormalities observed [117]. 

The combination of the Lck-Tal1 transgenic mice with a heterozygous background for 

E2A or HEB, provokes a drastic decrease in the absolute numbers of DP and SP4 thymocytes, 

with an increase in ISP population. These thymocytes present decreased expression of TCRβ 

chain, CD4, CD5, pre-Tα and Rag2 [117], all known targets of E-proteins in mice [83, 118]. 

This general decrease in important developmental genes is higher in the context of E-protein 

heterozygosity in comparison with Tal1 expression alone, suggesting that Tal1 interference 

with the E47/HEB heterodimer may be responsible for a more severe phenotype. This is 

translated in a faster disease development with increased penetrance (80% in the case of 

HEB background), providing evidence that E2A or HEB haploinsufficiency collaborates with 

Tal1 to induce leukemia [117]. As in Lck-Tal1 transgenic mice [113], the tumors developed in 

the Tal1/E-protein mice were blocked at various stages of thymocyte development, but with 

increased incidence of tumors with an immature DN phenotype [117].  

How does TAL1 predispose thymocytes to leukemia? By one hand, aberrant 

expression of TAL1 might lead to the formation of complexes with E-box proteins that are not 

normally present in T-cells, leading to abnormal activation of genes in the thymocytes, such 

as those associated with stemness. Alternatively or concomitantly, the formation of those 

complexes might decrease the availability of the E-proteins to transcribe their normal target 

genes, mainly involved in differentiation [113, 117, 118]. Such dominant-negative mechanism 

of action of TAL1 is supported by the fact that a Tal1 construct lacking the transactivation 

domain is still able to collaborate with Lmo1 to cause aggressive T-cell malignancies [97]. 

Also, transgenic mice expressing a DNA binding mutant of Tal1 but capable of forming stable 

complexes with E2A proteins, still develop disease [119]. Also supporting the model of TAL1-

mediated reduction of transcriptional activity is the fact that histone deacetylase inhibitors 

induce apoptosis of TAL1+ tumors [117, 120]. Moreover, TAL1 is also capable of repressing 

transcription of target genes by association with co-repressor factors such as mSin3A, HDAC1 

[117], HP1α, Suv39h1 [121] and LSD1 [122], proteins with deacetylase, methyltransferase 
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and heterochromatin activities. Alternatively, several reports demonstrate that TAL1 can also 

function as an activator of gene expression, further detailed below. Furthermore, TAL1 can 

be acetylated by the co-activator p300 and the p300/CBP-associated factor P/CAF, increasing 

DNA binding capacity of TAL1 while preventing its interaction with the transcriptional co-

repressor mSin3A [123]. Moreover, ChIP (Chromatin immunoprecipitation) studies for direct 

targeting confirmed that TAL1 may function both as repressor and activator of transcription, 

with the majority of promoters occupied by TAL1 being bound also by E2A and HEB [124]. 

Thus, the current view is that TAL1 is a bifunctional transcriptional regulator, which is at the 

onset of a complex transcriptional network on T-cell progenitors that disrupts normal T-cell 

homeostasis and contributes to leukemogenesis. 

 

Physiological roles of TAL1 

TAL1 is necessary for hematopoietic fate commitment during embryogenesis and is 

indispensable for specification of HSCs from mesoderm and maintenance of immature 

progenitors [125]. Mice knockout for Tal1 die during embryonic development, between day 

8.5 and 10.5, due to absence of hematopoiesis. Loss of Tal1 in the embryo mimics that of the 

loss of Lmo2 or Gata1 in the erythroid lineage, but is additionally characterized by a reduced 

capacity in the myeloid differentiation [126]. Importantly, the DNA binding activity of Tal1 is 

dispensable for hematopoietic commitment, but essential for maturation of erythroid and 

megakaryocytic precursors [127]. Also, Tal1 is essential for embryonic angiogenesis and thus 

indispensable for both cell types (blood and vascular cells) descending from the 

hemangioblast [128]. 

In the adult mouse, Tal1 is expressed in HSCs and multipotent progenitors, and in 

erythroid and megakaryocytic lineages. Despite being essential for the genesis of HSCs in the 

embryo, Tal1 is not necessary for HSCs engraftment, self-renewal and differentiation into 

myeloid and lymphoid lineages, being only indispensable for erythroid and megakaryocytic 

differentiation in adult animals [129]. Surprisingly, in the absence of Tal1 in the adult mice, 

HSCs are still capable of surviving, self-renewing and repopulating the hematopoietic system. 

Thus, Tal1 belongs to the category of transcription factors necessary for HSCs genesis, but 
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not required for later long-term repopulating activity and multipotency of HSCs [129]. Inside 

the adult HSC compartment, Tal1 is more expressed in cells with an LT-HSC phenotype 

compared with ST-HSCs and progenitors [130]. Tal1 is important in maintaining dormant 

adult HSCs but also to preserve reconstitution potential of HSCs, mediated by regulation of 

p21 and Id1 expression levels [130]. A different study showed that mouse cells defective in 

Tal1 present severe multilineage defects in repopulation capacity by ST-HSCs without their 

capacity self-renewal being affected [131]. 

In addition to its role in embryonic angiogenesis, TAL1 also takes part in the adult 

formation of new vessels, including tumor vasculature. Despite being undetectable in the 

adult quiescent endothelium, in an in vitro angiogenesis model, TAL1 ectopic expression 

enhanced migration of primary endothelial cells, formation of capillary-like structures and 

vascularization, and enlargement of capillary lumens. Thus, this demonstrated a previously 

unknown role for TAL1 in regulation of postnatal vascular remodeling [132].  

Analysis of TAL1 mRNA expression during human adult hematopoietic differentiation 

shows that TAL1 expression is silenced earlier [94, 133] than in the mouse [80], where Tal1 is 

still detected in the thymic DN3 population (CD44-CD25+). In humans, TAL1 expression is 

detected in all hematopoietic populations with erythroid potential (HSCs, multipotential 

progenitors, CMP, megakaryocyte/erythrocyte progenitors, and nucleated erythroid cells), 

but also lymphoid and myeloid-restricted progenitors (Figure 1.3). TAL1 is found in 

CD34+CD38− HSCs from cord blood and bone marrow, and also in the CD34+CD38+ 

population, which includes a mixture of lymphoid, myeloid, and erythroid progenitors. On 

the contrary, on pro-B cells, early thymic progenitors, myeloid precursors and all mature cells 

of the non-erythroid lineages, TAL1 is undetectable [133]. From mouse studies, it was 

suggested that Tal1 could also influence lymphoid and myeloid lineage commitment [129, 

131]. If that is the case in humans, it makes sense that TAL1 is expressed in CLP and GMP, 

although down-regulated compared with HSCs [133]. In fact, decreased expression of TAL1 in 

human CD34+ cells compromised the erythroid and myeloid lineage, whereas lymphoid B-cell 

development was normal. Notably, in vivo repopulation studies showed dramatically low 
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levels of human cells of all lineages including the B-lymphoid lineage, thus implicating TAL1 in 

early commitment of adult hematopoietic stem cells in humans [134].  

 

 

 

Figure 1.3 – TAL1 expression during human hematopoiesis. 

The relative mRNA expression levels of TAL1 are indicated, based on [133], by increasing color intensity 
and by symbols (–, +, ++, +++). Abbreviations: CLP, common lymphoid progenitor; CMP, common 
myeloid progenitor; GMP, granulocyte/monocyte progenitor; HSC, hematopoietic stem cell; IL, 
interleukin; M-CSFR, monocyte colony stimulating factor receptor; MEP, megakaryocyte/erythroid 
progenitor; NK, natural killer. 
 

The importance of TAL1 in erythroid differentiation is very well established. During 

mouse erythropoiesis, Tal1 regulates expression of components of the red blood cell 

membrane, such as Glycophorin A (GPA) [135] and protein 4.2 (P4.2) [136], and 

ubiquitinylation machinery components, such as the E2-ubiquitin conjugase UBE2H [137]. 

Their promoter activation is dependent on the assembly of a multifactorial complex 

containing TAL1, E47, Sp1, Ldb1, LMO2 and GATA1 transcription factors [135, 136].  
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TAL1 is also expressed in the CNS of the embryonic and adult mouse, in neurons of 

the lateral and caudal thalamic region, midbrain and hindbrain. Conditional deletion of Tal1 

in neuronal precursor cells leads to premature death, growth retardation and altered motor 

capacities, resulting from an affected brain morphology and abnormal neuronal development 

[137]. These observations underline the critical role of TAL1 in both neural and 

hematopoietic cell development. 

 

TAL1 target genes  

The understanding of the mechanism by which TAL1 recognizes binding motifs in its 

direct target genes may help comprehending the differential outcomes of TAL1 activity 

depending on the cell lineage: e.g. differentiation in erythrocytes versus transformation in T-

lymphocytes. As stated above, TAL1 binds to the DNA in E-box motifs (CANNTG) through 

heterodimerization with an E-protein. The binding occurs preferentially to the E-box CAGATG 

(represented by the consensus sequence AACAGATGGT), rather than the E-box CAGGTG that 

is favored by E-protein homodimers [138]. Moreover, the E-box constitution might not 

always be the most important determinant in TAL1 recognition, as it may be attracted to 

other regions by other DNA-binding transcription factors. These includes GATA3 in leukemic 

T cells [139] and SP1 [140] or GATA1 [93] in erythroid cells. 

In erythroid development TAL1 forms a pentameric DNA-binding complex between 

the heterodimer of TAL1 and E2A and the zinc finger proteins GATA1, that are bridged by 

LMO2 and the LIM-binding protein LDB1. This multiprotein complex binds to a bipartite DNA 

motif comprising an E-box, CAGGTG, followed ~9 bp downstream by a GATA site, establishing 

a transcriptional activating complex [93]. GATA1 and TAL1 occupancy is mainly related with 

the transcriptional activation of the genes, but also associated to repression [141, 142]. This 

composite E-box/GATA motif, found in erythroid cells and frequently associated with TAL1 

occupancy, was not initially detected in T-ALL cells [124] as consequence of a different 

preference for composite DNA motifs in T-ALL [143]. Thus, TAL1 oncogenic role can be in part 

rendered by genomic binding selectivity in different cellular environments. In T-ALL cells, 

TAL1 binding regions frequently overlap with the LMO1/2-, GATA3-, and RUNX1-enriched 
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regions [144]. In fact, in T-ALL cells TAL1 preferentially binds a combination of DNA motifs 

that includes the E-box variant (CAGGTG) favored by E-protein homodimers [138], and also 

RUNX- and ETS-binding sites. Nevertheless, the E-box/GATA composite motif is still over-

represented in TAL1 binding sites in both erythroid and T-ALL cells, reinforcing the 

importance of GATA factors in targeting TAL1 binding to specific sites. The alternative binding 

motive found in T-ALL allows the access of TAL1 to RUNX and ETS transcriptional regulatory 

networks in these cells, providing a possible molecular framework for TAL1-mediated 

leukemogenesis [143]. In addition, it was found that RUNX1/3 and ETS1 are required for TAL1 

binding to genomic loci in T-ALL cells. Interestingly, TAL1 directly activates the expression of 

RUNX1, ETS1 [143] and GATA3 [144] genes in blasts from T-ALL patients and RUNX1 is part of 

the TAL1+ gene signature described for T-ALL patients [30]. Importantly, these transcription 

factors are essential for the maturation of SP thymocytes, and may contribute to the DP 

stage differentiation block associated with TAL1. Curiously, GATA3 and RUNX1 seem to also 

regulate positively TAL1 expression, which suggests the existence of a possible positive 

feedback loop sustaining an aberrant gene expression profile in T-ALL [144]. 

Discovering TAL1 direct transcriptional targets has been complicated by the fact that 

TAL1-binding sites are located mainly away from promoter regions of known genes, mostly 

within introns and intergenic regions, in distal regulatory elements such as enhancers [143]. 

The TAL1 target genes identified in ChIP-seq studies code for proteins mainly involved in T-

cell differentiation, proliferation, morphology, activation, apoptosis and also recognized 

tumor suppressor genes that are repressed by TAL1 aberrant expression in T-ALL [124, 143, 

144]. In fact, in T-ALL cells TAL1 binding peaks were found in the following genes: TRAF3, 

RAB40B and EPHB1 that are activated by TAL1, and PTPRU, TTC3 and RPS3A that are 

repressed [124]. In another study, TAL1 was shown to require RUNX1/3 and/or ETS1 to bind 

to the promoter of T-cell marker genes (e.g. AIOLOS/IKZF3, TOX, CCR9, CD69, TCRBV, CDK6) 

and pro- and anti-apoptotic genes (e.g. PMAIP1/NOXA,PLK3 AND CD226) [143]. 

The studies based on TAL1 genome binding information and/or on TAL1 knockdown 

consequences on the gene expression aim to define possible TAL1 target genes. Most of the 
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candidate genes still need to be validated in different cellular and organism contexts. We will 

mention the few TAL1 target genes identified and clearly validated in human cells (Table 1.2). 

 

Table 1.2 - TAL1 target genes identified and validated in human cells, the context of 

regulation and the functional effect of TAL1 in the expression of the gene. 

 

In hematopoietic precursors, a multimeric complex containing TAL1, LMO2, 

GATA1/GATA2, E2A and LDB1 is attracted to DNA via a specificity protein 1 (Sp1) motif to the 

c-KIT promoter. KIT is a tyrosine kinase receptor essential for normal hematopoietic 

development and is activated by TAL1 [140]. In the context of genes important for T-cell 

differentiation, TAL1 was shown to bind to E47 and HEB to block activation of the TCRα 

enhancer [145]. Moreover, enforced expression of TAL1 and LMO1 in mouse and human 

thymic progenitors represses pre-Tα chain expression [118, 146]. Furthermore, TAL1 can bind 

the E boxes in the p16 promoter, and functionally suppress its activity, linking again TAL1 to a 

role in cell proliferation [146]. TAL1 can also bind to the intronic region of CDK6, a regulator 

of T-cell differentiation, which is up-regulated by TAL1 in T-ALL cells. In the case of the CD69 

gene, one of the earliest inducible cell surface glycoproteins acquired during lymphoid 

activation, TAL1 binds to a promoter region in erythroid and lymphoid cells, but induces 

down-regulation of its expression only in T-ALL cells [143]. 

Gene Context TAL1 effect 

c-KIT Hematopoiesis Up-regulation 

RUNX1 T-ALL Up-regulation 

ERG T-ALL Up-regulation 

RALDH2 T-ALL Up-regulation 

NKX3.1 T-ALL Up-regulation 

TALLA1 T-ALL Up-regulation 

NFKB T-ALL Down-regulation 

MYB T-ALL Up-regulation 

TRIB2 T-ALL Up-regulation 

CDK6 T-cell differentiation Up-regulation 

CD69 T-cell differentiation Down-regulation 

TCRA/G T-cell differentiation Down-regulation 

pTα T-cell differentiation Down-regulation 

P16 T-cell differentiation Down-regulation 
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In T-ALL, TAL1, LMO and GATA3 act as cofactors for RALDH2 transcriptional activation, 

a gene that codes the enzyme that synthesizes retinoic acid (RA). A GATA site present in the 

second intron is essential for the transcriptional activation, which is independent of the DNA 

binding capacity of TAL1 [139]. The same complex of the three transcription factors also 

activates the expression of TALLA1, a highly specific marker of T-ALL [147]. A TAL1–LMO– 

LDB1 complex is recruited by GATA3 to activate the NKX3.1 gene. The recruitment of the 

complex is associated with suppression of HP1-α binding and opening of chromatin, 

suppressing NKX3.1 gene repression. In T-ALL context, NKX3.1, a member of the NKX family 

of homeobox genes, promotes proliferation and can partially restore proliferation capacities 

upon TAL1 knockdown. Moreover, NKX3.1 directly regulates miR-17-92 [103], an oncomiR in 

T-ALL [148]. As in the case of the RALDH2 gene, the regulatory sequences responsible for 

TAL1 recruitment on the NKX3.1 gene are also not conserved between human and mouse 

[103]. Furthermore, as previously found in mouse embryonic cells, TAL1 directly activates the 

expression RUNX1 and ETS1 genes in T-ALL blasts [148]. In primary human T-ALL cells the 

expression of ERG, another ETS family member, is mediated by the binding of TAL1, LMO2, 

LYL1, FLI1, GATA3, but also ERG, to an enhancer that is active in stem cells [149]. Recently the 

TRIB2 gene has been identified as a target gene up-regulated by TAL1 in T-ALL, but negatively 

regulated by the E2A/HEB dimer. This encodes for an adaptor protein with a possible role as 

negative regulator of signaling pathways and appears to be required for survival of T-ALL cells 

[144]. Moreover, the oncogenic transcription factor, MYB, with a known involvement in 

malignant hematopoiesis [42] was identified as a direct target of TAL1 that forms a 

transcriptional complex together with GATA3 and RUNX1. Many of downstream targets of 

MYB are also controlled by TAL1. Therefore, these two transcription factors activate an 

overlapping oncogenic network to work in concert to maintain a deregulated gene 

expression program in T-ALL [144].  

Contrary to the genes already mentioned, NFKB1 gene expression was reported to be 

repressed by TAL1. In T-ALL cell lines, the expression of p50, encoded by NFKB1 gene, is 

reduced and that allows the activation of the atypical p65:cRel complex rather than the 

classic p50:p65 dimer. TAL1 and LMO1 bind to the promoter and recruit HDAC1 to repress 
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the transcription of the NFKB1 gene, shutting down NF-κB-dependent transcriptional 

program in T-ALL [150]. 

In summary, TAL1 appears to be on the top of a transcriptional network that drives 

the expression of genes involved in abnormal proliferation, differentiation and survival in 

transformed thymocytes.  

 

Gene structure and regulation 

In the human genome, TAL1 gene is located in the small arm of chromosome 1 

(1p32). It is composed of eight exons distributed over 16 kb in-between the SIL and the 

PDZK1IP1 loci [151]. Expression of TAL1 is tightly temporal and spatially regulated in different 

lineages and stages by distinct promoters and distal enhancer elements. 

The promoter Ia and Ib are utilized in a lineage-restricted manner. The promoter Ia is 

active in erythroid, megakaryocytic and mast cells. The promoter Ib is active in primitive 

myeloid and mast cells [152] and it is controlled by GATA1 and Sp1. On the contrary, the 

promoter IV, located within the fourth exon, is specifically active in the T-cell lineage, being 

responsible for transcript production in T-ALL cases [153] and cell lines [154].  

The distal enhancers also display lineage specificity in the Tal1 locus [155]. The 

expression of TAL1 during mesoderm differentiation is associated with activation of the 5′ 

proximal enhancer (−10 Kb in human) and the stem cell enhancer (19/+20/+21) [156, 157]. 

This last enhancer is active in hematopoietic stem and progenitor cells and endothelium. 

Additionally, the proximal enhancer also drives Tal1 expression in hematopoietic progenitors 

and endothelium, and it is bound by Ets family transcription factors, including Fli-1 and Elf-1 

[157]. On the other hand, the distal enhancer (+51 Kb in human) is transcriptionally active in 

erythroid cells, and thus called erythroid enhancer [158]. In erythroid cells an intrachromatin 

loop, which is not found in T-ALL cells, mediates the proximity of the +51 enhancer with 

promoter I [154]. This distinction is apparently due to the CCCTC-binding factor (CTCF), which 

mediates differently chromatin loops facilitating enhancer/promoter interaction of the TAL1 

locus in erythroid cells but preventing the same interaction in human T-cell leukemia [154]. 

On the other hand, in human T-ALL cells, another chromosomal interaction brings into close 
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proximity a T-cell-specific DNA regulatory element with enhancer characteristics on 

chromosome 16 (TIL16 element) and TAL1 promoter I. This interaction is mediated by the 

proto-oncoprotein c-Maf, being very important for maintenance of aberrant TAL1 gene 

expression [154]. Other enhancers have been described in the TAL1 locus [159], but 

apparently none of them is transcriptionally active in T-ALL cells [154]. 

Additionally, there are two known repressor elements in the TAL1 locus. The first was 

found in the 3′ UTR of the gene [160] and it is responsible for restricting promoter IV usage in 

erythroid cells. PU.1 is necessary but not sufficient to maintain activity of this repressor 

element [161]. An additional region (−13) showed repressor acpvity on both erythroid and T-

ALL cell lines, possibly mediated by the ETV6/7 proteins [162]. Besides promoters and 

enhancers, the genomic region containing the entire TAL1 regulatory elements span ∼88 kb 

in the human genome and it is flanked by CTCF-bound elements (at +57 and -31) (Figure 1.4) 

[163]. 

 

 
  

Figure 1.4 – Diagram of the organization of the human TAL1 regulon.  

The cis-regulatory elements of the human TAL1 locus span ~88 kbs in the small arm of chromosome 1, 
the so-called TAL1 ‘regulon’ (horizontal black line with Arrowheads); adapted from [163]. TAL1 and its 
flanking genes PDZK1IP1, STIL and CMPK1 transcriptional orientation is depicted by the horizontal blue 
arrows; locations of the promoters are shown with vertical red arrows. The principal characterized 
enhancers are also depicted, with vertical green arrows (the +19/+20/+21 stem cell enhancer, the +51 
erythroid enhancer and the -10 enhancer). CTCF-bound elements (+57, +53, +40 and -31) [162] are 
shown with vertical blue arrows and labeled with CTCF in the blue hexagon. 
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Recently a non-coding RNA named ncRNA-a3, belonging to the class of activating 

RNAs that activate their neighboring genes using a cis-mediated mechanism, was found 

downstream of the TAL1 locus in the opposite strand. Depletion of ncRNA-a3 in breast cancer 

cells resulted in a potent reduction of TAL1 expression [164]. A specific and robust DNA 

looping is formed between ncRNA-a3 and TAL1 [165]. It remains to be clarified if this 

mechanism of TAL1 regulation occurs during normal development and/or transformation.  

Importantly, the mechanism of aberrant activation of TAL1 in the majority of T-ALL 

patients who lack chromosomal rearrangements remains unknown. Whether deregulation of 

enhancer/promoter interactions, epigenetic alterations or aberrant trans-acting mechanisms 

lead to a disease-causing regulatory variant is still a mystery. 

 

 

 

  



Introduction 

62 

Non-coding RNAs 

Non-coding RNAs (ncRNAs) are RNA transcripts that are not translated into proteins. 

Nonetheless, they have the capacity to regulate the transcription, stability or translation of 

protein-coding genes. Their occurrence in the metazoan genome increases with 

developmental complexity [166].  

So far, the most studied ncRNAs are microRNAs but several other classes of ncRNAs 

with variable lengths and characteristics have been experimentally identified [167] (reviewed 

in [167-169]). Based on recent annotation by the GENCODE project [169] (version 20, April 

2014 - Ensembl 76) only 34% of the 58.688 annotated genes are protein-coding, 

encompassing 1.2% of the genome. Long non-coding RNA, small non-coding RNA genes and 

pseudogenes represent 24.7%, 16.2% and 24.5% of the total number of annotated human 

genes. This indicates that the number of ncRNAs is potentially much higher than that of 

protein-coding genes. In fact, the human genome is extensively transcribed, being 75% of 

bases represented in at least one primary transcript, whereas only 3% is transcribed into 

protein-coding mRNAs [169, 170]. 

MicroRNAs: definition and biogenesis  

The most studied class of ncRNAs comprehends small, 19-22 nt long, non-coding 

single stranded RNAs that provide post-transcriptional control of gene expression, named 

microRNAs (miRNAs). In mammals, miRNAs function mostly as endogenous translational 

repressors of protein-coding genes through sequence-specific binding to the 3’-untranslated 

region (3’UTR) of a target messenger RNA [171]. At the beginning of this project the number 

of miRNA loci known in humans was 533 [172]. Today, about 1500 human miRNAs have been 

reported (http://microrna.sanger.ac.uk/sequences/) and are thought to regulate more than 

30% of protein-coding genes [173, 174].  
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MicroRNAs were first described in 1993 in C. elegans by Rosalin Lee and colleagues 

[175]. The authors found two small lin-4 transcripts with 22 and 62 nt that enclosed 

sequences complementary to the 3'UTR of Lin-14 mRNA. Importantly, they showed that Lin-4 

negatively regulated the level of LIN-14 protein despite the fact that its sequence did not 

suggest to be protein-coding. This suggested to the authors that they were revealing an 

antisense RNA-RNA interaction mechanism of translation regulation [175]. This class of 

transcripts was initially named small temporal RNAs (stRNAs) due to the roles in the 

developmental transitions in C. elegans, but after reports of several other genes for small 

noncoding RNAs in other metazoan classes, invertebrates, mammals and even humans, the 

term ‘microRNA’ was born to name the stRNAs and all the other small RNAs with analogous 

characteristics but, at the time, unknown functions [176, 177].  

MicroRNA genes are generally transcribed by RNA pol II as long primary 5′ capped and 

polyadenylated transcripts (pri-miRNA), with one or more hairpins (Figure 1.5). These hairpin 

structures are cleaved at the base by a nuclear enzyme complex, which includes the RNase III 

Drosha and the dsRNA-binding protein (dsRBPs) DGCR8, releasing a 60–110-nt hairpin 

precursor (pre-miRNA). The pre-miRNA is transported to the cytoplasm by Exportin 5 where 

it is further processed by another RNase III – DICER – assisted by transactivation-responsive 

(TAR) RNA-binding protein (TRBP) in mammals [178]. The result is a 19–22-nt double-

stranded miRNA product. One of the strands is then incorporated as mature miRNA in the 

effector RNA Induced Silencing Complex (RISC). MicroRNAs can next exert their 

posttranscriptional activity, mostly as repressors of translation or, under some 

circumstances, alteration of mRNA stability. The final output is typically a reduction in the 

protein levels of the target gene [179]. The RISC is a protein complex that includes the highly 

conserved Argonaut proteins. The core component of this complex consists of an Argonaut 

protein together with a single-stranded small RNA. In humans, Argonaut family can be 

divided into two subfamilies (Ago and Piwi) based on sequence similarities [180]. The Ago 

subfamily in mammals is composed by four ubiquitously expressed members, Ago1-4, which 

participate in miRNA-mediated repression. Only Ago2 (or ‘Slicer’) is involved in the RNA 

interference (RNAi) mechanism by endonucleolytically cleaving the mRNA target [180].  
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MiRNA loci can be found encoded in introns or exons of protein coding genes or 

within either the introns or exons of noncoding RNA genes, as well in intergenic regions. 

More than half of mammalian miRNAs genes are intronic, i.e. found within introns of either 

protein-coding or noncoding transcripts. The majority are encoded within introns of protein-

coding genes (~40% of all miRNA loci), and only 10% are located within introns of long ncRNA 

transcripts. Around 10% of miRNA genes are found in exons of long non-protein-coding 

transcripts [181]. Interestingly, more than 50% of mammalian miRNA loci are clustered, 

therefore found in close proximity (<50 kb) to other miRNAs and transcribed generally from a 

single polycistronic transcription unit. In humans, 42% of miRNA genes are found in clusters 

that are less than 3000 nt apart and are regulated from a common promoter, transcribed 

into polycistronic units with multiple discrete loops further processed into mature miRNAs 

[182]. Moreover, the majority of human miRNA loci are located within intronic regions and 

their expression is coordinated with their host gene mRNA, implying that they also generally 

derive from a common transcript [183]. In these cases, expression levels of the coding gene 

are directly linked to expression levels of the miRNA, and vice versa. For example, the miR-

106b-25 cluster, found aberrantly over-expressed in prostate cancer along with its host gene 

MCM7, cooperate in cellular transformation both in vitro and in vivo [184]. On the other 

hand, we can also find examples of miRNA expression antagonizing, rather than supporting, 

the function of their host transcripts. For instance, miR-218 is encoded within a Slit gene 

intron, and it was found to negatively regulate the expression of Robo1 and Robo2 that are 

receptors for the SLIT ligand, thus antagonizing its host gene functions [185].  

Our knowledge of miRNA biology has been recently challenged by evidences of 

unexpected pathways of miRNA biogenesis that differ from the canonical described above. 

