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A novel method of transcriptome
interpretation reveals a quantitative
suppressive effect on tomato immune
signaling by two domains in a single
pathogen effector protein
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Abstract

Background: Effector proteins are translocated into host cells by plant-pathogens to undermine pattern-triggered
immunity (PTI), the plant response to microbe-associated molecular patterns that interferes with the infection
process. Individual effectors are found in variable repertoires where some constituents target the same pathways.
The effector protein AvrPto from Pseudomonas syringae has a core domain (CD) and C-terminal domain (CTD) that
each promotes bacterial growth and virulence in tomato. The individual contributions of each domain and whether
they act redundantly is unknown.

Results: We use RNA-Seq to elucidate the contribution of the CD and CTD to the suppression of PTI in tomato
leaves 6 h after inoculation. Unexpectedly, each domain alters transcript levels of essentially the same genes but to
a different degree. This difference, when quantified, reveals that although targeting the same host genes, the two
domains act synergistically. AvrPto has a relatively greater effect on genes whose expression is suppressed during
PTI, and the effect on these genes appears to be diminished by saturation.

Conclusions: RNA-Seq profiles can be used to observe relative contributions of effector subdomains to PTI suppression.
Our analysis shows the CD and CTD multiplicatively affect the same gene transcript levels with a greater relative impact
on genes whose expression is suppressed during PTI. The higher degree of up-regulation versus down-regulation
during PTI is plausibly an evolutionary adaptation against effectors that target immune signaling.
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Background
Plants are regularly exposed to pathogens and have
evolved complex immune responses to combat them. In
one response, plants detect microbe-associated molecular
patterns (MAMPs), signatures of potentially pathogenic
microbes, and activate pattern-triggered immunity (PTI)
[1–3]. PTI is associated with the generation of reactive
oxygen species, activation of MAP kinase cascades, callose
deposition at the cell wall, and extensive transcriptional

reprogramming [4–7]. Collectively, these responses pre-
vent the deployment of some pathogenicity factors,
suppress bacterial growth, and communicate the presence
of a microbial threat to neighboring tissues [8, 9].
Plants use single-pass transmembrane extracellular

pattern recognition receptors (PRRs) to detect MAMPs
[10]. For example, in the interaction between tomato
and the bacterial pathogen Pseudomonas syringae pv.
tomato, the PRRs FLS2 and Bti9 activate PTI in response
to the flagellin epitope flg22 and an unknown MAMP,
respectively [11–14]. Another epitope of flagellin, flgII-* Correspondence: jnw29@cornell.edu; gbm7@cornell.edu
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28, also triggers PTI in tomato and has a major effect on
the immunity-associated transcriptome [4, 15, 16].
Pathogens have evolved sophisticated systems to

disarm and overcome PTI [1, 17]. P. syringae pv. tomato
DC3000 is a widely-used model bacterial pathogen that
utilizes a type III secretion system (T3SS) to translocate
effector proteins from its cytoplasm to the host cyto-
plasm [18, 19]. Likely because of the complex nature of
plant immune signaling, DC3000, other P. syringae
strains and plant pathogens in related genera use highly
variable type III effector (T3E) arsenals; DC3000, for ex-
ample, is known to express and translocate at least 29
effector proteins [20, 21]. Several of these effector
proteins target host complexes with known functions
in immune signaling cascades [22, 23]. While several
bacterial MAMPs are detected by tomato, flagellin
has been shown to be the major elicitor of PTI in the
interaction between DC3000 and tomato [4, 24].
Two DC3000 effector proteins, AvrPto and AvrPtoB,

are especially effective at interfering with PTI [25]. An
early study of their effect on gene expression using a
tomato DNA microarray revealed they have partially
overlapping effects and specifically induce genes asso-
ciated with host ethylene production and response
[26]. It is now known that each of these effectors tar-
gets the immune receptor complex containing FLS2
and a co-receptor BAK1 [27–29]. By doing so, they
effectively suppress the expression of many of the
host genes which are induced during PTI in response
to flagellin; this subset of genes is referred to as
flagellin-induced, repressed by effectors (FIRE genes)
[4]. A DC3000ΔavrPtoΔavrPtoB mutant reaches lower
population levels compared with wild type DC3000 in
tomato leaves, and this reduced growth is alleviated
upon one of two conditions: the re-introduction of
either effector, or the deletion of the flagellin gene,
fliC [30, 31]. Taken together, these observations indi-
cate that AvrPto and AvrPtoB reduce the flagellin-
induced PTI response by interfering with host tran-
scriptional activation in response to FliC, and that
this interruption of immune signaling is important for
pathogen growth. The present study extends this
research by investigating the contribution of specific
domains of AvrPto to the suppression of the flagellin-
induced transcriptome.
AvrPto is an 18 kilodalton protein which contains

two conserved virulence-promoting domains that have
been shown to contribute multiplicatively to pathogen
growth [32, 33]. One, hereafter referred to as the core
domain (CD), spans amino acid residues 31 to