The first identified non-canonical pathway for miRNA biogenesis comprehends a bypass of 

the Drosha–DGCR8 processing step and occurs during processing of very short introns 

(mirtrons) as a result of splicing and debranching (Figure 1.5). The pre-miRNA is instead 

generated through splicing of a host mRNA that releases a lariat. The lariat refolds into a 

short stem–loop structure that resembles a pre-miRNA [178, 186]. In addition, the 

generation of miRNAs from snoRNAs, which are small (60-300 nt) nucleolar RNAs encoded in 
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the introns of proteins involved in ribosome synthesis or translation, has also been described. 

This was discovered when the analysis of the RNA fraction immunoprecipitated with human 

Ago complexes revealed a number snoRNA fragments of miRNA size [187]. Similarly, it was 

found that tRNAs produce a huge variety of small RNA fragments in vivo and that one tRNA 

fragment, cloned from mature human B cells, results from DICER1 cleavage and can function 

as a miRNA in an Ago-dependent way [188]. 

 

MicroRNA target recognition  

Target recognition is one of the major challenges in the miRNA field, leaving elusive 

the functions of most mammalian miRNAs. In fact, the region of complementarity between a 

miRNA and its target mRNA, referred to as the ‘seed’ region, encompasses only the 

nucleotides 2–7 from the 5′-end of the miRNA. The rest of the miRNA sequence has several 

levels of imperfect complementarity, depending on their target mRNAs, making accurate 

computational prediction of target sites very difficult [189]. Many, if not most, protein-coding 

transcripts are potential targets for miRNA regulation [173].  

Site directed mutagenesis experiments [171] have shown that there are two types of 

miRNA target sites in animals [190], one showing perfect complementarity to the 5’end of 

the miRNA without requirement of significant further base pairings and other showing 

imperfect 5’ matches compensated via extended base pairings with the 3’ end of the miRNA. 

In mammals, contrary to flies, many predicted targets and the corresponding miRNAs are 

manifestly expressed in the same tissue [189, 191], but the mRNA of the targets is expressed 

at significantly lower levels compared with most other tissues and the endogenous 

expression of the miRNAs is negatively correlated with the mRNA levels of their targets [171, 

190].  
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Figure 1.5 – MicroRNA biogenesis pathways.  

MicroRNAs are processed by RNA polymerase II from transcripts of independent genes or from introns 
of protein-coding genes (Figure adapted from [178]). In the canonical pathway, primary precursor (pri-
miRNA) is processed by the Drosha–DGCR8 into a ~70-nucleotide precursor hairpin (pre-miRNA), which 
is exported to the cytoplasm. Some pre-miRNAs are produced from very short introns (mirtrons) as a 
result of splicing and debranching, thereby bypassing this step. In either case, cleavage by Dicer, 
assisted by TRBP, in the cytoplasm yields a ~20-bp miRNA/miRNA* duplex. Following processing, one 
strand of the duplex (the guide strand) is preferentially incorporated into the miRNA-induced silencing 
complex (miRISC), whereas the other strand is released and degraded. MiRNAs exert post-
transcriptional control of gene expression either by promoting the transcript degradation or by 
repressing translation. 
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There are four main types of seed-matched sites found in the transcripts modulated 

upon miRNA introduction [173], one 6mer, two 7mers, and one 8mer, all selectively 

conserved (Figure 1.6). These follow a hierarchy of site efficacy: 8mer > 7mer-m8 > 7mer-A1 

> 6mer [189]. The same is true when examining protein levels [192, 193]. Computational 

studies predict a widespread targeting of mammalian miRNAs: on average 300 targets per 

miRNA family conserved through vertebrates, if considered conserved 7-8 mer sites, a 

number that can increase to more than 400 if 6-mer sites are also considered [191]. 

The canonical 7-8mer sites are clearly important but there are other determinants 

besides seed pairing with important roles for target recognition [189]. In fact, proximity of 

target sites to co-expressed miRNAs is an important determinant since it was shown that 

closely spaced target sites contribute more to repression than the independent contributions 

of two single sites [189]. This cooperative effect is true for target sites of the same miRNA or 

different miRNA targeting the same transcript, and repression reaches stronger levels when 

spacing between the miRNA target sites is between 8 to 40 nt. In addition, the so called 3′-

compensatory sites (additional paring with the 3’ region of the miRNA) are effective 

determinants for targeting, in particularly for 7mer-m8 sites. Like seed pairing, 3’ matching is 

sensitive to position, with pairing at the 3’ core (positions 13–16) being more important for 

efficacy than pairing to other positions [189]. Despite allowing prediction of target sites with 

great specificity, mammals extensive 3’ pairing is atypical and only slightly more effective 

[194]. One rare example of biological targeting with extensive 3’ pairing in mammals is the 

miR-196 site in HoxB8 [195]. It is also important to note that functional target sites are 

embedded in a highly enriched A and U context of nucleotides immediately flanking the site. 

The 5’UTRs and open reading frames (ORFs) can have functional miRNA targeting sites but 

these are less functional than the ones in the 3’UTR, both for mRNA destabilization [189] and 

translational inhibition [193]. Moreover, position of the target sequences within the 3’UTR is 

not innocent, as UTR quartiles near the ORF and near the poly(A) tail harbor more effective 

targeting than the two central quartiles. This effect is more important for UTRs higher than 

1300 nt and importantly, the distance to the Stop Codon has to be higher than 15 nt [189].  
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Figure 1.6 – Main types of seed-matched sites found in the mammalian transcripts.  

The 6mer site perfectly matches the 6-nt miRNA seed (miRNA nucleotides 2–7); the 7mer-m8 site 
comprises the seed plus a match to miRNA nucleotide 8 (miRNA nucleotides 2–8); the 7mer-A1 site 
comprises the seed supplemented by an Adenine at target position 1; finally the 8mer site comprises a 
match to miRNA nucleotide 8, the miRNA seed and the A at position 1 [189, 191]. 

 

 

The current different algorithms for target prediction consider stringent seed 

matching, thus having a high degree of overlap between them. One common point appears 

to be the conservation of the target sites during evolution as many of the potential miRNA 

binding sites are in evolutionarily conserved UTR regions [171, 193]. In fact, more than 60% 

of human protein-coding genes have been under selective pressure to maintain pairing to 

miRNAs in their 3’UTRs, although mammalian-specific miRNAs have far fewer conserved 

targets than do the more broadly conserved miRNAs [173, 191]. Nonetheless, the 

computational predictions are not 100% identical, not only because they use slightly different 

UTR databases but also because they attribute different importance and scores to the 

characteristics of site-matching discussed above [194]. It is important to note that the 3’UTR 

length of highly expressed genes can be tissue-dependent. Moreover, when genes have 

alternative 3’UTR isoforms most predicted target sites fall into the alternative part, indicating 

that 3’UTR isoform regulation is very important to define miRNA targeting [190]. 
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It is not yet fully understood how microRNAs ‘choose’ between the two alternative 

mechanisms by which they mediate silencing of their targets: either translational inhibition 

or mRNA stability decay [196]. It may be species-, tissue- [197] or microRNA specific, target-

dependent or reliant on the RNA binding proteins involved and it may be under the control of 

signaling pathways [198].  

Although it may occur less frequently in mammals, there is evidence that regulation 

at the level of mRNA stabilization (via mRNA degradation or deadenylation) may serve as a 

common mechanism for miRNA function [171, 190, 199]. In this regard, animal miRNAs have 

been found to mediate mRNA degradation even when the target sites have incomplete 

complementarity to them [200, 201]. Also, microarray experiments show that the over-

expression of miRNAs in cells causes mostly mild down-regulation of several transcripts (less 

than two fold) [171]. As an example, over-expression in HeLa cells of miR-1, preferentially 

expressed in heart, or miR-124, preferentially expressed in the brain, causes down-regulation 

of about 100 mRNAs, shifting the expression profile towards muscle-like or brain–like, 

respectively [171]. Moreover, it was noticed that sequence motifs over-represented in these 

down-regulated mRNA are enriched for MRE (MicroRNA Recognition Elements) of the 

respective microRNA, matching to the seed sequence in the miRNA. This demonstrates that 

the knockdown of those transcripts is caused mainly by direct binding of the transfected 

miRNAs to the 3’UTRs. Other experiments [171], using site directed mutagenesis have shown 

that pairing to the miRNA seed region contributes directly to mRNA decrease. In conclusion, 

miRNAs have a mostly mild effect (less than two fold) of down-regulation of hundreds of 

transcripts. Interestingly, deadenylation mediated by miRNA action can promote not only 

mRNA decay but also translational repression, by attenuation of the stimulatory role of the 

poly(A) tail in mRNA translation [202].  

The regulation mediated by translational repression is a very attractive strategy since 

it allows for potential translational reactivation of the repressed mRNAs, instead of 

irreversibly removing them through mRNA turnover. When addressing this issue, it is also 

important to take into account the mRNA turnover rate. If a mRNA has fast turnover rate it 

may appear to be solely translationally repressed while long-lived mRNAs may be more 
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susceptible to an increase in decay rates by miRNA repression [203]. The translational 

repression involves recruitment of the ribosome anti-association factor eIF6 or binding of 

Ago2 to the mRNA m(7)G cap. This prevents recruitment of eIF4E and translation initiation 

[198].  

Similar to what happens at the mRNA level, recent studies showed that the repressive 

effect of miRNA over-expression on individual proteins is overall very mild [193], rarely 

exceeding fourfold [192], while having a broad impact in tuning the synthesis levels of a large 

fraction of the proteome [192, 193]. Most targets are in fact repressed at both the mRNA and 

the translational level and the amount of each process contribution to the down-regulation 

seems to depend on the individual miRNA–mRNA pair and its localization [192], since 

translational repression appears stronger for mRNAs translated at endoplasmic-reticulum-

associated ribosomes compared to free cytosolic ones. For those targets with robust protein 

down-regulation (>one third) mRNA destabilization usually was responsible for the major 

component of repression [193]. Translational repression is responsible for a substantial 

amount of miRNA-mediated repression, but targets that are repressed only at the level of 

translation are down-regulated quite modestly (<33%) [193]. In conclusion, although some 

detected proteins are repressed by 50%–80%, the general effects are more modest, even if 

the targets are conserved, with individual sites usually reducing protein output by one third 

to half.  

As in the case of mRNA decay effect, evolutionarily conserved target sites cause 

stronger effects in translational repression than non-conserved sites [192, 193] and the use 

of the conservation criteria enriches for sites with possible functional roles and also for those 

that are more effective. Nevertheless, non-conserved targeting is more widespread than 

conserved targeting and predictive tools have incorporated the possibility of not using 

conservation cutoffs (like PITA, TargetScan and Miranda). Though ignoring conservation 

diminish overall performance of prediction, the highest ranked targets perform as well as the 

respective highest ranked conserved predictions [193]. The majority of the down-regulated 

genes found could be explained by seed matching sites but there have been found repressed 

proteins without seeds represented in their genes and these are most probably direct targets 
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of the respective miRNAs. Again, the presence of an A in the first miRNA nucleotide favors 

miRNA-mediated protein down-regulation, which can explain the preferential conservation 

of an A at this position, even when there is a mismatch to the mRNA [173]. Besides that, 

again the most influential component was local AU composition.  

Recent evidences indicate that miRNAs can also undergo post-transcriptional 

modifications that impact on their regulation and functional effects. Just to mention a few 

examples, a process called RNA editing, involves nuclear enzymes called ADAR (adenosine 

deaminase acting on RNA) and occurs at the level of the pri-miRNA, altering miRNA 

processing or specificity. ADAR enzymes are nuclear enzymes that catalyze adenosine-to-

inosine (A-to-I) transitions in dsRNA substrates, and given that inosine pairs preferentially 

with cytidine, this base editing can alter base-pair specificity [204]. When specific adenosine-

to-inosine editing occurs in the seed region of a miRNA it provokes a change in their target 

mRNAs. Hence, a different set of genes can be reassigned to an edited miRNA isoform in, for 

instance, a tissue-specific way [205]. RNA editing can also have a function in miRNA 

biogenesis, altering the pri-miR processing. For instance, editing of pri-miR-142 can inhibit 

Drosha, decreasing the mature miRNA-142 expression [206]. 

 

MicroRNAs and lymphopoiesis: focus on T-cell lymphopoiesis 

MiRNAs have been implicated in practically all biological processes, being crucial for 

the development of multiple organisms. Not surprisingly, knockouts of proteins involved in 

miRNA biogenesis, such as Dicer or DGCR8, results in early embryonic lethality or 

developmental defects [207-209]. This and the fact that some microRNAs are located at sites 

of genomic alterations linked to human leukemia [210], led to the speculation they may be 

involved in a tightly orchestrated process of regulation of mammalian hematopoiesis. Several 

studies confirmed that miRNAs have important roles as ‘fine tuners’ of normal hematopoiesis 

[211]. Interesting five miRNAs were shown to be highly specific for hematopoietic cells as 

compared to other tissues: miR-142, miR-144, miR-150, miR-155, and miR-223 [212]. 
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Moreover, studies in mice have shown that some miRNAs are preferentially expressed in 

hematopoietic tissues and others are differentially expressed between hematopoietic 

lineages [213]. For example, miR-181a was found to be strongly expressed in the thymus, 

besides brain and lungs; miR-223 was almost exclusively expressed in the murine bone-

marrow; and miR-142 preferentially expressed in murine hematopoietic tissues (bone 

marrow, spleen and thymus). Within each hematopoietic organ, each one of these miRNAs 

had a lineage specific expression pointing to a possible function in hematopoietic lineage 

differentiation. In fact, ectopic expression of these miRNAs in murine bone marrow 

hematopoietic progenitor cells substantially altered lineage differentiation: expression of 

miR-181 lead to an increase of the B-lineage fraction both in vitro and in vivo, while 

expression of miR-142s or miR-223 lead to a 30 to 40% increase in the T-lymphoid lineage in 

vitro, with little or no effect in the B-lymphoid lineage [213]. Latter studies in human 

hematopoietic lineages showed that hematopoietic expressed-miRNAs may be present and 

act differently in human versus mouse hematopoiesis given that the same types of human 

and mouse hematopoietic cells show large differences in miRNA expression [214]. In humans, 

miRNAs are differentially expressed during normal lymphoid commitment of the multipotent 

progenitor (MPP) cell. For instance, miR-128a, miR-181a and miR-146, were predicted to 

inhibit the differentiation of MPPs into common lymphoid progenitors. On the other arm of 

the hematopoietic differentiation, miR-155 was shown to negatively regulate human 

myelopoiesis and erythropoiesis [214]. Moreover, Li et al. [215] demonstrated that miR-181a 

regulates T-lymphocyte receptor sensitivity during development and that increasing miR-

181a expression in mature T-lymphocytes augments the TCR sensitivity to peptide antigens, 

whereas the inhibition of miR-181a in immature T-lymphocytes reduces the TCR sensitivity 

and impairs both positive and negative selection [215]. Thus, miRNAs exert a pivotal role not 

only in lymphocyte differentiation but also in the immune response. 

A broader view of how relevant microRNAs are in regulating the T-lymphocyte 

development has been addressed using Dicer knockout mice in which conditional deletion of 

Dicer alleles was used to avoid embryonic lethality [216-218]. Dicer deletion in early T-cell 

development resulted in a sharp reduction of miRNAs at the DP stage. Thymus of knockout 



Introduction 

73 

mice had 10 times less TCRαβ thymocytes than control counterparts, but maintained the 

normal DN cell numbers, explaining increased DN frequency in these thymi. The reduction in 

cellularity could be explained by increased apoptosis of αβ lineage cells, whereas the 

numbers of γδ-expressing thymocytes were not affected in mice lacking Dicer. CD4/8 lineage 

commitment was unaffected with maintenance of the normal mature CD4/CD8 lineage 

proportions, up-regulation of lineage-specific genes and the stable silencing of Tdt [218]. In a 

later T cell development stage, deletion of Dicer in mice using a Cre transgene under the 

control of the Cd4 enhancer/promoter/silencer resulted in normal total numbers and 

percentages of thymocytes [217]. Nonetheless, in the spleen, lymph nodes and blood there 

was a moderate reduction of CD4 T cells and marked reduction of CD8 T cells due to 

decreased proliferation and increased apoptosis of Dicer-deficient T cells. In these conditions, 

helper T cells preferentially differentiated into Th1-like, IFN-γ-expressing cells even when 

cultured under strong Th2-polarizing cues. This shows that Dicer is essential for the 

maturation and/or maintenance of peripheral T lymphocytes, especially cytotoxic CD8 T cells, 

and also for the cytokine production during helper T cell differentiation [217]. Moreover, 

differentiation of natural regulatory T (Treg) cells in the thymus and Foxp3 expression were 

also compromised in the absence of Dicer and mature miRNAs [216].  

Interestingly, general microRNA expression up-regulation was observed in the 

maturation of human thymocytes from the DP to the SP stage [219]. Among the miRNAs that 

are highly modulated, some had previously been reported to play an important role in the 

differentiation of the lymphoid (miR-150, miR-155, miR-23a) or myeloid (miR-146, miR-223) 

hematopoietic lineages and in the regulation of cellular proliferation or apoptosis (miR-150, 

miR-23a, miR-27a, miR-24). Some miRNAs decrease their expression in the transition from DP 

to SP stage, but the level of up-regulation of miRs generally exceeded that of down-

regulation. This result is consistent with previous studies that correlated miRNA levels to cell 

differentiation and suggests that miRNA up-regulation in this context could be important for 

down-regulating genes associated with an immature phenotype [219].  
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 MicroRNAs and cancer 

MicroRNAs have been implicated in practically all cellular pathways [179]. So it is not 

surprising that their deregulation has been associated with tumorigenesis.  The complex 

interaction between microRNAs and protein-coding genes is found deregulated in many 

diseases, including human cancer.  

The initial evidence for the involvement of miRNAs in cancer came from the molecular 

characterization of the 30kb deletion 13q14 in human chronic lymphocytic leukemia (CLL). 

This genomic region harbors the miR15 and miR16 genes that were found to be deleted or 

down-regulated in the majority of CLL patients [210]. Both microRNAs from this cluster 

negatively regulate BCL2, inducing apoptosis in leukemic cells [220]. Further evidence came 

from the realization that miR-196 and miR-10a are located in HOX clusters that encode for 

the HOX transcription factors, which have a crucial role in development and oncogenesis 

[221, 222]. Many miRNA genes are located at fragile sites, regions of minimal loss of 

heterozygosity or amplification, or common breakpoints in human cancers, highlighting the 

important role that miRNAs may have in the pathogenesis of human cancer [196, 221]. The 

genomic abnormalities found so far that influence the activity of miRNAs are the same as 

those described for protein-coding genes, such as chromosomal rearrangements and 

genomic deletions. On the contrary, given the small size of microRNA genes, the 

accumulation of point mutations in these are rare events. Therefore, homozygous deletions 

or gene amplification, promoter methylation or relocalization of a miRNA close to a 

regulatory element seem to be the main mechanisms of inactivation or activation of 

microRNAs [221].   

Several miRNA profiling studies in multiple human cancers revealed that miRNA 

expression signatures can be surprisingly informative, reflecting the developmental lineage 

and differentiation state of the tumors, and can contain diagnostic information [223, 224]. 

Contrary to mRNA profiles, miRNA expression profiles can be successfully used to classify 

even poorly differentiated tumors [223], and a small number of microRNAs is sufficient for 

the classification of human cancers [223, 224]. Almost all miRNAs have a differential 
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expression across several cancer types, reflecting the developmental origin of the tissues and 

the cell lineage. Interestingly, irrespectively of tumor type, the majority (59.4%) of the 

miRNAs have been found down-regulated in tumors when compared with normal tissues, 

implicating that down-regulation of some miRNAs might play a causal role in the generation 

and/or maintenance of tumors [223]. Besides that, cancer cell lines tend to express mRNAs 

with shorter 3’UTR than non-transformed cell lines, due to alternative cleavage and 

polyadenylation (APA). This leads to loss of miRNA target sites and it explains, at least 

partially, the increased mRNA stability and translation of mRNA shorter isoforms [225]. 

Nevertheless, both increased and decreased miRNA abundance has been observed in cancer 

cells in comparison with normal tissue. In fact, miRNAs can act as tumor suppressors [171, 

210] by negatively regulating proto-oncogenes. Conversely, by inhibiting tumor suppressors, 

miRNAs can function as oncogenes [203, 221, 226].  

 

Oncomirs 

Many miRNAs have been found over-expressed in different tumors, functioning as 

oncogenes, and for that reason called oncomirs, but only some have been well characterized. 

Oncomirs generally promote tumor development by negatively inhibiting tumor suppressor 

genes and/or genes that control cell differentiation or apoptosis. The observation that over-

expression of miR-155 alone is sufficient to cause lymphoblastic leukemia or high-grade 

lymphoma in transgenic mice [227] fully demonstrated that microRNAs can act as an 

oncogenic driving force. Moreover, deregulation of miRNA with oncogenic functions can be 

part of the tumorigenic program of oncogenes, as in the case of the transcription factor Myc, 

frequently deregulated in human malignancies [228]. Myc directly activates the transcription 

of the miR-17–92 cluster that in turn negatively regulates the expression of E2F1. Thus, c-

Myc tightly controls proliferative signals by activating its transcriptional target E2F1 and 

simultaneously limiting E2F1 translation through miRNA regulation [229].  

Oncomirs can also participate in post-transcriptional regulation of tumor suppressors, 

such as the bona-fide tumor suppressor PTEN [230]. As an example, miR-21, one of the most 

frequently deregulated oncogenic microRNAs, directly targets PTEN in hepatocellular 
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carcinoma, interfering with cell proliferation and apoptosis, and promoting cell migration and 

invasion [231]. MiR-21 was shown to directly modulate PTEN expression in other cancers, 

such as epithelial ovarian cancer [232], non-small cell lung cancer [233], and squamous cell 

carcinoma [234]. Down-regulation of PTEN is frequently involved in the development of 

cancers, and it can be regulated direct or indirectly by other miRNAs in different cellular 

contexts: miR-214 in human ovarian cancer [235]; miR-26a in a murine glioma [236] and lung 

cancer [237]; miR-221 and miR-222 in non-small cell lung cancer and hepatocarcinoma [238] 

and gastric cancer [239]; miR-29b [240] and miR-301 [241] in breast cancer; and miR-153 in 

prostate cancer [242]. Furthermore, different oncomiRs can act on the same oncogenic 

pathway. For example, all three components of the miR-106b-25 cluster cooperate in 

decreasing PTEN protein abundance, contributing to prostate tumorigenesis [184].  

 

Tumor suppressor miRs 

The fact that a general down-regulation of microRNAs [223] is observed in human 

cancers and the fact that there is a tendency for shortening of UTRs in malignant cells [225], 

suggest that microRNAs may also have an intrinsic tumor suppressive role. Tumor suppressor 

miRNAs generally prevent tumor development by negatively inhibiting oncogenes and/or 

genes that control cell differentiation or apoptosis. In fact, miRNA control can be part of the 

tumor suppressive programs of bona fide tumor suppressor genes, as exemplified by p53 and 

miR-34 [221, 243]. p53 directly regulates the transcription of miR-34a–c cluster increasing cell 

cycle arrest and cellular senescence, effects partially attributed to direct repression of CDK4 

and CCNE2 by miR-34 [243]. 

Repression of tumor suppressor miRNAs can also be part of the oncogenic program of 

oncogenic transcription factors. In fact, it was shown that Myc induction leads to an 

extensive repression of microRNAs in the context of human tumorigenesis [228]. Myc binds 

at upstream conserved regulatory regions of several miRNAs down-regulated in human cells. 

For instance, it was shown that miR-34a, miR-150, miR- 195/miR-497 and miR-15a/miR-16-1 

have tumor-suppressing properties in the context of Myc-mediated transformation [228].  
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One miRNA may target several components of a single pathway but also several 

miRNAs can have an additive impact on several genes in the same functional pathway. This 

kind of ‘social’ networking or combinatorial effort of miRNAs to control the same critical 

pathway [244] has been demonstrated to be important in cancer. In fact, several miRNAs 

concomitantly regulate the EGFR pathway [197], a very important signaling pathway in 

cancer. In breast cancer, three miRNAs (miR-124, -147 and -193a-3p) were shown to inhibit 

G1/S transition and cell proliferation by targeting effectors of EGFR signaling (e.g., AKT2, 

STAT3, p38 and JNK1) and/or cell-cycle proteins (e.g. Cyclin D1) simultaneously, pinpointing 

these miRNAs as potential tumor suppressors [197].  

Noteworthy, unraveling the involvement of miRNAs in cancer can be complicated by 

the fact that miRNAs may function as oncogenes in one cell type and as tumor suppressors in 

another. For example, miR-221 and miR-222 target the tumor suppressor PTEN in lung and 

liver cancers [238], but the same miRNAs inhibit erythroleukemic cell growth via reduction of 

KIT oncogene expression [245]. 

 

Competing endogenous RNAs 

Recently, another layer of complexity involving microRNAs and mRNA interaction was 

exposed, with importance in malignancy [246]. By quenching microRNAs through their MRE, 

a transcript can have a non-coding regulatory function. In fact, it was shown that the PTEN 

pseudogene1 (PTENP1) transcript is biologically active and acts as a ‘sponge’ for microRNAs 

that target PTEN, through a region homologous to PTEN 3’UTR enriched for known miRNA 

target sites. By regulating PTEN cellular levels PTENP1 exerts a growth-suppressive role [247]. 

This phenomenon is transversal to other RNA transcripts. The PTEN transcript itself can 

function as a decoy for microRNAs, regulating their availability for transcription repression of 

other targets [247]. A similar role can be attributed to CNOT6L and VAPA transcripts, which 

impair miRNA-mediated regulation of PTEN by acting as miRNA decoys [248]. This notion 

disrupts the canonical idea of a protein-coding gene transcript working solely as an 

information molecule for the protein coding machinery. Thus, RNAs that actively regulate 

other transcripts through direct competition for microRNA binding are been named 
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competing endogenous RNAs (ceRNAs). In fact, this mechanism reveals a communication 

path between several types of transcripts, such as pseudogenes, lncRNAs and mRNAs, that is 

mediated by microRNA response elements [246]. 

 

MicroRNAs and Leukemia 

The differential expression of miRNAs in hematopoiesis suggested early on that 

deregulated miRNAs could have a role in leukemogenesis [213]. Initially, reports of miRNA 

expression profiles of several types of solid cancers and leukemia (including pediatric ALL 

patients) showed that those profiles can be used to distinguish cancer types [223]. Moreover, 

each profile can be interpreted in light of the microRNA variations during normal 

hematologic ontogenesis [249]. Currently, the involvement of miRNAs in leukemogenesis has 

been established and several miRNAs have been identified as oncogenes or tumor 

suppressors in human leukemia. 

Several studies have aimed to define a signature that differentiates leukemia cells 

from their normal counterparts. In what regards acute lymphoblastic leukemia, comparison 

of several pediatric ALL samples with normal CD34+ hematopoietic cells has shown that 

leukemia cells can be distinguished by the up- or down-regulation of several microRNAs 

(Table 1.3) [250]. Part of this leukemic microRNA signature was confirmed in another study 

by comparison of ALL cells to normal bone marrow cells (Table 1.3) [251]. In the latter study, 

miR-196b expression was found to be higher in T-ALL patients [251]. Another work, set out to 

reveal new microRNAs by small RNAseq, acknowledged 16 novel, 170 candidate to novel and 

153 known mature miRNAs/miRNA-star strands expressed only in childhood ALL [252].  

MiRNA expression signatures can be used not only to classify human cancers but also 

to predict prognosis. The relation of miRNAs to risk categories in childhood ALL has been 

investigated (Table 1.4). For instance, patients who develop CNS relapse at one year follow-

up showed significant differential miRNA expression as compared to non-CNS relapsed ALL 

cases [253]. An analysis of risk not restricted to CNS involvement determined a microRNA 

signature distinct between relapsed and complete remission cases [253]. Furthermore, some 
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studies suggest that miRNAs can be used to predict the risk of relapse before patients 

undergo therapy. The analysis of miRNA expression profiles and relapse-associated miRNA 

patterns in a panel of matched diagnosis–relapse or diagnosis–complete remission (CR) 

childhood ALL samples, has shown that three miRNAs were enough to predict relapse-free 

survival (RFS) in a representative cohort of ALL patients with a three-year follow-up (Table 

1.4) [254]. In another study, an integrated analysis of 14 miRNAs was highly predictive of 

clinical outcome and able to differentiate a group of patients with a favorable expression 

profile and a 5-year DFS of around 90% from those with a less favorable miRNA profile and a 

5-year DFS rate of around 61% [255]. The signature associated with an unfavorable prognosis 

included the miR-33 which is significantly up-regulated in T-ALL in comparison to normal 

thymocytes [255]. 

 

Table 1.3 – Comparison of miRNAs expression between childhood ALL and normal samples 

 Most discriminative miRNAs Normal Samples 

High 

expression 

in ALL 

miR-128a, miR-142, miR-150, miR-181, miR-30e-5p, miR-193, 

miR-34b, miR-365, miR-582, miR-708 

CD34+ progenitors form 

Peripheral Blood [250] 

miR-128 and miR-181 Bone marrow cells [251] 

Low 

expression 

in ALL 

miR-100, miR-125b, miR-99a, miR-196b, miR-let-7e   
CD34+ progenitors form 

Peripheral Blood [250] 

miR-100, miR-196b, let-7e Bone marrow cells [251] 

High 

expression 

in T-ALL 

miR-5194, -5193, -5192, -5191, -5188, -3151 

miR-5197*, -5196*, -3942*, -3136* 

Thymocytes [252] 

Low 

expression 

in TALL 

miR-3183, miR-3190, sol-miR-16  Thymocytes [252] 

Note: candidate novel miRNAs from Solexa sequencing have the prefix sol [252] 

 

 

In respect to miRNAs associated with resistance to commonly used drugs in childhood 

ALL treatment, a unique miRNA expression signature composed of eight (out of 576) miRNA 

genes (miR-18a, -532, -218, -625, -193a, -638, -550, and miR-633) is able to differentiate 



Introduction 

80 

between a good or poor prednisone response in pediatric ALL cases [253]. Resistance to 

vincristine, daunorubicin and l-asparaginase in precursor B-ALL patients is also distinguished 

by differential expression of miRNAs (Table 1.4) [255]. The fact that specific drug-resistant 

cases have unique miRNA expression profiles helps to comprehend the biology underlying 

drug resistance. 

 

Table 1.4 – miRNA expression and risk categories, prognosis and treatment response in ALL  

  microRNAs 

up-

regulation 

Patients with CNS relapse versus non-CNS 

relapsed cases [253] 
miR-7, miR-198, miR-633 

down-

regulation 

Patients with CNS relapse versus non-CNS 

relapsed cases [253] 

miR-126, miR-345, miR-222, miR-551a 

up-

regulation 

Relapsed patients versus complete remission 

cases [253, 254] 

miR-7, miR-216, miR-100 [253], miR-708 

[254] 

down-

regulation 

Relapsed patients versus complete remission 

cases [253, 254] 

miR-486, miR-191, miR-150, miR-487, miR-

342 [253], miR-223, miR-27a [254] 

High 

expression 
Associated with an unfavorable prognosis [98] 

miR-33, miR-215, miR-369-5p,miR -496, 

miR-518d,  miR-599 

High 

expression 
Associated with a favorable prognosis [98] 

miR-10a, miR-134, miR-214, miR-484, miR -

572, miR-580, miR-624, miR-627 

up-

regulation 

Associated with resistance to vincristine and 

daunorubicin [255] 
miR-125b, miR-99a, miR-100 

down-

regulation 
Associated with resistance to l-asparaginase [255] miR-454 

 

 

Furthermore, microRNA expression profiles have also been shown to discriminate 

leukemia cells with origin in different hematopoietic lineages. In fact, a specific miRNA 

signature is able to discriminate ALL from acute myeloid leukemia (AML) with high accuracy 

[256]. Moreover, the miRNA-expression profiling of ALL patients allowed the discrimination 

of different ALL subtypes and the clustering of the samples into three segregated hierarchical 

branches: B-ALL, T-ALL and mixed lineage leukemia samples (MLL). This was the first 
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evidence that miRNA signatures may reflect the developmental history of human cancers 

[223]. Furthermore, the characterization of microRNA expression is able to differentiate the 

major subtypes of ALL, such as T-ALL (Table 1.5), MLL-rearranged, TEL-AML1-positive, E2A-

PBX1-positive, and hyperdiploid cells, with the exception of BCR-ABL-positive and ‘B-other’ 

ALL [255]. 

In fact, current data show that miRNA expression profiles are more likely 

representative of ALL subtypes than of the differentiation stage of each subtype [250]. For 

instance, T-ALL and MLL-rearranged cells have common miRNA expression that is distinct 

from other ALL subtypes (TEL-AML1, BCR-ABL, E2A-PBX1, hyperdiploid, and B-other) [250]. 

Furthermore, in agreement with previous findings showing that T-ALL cases are clearly 

distinct from B-ALL at the gene expression level, the expression of miR-148a, miR-151, and 

miR-424 have been found to discriminate T- cell from B-cell lineage ALL [257]. 

 

Table 1.5 - The miRNAs most discriminative of T-ALL as opposed to other ALL subtypes 

 Most discriminative miRNAs Ref 

up-

regulation 

 

 miR-132, miR-151, miR-191, miR-222*, miR-425-5p, miR-425-3p (*), miR-708 (*#), 

miR-148a,  miR-424 ALL (&) 

 

 miR-196b (*),miR-190, miR-342-3p, miR-542-5p (#), miR-151(&) 

 

(*) [250] 

(#) [255] 

(&) [257] down-

regulation 

 

 

Overall, these studies suggest the potential role of specific microRNAs in specific 

pediatric ALL subtypes and in the development of different phenotypes, namely those 

associated with drug resistance and risk of relapse. The functional importance of each 

specific miRNA by itself or as part of a network of microRNAs needs to be further addressed 

to determine specific roles in the biology of acute leukemia.  

Regarding hematopoietic malignancies, it is important to mention the polycistron 

encoding the miR-17-92 microRNA cluster – which in humans is located at the chromosome 

13q31, a genomic region that is recurrently amplified in lymphomas and other cancers. The 
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human miR-17−92 transcript can be processed into seven mature miRNAs (miR-17−5p, -

17−3p, -18a, -19a, -20a, -19b, and miR-92). The miRNAs encoded from this cluster are highly 

expressed in murine lymphocytes, embryonic stem cells and precursors. These miRNAs 

expression levels decrease upon maturation during lymphocyte development [258]. The 

genomic region encoding the miR-17-92 cluster is often amplified in human B-cell 

lymphomas and cooperates with up-regulated c-Myc expression in fetal liver cells to 

accelerate the formation of B cell lymphomas in mice [226]. Furthermore, increased 

expression of miR-17−92 in mouse lymphocytes results in the development of a 

lymphoproliferative disease and autoimmunity, causing the premature death of the mice 

[258]. These phenotypes are due to increased proliferation and reduced activation-induced 

cell death of T- and B-cells upon activation in the periphery, rather than a global 

inflammatory response. miR-17−5p and miR-19 were shown to cooperatively suppress Pten 

protein expression and miR-92 to down-modulate the pro-apoptotic Bim protein, partially 

explaining the transgenic phenotype [258]. Moreover, miR-17-5p and miR-20a target the 

transcription factor E2F1, important for cell cycle progression, and its reduction promotes 

the development of hematopoietic malignancy [229]. Increased miR-17−92 expression might 

also cooperate with pre-existing oncogenic activation, such as c-Myc over-expression [228]. 

The miR-17-92 cluster was also shown to promote the activation of the PI3K pathway by 

directly mediating the inhibition of PHLPP2, a negative regulator of the PI3K pathway [259], 

thus strengthening the importance of this oncogenic polycistron in lymphomagenesis. 

 

 

MicroRNAs and T-ALL 

The participation of miRNA genes, individually or as part of a network, has been 

implicated in T-ALL pathogenesis. Mouse transplantation with Lin- hematopoietic fetal liver 

cells over-expressing mature miR-125b was shown to cause the malignant transformation of 

different hematopoietic lineages, leading to B-cell ALL, T-cell ALL, or a myeloproliferative 

neoplasm. These results suggest a role for miR-125b in the differentiation of lymphoid and 

myeloid lineages and identified a microRNA involved in the genesis of T-ALL [260].  
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It is important to notice that, contrary to B-ALL subtypes [257], hierarchical clustering 

and principal component analysis of the expression levels of 430 miRNAs in 50 clinical T-ALL 

specimens does not distinguish between the major cytogenetic groups (HOXA, TAL or LMO 

and TLX1 or TLX3), which differ by few miRNAs [261]. Nevertheless, in the high-risk subgroup 

of ETP-ALL, the microRNAs miR-221 and miR-222 were found significantly up-regulated when 

compared to non-ETP-ALL [262]. Moreover, it has been proposed that miR-222 may, to some 

extent, contribute to the myeloid character of ETP-ALL by down modulating ETS1 expression. 

Through ETS1 down-regulation, miR-222 significantly inhibits proliferation and causes cell 

cycle arrest and apoptosis in leukemic cells [262]. In addition, miR-221 associates with poor 

prognosis: increased expression correlates significantly with lower 5-year OS rates [263]. 

The already mentioned oncogenic miR-17-92 microRNA cluster has also been 

implicated in T-ALL. MiR-19, the cluster component with higher expression in T-ALL, 

enhances lymphocyte survival and cooperates to promote leukemogenesis in a mouse model 

of Notch1-induced T-ALL [264]. Moreover, the miR-17-92 cluster is involved in a genomic 

rearrangement in T-ALL, the translocation t(13;14)(q32;q11) with the TCRA/D locus [264]. In 

the murine model of T-ALL, miR-19 targets the pro-apoptotic protein Bim, AMP-activated 

kinase (Prkaa1), and the tumor suppressors Pten and PP2A, resulting in the overall activation 

of PI3K signaling. In this way, miR-19 directs a coordinated action to control the PI3K 

signaling to affect lymphocyte survival and leukemogenesis [264]. The mechanism of pri-miR-

17-92 activation in T-ALL remains to be fully understood, but it was proposed that NK-like 

homeodomain proteins could stimulate the expression of this polycistron in T-ALL [265]. 

Furthermore, it has been shown that a small set of miRNAs (miR-19b, -20a/93, -26a, -

92 and miR-223) is responsible for the cooperative suppression of several tumor suppressor 

genes in T-ALL, namely PTEN, BIM, NF1, FBXW7, IKZF1 and PHF6 [261]. Combining the 

analysis of miRNA expression data of T-ALL primary cells and cell lines the authors defined 

the most highly expressed miRNAs (miR-223, -19b, -20a, -92, -142-3p, -150, -93, -26a, -16 and 

miR-342). These were further tested in a mouse model of Notch1-induced T-ALL. The 

assessment of individual and combined contribution of each miRNA functional effects 

revealed that highly expressed miRNAs cooperate in regulating key tumor suppressor genes 
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in human T-ALL cells. In fact, mir-223, reported as a ‘myeloid’ gene, was notable for its 

differential up-regulation in T-ALL. It was shown to promote Notch1-driven leukemia at least 

in part by controlling the E3 ligase FBXW7 [261]. A follow up study identified miR-128-3p as a 

novel candidate oncomiR in T-ALL by targeting PHF6 tumor suppressor gene. Over-expression 

of miR-128-3p accelerated leukemia onset in a Notch1-induced T-ALL mouse model [266].  

The use of microRNAs to inhibit oncogenic signals is an attractive alternative to the 

targeting of oncogenes themselves, which often have essential functions and therefore are 

more difficult to inhibit without substantial harmful effects in normal tissues. One of such 

instances is the case of Notch-induced oncogenesis in T-ALL, whose pharmacological 

inhibition has been associated with gut toxicity [267]. Importantly, it has been shown that 

mir-181ab1 gene deletion significantly delays T-ALL development induced by Notch 

oncogenic signals, without significant impact on normal development [268]. In T-cell lineage, 

mir-181ab1 deletion influenced early thymocyte development, resulting in a modest 

decrease in ETP, DN3 and DP cell populations and in an increase in CD4 SP thymocytes. 

Mir181ab1 role in the oncogenic program appears to be more detrimental, as deletion of 

mir-181ab1 reverts ICN1-controlled gene set (Dtx1, Notch1, Hes1, Hey and Nrarp) and pre-

TCR (Ptcra) back to the levels of normal DP cells. Also, miR-181a, a component of the mir-

181ab1 gene cluster, regulates T-cell receptor sensitivity during development by suppressing 

the expression of multiple phosphatases (Dusp5, Dusp6, Shp and Ptpn22) [215]. Thus, miR-

181a may contribute to the maintenance of oncogenic signals by diminishing negative 

feedbacks and potentiating NOTCH and pre-TCR signals [268]. 

Still in the context of Notch1-induced oncogenesis, it was found that repression of 

miR-451 and miR-709 is a necessary event in murine T-ALL [269]. In mice, Notch-1 indirectly 

down-regulates miR-451 and miR-709 by inducing the degradation of their transcription 

activator E2a. Inhibition of these miRNAs is probably necessary since both miRNAs directly 

repress Myc expression. In addition, miR-709 also directly represses the oncogenes Akt and 

Ras-GRF1. Human T-ALL cells with NOTCH1 activating mutations have decreased miR-451 

(miR-709 is not conserved in humans) and increased MYC levels, compared to T-ALLs without 
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NOTCH1 mutations. This is an example of miRs, behaving as tumor suppressors, whose 

expression must be down-regulated during ICN1-induced T-ALL [269]. 

Another member of the Notch receptor family, NOTCH3, has also been validated as a 

target of microRNAs, namely of miR-150 in T-ALL cell lines [219]. Moreover, another study 

determined a NOTCH3-induced microRNA signature in T-ALL [270]. Overall, seven microRNAs 

were found coherently modulated by both NOTCH3 over-expression and silencing, in mouse 

and human cells (miR-223, miR-183, let-7d, miR-425, miR-25, miR-139-5p and miR-103). In 

particular, miR-223 is a direct target of NOTCH in human T-ALL cells. The binding of NOTCH to 

mir-223 promoter region requests NF-kB activation. Surprisingly, in primary human samples 

the authors were unable to show a direct correlation between miR-223 expression levels and 

the very common T-ALL-related events of up-regulation of NOTCH and NF-kB. This result 

suggests that miR-223 expression may be maintained by other pathways aberrantly activated 

in T-ALL [270].  

The miR-142-3p stands out as another example of the essential role that an individual 

miRNA can play in leukemia progression, chemotherapeutic resistance and prognosis 

assessment. In T-ALL, miR-142-3p was shown to promote leukemic cell growth and to induce 

resistance to glucocorticoid (GC) treatment. [271]. Originally, miR-142-3p was identified as 

highly specific microRNA for hematopoietic cells [212, 213]. Besides that, miR-142-3p is also 

highly expressed in pediatric ALL samples, particularly in T-ALL cells as compared with healthy 

donor T-cells [250] and especially in T-ALL cells from patients with poor prognosis [250]. In 

addition, ectopic expression of miR-142-3p results in the increased proliferation of T-ALL cells 

without affecting apoptosis. This miRNA specifically targets the cAMP/PKA pathway and 

glucocorticoid receptor alpha (GRa) and, more importantly, T-ALL cells from patients with a 

poor response to prednisolone experience increased cell death induced by dexamethasone 

upon down-modulation of miR-142-3p [271].  

The role of some miRNAs in leukemia is still controversial since it may depend on the 

cellular context. For instance, miR-196b is highly expressed in T-ALL when compared to B-cell 

patients [250]. The miR-196b gene is positioned between HOXA9 and HOXA10. In pediatric 

ALL miR-196b is highly co-expressed with genes from to the HOXA cluster, namely in T-ALL 
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cases characterized by the activation of HOXA genes, suggesting co-transcriptional activation 

[222]. The over-expression of this miRNA in mouse bone marrow cells leads to increased 

proliferative capacity and survival, pointing to a role in leukemogenesis [272]. In contrast, it 

was reported that miR-196b can down-regulate the oncogenic transcription factor ERG in 

adult AML and T-ALL patients. As a result, instead of promoting leukemogenesis, miR-196b 

may also inhibit this process. Moreover, no significant differences in clinical outcome 

between high versus low miR-196b expression levels were observed [272]. Additionally, miR-

196b was found down-modulated in T-ALL patients with respect to normal cells, which 

suggests a possible tumor suppressor function for this miRNA in T-ALL [273]. In contrast to 

what was previously found in B-ALL, c-Myc gene expression is not down-regulated by miR-

196b in T-ALL. Interestingly, miR-196b loses its ability to down-regulate c-Myc gene 

expression in T-ALL as a result of mutations in target 3′UTR of the c-myc gene, pointing again 

to a possible tumor suppressive role in this disease. This microRNA may therefore have a dual 

role in leukemia, depending on the genetic context [273]. 

Apart from genomic aberrations or aberrant activity of regulatory factors (for 

example, c-Myc), miRNA deregulation may also be caused by aberrant expression of 

neighboring protein-coding genes (for example, miR-196b and HOXA genes). However, these 

mechanisms can only explain a minority of deregulated miRNAs, whereas an explanation is 

still lacking for the majority of aberrantly expressed miRNAs in T-cell acute lymphoblastic 

leukemia [274].  
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Objective 

Regardless of improved therapy regimens, acute lymphoblastic leukemia from T-cell 

origin is still not a curable disease [15]. More intensive regimens are used for T-ALL in most 

clinical trials [8] and current specific treatment protocols for this subtype of ALL allow a 5-

year event-free survival rate of 85% [9]. Nevertheless survivors face long term complications 

[7] and develop serious health problems within 30 years of their initial diagnosis. This issue is 

even more critical considering the age range of the patients affected by leukemia.  

Therefore, the field currently faces the challenge of creating more efficacious 

therapies, rationally-designed and less toxic. A better understanding of the pathogenesis of 

the disease, namely molecular analysis of the common genetic alterations in leukemic cells, 

may be the solution to understand why some cases fail to respond to chemotherapy and to 

improve selective targeting of leukemic cells without long-term effects on the normal tissues. 

With this in mind, this work was conducted aiming to contribute to a better 

comprehension of the biology of the disease and cell-intrinsic characteristics, namely in 

relation to one of the most frequently up-regulated oncogenes in childhood leukemia: TAL1.   

 Surprisingly, the current understanding of the molecular mechanisms that lead to 

ectopic TAL1 activation is still relatively scarce, specifically for the majority of the T-ALL cases 

that lack chromosomal rearrangements in the TAL1 locus. During the past decade, several 

studies evaluated the miRNA gene expression signatures associated specifically with T-ALL, 

revealing that some miRNAs can contribute singularly or in combination to the pathogenesis 

of the disease. Moreover, TAL1 is a putative target for several miRNAs that are differentially 

expressed in hematopoietic lineages [275, 276], suggesting that miRNAs might regulate TAL1 

at different stages of hematopoietic development. The interplay between TAL1 and miRNAs 

in T-ALL has not been explored thus far. Moreover, miRNA regulatory networks regulating T-

ALL oncogenes have not been so far extensively studied. 

Thus, the work presented in the current thesis aimed to explore the hypothesis that 

TAL1 ectopic expression in T-ALL from currently unknown reasons could, in some cases, 
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result from, or be amplified by, abnormal down-regulation of particular miRNAs targeting 

TAL1. 

Furthermore, TAL1 is an oncogenic transcription factor able to either activate or repress 

the expression of downstream targets as part of a transcriptional complex. In the current 

view, TAL1 is at the edge of a complex transcriptional network that is aberrantly expressed in 

T-cell progenitors and disrupts normal T-cell homeostasis, contributing to the onset of 

leukemia. At the start of the project reported herein, the relatively small list of known TAL1 

target genes included exclusively protein-encoding genes. We therefore aimed to explore the 

possibility that miRNA genes are transcriptionally regulated by TAL1 and partake in the 

development of T-ALL.  

By addressing these hypotheses we aimed to contribute significantly to the current 

knowledge of the mechanisms leading to aberrant expression of TAL1 in T-ALL and to the 

identification of TAL1-regulated miRNA genes. Ultimately, as miRNA-based therapeutics are 

in the order of the day towards clinical application, we expect our studies may reveal novel 

molecular targets for improved therapeutic intervention in T-ALL.  
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Material and Methods 

MicroRNA nomenclature and annotation. Official nomenclature and sequence annotation 

based on the miRBase database [277] has changed during the course of this study. In this 

manuscript the nomenclature reports to the annotated in miRBase release 13.0 (2009). Here 

we list the microRNA sequences relevant for this study (Table 2.1) and the new annotation 

according to the last annotation (miRBase release 21.0). 

 

Table 2.1 – List of microRNAs relevant for this study and their sequence 

The miRNA that changed their names appear in bold on the right column.  

miRNA name 

(v13.0) 
Sequence 

New annotation 

(v21.0) 

hsa-miR-101 UACAGUACUGUGAUAACUGAA hsa-miR-101-3p 

hsa-miR-140-5p CAGUGGUUUUACCCUAUGGUAG hsa-miR-140-5p 

hsa-miR-140-3p UACCACAGGGUAGAACCACGG hsa-miR-140-3p 

hsa-miR-520-5p CUACAAAGGGAAGCCCUUUC hsa-miR-520-5p 

hsa-miR-520-3p AAAGUGCUUCUCUUUGGUGGGU hsa-miR-520-3p 

hsa-miR-448 UUGCAUAUGUAGGAUGUCCCAU hsa-miR-448 

hsa-miR-485-5p AGAGGCUGGCCGUGAUGAAUUC hsa-miR-485-5p 

hsa-miR-135a UAUGGCUUUUUAUUCCUAUGUGA hsa-miR-135a-5p 

hsa-miR-223 UGUCAGUUUGUCAAAUACCCCA hsa-miR-223-3p 

hsa-miR-330-3p GCAAAGCACACGGCCUGCAGAGA hsa-miR-330-3p 

hsa-miR-146b-5p UGAGAACUGAAUUCCAUAGGCU hsa-miR-146b-5p 

hsa-miR-545 UCAGCAAACAUUUAUUGUGUGC hsa-miR-545-3p 

 

 

Dicer knockout mice. The transgenic mice with a conditional Dicer allele were obtained from 

Merkenschlager lab. In these mice the deletion of Dicer in early T-cell development is assured 

by a CRE transgene under the control of the Lck promoter. These mice were generated by 

crossing Dicer lox/lox mice with LckCre transgenic mice. In the Dicer knockout (ko) mice there 
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is a substantial deletion of Dicer at the DN3 thymocyte stage and no undeleted alleles are 

detectable from DN4 stage onwards [218]. The Dicer lox/lox mice were used as controls. 

Adult age-matched females were sacrificed and their thymuses were extracted and smashed 

to obtain a thymocyte single-cell suspension. At least two thymuses from mice of each group 

(control group and Dicer ko group) were pooled together to obtain a dry pellet for RNA 

extraction. These dry pellets were obtained twice for each group and RNA extraction of each 

pool was performed in two independent days.  

 

RNA extraction, RT-PCR and quantitative-PCR. RNA was extracted using TRIZOL (Life 

Technologies Corporation) according to the manufacturer’s instructions. When subsequent 

expression analysis intended to quantify microRNA expression, an additional step of ice 

incubation for two hours was added after the addition of isopropanol, to ensure an efficient 

precipitation of small size RNA species. For the RT-PCR to detect protein-coding genes and 

primary miRNA transcripts, up to 1μg of total RNA was reverse transcribed using SuperScript 

II (Invitrogen) and random hexamers, according to the manufacturer’s instructions. 

Expression of each gene was normalized to the expression level of the ribosomal RNA 18S (in 

the case of human samples) or Hprt (in the case of mouse samples) using the dCt method. To 

evaluate the fold difference of the gene of interest between samples, the ddCt method was 

used. Primers used for the qPCR are indicated in Table 2.2. The transcripts were amplified in 

10μl volume reactions, using 4μl of cDNA, 5μl Power SYBR Green (Applied Biosystems) and 

100pM of each primer, according to the manufacturer’s instructions. For the detection of 

mature human microRNA expression, amounts ranging from 100-1000ng of total RNA were 

reverse transcribed using miRCURY LNA™ Universal RT kit (Exiqon). Real time PCR was 

performed with commercially available LNA-based primers (Exiqon) for mature microRNA 

detection with SYBERGreen (Exiqon). The transcripts were amplified in 10μl volume 

reactions, using 4μl of cDNA, 5μl Power SYBR Green (Applied Biosystems) and 0.8ul of the 

primer mix prepared according to manufacturer’s instructions. Relative expression of the 

microRNAs was normalized to SNORD38B expression using the dCt method. The expression 
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levels of miR-485-5p were not accessed due to the lack of LNA primers commercially 

available at this time.  

All the amplifications were performed in a ViiA7 Real-Time PCR System (Life 

Technologies) with the following program: 2 min at 50°C, 10 min at 95°C, followed by 45 

cycles of 15 sec at 95°C, and one min at 60°C. This run protocol was always followed by a 

melting curve protocol to verify the primers’ specificity.  

 

Table 2.2 – List of primers used in quantitative-PCR 

Gene Forward primer Reverse primer 

TAL1 AACAATCGAGTGAAGAGGAG CTTTGGTGTGGGGACCAT 

18S GGAGAGGGAGCCTGAGAAACG  CGCGGCTGCTGGCACCAGACTT 

pri-miR-146b CTGGGAACGGGAGACGATTC AAGTTGGGAGCCCAAACCAT 

Tal1 (mouse) CACTAGGCAGTGGGTTCTTTG GGTGTGAGGACCATCAGAAATCT 

Hprt (mouse) AGTCCCAGCGTCGTGATTAG TTTCCAAATCCTCGGCATAATGA 

 

 

Computational prediction of TAL1 3’UTR targeting by microRNAs. Several web-based 

bioinformatics tools (PicTar (4-way) [278], TargetScanS release 4.2 [173], miRBase [277], 

microRNA.org [279-281], DIANA-microT algorithm V3.0 [282], miRDB [283] and StarBase 

[284]) were used to perform the identification of putative regulators of TAL1. The putative 

microRNAs binding type, when defined, were listed according to the TargetScanS [173] or 

DianaMicroT [282] (for 9mer) as following: 7mer-m8 site comprises the seed plus a match to 

miRNA nucleotide 8 (miRNA nucleotides 2–8); 7mer-A1 site comprises the seed 

supplemented by an Adenine at target position 1; 8mer site that comprises a match to 

miRNA nucleotide 8, the miRNA seed and the A at position 1; and 9mer defines an exact 

match on the positions 1-10. The UTR position of the putative binding may vary slightly 

according to the program used, therefore we listed the ones predicted by TargetScanS [173]. 

The conservation score was listed according to DianaMicroT [282] program prediction, when 

available: it depicts the number of species in which the binding nucleotides of this target site 
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are conserved. We also listed the target sites of conserved microRNAs with good mirSVR 

score according to microRNA.org program [279]. The mirSVR scores are based on a 

regression method for predicting the likelihood of target mRNA down-regulation from 

sequence and structure features in microRNA/mRNA predicted target sites [279]. 

Additionally we also listed the microRNAs that are also predicted to target LMO2. Finally, we 

used the DIANA-miRPath tool [285] to predict the main biological pathways where the 

putative targets of the microRNA are involved. 

A list of miRNAs that potentially regulate TAL1 transcript was compiled at the 

beginning of this thesis. In the meantime more microRNA genes were discovered and 

annotated and the annotation of some of the previously found miRNAs suffered alterations. 

Furthermore, computational algorithms to predict miRNA targeting have also evolved during 

the recent years to incorporate new criteria for the prediction and also to modify the ranking 

given to the pairing characteristics. For these reasons, there might be some differences if one 

was to do a new compilation of the miRNAs that may regulate TAL1. 

 

Luciferase activity assays. A commercially available reporter plasmid with TAL1 3’UTR 

(GeneCopoeia Inc) immediately downstream of the luciferase open reading frame (pLuc-

TAL1-3’UTR) was used. This plasmid was co-transfected together with the candidate miRNA 

expressing vector into 293T cells. Both firefly and renilla luciferases are coded in the reporter 

plasmid, avoiding the transfection of an additional plasmid for luminescence normalization. 

Marcos Malumbres kindly provided a vector library- the miRVec library - for expression of 

several microRNA species [286, 287]. The miRVec vectors express the stem loop sequence 

(pre-miR) that is processed in the miRNA mature forms. All the vectors used in this study 

were sequenced and the pre-miR sequences verified. Briefly, 1.5x105 293T cells were plated 

in 12-well plates, two wells per miRNA, in DMEM-10% FBS medium. After 24h, cells were 

transfected with a mixture of 2μl Lipofectamine 2000 (Life technologies), 200μl of OPTIMEM 

medium (GIBCO), 100ng of the reporter vector and 500ng of the miRNA expressing vector. 

After 24h, the medium was collected and the plate was frozen until luciferase expression 

reading. For plate reading, cells were lysed and 20μl of the lysate was processed according to 
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the Dual-Luciferase Reporter Assay System (Promega), with the volumes of the reagents 

LARII and STOP&GLO reduced to 50μl each. The firefly luciferase and renilla luciferase activity 

was measured in an Infinite M200 plate reader (Tecan). For the firefly activity calculations, 

the values were normalized to the renilla luminescence reading and the average of the two 

technical replicates was calculated. The values of at least three independent transfection 

experiments were normalized to the measurements of the correspondent scramble 

transfection. 

 

Site directed mutagenesis. To point-mutate the TAL1 3’UTR in the pLuc-TAL1-3’UTR vector, a 

PCR-based commercial kit was used according to the manufacturer instructions - QuikChange 

II XL site-directed mutagenesis (Agilent). When clones bearing the desired mutations were 

difficult to obtain, the 3’UTR sequence from this vector was cloned in a small vector pGEM-T 

(promega) and the mutations were performed with the QuikChange II site-directed 

mutagenesis (Agilent). After mutagenesis, the mutated 3’UTR was cloned back in the original 

vector. All mutations were confirmed by sanger-sequencing. When more than one miRNA 

target site was possible for a given miRNA, the mutations were sequentially performed and 

named from the most upstream to the most downstream one. The primers used in the site-

directed mutagenesis are depicted in the Table 2.3.  

 

Cell lines. The human T-ALL cell lines SUP-T1, CCRF-CEM, PF-382, HPB-ALL, P12-ICHICAWA, 

TALL-1, RPMI-8402, LOUCY, DND-41 and JURKAT have already been described and 

extensively studied. These cell lines were maintained in RPMI medium (GIBCO) 

supplemented with 10% FBS (RPMI-10), unless stated otherwise. The cells were split every 2-

3 days. 293T cells were maintained in DMEM medium (GIBCO) supplemented with 10% FBS 

(DMEM-10) and split every 2 days. Cells were cultured at 37°C with 5% CO2. At the indicated 

time points, the cells were harvested and processed as indicated for assessment of cell 

viability, and RNA and protein extraction. 
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Table 2.3 – List of primers used in site-directed mutagenesis.  

The area of the miss-matching to the MRE element in the 3’UTR is shadowed in the forward primer. 
 

Mutation  Forward primer Reverse primer 

520-5p 
mutI 

GTGAAGAATCCTTGTTTCGAATGAACCACTGCC
CCTTCATTGATTTCCTG 

CAGGAAATCAATGAAGGGGCAGTGGTTCATTC
GAAACAAGGATTCTTCAC 

520-5p 
mutII 

GGGCAACATTGTTCACCTGTTTCGCACTCAGGC
TCTCC 

GGAGAGCCTGAGTGCGAAACAGGTGAACAAT
GTTGCCC 

520-5p 
mutIII 

GGGCAAGTCTTTAGGTCTGTTTCAGAACTAAAG
AAGATCTG 

CAGATCTTCTTTAGTTCTTACAAAGACCTAAAG
ACTTGCCCTTTCCTACC 

520-5p 
mutIV 

CAGGTACCTTGACCTGTTTCCAGCCCAGAGGCC
AACAC 

GTGTTGGCCTCTGGGCTGGAAACAGGTCAAGG
TACCTG 

520-3p 
mutI 

CTGTGGGCGGGCCCAGAAATCTCCGTCAACGT
TGTAC 

GTACAACGTTGACGGAGATTTCTGGGCCCGCC
CACAG 

101 mut GGCCCAGCACTTTCCGTCAACGTTGGAATTTAT
GTGATGAATTGCG 

CGCAATTCATCACATAAATTCCAACGTTGACGG
AAAGTGCTGGGCC 

140-5p 
mutI 

CCTTATCCTTCATCTTTTAAAGAAATACCAAATG
CAAGTCCTTTTGTAAAGTG 

CACTTTACAAAAGGACTTGCATTTGGTATTTCTT
TAAAAGATGAAGGATAAGG 

140-5p 
mutII 

GAAGAATCCTTTTGTAGAATGACCAAATGCCCC
TTCATTGATTTCCTG 

CAGGAAATCAATGAAGGGGCATTTGGTCATTC
TACAAAAGGATTCTTC 

140-5p 
mutIII 

GAGAACAAAGATGACCATACCAAATGAAGGGA
ATCACATCTTTTAAGAC 

GTCTTAAAAGATGTGATTCCCTTCATTTGGTAT
GGTCATCTTTGTTCTC 

140-3p 
mutI 

CAATCCAGATGGTGGGATTTTGGTTTCTTAAGG
TGAGGCCTGTC 

GACAGGCCTCACCTTAAGAAACCAAAATCCCAC
CATCTGGATTG 

140-3p 
mutII 

GTGACTCTTTAGCAAAAAAAACCCATTTTGGGA
TGATGTGTATATATATG 

CATATATATACACATCATCCCAAAATGGGTTTTT
TTTGCTAAAGAGTCAC 

 

 

Electroporation of miRVec vectors in T-ALL cell lines. In order to over-express miR-520d, 

101, 140, 485 and 448, T-ALL cell lines were transiently transfected with the corresponding 

miRVec vectors and the scramble control (miRVec-SCR). Given that miRVec vectors do not 

have a reporter gene, we co-transfected the cells with a GFP expressing vector (pMAX, 

Lonza). Hence, a total of 30μg of DNA (9μg of pMax and 21μg of miRVec) were added to 107 

T-ALL cell suspension in the appropriate volume of pre-warmed RPMI-10 medium (without 

antibiotics). The samples were placed in 4 cm–gap cuvettes (Bio-Rad) and electroporation 
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was performed using the Gene Pulser II (Bio-Rad), with the parameters depicted in Table 2.4. 

After electroporation, cells were washed and cultured in RPMI-10 medium. After 24h, cells 

were sorted to obtain the GFP-expressing cells using a FACSAria III cell sorter (BD 

Biosciences). After 48h, cells were collected for RNA and/or protein extraction. 

 

Table 2.4 – Transfection conditions of T-ALL cell lines.  

 

Cell Cell Nr Volume Volts uF pMAX miRVec 

SUPT-1 10M 350ul 350 750 9ug 21ug 

JURKAT 10M 350ul 250 950 9ug 21ug 

PF-382 10M 250ul 350 500 9ug 21ug 

 

 

Nucleofection of T-ALL cells. Nucleofection of JURKAT, CCRF-CEM and PF-382 cells was 

performed using the Amaxa Nucleofector II (Lonza) according to the manufacturer’s 

instructions. For TAL1 knockdown, cells (2 x 106) were washed in RPMI-10 medium and 

ressuspended in 100μl of solution V with 2μM of a non-targeting pool of small interfering 

RNAs (siRNAs) or a pool of siRNAs against TAL1 (Dharmacon). For miR-101 or miR-520d-5p 

knockdown, 2uM of miRCURY LNA™ microRNA Inhibitors (Exiqon) and non-targeting control 

were used. JURKAT and CCRF-CEM cells were nucleofected using the X-001 program and PF-

382 cells using the O-017 program. After nucleofection, the cells were cultured for 48h in 

RPMI-10 medium. 

 

Immunoblot. After the indicated time intervals of culture, cell lysates were prepared as 

described [288]. Equal amounts of protein were analyzed by 10% SDS-PAGE, transferred onto 

nitrocellulose membranes, and immunoblotted with the following antibodies: Tubulin 

(Sigma, Clone DM 1A), Actin (Santa-Cruz Biotecnology clone I-19), and TAL1 (Milipore, clone 

BTL73). After immunoblotting with primary antibodies, immunodetection was performed 

using HRP-conjugated anti-mouse IgG (Promega), anti-rabbit IgG (Promega) or anti-goat IgG 

(Santa-Cruz Biotecnology) as indicated by the host origin of the primary antibody and 
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developed by chemiluminescence (Thermo Scientific). Where indicated, densiometry analysis 

was performed using Adobe Photoshop CS5 Extended software. Each band was analyzed with 

a constant frame and normalized to the respective loading control. Densiometry values are 

expressed in arbitrary units. 

 

Production of VSVG-pseudotyped lentiviruses. Vesicular-Stomatitis-Virus-pseudotyped 

third-generation lentiviruses were produced by transient three-plasmid co-transfection into 

293T cells. Briefly, a total of 4 x 106 293T cells were seeded in 10 mL of DMEM-10 in 6 cm-

diameter dish. The transfection occurred when the cells reached 70-80% of confluence, 

generally 24h latter. A total of 18μg of plasmid DNA was used for each transfection: 3μg of 

the envelope plasmid pMD2.VSVG, 6μg of packaging plasmid psPAX2 and 9μg of transfer 

vector plasmid where the genes of interest were cloned. The plasmids were added to 600μl 

of pre-warmed OPTIMEM medium (GIBCO) and then added dropwise to 600μl OPTIMEM plus 

24μl of Lipofectamine 2000 (Life technologies). After 20minutes of incubation at room-

temperature, the mixture was added dropwise to the cells. The medium was replaced after 

14 to 16h with 6ml of medium containing 20mM HEPES buffer (pH=7.9). The conditioned 

medium (Lentiviral Supernatants) was collected after another 24h and 48h. The medium was 

filtered through 0.45mm pore-size cellulose acetate filters, flash frozen in liquid nitrogen and 

stored at -80°C until use. 

 

Transduction of T-ALL cells for TAL1 over-expression. T-ALL cell lines were transduced with 

VSVG-pseudotyped bicistronic lentivirus driving the concomitant expression of TAL1 and GFP 

(pHR-SIN-TAL1) or with the control mock virus (pHR-SIN-Empty). The resulting cell lines 

expressing TAL1 or the Empty vector were sorted for an equivalent GFP expression. Briefly, 

2.5 x 105 cells were incubated in 500μl RPMI-10 in a 24-well-plate with 500μl of lentiviral 

supernatant and 8ng/μl of polybrene (Sigma). Cells were spun down for 120min at 32°C at 

2300 rpm and then incubated over-night at 37°C. In the following day, cells were washed, 

ressuspended in fresh media and the reporter expression (GFP) confirmed by flow cytometry. 
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The pHR-SIN vectors were described previously [289] and were kindly provided by 

Prof. Maria Toribio. We cloned TAL1 and LMO2 in the pSIN-BX-IR/EMW vector (also provided 

by Prof. Maria Toribio) in the BamHI and XhoI restriction sites upstream of the IRES-Emerald 

sequence. Next we removed the TAL1-IRES-Emerald and LMO2-IRES-Emerald fragments from 

the pSIN-BX-IR/EMW vector and replaced the GFP on the pHR-SIN-CSGW vector. 

 

MicroRNA expression analysis. Gene expression analysis of 372 human miRNA genes plus six 

reference genes was performed in three independent samples of P12 mock transduced (pHR-

SIN-EMPTY) and P12 transduced with a vector driving the expression of TAL1 (pHR-SIN-TAL1). 

We used a qRT-PCR-based array (microRNA Ready-to-Use PCR, Human Panel I, V2.M, Exiqon). 

Total RNA was extracted, in three independent occasions, from P12-Empty and P12-TAL1 

cells. The RNA quality was assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies), 

assuring the presence of low molecular weight RNA species and RNA integrity (RIN>9). The 

results from the screening were analyzed with DataAssist v2.0 software (Applied biosystems). 

A cutoff cycle threshold value of 35 was assigned and mean expression value normalization 

[290] used as normalization method. The p-value was calculated using a two-tailed Student's 

t-test. Fold changes relative to mock transduced cells and p-values were determined by the 

Comparative Marker Selection suite [291]. Cutoffs for statistical significance were a p-value 

<0.05 and a fold change > 1.5. 

 

Heat Map Illustration. Heat map illustration of differentially expressed microRNAs upon 

TAL1 over-expression was generated with the GENE-E software 

(http://www.broadinstitute.org/cancer/software/GENE-E/). MicroRNAs were hierarchically 

clustered (rows, miRNAs; columns, experiments). Relative expression levels were normalized 

across the samples as described. The levels greater than or less than the mean are shown in 

shades of red or blue, respectively. 

 

Confirmation of ChIP-seq enrichment by qPCR. Publicly available ChIP-seq data (GEO 

accession number GSE29181) was analyzed with the Integrative Genomics Viewer tool. To 
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confirm the ChIP-seq results we performed ChIP of TAL1 in JURKAT and CCRF-CEM cells 

followed by qPCR for the selected genomic regions. ChIP protocol was based on the literature 

[292] and further optimized for T-ALL cell lines and TAL1 immunoprecipitation in F. Speleman 

Lab. Briefly, 100 x 106 T-ALL cells were spun down and the crosslinking was performed with 

formaldehyde (freshly prepared 37% HCHO solution) at room temperature for ten minutes. 

The crosslinking reaction was quenched with addition of Glycine (final concentration 

125mM). The cells were then washed in cold PBS and the final pellet was flash frozen in 

liquid nitrogen and kept at -80°C until needed. The cell pellet was thawed and lysed with 

freshly prepared lysis buffer (Buffer 1: 50mM HEPES-KOH, pH 7.5; 140mM NaCl; 1mM EDTA; 

10% Glycerol; 0.5% NP-40; 0.25% Triton X-100; and protease inhibitor cocktail -Roche. Buffer 

2 - 10mM Tris-HCl, pH 8.0; 200mM NaCl; 1mM EDTA; 0.5mM EGTA; and protease inhibitor 

cocktail). The crosslinked chromatin material was then suspended in 3 ml of shearing buffer 

(1% SDS; 10mM EDTA and 50mM Tris-HCl, pH 8.0) and sheared by sonication in a S220 

Focused-ultrasonicator (Covaris). Each sample was placed in TC16 tubes (16mm X 100mm 

Covaris) and suffered 6 cycles of 5 minutes of shearing at 4-8°C. Per five minutes cycle, the 

shearing was divided in rounds of 30 seconds of shearing followed by 30 seconds of rest. The 

sheared chromatin material was stored at -80°C until immunoprecipitation (IP). Some 

material was analyzed by agarose gel electrophoresis to verify the desired shearing efficiency 

(200-500 bp fragments). For IP, the 3ml of the chromatin material was ressuspended in 27ml 

of RIPA lysis buffer. An aliquot was taken for the input sample. Each sample was then 

incubated with the proper antibody for 4 hours at 4°C with rotation. We used 10μg of anti-

TAL1 antibody (ab75739, Abcam) and 10μg of anti-Fibrillarin antibody (ab5821, Abcam). After 

antibody incubation, 100µl of protein A-beads (Pierce) in the proportion of beads:RIPA of 1:1 

were added to each sample. The samples with the beads were incubated over night at 4°C 

with rotation. In the following day the samples were centrifuged and the supernatant 

discarded. The beads pellet was washed five times with RIPA buffer. The immunoprecipitated 

material was recovered from the beads with 50μl of elution buffer (1% SDS; 10mM EDTA and 

50mM Tris-HCl, pH 8.0). From this volume, 10μl were eluted for immunoblotting check-up of 

the IP. The remaining material was diluted in 200μl of elution buffer and eluted for DNA 
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recovery by placing the samples at 65°C for 22 minutes. At each two minutes of incubation 

the samples were briefly vortexed. After the incubation, the sample was centrifuged and the 

supernatant was recovered. Both samples that suffered IP and the input sample stored 

previously suffered reverse crosslink by incubation at 65°C overnight on an oven (maximum 

15 hours). For DNA isolation, 200μl of the input and the samples were added 200μl of TE 

buffer (10mM Tris-HCl pH 8 and 1mM EDTA) and 0.2g/ml of RNAse (Roche) and incubated for 

two hours at 37°C. This was followed by 0.2 µg/ml Proteinase K (Sigma) addition and two 

hours incubation at 55°C. The DNA material was separated with 400μl of 

phenol:chloroform:isoamylalcohol mix by recovering of the aqueous phase (+-800μl). The 

precipitation was accomplished by addition of NaCl (200 mM), glycogen (30 µg) and 800μl of 

absolute ethanol, followed by 30 minutes incubation at -20°C. The DNA was pellet down by 

centrifugation at 4°C at 20.000g for ten minutes. It was further washed with 80% Ethanol and 

ressuspended in 30μl of water. The DNA concentration was measured in a Nanodrop 

(Thermo Scientific) and the samples frozen at -80°C until PCR analysis. For PCR analysis, the 

ChIP DNA samples were diluted ten times in water and the input samples were diluted 20 

times, and 2μl were used per reaction. 

The occupancy by TAL1 of the genomic regions at 9.2kbs and 3.5kbs upstream miR-

223 TSS and at 11.2kbs upstream miR-146b TSS was analyzed by ChIP-qPCR in JURKAT and 

CCRF-CEM cells (Table 2.5). The promoter region of LCP2 [143] was used as positive control 

for TAL1 binding and a random intergenic region was used as negative control. TAL1 binding 

was calculated as the fold enrichment relative to a mock ChIP performed against Fibrillarin.  

 

Table 2.5 – List of primers used in ChIP-qPCR 

Name Forward primer Reverse primer 

LCP2 ChIP  AAGGCTGCTTTGGATCTTGAAA CCTCCAGCCTGGCTGCTA 

ChIP223peak-3 CCTGTTGAAGACACCAAGGGC TTCCCCAGTGCTGAGCCAAC 

ChIP223peak-9 GCAGTGGCTATTCACAGGTGACC CACTCCCACTATTCACATCACACCTG 

ChIP146b_peak-11 GTTGATGCTGCCCTCTCTGT TCAGGCTGAAGGAGGTGAGA 

Intergenic region Chip GGCTAATCCTCTATGGGAGTCTGTC CCAGGTGCTCAAGGTCAACATC 
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miRNA target prediction and gene set enrichment analysis. Prediction of microRNA putative 

targets was performed by MirDIP data integration portal [293], with a minimum threshold of 

4 different applications. MicroRNAs experimentally validated human targets were obtained 

from mirTARbase 3.5, miRrecords and TarBase 6.0. Target genes without matching any 

Entrez gene identifier in NCBI were discarded. Graphical representation and analysis of 

miRNA and their cognate targets was done with Navigator software [294]. We compiled a list 

of high confidence TAL1 positively or negatively regulated genes from publicly available data 

[143, 295]. For cross-examination of congruent TAL1 regulated protein-coding and miRNA 

genes, we intersected the predicted targets of TAL1 down-regulated microRNAs with the 

protein-coding gene targets previously demonstrated to be positively regulated by TAL1, and 

vice versa, and searched for common hits in both lists. 

For biological function and pathway analysis we collected T-lymphocyte and T-ALL 

related gene sets from Ingenuity Pathway Analysis (IPA), and from the literature [143, 295, 

296]. Additional gene sets were downloaded from version 3.1 of the Molecular Signature 

Database (MSigDB) at the Broad Institute (http://www.broad.mit.edu/gsea/msigdb). We 

used three categories of gene sets from MSigDB: (C2) all curated gene sets, (C5) GO biological 

processes and molecular functions, and (C6) all oncogenic signatures gene sets. Gene set 

enrichment analysis was performed using Genomica software 

(http://genomica.weizmann.ac.il/). p-values were determined by a hypergeometric test, 

followed by a false discovery rate correction to account for multiple hypotheses (FDR < 0.05).  

 

Transduction of T-ALL cells for miR-146b over-expression or knockdown. The transduction 

procedure was the same described above for the pHR-SIN lentiviral transduction. 24h after 

transduction the reporter expression (RFP) was confirmed by flow cytometry. The resulting 

cell lines expressing the vectors or the corresponding mock control were sorted for an 

equivalent RFP expression. The vectors for miR-146b over-expression (pLemiR-146) were 

kindly provided by the Sai Yendamuri lab. The pLemiR lentiviral vector (Open Biosystems), 

was modified by inserting the pre-microRNA-146b sequence in the 3′ untranslated region of 

the gene encoding for the TurboRFP red fluorescent protein and driven by the constitutively 
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active cytomegalovirus (CMV) promoter [297]. The control vector corresponds to the pLemiR 

vector without an insert. Both mature forms of miR-146b are expressed (miR-146b-5p and 

miR146b-3p) [297]. The lentiviral vector for miR-146b-5p inhibition (named by us as Sponge-

146b), the pEZX-AM03 vector (Tebu-bio), expresses the specific miRNA inhibitor against 

hsa-miR-146b-5p (the sequence is proprietary) under the control of the H1 promoter. An 

independent CMV promoter drives the expression of the reporter gene (mCherry). The 

control vector (named Sponge-SCR) expresses a scramble miRNA inhibitor control sequence. 

 

Assessment of proliferation. T-ALL cell lines were plated (5 x 105 cells/mL) in triplicates in 

flat-bottom 96-well plates at 37°C with 5% CO2 on day zero. Proliferation was measured 

either by thymidine incorporation or by cell counts. In the case of the first, cells were 

incubated with 3H-thymidine (1μCi/well) for 8h prior to harvest. Harvesting of the cells was 

performed at the indicated time points. Proliferation was determined by analysis of DNA 

synthesis, which was assessed by 3H-thymidine incorporation using a β-scintillation counter. 

Proliferation was also assessed by counting cells in a hemocytometer using trypan-blue 

exclusion. Cell counts were performed at the indicated time points. In these experiments 

cells were plated in RMPI-10 and also RPMI-0 (no serum). Every 48h, cells were counted and 

seeded at the original concentration, so that medium loss would not compromise their 

proliferation rate. 

 

Assessment of cell viability. Determination of cell viability was performed by flow cytometry 

analysis of Forward Scatter versus Side Scatter (FSCxSSC) distribution using LSRFortessa cell 

analyzer (BD Biosciences). We have previously confirmed that this strategy measures 

lymphocyte viability as accurately as using Annexin V and propidium iodide staining [55]. 

 

Cell migration and invasion assays. Cell migration and invasion studies were done in 24-well 

transwell cell culture chambers with the upper chamber containing filters of 5μm pore size 

(Millicell-24 Cell Culture Insert Plate, polycarbonate, Millipore). Cells (105) were re-suspended 

in 100μl of RPMI either in the presence of 10% FBS (RPMI-10) or in the absence of serum 
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(RPMI-0) and added to the upper wells. In the bottom chamber, 800μl of RPMI-10 or RPMI-0 

was added. In each migration or invasion experiment the following conditions were always 

used:  

- RMPI-0 in the upper and lower chambers (R0>R0), used as negative control or indicator of 

the ‘constitutive’ migration/invasion of the cells. This condition is not always presented in the 

results graphs since during the incubation time no cells were found in the lower chamber.  

- RMPI-0 in the upper chamber and RMPI-10 in the lower chamber (R0>R10), used as the 

experimental condition. FBS is used as chemoattractant to evaluate directional migration.  

- RMPI-10 in the upper and lower chambers (R10>R10), used as the experimental assay. The 

chemoattractant is present in both chambers, so as to evaluate random migration.  

Each condition was performed in triplicates per assay. Transwells were incubated at 

37°C for the appropriated time (DND-41 cells two hours; CCR-CEM and MOLT-4 cells three 

hours). In the invasion assays, a layer of 200μl of 1mg/ml of Matrigel Growth Factor Reduced 

Matrix (BD biosciences) was placed in the upper chamber and it was let to solidify overnight 

at 37°C prior to the assays. The rest of the conditions for the assays are equal to the ones 

described for the migration assays, except for the incubation time that prolonged to seven 

hours for both DND-41 and MOLT-4 cells.  

The number of migrating/invading cells was determined by counting the cells in the 

bottom of the lower chamber in a white field microscope (100x magnification). In each 

chamber, cells were counted in five non-overlapping observation fields. The number of cells 

per high-power field (HPF) was determined by the average of the five observation areas. In 

each experiment this number of cells was determined for three chambers per condition and 

the mean of the technical replicates was calculated. To calculate the migration index, the 

average number of cells per HPF was compared to those of the mock transduced cells and 

the fold difference of number of cells that migrated was calculated for each independent 

migration experiment. The average migration index of several independent experiments was 

used to plot the results and calculate the significance of the differences between the miR-

146b-5p modulation and the mock control cells. 
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MiR-146b in the development of T-ALL in vivo. Ten age-matched (ten weeks old) NOD/SCID 

mice were used in this experiment: five were injected with CEM cells over-expressing miR-

146b (CEM-146b OE) and other five were injected with mock transduced cells (CEM-Empty). 

The age-matched males and females were equally distributed by the two experimental 

groups. In the CEM-Empty group three males and two females were injected. In the CEM-

146b OE group two males and three females were injected. Leukemia cells (10 x 106) were 

injected in the tail vein. Mice overall survival was analysed and humane endpoints 

established (20% weight loss or lethargy) at which the mice were euthanized. These 

endpoints were used to build the survival curve. The Kaplan-Meier estimator was used to 

determine the median rate of survival. The p-value was determined using the Log-rank 

(Mantel-Cox) test. To further assess T-ALL development, peripheral blood samples were 

collected weekly from the recipient mice (via facial vein puncture) starting two weeks after 

transplantation and analysed by FACS. The presence of human T-ALL cells was determined 

weekly by flow cytometry analysis of RFP positive cells. Count beads (5.000 per sample, BD 

Biosciences) were used to determine the absolute number of RPF+ cell per ml of blood. At 

the time of the humane endpoints mice were sacrificed with anesthesia overdose 

(Isoflurane) and selected organs were collected for FACS and histopathology analysis. For 

FACS analysis, the liver, spleen, lung, kidney, lymph nodes, thymus, long bones and blood 

(cardiac puncture) were collected. The solid organs were smashed to obtain a single cell 

suspension. The bone marrow was flushed-off with PBS-2%FBS from the tibia and femurs. 

When a clear presence of erythrocytes was detectable, samples were incubated ten minutes 

with RBCL buffer (eBiosciences), according to the manufacturer instructions. The erythrocyte 

free cell suspension was then acquired on a FACSAria III (BD Biosciences) to detect the 

presence of RFP+ cells. The cells were also stained for human CD45 (lymphocyte common 

antigen) to confirm the percentage of T-ALL cells. 

 

Histopathology. Mice were sacrificed with anesthesia overdose and selected organs (liver, 

spleen, lung, kidney, lymph nodes, thymus, long bones, head and spinal cord) were 

harvested, fixed in 10% neutral-buffered formalin, embedded in paraffin and 3μm sections 
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were stained with hematoxylin and eosin (H&E). Tissue sections were examined by a 

pathologist, blinded to experimental groups, in a Leica DM2500 microscope coupled to a 

Leica MC170 HD microscope camera. Histological findings were assigned with a semi-

quantitative severity score based on the following classification: minimal=1; mild=2; 

moderate=3; severe=4. 

 

Flow Cytometry. Standard procedures were used to stain the cells with fluorochrome-

conjugated antibodies or to verify reporter protein expression (GFP and RFP). The antibodies 

used in this study were CD1a-APC, CD3-PerCP-Cy5.5, CD4-PE-Cy7, CD8-FITC, CD45-APC 

(eBioscience). Samples were acquired in LSRFortessa cell analyzer (BD Biosciences), unless 

stated otherwise. The analyses were performed using the FlowJo software. 

 

Statistical analysis. Statistical analyses were performed using GraphPad Prism version 6.01 

for Windows (GraphPad Software). Statistical differences between mean values were 

evaluated using 2-tailed Student’s t-test (paired or unpaired, as appropriate) or One-way 

ANOVA, when appropriate. Statistical differences in mice survival were evaluated using a 

Log-rank (Mantel-Cox) test. Differences were considered significant for p-values less than 

0.05. When statistical significant differences were determined, the respective p-value or a 

representative symbol is depicted in the correspondent graphic (*p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001). Further information about specific statistical analysis is detailed 

in the above sections. 
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Results 

To address the possibility of a putative post-transcriptional regulation of TAL1 by 

miRNAs happening during normal hematopoiesis, we used T-cell specific conditional Dicer-

null mice [218]. The Dicer knockout results in substantial deletion of Dicer at the DN3 stage 

and complete deletion by DN4 stage. This results in a sharp reduction of miRNAs by the DP 

stage. Thymus of knockout mice have 10 times less TCRαβ thymocytes than control 

counterparts, but maintain the normal DN cell numbers, explaining elevated DN percentage 

in these thymuses [218]. We found that in Dicer deficient mice the Tal1 transcript, normally 

present until the DN3 stage [30], is increased by more than two fold in the total thymocytes 

in comparison to the thymocytes of Cre control mice (Figure 3.1.1). This suggests that TAL1 

may be regulated post-transcriptionally by miRNAs during normal thymic development. 

To identify putative miRNAs that target TAL1 we started by performing computational 

prediction of miRNAs that bind to TAL1 mRNA. Computational algorithms have been the 

major driving force in predicting miRNA targets. Several web-based bioinformatics tools 

(PicTar (4-way), TargetScanS, miRanda (miRBase and microRNA), DIANA-microT algorithm, 

miRDB and StarBase) were used to perform the preliminary identification of putative 

regulators of TAL1 (Supplementary Table 1). 

The criteria used by the different computational methods for miRNA target prediction 

vary widely, but most frequently they include: 1 – strong base pairing of the 5’ seed of the 

miRNA (nucleotide positions 2–8 of the miRNA) to a complementary site in the 3’ 

untranslated region (UTR) of the mRNA; 2 – conservation of the MRE (miRNA recognizing 

element); 3 - favorable minimum free energy (MRE) for the local miRNA/mRNA interaction; 

and sometimes 4 - structural accessibility of the surrounding mRNA sequence [298]. 

MicroRNAs normally recognize target sites present in the 3’UTR of the transcripts, and 

generally only this region of the mRNA is considered by the computational algorithms used. 

The TAL1 3’UTR in humans has around 3.4kb and harbors many possible MRE distributed 

through the entire sequence (data not shown). To our knowledge, it has never been 

described an alternative polyadenilation site in the 3’UTR of the TAL1 gene that could 

produce a transcript with a shorter 3’UTR. 
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Figure 3.1.1 – Tal1 expression is increased in thymocytes from Dicer knockout mice. 

The expression of Tal1 was determined by qRT-PCR and normalized to Hprt expression. The 
results are presented as fold difference of normalized Tal1 expression in thymocytes from 
conditional Dicer ko mice, compared to Cre control mice. Here are represented four 
independent qRT-PCR experiments, each performed with RNA pooled from at least two aged 
matched mice per group. Statistical analysis was performed using a Student’s t-test 
(**p<0.01) 

 

 

From this analysis we compiled an initial list of 90 miRNAs that are candidates to 

regulate TAL1 mRNA (Supplementary Table1). Given the large number of candidate miRNAs 

we decided to rationally narrow down the list using the following criteria: 

a) miRNAs under-expressed in TAL or LMO overexpressing cases.  

b) concomitant identification of LMO2 as putative target. 

c) more than one predicted target site in the 3’UTR of the TAL1 mRNA, and  

d) 8mer (or 9mer) type of seed paring. 

e) Identification of the miRNA as regulators of TAL1 expression by at least two 

different algorithms.  

Any miRNA predicted to fulfill at least one of these criteria was included for further 

testing. This way, we narrowed down the list of putative miRNAs targeting TAL1 to 39. 

One way to verify that a miRNA/mRNA target can happen intracellularly is through a 

reporter system with the mRNA under study, transiently transfected to a cell line together 

**
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with the miRNA of interest. The binding of a given miRNA to its specific mRNA target site 

represses the reporter protein production which can be compared to a control [299]. 

In order to validate the candidate miRNA/TAL1 mRNA interaction, we transiently co-

transfected 293T cells with a commercially available reporter plasmid with TAL1 3’UTR 

immediately downstream of the luciferase open reading frame (pLuc-TAL1-3’UTR), together 

with the candidate miRNAs. These assays were performed with the miRVec library for 

expression of several microRNA species [286, 287]. 

We then verified if the reporter expression was decreased when compared to the 

control plasmid encoding a scramble (SCR) sequence, which is indicative of the miRNA 

biological activity against TAL1 3’UTR (Figure 3.1.2). For further analysis we selected 

microRNAs that significantly lowered the luciferase expression in 25-50% (Figure 3.1.3): miR-

101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p (check Figure 3.1.4 and 

Supplementary Figure 1 for miRNA binding details). We excluded miR-20a, miR-17 and miR-

93 since they belong to the oncogenic miR cluster miR-17-92 (miR-17 and miR-20a) or to the 

same family (miR-93), and we excluded miR-410 and miR-199* due to the weak effect on 

luciferase expression. 

Next, we mutated the MRE in the 3’UTR of TAL1 in order to disrupt the miRNA/mRNA 

binding. We then re-evaluated the capacity of the respective miRNA to silence the reporter, 

which should be compromised. We co-transfected pLuc-TAL1-3’UTR or the vector carrying 

mutations in the miR binding sites into 293T cells together with each candidate miRNA.  

We have mutated the only binding sequence for miR-101 in TAL1 3’UTR and verified 

that it restores the luciferase expression in the presence of the miRVec-101 (Figure 3.1.4a 

and 5a). This demonstrates that the mutated sequence corresponds to the recognizing 

element of miR-101 in TAL1 3’UTR.  

The miR-520d-5p has four predicted binding sites in the 3’UTR and we were able to 

mutate three of them. The triple mutants in TAL1 3’UTR restore partially but not completely 

the luciferase expression in the presence of miR-520d (Figure 3.1.4b and 5b).  
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Figure 3.1.2 – miRNA predicted to target TAL1 and the effect of their expression in TAL1 

3’UTR. 

The graph illustrates the relative luciferase activity of a reporter construct carrying the TAL1 
3′UTR downstream of the luciferase gene. The pLuc-TAL1-3’UTR was co-transfected into 293T 
cells with a vector expressing each of the indicated miRNA precursors or a scramble control 
sequence. Luciferase levels were normalized to Renilla levels, expressed from the same 
plasmid. All data are normalized to the luciferase levels generated upon co-transfection with 
the scramble sequence. The graphs represent at least two independent experiments with 
two replicates; statistical analysis was performed by One-way ANOVA (* p<0.05; 
**p<0.01;***p<0.001). a) miRNAs under-expressed in TAL1/LMO cytogenetic subgroup; b) 
miRNAs predicted to also target LMO2; c) miRNAs with more than one predicted target site 
and/or 8mer (or 9mer) type of seed paring; d) miRNA predicted to target TAL1 by at least two 
different algorithms 
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Figure 3.1.3 – miRNAs that decrease luciferase activity by targeting TAL1 3’UTR.  

The graph illustrates the relative luciferase activity of a reporter construct carrying the TAL1 

3′UTR downstream of the luciferase gene, as detailed in Figure 3.1.1. The graph represents at 
least 4 independent experiments with two replicates; statistical analysis was performed by 
One-way ANOVA (* p<0.05; **p<0.01;***p<0.001). 

 

 

The miR-520d precursor can give rise to two mature forms of the microRNA, the 5p 

from the 5’ arm of the hairpin and 3p from the 3’ arm of the hairpin. Both mature forms can 

be expressed by miRVec vectors. Despite the fact that miR-520d-3p is only predicted by one 

algorithm (TargetScanS, Supplementary Table 1) to target TAL1 3’UTR, we mutated a 

putative binding site for miR-520d-3p in the 3’UTR (Supplementary Figure 2a). We verify that 

the mutation on the miR-520d-3p putative binding site can increase by 15% the luciferase 

expression when compared with the non-mutated 3’UTR (Figure 3.1.5b). This result suggests 

that the down-regulation of the reporter expression observed by miR-520d is partly 

explained by the 3p form. Despite strong efforts, we were not able to mutate the third miR-

520d-5p MRE in TAL1 3’UTR (Figure 3.1.4b). One possible explanation for this is the fact that 

this MRE is placed in a region of the 3’UTR with a low (<35%) GC content, hindering the 

mutagenesis efficacy at this place. We cannot rule out the possibility that this last unmutated 
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MRE would be responsible for the full recovery of the luciferase expression that we could not 

achieve. Another possible explanation is that either this miRNA is not targeting directly the 

3’UTR of TAL1, or is doing so by means of another MRE that does not have the canonical 

properties taken into account by the computational predictions.  

The miR-140-5p has three predicted binding sites in the 3’UTR and we mutated all of 

them. By mutating just one of the three MRE we can already restore 90% of the luciferase 

expression (Figure 3.1.4b and 5c) and the mutation of the three MREs fully restores the 

reporter expression. This demonstrated that these MRE are true recognition sites for miR-

140-5p in the TAL1 transcript. The miR-140 precursor can also give rise to two mature forms 

of the microRNA, the 5p and 3p. We also mutated two putative binding site for miR-140-3p in 

the TAL1 3’UTR (Supplementary Figure 2b), but this led to only 10% recovery of the reporter 

down-regulation, showing that the miR-140-3p is not the specimen responsible for the 50% 

reduction observed in luciferase expression upon introduction of miRVec-140 (Figure 3.1.3 

and 5c).  

If a given mRNA is a true target of a specific miRNA, then modulation of the miRNA 

concentration should result in changes in the amount of protein encoded by the target 

mRNA. Thus, in order to evaluate the physiological importance of the miRNA/TAL1 mRNA 

pairs we over-expressed the candidate miRNAs in T-ALL cell lines that endogenously over-

express TAL1. This was followed by evaluation of the effect of microRNA expression on 

endogenous TAL1 mRNA and protein levels. To circumvent the difficulty imposed by low 

efficiency of transfection on the T-ALL cell lines, we co-transfected the miRVec with a GFP 

expressing vector (pMax) and cells were sorted to enrich for high GFP+ populations. 

We observed that by over-expressing miR-520d, miR-101, miR-140, miR-485 and miR-

448 in different T-ALL cell lines we down-regulate TAL1 expression at the transcript and 

protein level in a range of 20-60% (Figure 3.1.6). This range is in accordance to the predicted 

effects of microRNAs in protein expression [192, 193] and it varies depending on the cell line 

and microRNA specimen. A down-regulation mediated by these microRNAs in the TAL1 

transcript was only observed in PF382 cells (Figure 3.1.6b) for miR-520d, miR-101, miR-140 

and miR-448 and SUP-T1 cells for miR-520d and miR-140. These results show that ectopic 
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expression of the selected miRNAs can physiologically target TAL1 by impairing the protein 

translation in T-ALL cell lines analyzed, without affecting the mRNA stability in the majority of 

the cases. 

 

 

 

 

 

Figure 3.1.4 – microRNA binding to TAL1 3’UTR and respective MRE mutagenesis. 

Schematic representation of microRNA binding to TAL1 and the mutagenesis performed to 
disrupt miRNA seed binding. a) miR-101; b) miR-520d-5p and c) miR-140-5p. miRNA binding 
to TAL1 3’UTR details are depicted according to DianaMicroT [282] target prediction 
algorithm results.  
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Figure 3.1.5 – The effect of mutagenesis on microRNA-mediated repression of TAL1 3’UTR. 
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Luciferase activity of wild-type (wt) or mutant (mut) TAL1 3′UTRs in the presence of scramble 
sequence (SCR) or the corresponding miRNAs. a) miR-101; b) miR-520d and c) miR-140. The 
mutations were made in cumulative manner, meaning mut II was performed on the 3’UTR 
bearing already mut I and so on. The mutations are named according to Figure 3.1.4 scheme. 
The graphs represent 4 independent experiments with two replicates. Statistical analysis was 
performed by One-way ANOVA (***p<0.001; ****p<0.0001). 

 

 

 

 

 

Figure 3.1.6 – Ectopic expression of miR-520d, 101, 140, 485 and 448 decreases endogenous 

TAL1 mRNA and protein levels in T-ALL cell lines.  

a) Western blot and densiometric analysis in T-ALL cell lines upon transfection with miRVec 
vectors. The relative TAL1 protein levels in several T-ALL cell lines were normalized using α-
Tubulin as loading control. Values presented result from densiometric quantitation of the 
bands and are normalized to that measured in the presence of the scramble vector. b) TAL1 
transcript levels analysis by qPCR upon transfection with miRVec vectors of PF382 and SUP-
T1 cells. Values indicate the mean ± lower and upper limit of three technical replicates 
relatively to the SCR transfection. 
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The previous experiment has the caveat of using ectopic expression of the miRNAs 

that goes beyond physiologic levels. To circumvent this, we also performed the reverse 

approach, where we transfected cells with high endogenous miRNA levels and 

correspondingly low TAL1 expression, with antisense oligoribonucleotides (ASO) to inhibit 

the function of the endogenous mature miRNAs and evaluate its impact on TAL1 mRNA and 

protein expression. We verified that inhibiting miR-520d-5p and miR-101 rescues 

endogenous TAL1 protein expression by 20 to 40% on average (Figure 3.1.7a and 7b). This 

increase in protein expression was not always accompanied by a TAL1 transcript increase 

(Figure 3.1.7c), which is in accordance with the previous experiments. Therefore, miR-520d-

5p and miR-101 affect TAL1 mostly at the level of translation in T-ALL cell lines. 

Interestingly when we compared by qPCR the expression of the microRNAs between 

TAL1 positive and negative T-ALL cell lines we verified that they are (miR-101, 520d-5p) or 

tend to be (miR-140-5p and miR-448) more expressed in the TAL1 negative cell lines, which 

favors our hypothesis that TAL1 over-expression in some T-ALL cases may result from, or be 

potentiated by, decreased expression of specific miRNAs (Figure 3.1.8). This idea is further 

strengthened by the fact that these microRNA genes are expressed in normal human thymic 

populations (Figure 3.1.9a) and that their expression is modulated during T-cell 

differentiation.  

We next reasoned that if these microRNAs have a role in TAL1 over-expression in 

some T-ALL cases their levels should be decreased when compared to normal developing T-

cells. We found that that miR-101 and miR-140-5p are less expressed in T-ALL patient 

samples than in more mature thymocytes. This is in accordance with the fact that TAL1 

mRNA is not detected beyond the early thymic progenitor stage. Moreover, comparing the 

expression of miR-101, miR-140-5p, miR-448 and miR-485-5p with cells from normal bone 

marrow (Figure 3.1.9b), that still express TAL1 (data not shown), we verified that T-ALL 

patients have lower miRNA expression than the normal counterparts. This favors our 

hypothesis that down-modulation of miRNAs that target TAL1 could be partially responsible 

for deregulated TAL1 expression in T-ALL. These data are merely correlative, but provide 

further support to the notion that the identified miRNAs, which are down-regulated in T-ALL, 
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are likely upstream regulators of TAL1. Overall, our findings indicate that TAL1 expression is 

regulated by miRNAs. 

 

 

 

Figure 3.1.7 –MiR-520d-5p and miR-101 inhibition increases endogenous TAL1 protein 

levels in T-ALL cells. 

Western blot, densiometric and qPCR analysis of TAL1 expression in CCRF-CEM cells upon 
nucleofection with microRNA inhibitors (si101 against hsa-miR-101 or si520d against hsa-
miR-520d-5p), a siRNA against TAL1 (siT1) or a non-targeting siRNA control (siNT). a) 72h 
after nucleofection, cells were lysed and analyzed by immunoblotting for the expression of 
TAL1. Tubulin was used as loading control. Here are represented three independent 
nucleofection experiments. The protein bands intensity was quantified by densiometry and 
leveled by the tubulin expression. The numeric values depicted bellow represent the 
densiometric values normalized to the TAL1 expression in the siNT control for each 
experiment. b) Densiometric values (DO) of TAL1 expression were normalized to the Tubulin 
expression and compared to the control. Values indicate the mean ± standard deviation of 
four independent experiments and were analyzed using a Student’s t-test (* p<0.05; 
**p<0.01). c) TAL1 transcript levels analysis by qPCR of the same three independent 
nucleofection experiments depicted in a). Values indicate the mean ± lower and upper limit 
of three technical replicates relatively to the scramble nucleofection. 
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Figure 3.1.8 – microRNA expression in T-ALL cell lines.  

The miR-101, miR-520d-5p, miR-140-5p and miR-448 expression was determined by qRT-PCR 
and normalized to SNORD38B expression in TAL1 positive (SUP-T1, CEM, TAIL7, PF-382) and 
negative (HPB-ALL, P12, TALL-1) T-ALL human cell lines. The numeric values depict the p-
value of a Student’s t-test comparing TAL1+ and TAL- cell lines. 
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Figure 3.1.9 – microRNA expression in T-ALL patients and normal counterparts. 

 The miR-101, miR-140-5p, miR-485-5p and miR-448 expression was analyzed from publicly 
available data. a) The miRNA expression in T-ALL patients was compared to normal thymic 
populations (DP – double positive; SP4 – single positive CD4+; SP8 – single positive CD8+ T-
cells). Data collected from [261]. b) The miRNA expression in T-ALL patients was compared to 
normal thymocytes, normal bone marrow samples (nBM) and CD34+ peripheral blood 
pediatric samples. Data collected from [255]. Statistical analysis was performed by One-way 
ANOVA (*p<0.05; ****p<0.0001).  
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Results  

TAL1 is a bona fide T-cell oncogene [117]. The relatively small list of known TAL1 target 

genes included, at the beginning of this thesis, exclusively protein-coding genes. In addition, 

the aberrant transcriptional circuitry responsible for thymocyte transformation mediated by 

TAL1 is not yet fully understood. The aberrant expression of microRNAs has been reported in 

several hematological malignancies and in the case of ALL, microRNA expression signatures 

are able to delineate leukemia subgroups, [211, 274] and microRNA networks have been 

implicated in T-ALL [261]. Therefore, it was reasonable to expect that an oncogenic 

transcription factor such as TAL1 could also drive the expression of microRNA genes.  

To identify a TAL1-dependent microRNA gene expression profile, we ectopically 

expressed TAL1 in the TAL1-negative T-ALL cell line P12 and performed low density array 

analysis, based on qRT-PCR. For this purpose, we transduced P12 cells with a bicistronic 

vector driving the concomitant expression of TAL1 and GFP or with the control mock vector. 

After RNA quality control, gene expression analysis for 372 human miRNA genes and 6 

reference genes was performed in three independent samples of P12 mock and P12 

expressing TAL1. From 204 microRNAs expressed in the cell line, we identified eight whose 

expression changed significantly upon TAL1 over-expression (Figure 3.2.1a, Table 3.2.1, and 

Supplementary Table 2).  

We then validated these results by quantitative PCR analysis of each microRNA after 

enforcing or silencing the expression of TAL1 in TAL1-negative and TAL1-positive T-ALL cell 

lines, respectively. In such way, we confirmed that miR-135a, miR-223 and miR-330-3p were 

up-regulated by TAL1, whereas miR-146b-5p and miR-545 were down-regulated (Figure 

3.2.1b-f). TAL1 over-expression in P12 and TALL1 cells resulted in decreased miR-375 

expression, and PF382 and RPMI-8402 cells displayed increased miR-491-5p levels after TAL1 

knockdown, partially confirming the array data, whereas no significant variation in miR-574 

expression was observed (data not shown). These three microRNAs were excluded from 

subsequent analyses, since we considered as validated targets strictly those genes whose 

expression was regulated in the predicted manner by both over-expression and silencing of 

TAL1 in at least one cell line. 
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Figure 3.2.1 – Identification of TAL1 regulated microRNA genes.  

a) Heat map of differentially expressed microRNAs upon TAL1 over-expression. MicroRNAs 
were hierarchically clustered (rows, microRNAs; columns, experiments). See Table 3.2.1 for 
fold-difference values. Levels greater than or less than the mean are shown in shades of red 
or blue, respectively. b-f) qPCR validation of microRNA expression modulation by TAL1. 
Relative expression of hsa-miR-135a b), hsa-miR-223 c), hsa-miR-330-3p d), hsa-miR-146b-5p 
e) and hsa-miR-545 f) normalized to SNORD38B in T-ALL cell lines with over-expression (left) 
or knockdown of TAL1 (right). The bars represent the mean±SD of three independent 
replicates. siNT - non-targeting siRNA g) TAL1 ChIP-qPCR in T-ALL cell lines. The occupancy by 
TAL1 of the genomic regions 9.2kb and 3.5kb upstream of miR-223 TSS was analyzed by ChIP-
qPCR in JURKAT and CCRF-CEM cells. The promoter region of LCP2 was used as positive 
control for TAL1 binding and a random intergenic region was used as negative control. TAL1 
binding is expressed as the fold enrichment relative to a mock ChIP performed against 
fibrillarin. The error bars represent the CI 95% of the fold enrichment. The horizontal line 
denotes the fold enrichment detection for the negative control. 
 
 

Table 3.2.1 –  microRNAs differentially expressed upon TAL1 over-expression 

 

 

Determined by the Comparative Marker Selection suite. Cutoffs for statistical significance 
were: 1) p-value < 0.05, and 2) fold change > 1.5. Std – standard deviation 
 

 

Next, we evaluated whether the validated microRNAs were direct targets of TAL1 in T-

ALL cells. To this purpose, we scrutinized publicly available TAL1 ChIP-seq data (GEO 

accession number GSE29181) for two T-ALL cell lines (JURKAT and CCRF-CEM) and two 

primary T-ALL samples [295] for the presence of TAL1 binding peaks up to 10kb upstream of 

the transcription start site (TSS) of each microRNA gene. We identified one peak in a putative 

promoter region for miR-146b, at approximately 11kbs upstream the miRNA TSS (Figure 

Rank Upregulated in Feature score P-value fold change Empty Mean Empty Std TAL1 Mean TAL1 Std

1 TAL1 hsa-mir-135a -5,147 0,009 12,796 0,074 0,016 0,941 0,152

2 TAL1 hsa-mir-223 -2,974 0,022 1,565 94,941 3,038 148,59 14,999

9 TAL1 hsa-mir-330-3p -1,475 0,042 1,528 0,153 0,036 0,234 0,019

13 TAL1 hsa-mir-574-3p -1,34 0,041 2,121 0,01 0,003 0,021 0,005

15 Empty hsa-mir-491-5p 1,282 0,046 1,561 0,167 0,029 0,107 0,018

10 Empty hsa-mir-545 1,475 0,054 1,533 0,067 0,001 0,044 0,005

4 Empty hsa-mir-375 1,993 0,032 3,17 0,107 0,009 0,034 0,027

3 Empty hsa-mir-146b-5p 2,11 0,009 1,906 0,092 0,012 0,048 0,009
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3.2.2a), suggesting that this gene may be a transcriptional target of TAL1. Furthermore, two 

peaks were observed upstream of miR-223 TSS (Figure 3.3.2b). To confirm these findings, we 

performed TAL1 ChIP-qPCR in JURKAT and CCRF-CEM cells using primers designed for the 

genomic areas covered by the two peaks in the miR-223 locus. We verified that there is more 

than 2-fold enrichment, as compared to a mock ChIP performed against fibrillarin, in the 

amplified area within 3.5kbs upstream of the miR-223 TSS (Figure 3.2.1g). These results 

indicate that miR-223 is a direct target of TAL1 in T-ALL. We did not find evidence from the 

available TAL1 ChIP-seq data for direct binding of TAL1 to the remaining microRNA genes, 

suggesting that miR-135a, miR-330-3p and miR-545 might be indirectly regulated by TAL1, at 

least in the T-ALL cells analyzed. 

Interestingly, analysis of microRNA gene expression profiles in different T-ALL subsets 

[261] revealed that TAL/LMO primary samples (integrating Sil-Tal1+ and LMO+ cases, which 

frequently express high TAL1 levels) display higher levels of miR-223 (p=0.035) and tend to 

express lower levels of miR-146b-5p (p=0.092) than other T-ALL cases (Figure 3.2.3), further 

confirming our screen results. In line with these observations, miR-223 appears to follow the 

same pattern of expression along normal human thymocyte development as TAL1 [94], with 

high levels in CD34+ T-cell precursors and sharp down-regulation in more differentiated 

subsets (CD4+CD8+ thymocytes) (Figure 3.2.4a). A similar pattern was observed for miR-135a 

(Figure 3.2.4b), in agreement with the notion that TAL1 positively regulates both genes. Also 

is worth to notice that the expression of miR-223 in the T-ALL primary samples is elevated 

when compared to thymocytes (Figure 3.2.3c), in agreement with the hypothesis of TAL1 

being positively regulating the expression of microRNAs with oncogenic functions. 
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Figure 3.2.2 - Evidence for direct binding of TAL1 to miR-146b and miR-223 loci.  

Analysis of publicly available ChIP-seq data for JURKAT, CCRF-CEM and two primary T-ALL 
samples (GEO accession number GSE29181). Representative Integrative Genomics Viewer 
(IGV) gene tracks show TAL1 binding peaks detected in the genomic area upstream of the 
miR-146b (a) and miR-223 (b) TSS, whose direction of transcription is indicated by an arrow. 
The arrowheads indicate regions bound by TAL1. The top horizontal bars indicate the scale in 
kilobases (kb). The black double arrows indicate the genomic areas to which primers were 
designed to validate TAL1 binding by ChIP-qPCR. 
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In contrast, miR-146b-5p is clearly up-regulated in the double-positive to single-positive 

transition (Figure 3.2.4c). The fact that the levels of miR-146b-5p associate with thymocyte 

maturation (Figure 3.2.4c) and the fact that T-ALL patients display lower levels of this miR 

compared to normal thymocytes (Figure 3.2.3d) is in agreement with a model whereby TAL1 

over-expression during leukemogenesis inhibits miR-146b-5p and promotes T-cell 

developmental arrest.  

 

Figure 3.2.3 – MicroRNA gene expression levels in T-ALL and thymocyte samples. 

 TAL/LMO primary samples (integrating Sil-Tal1+ and LMO+) display higher levels of miR-223 
(a) and lower levels of miR-146b-5p (b) than other T-ALL cases. T-ALL primary samples display 
higher levels of miR-223 (c) and lower levels of miR-146b-5p (d) than normal thymocytes. 
Data was collected from [261] (a and b) and from [255] (c and d) and further analyzed by us. 
p-values were calculated using a two-tailed Student's t-test. 
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Figure 3.2.4 – MicroRNA gene expression levels in normal human thymocyte samples. 

miR-223 (a) and miR-135a (b) are expressed in immature CD34+ cells and their expression is 
dramatically down-regulated in more mature CD4+CD8+ thymocytes. MiR-146b-5p (c) 
expression is clearly up-regulated in mature SP (CD4+ or CD8+) thymocytes. Data was 
collected from [261] and further analyzed by us. 
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Furthermore, we collected information about the validated target genes in human for 

each microRNA. In order to determine functional relevance of the sets of miRNA targets 

identified, we tested whether they were enriched for specific biological functions or 

pathways (Table 3.2.2). Gene set enrichment analysis showed an enrichment in biological 

processes related to inflammation (e.g., NF-kB signaling pathway and IL1/IL1R signaling 

pathway) and cancer (e.g. pathways in cancer), as detailed in Table 3.2.2 and Supplementary 

Table 3. Interestingly, the validated targets for the TAL1 down-regulated gene miR-146b-5p 

include IRAK1, TRAF6 and NFKB1 (all of which are involved in chronic inflammation), as well 

as the oncogene KIT (Table 3.2.2, Supplementary Table 3 and Supplementary Figure 3), thus 

favoring a possible tumor suppressive role for this miRNA. In contrast, miR-330-3p, up-

regulated by TAL1 reportedly targets E2F1 and CDC42, both of which are described to 

promote apoptosis in different cell types, including JURKAT cells, which is in line with a 

possible pro-oncogenic role for this miRNA. Moreover, the pro-leukemic role of mir-223 may 

be also achieved by down-regulating targets such as E2F1, FOXO1, RHOB or EPB41L3, which 

have been associated with induction of apoptosis and/or have tumor suppressive roles 

(Supplementary Table 3).  

 Moreover, we compiled a list of high confidence TAL1 positively or negatively 

regulated genes from publicly available data [143, 295]. We then intersected the predicted 

targets of TAL1 down-regulated microRNAs with the protein-coding gene targets previously 

demonstrated to be positively regulated by TAL1, and vice versa, and searched for common 

hits in both lists. 

The data from this cross-examination of congruent TAL1 regulated protein-coding and 

miRNA target genes, are in line with the notion that the latter could be part of downstream 

networks collaborating in TAL1-mediated leukemogenesis (Figure 3.2.5). Indeed, most TAL1 

up-regulated genes that have 3’UTRs predicted as targets for the TAL1 down-regulated miR-

146b-5p and miR-545 have a known or putative oncogenic function, namely  CD53, PDE3B, 

ETS-1 and MYB (Figure 3.2.5a and Supplementary Table 4 for details and references). Also of 

note, three of the four genes (KRT1, Rapgef5, and JAZF1) with predicted targeting sequences 

for miR-146b-5p and miR-545 are associated with pro-tumoral functions.  
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In sharp contrast, the TAL1 down-regulated genes that are predicted targets for miR-

135a, miR-223 and miR-330-3p display a clear abundance in (putative) tumor suppressors or 

in genes whose functions are compatible with anti-tumoral effects (SRGAP3, TOX, LRP12) 

(Figure 3.2.5b and Supplementary Table 5).  

In summary, in this section our studies identify and validate for the first time a small set 

of non-protein coding TAL1 target genes, implicating microRNA genes as part of the 

transcriptional network downstream of TAL1 whose role may be important in the context of 

hematopoiesis and T-cell leukemogenesis. Some like mir-223 have an established oncogenic 

function in T-ALL, at least in part through FBXW7 down-regulation [261]. For the other 

microRNAs identified as being regulated by TAL1 still lacks functional information and their 

role in T-Cell malignancy should be detailed by future investigations, for which this work 

serves as a valued start point. 

 

Table 3.2.2 – Validated microRNAs regulated by TAL1 and their experimentally validated 

human targets.  

 

microRNA 
Modulation by 

TAL1 
Validated Target Genes 

Top Enriched Gene 
Sets (Selection) 

hsa-miR-135a UP APC, JAK2, NR3C2, FLAP ___ 

hsa-miR-223 UP 

RHOB, NFIX, E2F1, MEF2C, 
NFIA,LMO2, STMN1, Arid4b, 

Il6, Lpin2, CHUK, FBXW7, 
IGF1R, S100B, LIF, SP3, 
EPB41L3, SLC2A4, IRS1 

Genes down-regulated in 
MEF cells upon TGFB1 

stimulation 

hsa-mir-330-3p UP 
VEGFA, E2F1, NTRK3, 

CDC42, CD44 
Pathways in cancer 

hsa-miR-545 DOWN LRP1 ___ 

hsa-miR-146b-5p DOWN 
NFKB1, CDKN1A, MMP16, 

KIT, Card10, Scube2, TRAF6, 
IRAK1 

NF-kB Signaling Pathway 
IL1/IL1R Signaling Pathway  

Pathways in cancer 

Data obtained from mirTARbase 3.5, miRrecords and TarBase 6.0. Gene set enrichment analysis was 
performed as described in methods section. 
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Figure 3.2.5 – In silico determination of the potential participation of the newly identified 

TAL1 microRNA target genes in TAL1-mediated leukemogenic pathways. 

 Cross-examination of congruent TAL1 regulated protein-coding and miRNA genes was 
performed as described in Methods section. (a) Down-regulated miRNAs and their predicted 
target genes previously shown to be up-regulated by TAL1. (b) Up-regulated miRNAs and 
their predicted target genes previously shown to be down-regulated by TAL1. 
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Results 

Given that microRNA genes are regulated by TAL1 at the level of transcription, we 

hypothesized that some of these miRNAs can be part of the oncogenic network triggered by 

TAL1 ectopic expression in leukemia. One of the obvious candidates to explore was miR-223, 

since it has been recently shown to be one of the highest expressed microRNAs in T-ALL, able 

to accelerate the onset of the disease in a Notch1-induced mouse model. This effect is 

partially attributed to its ability to negatively regulate FBXW7 protein, a ubiquitin-ligase 

involved in Notch degradation [261]. Given that the effects of miR-223 deregulated 

expression have meanwhile been investigated by others [300], we decided to study other 

microRNAs regulated by TAL1. 

We focused our efforts on miR-146b-5p and evaluated the functional and molecular 

effects of its deregulation by TAL1 in the context of T-ALL. This microRNA was found to be 

down-regulated by TAL1 in cell lines and to be less expressed in TAL1 positive T-ALL patients, 

so we hypothesize that it might have a tumor suppressive role in this disease. 

In the previous chapter, we showed that T-ALL patients over-expressing TAL1 have a 

tendency to express lower miR-146b-5p levels than other T-ALL patients (Figure 3.2.3b). 

Publicly available data from a recent study [301, 302] allowed us to corroborate our results 

using an independent cohort of T-ALL patients. In fact, in this second cohort we verify that T-

ALL patients over-expressing TAL1 (TAL subgroup) significantly express lower miR-146b-5p 

levels than other T-ALL patients (Figure 3.3.1a). Besides, T-ALL patients significantly express 

lower levels of miR-146b-5p compared to several normal counterpart cells (Figure 3.3.1b and 

1c). This suggests that reduced expression of miR-146b-5p might be important in the context 

of T-ALL, particularly in the TAL1 overexpressing cases. 
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Figure 3.3.1 – MiR-146b-5p expression is decreased in TAL1+ T-ALL patients and in T-ALL 

patients in general. 

 The miR-146b-5p expression was analyzed from publicly available data. a) The miRNA 
expression was analyzed in a cohort of 64 T-ALL patients [302] comparing TAL1+ T-ALL cases 
(SIL-TAL, TCR-TAL and other TAL1+ cases) with T-ALL cases carrying other genetic 
abnormalities (TLX1, TLX3, HOXA and immature subgroups). Statistical analysis was 
performed using Student’s t-test. b) The miRNA expression in T-ALL patients and cell lines 
was compared to normal T-cells or CD34+ HSCP cells from the peripheral blood of healthy 
donors. Data was collected from GEO database (GSE51908). c) The miRNA expression in T-
ALL patients was compared to normal thymocytes, normal bone marrow samples (nBM) and 
CD34+ peripheral blood pediatric samples. Data collected from [255]. Statistical analysis was 
performed using One-way ANOVA (*p<0.05; ****p<0.0001). 
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We assessed the levels of the primary transcript of miR-146b in T-ALL cell lines. We 

reasoned that if miR-146b is a direct transcriptional target of TAL1, the levels of its primary 

transcript should correlate with TAL1 status. In fact, TAL1 negative cell lines tend to express 

more pri-miR-146b than TAL1 positive ones (Figure 3.3.2a). In addition, as already shown for 

the mature miRNA (Figure 3.2.1e), the knockdown of TAL1 in a T-ALL cell line results in a 

marked up-regulation of the primary transcript (Figure 3.3.2b), reinforcing the hypothesis 

that TAL1 transcriptionally down-regulates miR-146b. 

 

Figure 3.3.2 – pri-miR-146b is less expressed in TAL1+ human T-ALL cell lines. 

a) The pri-miR-146b expression was assessed by qRT-PCR in several human T-ALL cell lines. 
The transcript levels were normalized to the ribosomal 18S expression. Values indicate the 
mean ± lower and upper limit of three technical replicates relatively to the expression in the 
JURKAT cell line. The bars representing TAL1- cell lines are colored grey while the bars 
representing TAL1+ cell lines are colored black. b) CCRF-CEM cells were nucleofected with 
siRNAs against TAL1 (siTAL1) or a non-targeting control (siNT) and the expression of TAL1 
(left) or pri-miR-146b (right) transcript was assessed by qRT-PCR. Values indicate the mean ± 
lower and upper limit of three technical replicates relatively to the siNT nucleofection.  

 

 

To verify the functional effects of miR-146b aberrant expression in T-ALL we 

manipulated its levels in T-ALL cells and assessed the effect on proliferation, cell cycle 

progression, viability, migration and differentiation in vitro. Since we have found that miR-

146b is down-regulated by TAL1, T-ALL cell lines that do not express TAL1 (DND-41 and 
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MOLT-4) were stably transduced with a miRNA inhibitor to down-regulate the human miR-

146b-5p expression, thus mimicking the effect of TAL1 (Supplementary Figure 4a). On the 

other hand, TAL1-positive T-ALL cell lines (JURKAT and CCRF-CEM) were stably transduced 

with a lentiviral vector to ectopically express the human pre-miR-146b (pLemiR-146b [297]), 

counteracting the effect of TAL1 on miR-146b-5p expression (Supplementary Figure 4b). We 

then analyzed the effects of miR-146b modulation on biological functions relevant for the T-

ALL physiology, namely effects on proliferation, viability, migration and differentiation.  

Surprisingly, we found that the down-regulation of miR-146b-5p on MOLT-4 or DND-

41 cells does not promote any advantage in the proliferation of the leukemic cells. Likewise, 

the up-regulation of miR-146b on CCRF-CEM or JURKAT cells does not impair proliferation, 

which we postulated would be a consequence of a putative suppressive role for miR-146b. In 

fact, no accountable difference in cell proliferation assessed by cell counts (Figure 3.3.3) and 

thymidine incorporation (Supplementary Figure 5) was verified in those cell lines either in 

normal serum conditions (10% FBS) or serum starvation (0% FBS). The same results were 

obtained when assessing cell viability in the same conditions, either for miR-146b down- or 

up-regulation (Figure 3.3.3). 

MiR-146b was previously shown to be associated with thymocyte maturation and 

highly expressed in mature single-positive thymocytes ([219] and Figure 3.2.4c). Thus, we 

speculated that miR-146b could have an effect on T-ALL cell differentiation. To assess this 

possibility, we monitored the immunophenotype (assessing the expression of CD3, CD4, CD8 

and CD1a) of the cell lines stably over-expressing or stably down-regulating this miRNA 

during several weeks after their establishment. Once more, we found no obvious alterations 

(Supplementary Figure 6). 
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Figure 3.3.3 – miR-146b modulation has no effect in proliferation and viability of T-ALL 

cells. 

Proliferation (left), determined by cell counts, and viability (right), assessed by flow 
cytometry, were analyzed at several time points either in normal medium conditions (10% 
FBS) or in serum deprivation (0% FBS). MOLT-4 a) and DND-41 b) cell lines expressing lower 
levels of miR-146b-5p (Sponge-146b) are compared to the mock transduced cell lines 
(Sponge-SCR). JURKAT c) and CCRF-CEM d) cell lines ectopically expressing miR-146b (146b-
OE) are compared to the mock transduced cell lines (Empty). The bars graphs represent the 
mean (± SD) of three independent experiments. 
 

  

 Altered miR-146b expression has been previously linked to malignancy, specifically by 

altering migration properties of the cancer cells in solid tumors [297, 303-305]. Therefore, we 

evaluated the effects of miR-146b in the migration capacity of T-ALL cell lines. We verified 

that down-modulation of miR-146b-5p increases the number of DND-41 and MOLT-4 cells 

migrating in response to serum present in the medium (Figure 3.3.4a and 4c and 

supplementary Figure 7). On the contrary, CCRF-CEM cells over-expressing miR-146b showed 

reduced migration capacities in the same conditions, compared to mock transduced cells 

(Figure 3.3.4e and supplementary Figure 7). Moreover, we performed invasion assays by 

introducing a matrigel layer between the T-ALL cells and the chemoattractant medium. In 

order to bypass this layer, T-ALL cells have to be able to invade the matrigel matrix. We 

showed that by decreasing miR-146b-5p levels in DND-41 and MOLT-4 cells we can enhance 

the invasion capacities of the T-ALL cells (Figure 3.3.4b and 4d and supplementary Figure 7).  

In order to investigate a possible tumor suppressor role for miR-146b in the 

development of tumors in vivo we used a murine xenograft model of human T-ALL that we 

have previously established [306]. We compared TAL1-positive T-ALL cells over-expressing 

miR-146b (CCRF-CEM) to mock vector-transduced T-ALL cells in their ability to develop 

tumors in vivo. For this purpose, CCRF-CEM cells (10x106 cells) were injected intravenously in 

immunocompromised mice (NOD/SCID). Subsequently, we evaluated leukemia progression 

and overall survival by analyzing the percentage of leukemic cells in the peripheral blood and 

time-to-death as indirect marker of leukemogenesis (the mice were euthanized when 

presenting clear signs of disease). At the time of death, the presence and quantification of 
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leukemic cells was further evaluated by analysis of histological sections and by flow 

cytometry analysis of single-cell suspensions of several organs (blood, bone-marrow, thymus, 

lymph-nodes, spleen, liver, kidney, lungs and CNS). We found that over-expression of miR-

146b in human T-ALL cells significantly increased the survival of the mice (Figure 3.3.5a). We 

also observed a lower percentage of leukemic cells in the peripheral blood of mice 

transplanted with miR-146b OE cells compared to the mice transplanted with mock-

transduced cells (Figure 3.3.5b and Supplementary Figure 8a). These results suggest that the 

increased overall survival of miR-146b OE mice might result from a delay in the disease 

progression, and are consistent with the hypothesized tumor suppressor role of miR-146b in 

T-ALL. At the time of death, no major differences in the infiltration of leukemic cells between 

the two groups of mice were observed (Supplementary Figure 8 b) and c)), with the 

exception of the lymph-nodes of miR-146b OE injected mice that had increased percentage 

of leukemic cells determined by flow cytometry. Besides that, histopathology analysis 

(Supplementary Figure 8b)) revealed a slight decrease in tumor load in the sections involving 

the CNS (Bregma, olfactory bulb and cerebellum) and the spinal cord in the mice injected 

with miR-146b OE cells. Overall, our results indicate that TAL1 down-regulates miR-146b, a 

microRNA with possible tumor suppressor functions in T-ALL. 
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Figure 3.3.4 – miR-146b-5p down-regulates migration and invasion of T-ALL cells.  
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The migration capacities of cells with down-regulation (MOLT-4 a) and DND-41 c)) or with up-
regulation (CCRF-CEM e)) of miR-146b expression were assessed through transwell migration 
assays. The invasion capacities of MOLT-4 (b)) and DND-41 (d)) were assessed by matrigel 
coated transwell assays. In both types of experiments serum was used as chemoattractant. A 
total of 100 x 103 cells were plated on the upper chamber of the transwell in culture medium 
(RPMI) either in the absence of serum (R0) or in the presence of 10% serum (R10). After the 
appropriate time lapse, cells that migrated/invaded to the lower chamber were counted on a 
microscope. The migration index of MOLT-4 (a)) and DND-41 (c)) cells represents the fold 
change of the number of migrated cells with low miR-146b-5p expression (sponge-146b) 
compared to mock transduced cells (sponge-SCR) in at least three independent experiments. 
The graphs b) (MOLT-4) and d) (DND-41) depict the average number of cells per HPF counted 
in three transwells of one representative experiment of invasion. The graph e) depicts one 
representative experiment of migration by showing the average number of CCRF-CEM cells 
over-expressing miR-146b (miR-146b OE) that migrated in three transwells, compared to 
mock transduced cells (Empty). Error bars represent SD and values depicted represent the p-
values calculated using a two-tailed Student's t-test. The symbol > represents the direction of 
the migration, ie, R0>R10 means cells migrated from RPMI with 0% serum to RPMI with 10% 
serum. 
 

 

 

Figure 3.3.5 - MiR-146b delays the development of T-ALL in vivo.  

a) Survival of mice (Kaplan-Meyer survival curve, n=10). NOD/SCID mice were intravenously 
(IV) injected with CCRF-CEM cells over-expressing miR-146b (miR-146b OE) or mock 
transduced cells (Empty). Statistical differences were evaluated using a Log-rank (Mantel-
Cox) test. Median survival was 32 and 36 days post-injection in the miR-146b OE and control 
group, respectively. b) Percentage of human leukemic cells in the peripheral blood of the 
mice as determined weekly by flow cytometry evaluation of RFP+ cells. The lines represent 
the mean for each time point. For RFP+ absolute numbers check supplementary Figure 8a. 
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Discussion 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive childhood malignancy in 

which the transformed clone is arrested in T-cell development. Despite the significant 

improvements in treatment outcome, the challenge is to develop more efficient therapeutic 

strategies that target the leukemia cells specifically, this way diminishing the toxic effects of 

the current treatments and their long term effects. To achieve this, it is essential to build on 

our knowledge regarding the causes, pathophysiology and biology of T-ALL. 

More than half of mammalian messenger RNAsare under selective pressure to 

maintain pairing to miRNAs [191]. For this reason, it may prove difficult to find a biological 

function or process that is not modulated by miRNA regulation. Leukemogenesis is not an 

exception [223] and several studies [211, 223, 251] have contributed to the profiling of 

miRNA genes in ALL patient samples. These led to the notion that specific miRNA gene 

expression signatures are associated with particular B- and T-ALL oncogenetic subgroups and 

indicate that the expression of certain miRNAs have prognostic relevance [307]. The 

participation of miRNA genes in T-ALL has been explored in recent studies and specific 

miRNAs have been implicated in T-ALL pathogenesis. Importantly, known oncogenes in the 

pathogenesis of T-ALL have been associated with deregulated microRNA networks in this 

disease context.   

 

Is TAL1 regulated by microRNAs? 

TAL1 is a transcription factor important for the regulation of early hematopoiesis, but 

rapidly down-regulated upon T-cell lineage commitment [308]. Moreover, aberrant 

expression of TAL1 in committed T-cell precursors is associated with leukemia development 

[92]. In fact, TAL1 is a well-established T-ALL oncogene being over-expressed in more than 

60% of the patients [30]. For these reasons, we hypothesized that the pathways responsible 

for TAL1 repression during T-cell differentiation may be inactivated in T-ALL. Given the broad 

range of biological processes regulated by microRNAs we further hypothesized that the 



Discussion 

148 

pathways involved in TAL1 repression may be normally regulated by microRNAs and, de-

regulation of these pathways in T-ALL could result in the increased expression of TAL1 

observed in this disease.  

We believe it is important for a better comprehension of the disease pathophysiology 

that researchers have a clear understanding of the mechanisms that lead to aberrant 

expression of TAL1 so frequently in T-ALL, and also if this process involves microRNAs. 

Targeting microRNAs to inhibit oncogenic signals is an attractive alternative to the targeting 

of oncogenes themselves, not only as an intrinsic mechanism of tumor suppression but also 

as a therapeutic strategy for cancer treatment. Oncogenes often have essential cellular 

functions and therefore are difficult to inhibit without causing substantial harmful effects to 

normal tissues. Hence, the use of microRNAs that naturally target pro-oncogenic proteins or 

whose down-regulation is necessary for the transformative progression might reveal an 

attractive strategy for cancer therapeutics.  

Several observations led us to this hypothesis. First, more than 60% of T-ALL patients 

have ectopic expression of TAL1 mRNA but only 25% of those patients harbor DNA 

rearrangements that activate TAL1 transcription [104]. Thus, the majority of T-ALL cases do 

not harbor any detectable cytogenetic or molecular evidence of gene variant affecting TAL1 

locus. Still, TAL1 is detected in patient blasts despite the fact that in human normal 

hematopoietic development TAL1 is not expressed from early thymic progenitors onwards 

[133]. Second, TAL1 is a putative target of several miRNAs that are up-regulated in 

hematopoietic stem cells, such as hsa-miR-17-5p, hsa-miR-197, hsa-miR-106 and hsa-miR-20 

[309], and of some that are down-regulated in differentiated megakaryocytes, such as hsa-

miR-106 and hsa-miR-20 [310], suggesting that miRNAs might regulate TAL1 at different 

stages of hematopoietic development. Lastly, the LIM only protein LMO2, a TAL1 co-factor, 

was shown to be regulated by microRNAs, namely during differentiation of erythroid cells by 

miR-223. The decline of miR-223 and the de-repression of LMO2 protein expression are 

important events in erythroid differentiation [311]. The majority of T-ALL patients with LMO 

ectopic expression also overexpress TAL1 [30] and both transcription factors cooperate to 
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induce leukemia in transgenic mice [92]. These facts contributed to our speculation that, 

similar to LMO2, TAL1 could be regulated by miRNAs during normal development.  

Conditional Dicer deletion in early T-cell development results in sharp reduction of 

miRNAs by the DP stage, meaning that these cells are not capable of processing pre-miRNA 

transcripts into mature and functional miRNAs. As a consequence, these mice have ten times 

less TCRαβ thymocytes [218]. The Dicer deletion does not affect DN cell numbers, explaining 

DN elevated percentage in these thymi. We have found that, when comparing Tal1 

expression in whole thymocytes of Dicer KO mice to the WT counterparts, Tal1 levels are 

clearly augmented in thymocytes (Figure 3.1.1). This suggests that TAL1 is regulated post-

transcriptionally by miRNAs during normal thymic development. Contrary to humans, the 

TAL1 transcript is found until the DN3 stage in the thymus of adult mice [118] and in the 

Dicer KO mice there is a substantial deletion of Dicer by the DN3 stage [218]. Given that the 

absolute numbers of DN cells are maintained in the Dicer transgenic mice [218], the 

increased Tal1 levels observed in these mice must come from increased transcript copy 

number in each DN thymocyte, as a result of impaired microRNA regulation. Importantly, 

these data are well in frame with our hypothesis that TAL1 ectopic expression in T-ALL from 

currently unknown reasons could in part be mediated by abnormal down-regulation of 

particular miRNAs targeting TAL1.  

To identify putative miRNAs that target TAL1 we performed computational prediction 

of miRNAs that bind to TAL1 mRNA. From the 39 tested, only ten microRNAs were able to 

significantly silence the reporter expression (miR-101, miR-520d-5p, miR-140-5p, miR-448, 

miR-485-5p, miR-20a, miR-17, miR-93, miR-410 and miR-199*). Therefore, the number of 

experimentally verified candidates is significantly lower than those generated by target 

prediction databases (10/39=26%). This confirms the significant level of false positives (74%) 

generated by computational prediction programs, a percentage that we predict would be 

higher if all the predicted miRNAs were tested. On the other hand, some studies using a 

microRNA library based screen with an UTR of interest, have found some miRNA-UTR 

interactions that are not predicted by the computational algorithms, representing false 

negatives [266, 302]. With our approach we could not detect these cases. An approach that 
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allows the testing of more candidate miRNAs to TAL1 targeting would probably uncover new 

inhibitory miRNA-TAL1-3′UTR interactions than the ones presented in this study. 

Nevertheless, the miRNA-UTR interactions need to be physiologically validated in the 

biological context of interest and preferably with the endogenous microRNA and protein of 

interest. In the case of our study, we hypothesize that TAL1 levels decrease during normal T-

cell development at least in part due to miRNA-dependent down-regulation, and therefore 

TAL1 over-expression in some T-ALL cases could result from decreased miRNA expression. 

Our hypothesis foresees that these miRNAs would be decreased in the disease context. In 

other words, these miRNAs would have a tumor-suppressive role by targeting a frequent 

deregulated oncogene: TAL1. Hence, from the ten microRNAs able to significantly silence 

TAL1 3’UTR we selected microRNAs that significantly lowered the luciferase expression in 25-

50% (Figure 3.1.3) and had putative tumor-suppressive functions: miR-101, miR-520d-5p, 

miR-140-5p, miR-448 and miR-485-5p. Therefore, we excluded from further analysis miR-20a, 

miR-17 and miR-93, since they belong to the oncogenic cluster miR-17-92 (miR-17 and miR-

20a) or to the same family (miR-93). The cluster miR-17-92 is highly up-regulated in 

hematopoietic malignancies and has a clearly defined oncogenic function [226, 229, 258] 

which would be contradictory to a negative regulation of TAL1 in this context. Moreover, we 

excluded miR-410 and miR-199* due to the weak effect on luciferase expression. 

It is well established that the role of a certain miRNAs in tumorigenesis might depend 

on the cellular context. In other words, in one cell type a miRNA might have a tumor 

suppressor function, while in a different cell type it might promote tumor development. 

Nevertheless this appears not to be the case for miR-101 as, so far, several studies 

demonstrated a tumor suppressive function for this miRNA in the context of several cancer 

types. In fact, a brief search in an updated database that annotates the experimentally 

verified oncogenic and tumor-suppressive miRNAs (OncomiRDB) [312] shows that miR-101 

has a tumor-suppressor effect in more than seven types of solid tumors, mainly by inhibiting 

cell proliferation, migration, invasion and tumor growth. The principal validated target for 

miR-101 is the histone methyltransferase EZH2, a component of the polycomb repressive 

complex 2, involved in epigenetic silencing. In fact, in prostate cancer miR-101 expression 



Discussion 

151 

decreases during cancer progression, paralleling an increase in EZH2 [313]. Decreased miR-

101 expression and direct targeting of EZH2 has been revealed in several other tumors, 

namely in bladder [314], gastric [315, 316], and renal cell [317] carcinomas, pancreatic ductal 

adenocarcinoma [318] and melanoma [319]. In addition, several studies demonstrate a 

suppressive role for miR-101 in tumor xenografts [318, 320, 321].  

Additionally, in the context of hematopoietic malignancies, miR-101 was found 

extremely down-regulated in samples of Burkitt lymphoma (BL) patients [322]. In pediatric B-

ALL bone-marrow samples, miR-101 was found be down-regulated [255, 323] and to target 

the anti-apoptotic factor heat shock protein p23 [323]. Deleterious mutations in PRC2 genes 

(namely in EZH2) were found in T-ALL patients, pointing to a tumor suppressor role of PRC2 

in T-cell transformation. Nevertheless, these mutations were found mainly associated with 

the immature type of T-ALL but not with more differentiated cases [32]. Besides, another 

study showed that adult T-cell leukemia/lymphoma patient cells have increased expression 

of EZH2 that is inversely correlated with the expression of miR-101 [324]. Hence there is still 

room for a possible tumor suppressive role of miR-101 in ALL, independently on EZH2 

targeting. In our work, we showed that TAL1 is a direct target of miR-101 in T-ALL cell lines. 

MiR-101 targets TAL1 through a 8mer binding site in its 3’UTR (Figure 3.1.4). The miR-101 

ectopic expression led to a 25-50% TAL1 protein decrease and the endogenous miR-101 

inhibition led to a 20-40% TAL1 protein rescue in T-ALL cell lines. These results are in 

accordance with the studies indicating that miR-101 has a tumor suppressor role in 

hematological malignancies. These are also in agreement with the decreased miR-101 

expression that we found in T-ALL patients compared with normal bone marrow samples and 

mature thymocytes (Figure 3.1.9). Moreover, TAL1 negative cell lines express higher levels of 

miR-101 than TAL1+ ones (Figure 3.1.8). Given that our results from the chapter 3.2 did not 

recognize miR-101 as a possible transcriptional TAL1 target, this difference in the cell lines 

favors our hypothesis that TAL1 ectopic expression could be the consequence of abnormal 

down-regulation of miRNAs. We can therefore foresee a tumor-suppressive role for miR-101 

in T-cell transformation, which might be in part mediated through down-regulation of TAL1. 
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The miR-140-5p has also been associated with suppression of tumorigenesis. In 

osteosarcoma and colon cancer cells the miR-140-5p mediates chemo-resistance through the 

suppression of HDAC4 and consequent reduction of cell proliferation [325]. Moreover, miR-

140-5p was found down-regulated in breast tumors [326], hepatocellular carcinoma [327] 

and lung cancer [328]. Loss of miR-140 is a hallmark of ductal carcinoma in situ (DCIS) lesions 

and miR-140 is significantly down-regulated in cancer stem cells compared with normal stem 

cells [329]. The direct targets of this miRNA include stem cell self-renewal regulator SOX2 in 

breast cancer [326], TGFBR1 and FGF9 in hepatocellular carcinoma [327], SOX9 and ALDH1 in 

DCIS [329] and IGF1R in lung cancer [328]. Ectopic expression of miR-140 reduced tumor 

growth in vivo [329] and metastasis formation [328]. In our work, we showed that TAL1 is a 

direct target of miR-140-5p in T-ALL cell lines. The miR-140-5p targets TAL1 through three 

predicted binding sites in the 3’UTR. The most upstream 7mer binding site is responsible for 

90% of the effect on the reporter expression (Figure 3.1.4 and 5) and the mutation of the 

three MREs fully restores the reporter expression. The other miRNA expressed from the 

same precursor, miR-140-3p, has a minor effect on TAL1 targeting (Figure 3.1.5), 

demonstrating that miR-140-5p is the mature form that targets TAL1 post-transcriptionally. 

In concordance, the miR-140-5p ectopic expression led to a 25-60% TAL1 protein decrease in 

T-ALL cell lines. Moreover, we observed a decrease in miR-140-5p expression in T-ALL 

patients compared with normal bone marrow samples and thymocytes (Figure 3.1.9). These 

results point for a possible tumor suppressive role of miRNA-140-5p also in T-ALL, which 

might be in part mediated through down-regulation of TAL1. 

 Recently, miR-520-5p was the first single miRNA shown to be capable of converting 

malignant or immortalized hepatoma cells to benign or normal cells [330]. Hepatoma cells 

over-expressing miR-520d-5p expressed Oct4 and Nanog, showed p53 up-regulation and 

hTERT down-regulation, and lost their migration abilities [330]. No direct target genes were 

clearly identified, but regulation of malignancy by miR-520d-5p appears to be through the 

conversion of cancer cells to normal stem cells by maintenance of p53 up-regulation [330]. 

MiR-520d-5p has four putative binding sites in the 3’UTR of TAL1 and it is the miRNA that 

most strongly inhibits luciferase expression (Figure 3.1.3), which we anticipated to be a 
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consequence of the several predicted binging sites. Nevertheless, mutation of three of the 

four MREs did not fully restore the inhibition mediated by this miRNA. Neither the mutation 

of a miR-520d-3p MRE in TAL 3’UTR can fully explain the inhibitory effect of miR-520d (Figure 

3.1.5). We were not able to mutate a fourth miR-520d-5p MRE in TAL1 3’UTR (Mut III in 

Figure 3.1.4b). We cannot rule out the possibility that this last unmutated MRE would be 

responsible for the full recovery of the luciferase expression. The more updated versions of 

the prediction databases used in this study actually predict a fifth binding site (data not 

shown) for miR-520d-5p, closely placed to the most upstream. This fifth MRE could be the 

one responsible for the majority of the inhibition conducted by this miRNA, or other until 

now non-predicted binding sites can exist in the 3’UTR of TAL1 that could justify the effect. 

MiR-520d belongs to a family of poorly conserved miRNAs in vertebrates which could explain 

the inaccuracy of the actual prediction algorithms. The hypothesis of the luciferase inhibition 

effect being caused by the binding of the miR-520 to sequences in the reporter vector other 

than TAL1 3’UTR can be ruled out by the effect of miR-520d ectopic expression in T-ALL cell 

lines (Figure 3.1.6). In fact, not only ectopic expression of miR-520d can decrease 

endogenous TAL1 protein in 25-50% but also inhibition of endogenous miR-520d-5p 

expression can rescue TAL1 protein by 40-90%. This leads us to believe that the effect of this 

miRNA on TAL1 post-transcriptional regulation is specific. We therefore speculate that either 

we could not find the MRE in the TAL1 3’UTR or that the effect of this miRNA is not direct. 

Nevertheless, TAL1 negative cell lines express higher levels of miR-520d-5p, than TAL1+ ones 

(Figure 3.1.8) favoring our hypothesis that TAL1 ectopic expression is, in some cases, 

consequence of abnormal down-regulation of miR-520d-5p. This miRNA is expressed at very 

low levels in thymocytes and leukemic cells, making its detection difficult (data not shown). 

Despite the evidences that this miRNA can biologically inhibit TAL1, we could not find clear 

indications for a possible tumor suppressive role in T-ALL. 

In the case of miR-485-5p, no validated target genes have been so far associated to 

cancer development. Nevertheless, down-regulation of miR-485-5p was observed in ovarian 

epithelial tumors, which significantly correlated with clinical variables and histological 

subtypes, hinting for a potential importance of this microRNA as diagnostic biomarker [331]. 
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Moreover, the over-expression of miR-485 in breast carcinoma cells resulted in a significant 

decrease in cell growth, cell colony formation, and cell migration [332]. Furthermore, it was 

found that the presence of a SNP in the miR-485-5p binding site in the 3’UTR of the HPGD 

gene is associated with breast cancer risk [333]. In respect to miR-448, it is the most down-

regulated microRNA in breast cancer following epithelial-mesenchymal transition induced by 

chemotherapy. In this context, release of the repression of SATB1 by miR-448 leads to NF-κB 

activation. On the other hand, NF-κB binds directly to the promoter of miR-448 suppressing 

its transcription, suggesting a positive feedback loop between NF-κB and miR-448 [334]. 

Despite the lack of knowledge on miR-485-5p and miR-448 functions, the existing studies 

suggest it may have tumor suppressive functions. 

Each of these microRNAs has a putative binding site in TAL1 3’UTR, not yet validated. 

Due to lack of time, we were unfortunately not able to test their validity by mutagenesis. 

Nevertheless, we showed that ectopic expression of miR-485 and miR-448 in PF-382 cell line 

can decrease TAL1 protein in 50 and 40%, respectively. Moreover, the expression of these 

miRNAs is decreased in T-ALL patients compared to normal bone-marrow cells (Figure 3.1.9). 

Regarding TAL1 targeting, the results are promising but need further validation. Therefore, a 

putative tumor suppressive role for miR-485 and miR-448 in T-ALL warrants further 

confirmation. 

The mild effects observed in protein expression mediated by the miRNAs studied are 

in accordance to what is described for the microRNA post-transcriptional regulation [192, 

193]. Individual miRNA targeting sites usually reduce protein output by less than a half and 

often by less than a third. Moreover, the post-transcriptional mechanism for TAL1 regulation 

(either mRNA stability regulation or translational impairment) might be not only microRNA 

dependent, but especially cell line dependent. In fact, we only observed a marked down-

regulation of the TAL1 transcript in PF-382 cells, with the exception of miR-485-5p (Figure 

3.1.6), despite the effect on the protein levels in other cell lines. Moreover, upon miR-101 

and miR-520d-5p inhibition no clear effects in the TAL1 mRNA levels are observed in CCRF-

CEM cells. So, the mechanism of microRNA-mediated TAL1 targeting remains to be 

determined, but it appears to be mainly through translational impairment. The regulation 
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mediated by translational repression is a very attractive biological strategy since it allows 

potential translational reactivation of the repressed mRNAs, instead of irreversibly remove 

them through mRNA turnover.  

Given the mild effects of the miRNAs on TAL1 protein expression, we do not foresee 

that their deregulated expression can fully justify the high levels of TAL1 ectopic expression 

observed in T-ALL patients. Nevertheless, given the strong evidences presented for the TAL1 

post-transcriptional regulation by microRNAs we cannot help speculating that TAL1 ectopic 

expression in T-ALL could, in some cases, be amplified by abnormal down-regulation of 

miRNAs targeting. Thus our results led us to speculate a model whereby microRNA could be 

part of TAL1 inhibition during normal development. In early stem cell progenitor cells TAL1 is 

normally expressed. Upon commitment to specific hematopoietic lineages the regulation of 

TAL1 expression involves enhancer/promoter interactions, epigenetic alterations and trans-

acting mechanisms. This complex regulation should result in TAL1 silencing in the lymphoid 

lineage. A possibility is that a modest mRNA destabilization perpetuated by the miRNAs 

quickly yields substantial repression of protein output after transcription of the mRNA 

ceases. A similar mode of action has been described for other miRNAs in other physiological 

conditions [194]. In this model, depending on the threshold level for protein function, the 

mRNA decay rate, and the protein decay rate, modest miRNA-mediated repression can lead 

to substantially reduced protein and a much more rapid transition to the off state. If the 

miRNA also mediates translational repression, the transition to the off state is further 

accelerated [194]. If we then consider that in a pre-leukemogenic stage the normal 

mechanisms that lead to TAL1 transcriptional silencing are decreased/disrupted, a coincident 

miRNA-TAL1 interaction decrease would augment/facilitate the up-regulation of TAL1 

protein. This is our proposed mechanism for miRNA-TAL1 contribution for the disease 

development, which needs further confirmation. We propose as next steps to show that 

TAL1 regulation by miRNA indirectly affects downstream targets of TAL1 and suppresses 

TAL1 phenotypic effects in T-ALL. We also would like to investigate the upstream regulators 

of these microRNAs not only in T-ALL but in the normal context and clarify the mechanisms 

responsible for the abnormal microRNA down-regulation in T-ALL.  



Discussion 

156 

MicroRNAs transcriptionally regulated by TAL1 

TAL1 appears to be on the top of a transcriptional network that, in transformed 

thymocytes, drives the expression of genes involved in abnormal proliferation, differentiation 

and survival. Yet, the pathways downstream of TAL1 that contribute to leukemia 

development are still poorly characterized. Having that in mind, miRNA genes are attractive 

candidates to fulfill the role of TAL1 targets with important consequences for 

leukemogenesis. 

LMO2, a common factor in the transcriptional complex involving TAL1, can negatively 

regulate the in vivo expression of miR-142, which is known to promote T-cell development 

[335]. In the erythroid cell context, LMO2 was shown to be negatively regulated by miR-223, 

and this consequently releases miR-142 from LMO2 inhibition, demonstrating a regulatory 

pathway with pivotal functions in differentiation [336]. These discoveries support the 

unexplored possibility that TAL1-mediated transcriptional regulation of miRNAs may occur in 

T-ALL and have functional impact on the pathophysiology of T-ALL. Moreover, an explanation 

is still lacking for the majority of aberrantly expressed miRNAs in T-ALL [274], and miRNA 

regulatory networks regulated by T-ALL oncogenes have not been so far extensively studied. 

Therefore we speculated that TAL1-mediated transcriptional regulation of miRNAs may occur 

in T-ALL and have functional impact on the pathophysiology of this malignancy. Through 

characterization of a TAL1-dependent microRNA gene expression profile, we identified eight 

miRNAs whose expression changed significantly upon TAL1 over-expression in a T-ALL cell 

line (Figure 3.2.1). 

Most studies performed so far to explore the transcriptional network of coding genes 

downstream of TAL1 usually characterize the expression profile upon knockdown of TAL1 

[124, 143, 144]. We know from the literature [124, 143] and our own experience (data not 

shown) that the knockdown of TAL1 has a profound effect in the viability of the cells, with 

more than 50% decrease on the viability of the T-ALL cells in the first 48h. We reasoned that 

a cell line stably over-expressing TAL1 could give some false positive results as consequence 
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of the elevated TAL1 expression, but it would prevent us from finding altered miRNAs related 

to effects in apoptosis rather than to TAL1 transcription.  

Importantly, it is known that TAL1 can act both as a transcriptional activator and 

inhibitor, depending on the cellular context and target gene. Therefore, we expected that 

miRNA genes would be both up- and down-regulated by TAL1 and that is exactly what we 

have found. Following validation of the microRNA screen profile results upon enforced or 

silenced expression of TAL1 in T-ALL cell lines, we confirmed that miR-135a, miR-223 and 

miR-330-3p were up-regulated by TAL1, whereas miR-146b-5p and miR-545 were down-

regulated by TAL1 (Figure 3.2.1).  

We considered stringent criteria to validate the miRNA screen profile results by 

enforcing or silencing expression of TAL1 in several T-ALL cell lines. In fact, we accepted as 

validated only miRNAs that were regulated in the predicted manner by both over-expression 

and silencing of TAL1 in at least one cell line. Actually most of them were validated in two 

different T-ALL cell lines (Figure 3.2.1). Given this stringent criteria, we confidently consider 

that miR-135a, miR-223, miR-330-3p, miR-146b-5p and miR-545 expression is modulated by 

TAL1. The next obvious step was to determine if this control is mediated by a direct 

regulation of these miRNA transcriptions by TAL1 in T-ALL cells. Given that the promoter 

region for the majority of miRNA genes is not yet defined, we examined ChiP-seq data for the 

presence of TAL1 binding peaks up to 10kb upstream of the transcription start site (TSS) of 

each microRNA gene. We were able to verify by TAL1 ChIP-qPCR in T-ALL cells that TAL1 

binds to a genomic area 3.5kbs upstream of the miR-223 TSS, which indicates that miR-223 is 

a direct target of TAL1 in T-ALL (Figure 3.2.1g and 3.2.2). We did not find evidence, from the 

available TAL1 ChIP-seq data, for direct binding of TAL1 to the remaining microRNA genes, 

suggesting that miR-135a, miR-330-3p and miR-545 might be indirectly regulated by TAL1, at 

least in the T-ALL cells analyzed. It should be noted, however, that some TAL1 binding sites 

differ between cell lines and between cell lines and primary samples [144] and thus we 

cannot exclude the possibility that TAL1 may regulate directly these miRs in other T-ALL cells. 

Interestingly, TAL1 appears to bind upstream of miR-223 to a previously described region 

containing a conserved proximal genomic element with binding sites for the transcription 
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factor C/EBPα and PU.1 [337]. Furthermore, miR-223 appears to follow the same pattern of 

expression along normal human thymocyte development as TAL1 [94], with high levels in 

CD34+ T-cell precursors and sharp down-regulation in more differentiated subsets of 

CD4+CD8+ thymocytes (Figure 3.2.4a). This is also in agreement with the hypothesis that 

TAL1 positively regulates the expression of this microRNA with oncogenic functions. 

 

Can miRNAs regulated by TAL1 be part of an oncogenic transcriptional network 

downstream of TAL1? 

The miRNA-223 is a highly conserved miRNA preferentially expressed in the 

hematopoietic system [213]. Specifically, miR-223 is a myeloid-specific [213, 337] microRNA 

essential for normal neutrophil maturation and for granulocyte differentiation. This miRNA 

negatively regulates progenitor proliferation via MEF2C down-regulation [338]. In 

agreement, miR-223 functions as a tumor suppressor in acute myeloid leukemia [339], and 

appears to be repressed in chronic myeloid leukemia, allowing for the expression of MEF2C 

[340]. Also in agreement, miR-223 expression in HSC progenitors is elevated, but it sharply 

decreases during lymphocyte lineage development (Figure 3.2.4). In addition to proper 

granulocyte differentiation and function, miR-223 is also essential for proper erythroid 

development, likely in part by directly targeting LMO2 [336]. Importantly, TAL1 is essential 

for maturation of erythroid and megakaryocytic precursors [127]. Loss of Tal1 in the embryo 

results in reduced capacity towards myeloid differentiation [126] and decreased expression 

of TAL1 in human CD34+ cells compromised the erythroid and myeloid lineage [134]. Given 

the importance of TAL1 and miR-223 in the myeloid compartment, a possible regulation of 

miR-223 by TAL1 in the normal myeloid lineage commitment, that was never addressed, 

would certainly be an interesting subject for future studies.  

Much of the research on miR-223 has focused on its role in myeloid cell 

differentiation but interestingly, over-expression of miR-223 in mouse hematopoietic 

progenitor cells leads to a specific increase in the T-lymphoid lineage cells [213]. Moreover, 
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miR-223 is one of the most expressed microRNAs in T-ALL [341] and we verified that it is 

highly over-expressed compared to normal precursors (Figure 3.2.3c). Also, a subset of adult 

T-ALL has been identified that is characterized by myeloid-like genetic features and miR-223 

over-expression [342]. In childhood T-ALL, miR-223 was shown to cooperate with Notch1 to 

accelerate the onset of disease in a Notch-induced leukemia mouse model. This effect was 

proposed to be due, at least in part, to inhibition of FBXW7, a negative regulator of NOTCH 

signaling [341]. The ubiquitin ligase FBXW7 has already been identified previously as target of 

miR-223 in MEFs, where it regulates the cell cycle by inducing cyclin E ubiquitination and 

subsequent degradation [343].  

Interestingly, analysis of microRNA gene expression profiles in different T-ALL subsets 

[261] revealed that primary samples which frequently express high TAL1 levels display higher 

levels of miR-223 (Figure 3.3.3). This observation not only strengthened our results showing 

that TAL1 transcriptionally activates miR-223, but also suggests that the oncogenic function 

of this microRNA may extend beyond mere collaboration in Notch-induced leukemia. In fact, 

FBXW7 targets to degradation other oncogenic proteins, such as c-MYC, MYB, cyclin E, 

mTOR, HIF-1α and MCL-1 [343-348]. Importantly, FBXW7 is recognized as an important 

tumor-suppressor in T-ALL, with 20% of patients carrying loss-of-function mutations [72, 73] 

Furthermore, Fbxw7 knockout mice developed thymic lymphoma, with c-Myc accumulation 

and increased proliferation of immature T-cells, but also with p53-dependent cell-cycle arrest 

and apoptosis in mature T-cells [80]. Furthermore, the oncogenic transcription factor MYB, 

which is known to be involved in malignant hematopoiesis [42], was recently identified as a 

direct target of TAL1 [144]. Many of the downstream targets of MYB are also controlled by 

TAL1. Therefore, these two transcription factors activate an overlapping oncogenic network 

to work in concert to maintain a deregulated gene expression program in T-ALL [144]. Given 

that FBXW7 targets MYB to degradation and that TAL1 might down-regulate FBXW7 through 

miR-223, it would be interesting to explore the possibility of TAL1 regulating MYB expression 

levels not only transcriptionally [144] but also at the level of protein stability through a miR-

223/FBXW7 axis. Of note, while our manuscript was under review another study was 

published that corroborated our results regarding miR-223 regulation by TAL1 [300]. In this 
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work, the link between TAL1 and FBXW7 down-regulation mediated by miR-223 was firmly 

established as a mechanism leading to down-regulation of FBXW7 in the majority of T-ALL 

cases that lack gene-specific FBXW7 inactivating mutations or deletions [300]. 

The oncogenic role of miR-223 in T-ALL might not be restricted to FBXW7. The 

abnormal expression of miR-223 in thymocytes can aberrantly decrease the expression of 

other key proteins that are not normally regulated by this miRNA in this hematopoietic 

lineage. Moreover, the pro-leukemic role of miR-223 may be also achieved by down-

regulating targets such as E2F1, FOXO1, RHOB or EPB41L3, which have been associated with 

induction of apoptosis and/or have tumor suppressive roles (Table 3.2.2). Interestingly, the 

possibility that miR-223 may act downstream of TAL1 to negatively regulate MEF2C, recently 

identified as an oncogene in T-ALL [349], is in line with the fact that TAL1 and MEF2C tend to 

segregate, defining two discrete T-ALL subsets [349].  

The fact that TAL1 positively regulates miR-223, which in turn down- regulates an 

important tumor suppressor such as FBXW7 [261] and possibly other anti-tumoral genes, 

indicates that TAL1 is at the leading edge of a transcriptional network involving stabilization 

of important proteins with oncogenic functions in T-ALL. These findings enabled answering 

our initial question regarding the knowledge of miRNAs regulated by TAL1 and their part in 

an oncogenic transcriptional network downstream of TAL1 in T-ALL. TAL1 effects appear to 

be mediated in part by miR-223, but our studies suggest that other microRNAs may have a 

similar role as effectors of TAL1-mediated T-cell oncogenesis (Figure 3.2.5).  

Interestingly, miR-223 may be transcriptionally regulated by other oncogenes than 

TAL1 in T-ALL. Recently, miR-223 was shown to be a direct target of NOTCH in T-ALL cells 

[270]. The binding of NOTCH to miR-223 promoter region requires NF-kB activation. NOTCH1, 

NOTCH3 and p65 are directly recruited to the promoter region of miR-223 and, as TAL1, also 

bind to the previously described C/EBPα and PU.1 binding region. Contrarily to our results 

(Figure 3.3.3), in T-ALL patient samples the authors were unable to show a direct correlation 

between miR-223 expression levels and the up-regulation of NOTCH or NF-kB [270]. This 

result suggests that miR-223 expression may be maintained by other pathways aberrantly 

activated in T-ALL, as we have shown by the activation of miR-223 by TAL1. On the other 
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hand, the fact that T-ALL blasts consistently express high levels of miR-223 irrespectively of 

TAL1 expression [261] tells us that yet other mechanism of miR-223 regulation could be 

altered in T-ALL. 

One miRNA may target several components of a single signaling pathway but also 

several miRNAs can regulate in additive or redundant ways several genes in the same 

functional pathway. To explore the possibility of networking coordination by the microRNAs 

altered by TAL1 over-expression we collected information about the validated human target 

genes for each microRNA. In order to determine the functional relevance of the sets of 

miRNA targets identified, we tested whether they were enriched for specific biological 

functions or pathways. Gene set enrichment analysis showed an enrichment in biological 

processes related to inflammation (e.g., NF-kB signaling pathway and IL1/IL1R signaling 

pathway) and cancer (e.g. pathways in cancer) (Table 3.2.2 and Supplementary Table 3).  

There is only one report associating miR-330-3p expression with cancer development, 

where miR-330-3p expression was associated with development of brain metastases in 

patients with NSCLC [350]. Interestingly, miR-330-3p reportedly targets E2F1 and CDC42, 

both of which are described to promote apoptosis [351, 352]. This is in line with a possible 

pro-oncogenic role for this miRNA up-regulated by TAL1. Moreover, the pro-leukemic role of 

miR-223 may also be achieved by down-regulating E2F1. Therefore, the cell cycle regulator 

E2F1 is a putative target of two miRNAs up-regulated by TAL1 (miR-223 and miR-330-3p). 

Reduced E2F1 has been associated to enhanced survival of leukemic blasts [265] and 

development of hematopoietic malignancy [229]. E2F1 regulation can be mediated by 

miRNAs in T-ALL, namely by miR-17-5p and miR-20a that are components of the miR-17-92 

oncogenic polycistron [229]. Here, we uncover the possibility that networking coordination 

by the microRNAs up-regulated by TAL1 might mediate E2F1 down-regulation and enhance 

survival of leukemic cells. Since T-ALL cells tend to display several complementary cell cycle 

promoting lesions (e.g. p16 inactivation and PI3K signaling pathway activation) down 

regulation of E2F1 may essentially prevent cell death without significantly compromising cell 

division. 
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We hypothesized that if miRNAs regulated by TAL1 have an impact in TAL1 promotion 

of leukemogenesis, not only their targets genes should reinforce TAL1 pro-leukemogenic 

role, as some of the miRNAs targets could be also regulated by TAL1. In this manner, TAL1 

could reinforce its oncogenic role through the indirect modulation of certain genes via 

regulation of specific miRNA-target axes. We have already discussed above this possibility for 

the case of MYB and the miR-223/FBXW7 axis, and we wondered if this could be extended to 

other miRNAs regulated by TAL1 and other miRNA-downstream targets. Therefore, we 

compiled a list of high confidence TAL1 positively or negatively regulated genes from publicly 

available data [143, 295]. We then intersected the predicted targets of TAL1 down-regulated 

microRNAs with the protein-coding gene targets previously demonstrated to be positively 

regulated by TAL1, and vice versa, and searched for common hits in both lists. 

The data from this cross-examination of congruent TAL1 regulated protein-coding and 

miRNA target genes, are in line with the notion that the latter could be part of downstream 

networks collaborating in TAL1-mediated leukemogenesis (Figure 3.2.5). Indeed, most TAL1 

up-regulated genes that have 3’UTRs predicted as targets for the TAL1 down-regulated miR-

146b-5p and miR-545 have a known or putative oncogenic function (Figure 5a). For example, 

CD53 was shown to protect JURKAT cells from apoptosis [353], PDE3B appears to be involved 

in glucocorticoid resistance in CEM cells [354], ETS-1 participates in the T-cell maturation 

arrest mediated by TLX genes in T-ALL [355], and MYB is a bona-fide oncogene in T-ALL [295] 

(Supplementary Table 4). 

There is only one report associating miR-545 to cancer where this miRNA was found 

to be less abundant in cancerous lung tissues and associated with tumor suppressive 

functions [356]. In fact, ectopic miR-545 expression suppressed cell proliferation by cell cycle 

arrest at the G0/G1 phase and induced cell apoptosis in lung cancer cells by targeting cyclin 

D1 and CDK4 genes [356]. We predict a tumor-suppressive function for miR-545 in T-ALL, 

given that this gene is down-regulated by TAL1 (Figure 3.2.1). One predicted target of miR-

545 is the oncogene MYB. Once more, it would be interesting to explore the possibility of 

TAL1 regulating MYB expression levels not only transcriptionally [144] but also post-

transcriptionally through the down-regulation of miR-545. Moreover, miR-545 might also 
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exert a tumor suppressive role targeting cyclin D1 and CDK4 genes. Therefore, another 

hypothesis is that by down-regulating this miRNA in T-ALL, TAL1 might be promoting cell 

cycle progression through up-regulation of cyclin D:CDK4 complexes. Also of note, three of 

the four genes (KRT1, Rapgef5, JAZF1) with predicted 3’UTR seed sequences for both miR-

146b-5p and miR-545 are associated with pro-tumoral functions (Supplementary Table 4). 

 In sharp contrast, the TAL1 down-regulated genes that are predicted targets for miR-

135a, miR-223 and miR-330-3p display a clear abundance in (putative) tumor suppressors or 

in genes whose functions are compatible with anti-tumoral effects (Figure 5b and 

Supplementary Table 5). This is evident, for instance, in the case of the four genes potentially 

regulated by two of these microRNAs, in which only one has an oncogenic role (IGF1R) and 

three likely have tumor suppressive functions (SRGAP3, TOX, LRP12). 

There is a current challenge to reveal the mechanisms of regulation of miRNA gene 

expression, in order to understand why and how the miRNAs are deregulated during the 

development of miRNA-associated cancer. In this thesis we identified and validated for the 

first time a small set of non-protein coding TAL1 target genes, implicating microRNA genes as 

part of the transcriptional network downstream of TAL1 whose role may be important in the 

context of hematopoiesis and T-cell leukemogenesis. With the exception of miR-223, which 

has been intensively studied in the context of T-ALL, we still lack functional information for 

the other microRNAs identified as being regulated by TAL1. Their role in T-cell malignancy 

should be detailed by future investigations, for which our work serves as a starting point. 

 

A possible tumor suppressor role for miR-146b in T-ALL  

Having shown that microRNA genes are regulated by TAL1 at the level of 

transcription, we hypothesized that some of these miRNAs can be part of the oncogenic 

network triggered by TAL1 ectopic expression in leukemia, as discussed. We focused our 

efforts on miR-146b-5p and evaluated the functional and molecular effects of its 

deregulation by TAL1 in the context of T-ALL.  
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When analyzing our own data or data from an independent set of human T-ALL cell 

lines (data not shown) we did not find significant difference in miR-146b-5p levels between 

TAL1+ and TAL1- cell lines. Nevertheless this microRNA is one of the most down-regulated 

miRNAs upon TAL1 over-expression (Figure 3.2.1). Moreover, similar results were obtained 

when assessing miR-223 expression in T-ALL cell lines (data not shown) and, nonetheless, we 

and others [300] have convincingly shown that miR-223 is directly regulated by TAL1. Maybe 

a larger set of T-ALL cell lines would provide data more in accordance to what is obtained 

when analyzing primary T-ALL samples. In fact, analysis of the different T-ALL subsets of two 

independent cohorts revealed that primary samples of the TAL1 subgroup (integrating Sil-

Tal1+ and LMO+ cases [261] or SIL-TAL, TCR-TAL and other TAL1+ cases [305]) express lower 

levels of miR-146b-5p than other T-ALL cases (Figure 3.2.3 and Figure 3.3.1a), further 

confirming our screen results. Therefore, we hypothesize that TAL1 negatively regulates miR-

146b-5p, which may have a tumor suppressive role in the T-ALL context. 

T-ALL patients express significantly lower levels of miR-146b-5p than normal controls 

(Figure 3.3.1), and these results were obtained for two independent cohorts of patients, 

irrespectively of TAL1 expression. T-ALL cell lines also have decreased miR-146b-5p 

expression (Figure 3.3.1a). This suggested that reduced expression of miR-146b-5p might be 

an important factor in T-ALL that might extend beyond TAL1 regulation.  

Through the ChIP-PCR experiments we did not find a putative TAL1 binding site 

upstream of the miR-146b locus, although we evaluated the putative binding region depicted 

in Figure 3.2.2a. A negative result in ChIP-PCR experiments does not necessarily mean this 

microRNA is not a direct target of TAL1. It might instead just indicate that we are not 

scrutinizing the correct genomic area for TAL1 binding. Therefore, we assessed the levels of 

the primary transcript of miR-146b in T-ALL cell lines. We reasoned that if miR-146b is a 

direct transcriptional target of TAL1, the levels of its primary transcript should correlate with 

TAL1 status. We verify that TAL1 negative cell lines tend to express more pri-miR-146b than 

TAL1 positive ones (Figure 3.3.2a). Moreover, the knockdown of TAL1 in a T-ALL cell line 

results in marked up-regulation of the primary transcript (Figure 3.3.2b), anticipating the up-

regulation of the mature miRNA expression upon TAL1 knockdown (Figure 3.2.1). Although 
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merely correlative, these results argument in favor of a direct regulation of miR-146b 

transcription by TAL1. 

Furthermore, miR-146b-5p is clearly up-regulated in the double-positive to single-

positive transition (Figure 3.2.4c). This miRNA was shown to be amongst the five most up-

regulated microRNAs in mature single-positive thymocytes and amongst the five with the 

highest change in the transition from the DP to SP stage of T-cell development [219]. The fact 

that the levels of miR-146b-5p associate with thymocyte maturation (Figure 3.2.4c) is in 

agreement with a model whereby TAL1 over-expression during malignant transformation 

inhibits miR-146b-5p and promotes T-cell developmental arrest.  

Unexpectedly, modulation of miR-146b-5p levels did not affect T-ALL cell viability 

(Figure 3.3.3). These results were unforeseen since TAL1 expression in mouse or human 

leukemic cells is associated with increased cell proliferation and resistance to apoptosis [114, 

143]. Therefore, if as we postulated, mir-146b-5p acts downstream of TAL1 as a tumor 

suppressor, its overexpression should impact on critical biological processes such as cell 

proliferation or viability. Given that miRNA-146b-5p was shown to be highly up-regulated 

during the later stages of thymocyte maturation [219], we reasoned that modulation of its 

expression could have an effect on T-ALL cell differentiation. Therefore, we monitored the 

immunophenotype of the cells stably over-expressing or down-regulating this miRNA during 

several weeks after their establishment. Once more, no obvious change in the phenotype of 

any cell line was verified upon miR-146b modulation, irrespectively of the developmental 

stage of the cells (Supplementary Figure 6). 

In contrast, we found that miR-146b-5p modulation alters the migration and invasion 

capacities of the T-ALL cells in vitro (Figure 3.3.4 and supplementary Figure 7).  In fact, we 

have shown that down-modulation of miR-146b-5p increases the number of migrating T-ALL 

cells in response to serum presence in the medium (Figure 3.3.4a and 4c and supplementary 

Figure 8). Moreover, we showed that by decreasing miR-146b-5p levels T-ALL cells have 

enhanced capacity to invade a matrigel matrix (Figure 3.3.4b and 4d and supplementary 

Figure 8). These results are in agreement with reports linking miR-146b expression to 
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malignancy, specifically linking its down-modulation to enhanced migration of cancer cells in 

solid tumors [297, 303-305]. 

We then analyzed the role of miR-146b in the development of tumors in vivo. To that 

end, we transplanted T-ALL cells over-expressing miR-146b into immunodeficient mice. Since 

this miRNA modulation counteracts the effects of TAL1, this model allows us to address the 

role of this microRNA in vivo but also its therapeutic potential. In fact, we were able to show 

that over-expression of miR-146b in human T-ALL cells significantly increased the survival of 

leukemic mice compared to mock transduced T-ALL cells transplanted mice (Figure 3.3.5a). 

Given the role of this microRNA in T-ALL cells migration in vitro, these results suggest a 

delayed development of the disease. In agreement with this hypothesis, we observed a lower 

percentage of leukemic cells in the peripheral blood of the miR-146b mice at the fourth week 

after transplantation, when practically all mice were still alive (9/10) (Figure 3.3.5b and 

Supplementary Figure 8a). Therefore, these results are consistent with the hypothesized 

tumor suppressor role of miR-146b in T-ALL.  

Given our in vitro results in migration and invasion and the increased survival 

observed in our in vivo experiments, we were expecting to observe differences in leukemia 

cells infiltration of hematopoietic or non-hematopoietic organs. Nevertheless, we did not 

find those differences. However, since this analysis was done at the time of death, and the 

mice were sacrificed only when presenting clear signs of disease, we speculate that those 

differences were already lost at that point. Therefore, given the aggressiveness of the human 

T-ALL cells, a strategy to evaluate differential organ invasion at early time points after 

injection would probably be more informative. In those conditions we might speculate that 

the mock transduced cells would invade earlier the organs affected. Furthermore, 

histopathology analysis (Supplementary Figure 8b) revealed a slight decrease in tumor load in 

the sections involving the CNS (Bregma, olfactory bulb and cerebellum) and the spinal cord in 

the mice injected with cells over-expressing miR-146b. The significance of these results 

requires obviously further confirmation. In this regard, it would be very relevant to explore 

the possibility of using increment of miR-146b levels in T-ALL cells as adjuvant therapy to 

prevent CNS involvement, which is one factor of poor prognosis in this malignancy  
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Interestingly, a potential therapeutic use of miR-146b was investigated by intra-tumor 

injection of exosomes derived from miR-146b-expressing mesenchimal marrow stromal cell. 

This strategy was able to significantly reduce glioma xenograft growth in a rat model of 

primary brain tumor [357] paving the way for the therapeutic use of this microRNA for cancer 

treatment.  

 In the future we would like to reveal the miR-146b-5p downstream targets that 

contribute to the enhanced migration capacities phenotype in T-ALL cells upon this miRNA 

repression. One obvious strategy would be to perform transcriptome analysis upon 

modulation of the miRNA in the T-ALL cells, followed by identification of the genes that are 

down-modulated by miR-146b-5p. The intersection of these with a list of miR-146b-5p 

predicted targets might help to narrow down the candidates. A gene ontology analysis of 

miR-146b-5p predicted targets genes (by TargetScan, data not shown) indicate that the most 

enriched biological process is transcription, followed by signaling transduction. Nevertheless, 

a manual search through the predicted targets foresee several genes with putative functions 

associated with migration and motility, namely RAB10, RAB8B, IQGAP3, IQGAP1, ANKRD28, 

MARK1, EFNB2, ROBO1, TLN2, NRP2, FLNA, MYO6, RND2 and CLASP2. Interestingly, the 

validated targets for the TAL1 down-regulated gene miR-146b-5p include IRAK1, TRAF6 and 

NFKB1 (all of which are involved in chronic inflammation), as well as the oncogene KIT (Table 

3.2.2, Supplementary Table 3 and Supplementary Figure 3), thus favoring a possible tumor 

suppressive role for this miRNA.  

Interestingly miR-146b-5p has been implicated in a mechanism linking chronic 

inflammation and cancer promotion also with tumor-suppressor function. In cancer cells, the 

STAT3-induction of miR-146b is disrupted, often through methylation of the miR-146b 

promoter, leading to the release of miR-146b target, NF-κB. NF-κB activation leads to 

production of IL-6, which activates STAT3, leading to enhanced migration and invasion in 

breast cancer cells [358]. Several other studies have implicated miR-146b-5p as a tumor 

suppressor whose decreased expression promotes directly or indirectly enhanced migration 

properties of cancer cells. For instance, in osteosarcoma cells some tumor suppressor 

functions of miR-146b-5p are mediated through the direct targeting of the mRNA-binding 
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protein AUF1, leading to suppressed invasion/migration and proliferation abilities [359]. 

Over-expression of miR-146b into breast cancer cells also suppressed experimental lung 

metastasis [305]. Moreover, miR-146b-5p reduces glioma cell migration and invasion by 

direct targeting MMP16 [360] and EGFR [303]. MiR-146b-5p mediated targeting of MMP16 

and inhibitory effects on cell migration and invasion was also observed in pancreatic cancer 

[304].  

 More importantly, a tumor suppressor function for miR-146b was recognized in the 

context of PTEN-deficient T-lymphomagenesis in mice [361]. This miRNA is up-regulated in 

the thymus of PTEN-deficient mice as part of the cellular response against transformation 

and when over-expressed can effectively inhibit progression to malignancy. Tumor 

suppression was mediated by miR-146b attenuation of TCR signaling through repression of 

its direct target TRAF6, an important activator of NF-κB, inhibiting downstream NF-κB-

dependent induction of c-Myc [361]. Also regarding hematological malignancies, over-

expression of miR-146b-5p inhibited diffuse large B-cell lymphoma (DLBCL) cell proliferation 

and miR-146b-5p lower expression in DLBCL patients was associated with poor prognosis 

[362]. 

Overall, our results point to a direct down-regulation of miR-146b-5p by TAL1, 

microRNA with a very probable tumor suppressive role in T-cell acute lymphoblastic 

leukemia.  
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Concluding Remarks  

The improvement of our knowledge regarding the causes, pathophysiology and 

regulation of T-ALL is necessary to develop more efficient and less toxic therapeutic 

strategies that target the leukemia cells. A growing number of evidences place microRNAs as 

critical players in the complex biology of cancer cells and show that they actively contribute 

to T-cell acute lymphoblastic leukemia progression. 

Nevertheless, despite the growing knowledge on miRNA biology, little is known about 

the transcriptional regulation of miRNAs and an explanation is still lacking for the majority of 

aberrantly expressed miRNAs in T-ALL. Moreover, miRNA regulatory networks regulated by 

T-ALL oncogenes have not been so far extensively studied. 

In this thesis we have shown that TAL1 sits at the top of a transcriptional network that 

in transformed thymocytes drives the expression of microRNA genes that are involved in key 

biological processes for leukemia development. In particular, our results point to a direct 

down-regulation of miR-146b-5p by TAL1, a microRNA that demonstrated to have a tumor 

suppressive function in our in vitro and in vivo experiments.  

Importantly, we have also shown that TAL1 is post-transcriptionally regulated by 

microRNAs. We therefore speculated a model whereby in a pre-leukemogenic stage the 

normal mechanisms that lead to TAL1 transcriptional silencing are decreased/disrupted and a 

coincident decrease in miRNA-TAL1 interaction would augment the up-regulation of TAL1 

protein that we find in some T-ALL cases. 

In all, our findings support the existence of a cross-talk between TAL1 and microRNA 

genes, involving upstream epigenetic regulation of TAL1 by specific miRNAs and downstream 

transcriptional regulation of miRNA genes by TAL1. Our studies contribute to the 

understanding of the mechanisms involved in TAL1 over-expression in T-ALL and to the 

clarification of the tumorigenic network downstream of TAL1, namely concerning the 

identification of miRNA genes transcriptionally regulated by TAL1. Whether the interactions 

identified here may be explored therapeutically for the benefit of T-ALL patients remains a 

challenge for the future. 
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Based on the results described in this PhD thesis we propose the model depicted in 

Figure 4.1. 

 

 

 

Figure 4.1 – Dual-way talk between TAL1 and microRNA genes. 

TAL1 is post-transcriptionally regulated by the microRNAs described (miR-101, miR-140-5p, 
miR-520d-5p, miR-448 and miR-485) and may be by other miRNAs not yet identified (miR-?). 
We propose that in a pre-leukemogenic stage the normal mechanisms that lead to TAL1 
transcriptional silencing are disrupted and a coincident impairment of the miRNA-TAL1 
interaction could augment the up-regulation of TAL1 protein. On the other hand, ectopic 
expression of TAL1 in thymocytes leads to down-regulation of tumor-suppressive miRNAs 
(such as miR-146b-5p and other yet unidentified miRNAs – miR-?) and over-expression of 
oncogenic miRNAs (such as miR-223 and other yet unidentified miRNAs – miR-?). We 
propose that this transcriptional disruption of the normal microRNome predispose the 
lymphocytes to the development of leukemia through the altered expression of oncogenes 
and tumor-suppressor protein coding genes that are targets of the TAL1-regulated 
microRNAs.  
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Supplementary Figure 1 

 
 

Supplementary Figure 1 – Schematic representation of microRNA binding to TAL1 3’UTR.  

a) miR-448 and b) miR-485-5p. miRNA binding to TAL1 3’UTR details are depicted 
according to microRNA.org target prediction algorithm results.  
 

Supplementary Figure 2 

 
 

Supplementary Figure 2 – Schematic representation of microRNA binding to TAL1 3’UTR 

and respective mutagenesis.   

a) miR-520-3p and b) miR-140-3p. These miRNAs are not predicted to bind to TAL1 
3’UTR, nevertheless the putative MRE were mutated as depicted. 
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Supplementary Figure 4 – miR-146b-5p expression in transduced T-ALL cell lines. 

 

a) Cell lines transduced with sponge-vector express lower levels of mir-146b-5p. 

TAL1-negative T-ALL cell lines (DND-41 and MOLT-4) where stable transduced to inhibit 

human miR-146b-5p. b) Cell lines transduced with pLemir- vector over-express (OE) miR-

146b-5p. TAL1-positive T-ALL cell lines (JURKAT and CCRF-CEM) were stably transduced with 

a lentiviral vector to ectopically express the human pre-miR-146b. miR-146b-5p levels were 

accessed by qRT-PCR and normalized to SNORD38. Values indicate the mean ± lower and 

upper limit of three technical replicates relatively to the mock transduction (SCR or Empty).  
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Supplementary Figure 5 – 

3
H-Thymidine incorporation assays upon modulation of miR-

146b 

 

Proliferation of T-ALL cell lines was assessed by 3H thymidine incorporation 

determined at several time points. MOLT-4 a) and DND-41 b) cell lines expressing lower 

levels of miR-146b-5p (Sponge-146b) are compared to the mock transduced cell lines 

(Sponge-SCR). JURKAT c) and CCRF-CEM d) cell lines ectopically expressing miR-146b (146b-

OE) are compared to the mock transduced cell lines (Empty). The bars graphs represent the 

mean (+/- SEM) of three technical replicates. 
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Supplementary Figure 6 – Phenotype of transduced T-ALL cell lines. 

The expression of surface markers CD1a, CD3, CD4 and CD8 was accessed by flow cytometry 

(FACS) in the transduced T-ALL cell lines in order to determine their immunological 

phenotype. The cell lines presented were stably transduced for more than two months. Here 

are shown the FACS plots of cell lines transduced with sponge-146b or the mock vector, a) 

MOLT-4 and b) DND-41, and also the cell lines transduced with pLmiR-146b and 

correspondent control vector, c) JURKAT and d) CCRF-CEM.  
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Supplementary Figure 7 – Migration and invasion assays upon down-regulation of miR-

146b-5p levels in T-ALL cell lines. 

 The migration capacities of cells with down-regulation of miR-146b-5p expression a) MOLT-4 and b) 

DND-41 were assessed through transwell migration assays. The invasion capacities of DND-41 c) were 
assessed by matrigel coated transwell assays. In both kinds of experiments serum was used as 
chemoattractant. A total of 100e3 cells were plated on the upper chamber of the transwell in culture 
medium (RPMI) either in the absence of serum (R0) or in the presence of 10% serum containing RPMI 
medium (R10). The number of migrated or invading cells per high-power field (HPF ×100) was 
determined by the average number of cells counted in five no-overlapping microscope fields of the 
same transwell. The number of migrated or invading cells was counted in three transwells per condition 
in each experiment. The graphs depict the average number of cells per HPF counted in at least three 
independent migration experiments of MOLT-4 a) and DND-41 b) cells expressing lower levels of miR-
146b-5p (sponge-146b) and of mock transduced cells (sponge-SCR). These represent the values used to 
calculate the migration index of Figure 3.3.4a and 4c. The graph c) depicts another representative 
experiment of Invasion by showing the average number of DND-41 cells that migrated in three matrigel 
coated transwells. Error bars represent SD and values depicted represent the p-values calculated using a 
two-tailed Student's t-test. The symbol > represents the direction of the migration, ie, R0>R10 means 
cells migrated from RPMI with 0% serum to RPMI with 10% serum. 
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Supplementary Figure 8 - MiR-146b in the development of T-ALL in vivo.  

a) Absolute number of human leukemic cells per ml of mice peripheral blood 
determined weekly by flow cytometry evaluation of RFP+ cells. The lines represent the mean 
for each time point. p-value calculated using a two-tailed Student's t-test (*p<0.05). b) Tumor 
load score determined by hematoxilin/eosin staining of histological sections of several 
organs. c) Flow cytometry analysis of single-cell suspensions of several organs. The lines in b) 
and c) represent the median value for each organ. BM – bone-marrow; LN – lymph nodes; SC 
– spinal cord. 
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LETTER TO THE EDITOR

Novel TAL1 targets beyond protein-coding genes: identification

of TAL1-regulated microRNAs in T-cell acute lymphoblastic

leukemia

Leukemia advance online publication, 26 March 2013;

doi:10.1038/leu.2013.63

The basic helix-loop-helix transcription factor TAL1 is aberrantly
expressed in a majority of T-cell acute lymphoblastic leukemia
(T-ALL) cases characterized by arrested development in the thymic
late cortical stage.1,2 Although TAL1 is a bona fide T-cell
oncogene,3 with known direct targets in T-ALL,4 the aberrant
transcriptional circuitry responsible for thymocyte transformation
is not yet fully understood. MicroRNAs are small, non-coding RNAs
that function as endogenous post-transcriptional repressors of
protein-coding genes by binding to target sites in the 30-UTR of
messenger RNAs.5 Aberrant expression of these molecules has
been reported in several hematological malignancies, and
microRNA expression signatures delineate ALL subgroups6 and
can be interpreted in light of their variation during
hematopoiesis.7 Individual microRNAs and networks have been
implicated in T-ALL,8 but the mechanisms responsible for altered
microRNA expression in this malignancy remain poorly explored.
Here, we report the identification of novel, non-protein-coding
TAL1 target genes, implicating microRNA genes as part of the
transcriptional network downstream of TAL1 that may be
putatively involved in its oncogenic properties.
To identify a TAL1-dependent microRNA gene expression

profile, we ectopically expressed TAL1 in the TAL1-negative
T-ALL cell line P12 and performed low-density array analysis (see
Supplementary Data online for materials and methods). From 204
detected microRNAs (out of 372 analyzed), we identified eight
whose expression changed significantly upon TAL1 overexpres-
sion (Figure 1a and Supplementary Tables 1 and 2). Subsequent
validation was performed by quantitative PCR analysis of each
microRNA after enforcing or silencing the expression of TAL1. This
allowed us to confirm the expected TAL1-mediated regulation for
five microRNAs: namely, miR-135a, miR-223 and miR-330-3p as
being upregulated by TAL1; and miR-146b-5p and miR-545 as
being downregulated (Figures 1b–f). The three remaining micro-
RNAs were excluded from subsequent analyses, as we stringently
considered only those genes to be validated whose expression
was regulated in the predicted manner upon both TAL1
overexpression and silencing (data not shown).
Next, we evaluated whether the validated microRNAs were

direct targets of TAL1 in T-ALL cells. For this purpose, we
scrutinized publicly available TAL1 ChIP-seq data (GEO accession
number GSE29181) for two T-ALL cell lines (JURKAT and
CCRF-CEM) and two primary T-ALL samples4 for the presence of
TAL1-binding peaks up to 10 kb upstream of the transcription start
site of each microRNA gene. We identified one peak in a putative
promoter region for miR-146b (Supplementary Figure 1a), sug-
gesting that this gene may be a transcriptional target of TAL1.
Furthermore, two peaks were observed upstream of miR-223
transcription start site (Supplementary Figure 1b). To confirm
these findings, we performed TAL1 ChIP-quantitative PCR in
JURKAT and CCRF-CEM cells using primers designed for the

genomic areas covered by the two peaks in the miR-223 locus. We
confirmed that there is more than twofold enrichment, as
compared with a mock ChIP performed against fibrillarin, in the
amplified area within 3.5 kb upstream of the miR-223 transcription
start site (Figure 1g). These results indicate that miR-223 is a direct
target of TAL1 in T-ALL. Interestingly, TAL1 appears to bind to a
previously described region containing a conserved proximal
genomic element with possible binding sites for the transcription
factor C/EBP.9 We did not find evidence from the available TAL1
ChIP-seq data for direct binding of TAL1 to the remaining microRNA
genes, suggesting that miR-135a, miR-330-3p and miR-545 are
indirectly regulated by TAL1, at least in the T-ALL cells analyzed.
Interestingly, analysis of microRNA gene expression profiles in

different T-ALL subsets8 revealed that TAL/LMO primary samples
(integrating Sil-Tal1þ and LMOþ cases, which frequently express
high TAL1 levels) display higher levels of miR-223 (P¼ 0.035) and
tend to express lower levels of miR-146b-5p (P¼ 0.092) than other
T-ALL cases (Supplementary Figure 2). In line with these
observations, miR-223 appears to follow the same pattern of
expression along normal human thymocyte development as
TAL1,10 with high levels in CD34þ T-cell precursors and sharp
downregulation in more differentiated subsets (Supplementary
Figure 3a). A similar pattern was observed for miR-135a
(Supplementary Figure 3b), in agreement with the notion that
TAL1 positively regulates both genes. In contrast, miR-146b-5p is
clearly upregulated in the double-positive to single-positive
transition and is amongst the most upregulated microRNAs in
mature, single-positive thymocytes.11 The fact that miR-146b-5p
levels associate with thymocyte maturation (Supplementary
Figure 4) is in agreement with a model whereby TAL1 over-
expression during leukemogenesis inhibits miR-146b-5p and
promotes T-cell developmental arrest.
Data from the analysis of congruent putative interactions

between known TAL1-regulated protein-coding genes and the
validated microRNA genes are in line with the notion that the
latter could be part of downstream networks collaborating in
TAL1-mediated leukemogenesis (Figure 2). Indeed, most TAL1-
upregulated genes that have 30-UTRs predicted as targets for the
TAL1-downregulated miR-146b-5p and -miR-545 have a known or
putative oncogenic function (Figure 2a). For example, CD53 was
shown to protect JURKAT cells from apoptosis, PDE3B appears to
be involved in glucocorticoid resistance in CEM cells and ETS-1
participates in the T-cell maturation arrest mediated by TLX genes
in T-ALL (see Supplementary Table 3 for details and references).
Interestingly, the T-ALL-associated oncogene MYB was recently
shown to be a direct TAL1 target forming a feed-forward loop
involved in the TAL1-dependent leukemogenic program.4 Our
bioinformatics analyses now raise the possibility that TAL1 may
reinforce MYB upregulation by inhibiting the expression of miR-
545. Also of note, three of the four genes (KRT1, Rapgef5, JAZF1)
with predicted 30-UTR seed sequences for both miR-146b-5p and
miR-545 are associated with protumoral functions (Supplementary
Table 3). In sharp contrast, the TAL1-downregulated genes that are
predicted targets for miR-135a, miR-223 and miR-330-3p display a
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clear abundance in (putative) tumor suppressors or in genes
whose functions are compatible with antitumoral effects (Figure 2b
and Supplementary Table 4). This is evident, for instance, in the
case of the four genes potentially regulated by two microRNAs, in
which only one has an oncogenic role (IGF1R) and three likely have
tumor-suppressive functions (SRGAP3, TOX, LRP12).
Circumscription of our analysis to validate target genes of each

microRNA, followed by gene set enrichment analysis showed

an enrichment in biological processes related to inflammation
(e.g., NF-kB signaling pathway and IL1/IL1R signaling pathway)
and cancer (e.g., pathways in cancer), as detailed in
Supplementary Table 5 and Supplementary Table 6. Interestingly,
the validated targets for the TAL1-downregulated gene of miR-
146-5p include IRAK1, TRAF6 and NFKB1 (all of which are involved
in chronic inflammation), as well as the oncogene KIT
(Supplementary Table 5 and Supplementary Figure 5). In contrast,

Figure 1. Identification of TAL1-regulated microRNA genes. (a) Heat map of differentially expressed microRNAs upon TAL1 overexpression.
MicroRNAs were hierarchically clustered (rows, microRNAs; columns, experiments). See Supplementary Table 2 for fold-difference values.
Levels greater than or less than the mean are shown in shades of red or blue, respectively. (b–f ) Quantitative PCR (qPCR) validation of
microRNA expression modulation by TAL1. Relative expression of hsa-miR-135a (b), hsa-miR-223 (c), hsa-miR-330-3p (d), hsa-miR-146b-5p (e),
and hsa-miR-545 (f ) normalized to SNORD38B in T-ALL cell lines with overexpression (left) or knockdown of TAL1 (right). The bars represent
the mean±s.d. of three independent replicates. siNT—non-targeting siRNA (g) TAL1 ChIP-qPCR in T-ALL cell lines. The occupancy by TAL1 of
the genomic regions 9.2 and 3.5 kb upstream of miR-223 transcription start site was analyzed by ChIP-qPCR in JURKAT and CCRF-CEM cells.
The promoter region of LCP2 was used as positive control for TAL1 binding, and a random intergenic region was used as negative control.
TAL1 binding is expressed as the fold enrichment relative to a mock ChIP performed against fibrillarin. The error bars represent the 95% CI of
the fold enrichment. The horizontal line denotes the fold enrichment detection for the negative control.
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miR-330-3p, upregulated by TAL1, reportedly targets E2F1 and
CDC42, both of which are described to promote apoptosis in
different cell types, including Jurkat cells. MiR-223 is a myeloid-
specific microRNA essential for normal neutrophil maturation, and
responsible for granulocyte differentiation and negative regulation
of progenitor proliferation via MEF2C downregulation.12 In
agreement, miR-223 functions as a tumor suppressor in acute
myeloid leukemia,13 and appears to be repressed in chronic
myeloid leukemia, allowing for the expression of MEF2C.14 In
contrast, miR-223 is frequently overexpressed in T-ALL, cooperating
with NOTCH1 to accelerate the onset of disease in a Notch-induced
leukemia mouse model. This effect was proposed to be due, at
least in part, to inhibition of FBXW7, a negative regulator of Notch
signaling.8 However, FBXW7 targets the degradation of other
oncogenic proteins, such as c-Myc and mTOR, and the expression
of miR-223 is significantly elevated in TAL1-positive T-ALL cases
(Supplementary Figure 2), suggesting that the oncogenic function
of this microRNA may extend beyond mere collaboration in Notch-
induced leukemia. Moreover, the proleukemic role of mir-223 may
be also achieved by downregulating targets such as E2F1, FOXO1,
RHOB or EPB41L3, which have been associated with induction of
apoptosis and/or have tumor-suppressive roles (Supplementary
Table 5). Interestingly, the intriguing possibility that miR-223 may
potentially act downstream of TAL1 to negatively regulate MEF2C,
recently identified as an oncogene in T-ALL,15 would be in line with
the observations that TAL1 and MEF2C tend to segregate, defining
two discrete T-ALL subsets.15

In summary, our studies identify and validate for the first time
a small set of TAL1-regulated microRNA genes whose role may
be important in the context of hematopoiesis and T-cell
leukemogenesis.
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Figure 2. Potential participation of the newly identified TAL1 microRNA target genes in TAL1-mediated leukemogenic pathways. Cross-
examination of congruent TAL1-regulated protein-coding and miRNA genes was performed as described in Supplementary Methods.
(a) Downregulated miRNAs and their predicted target genes previously shown to be upregulated by TAL1. (b) Upregulated miRNAs and their
predicted target genes previously shown to be downregulated by TAL1. Genes are color-coded according to their reported function in the
context of cancer, as detailed in Supplementary Tables 3 and 4. ‘Tumor suppressor-like’: bona fide or putative tumor suppressors or genes that
have proapoptotic, antiproliferative or prodifferentiating roles; ‘Oncogene-like’: bona fide or putative oncogenes or genes that have
antiapoptotic or proliferative roles. ‘Undetermined’: genes with undetermined function or whose role in cancer remains unknown.
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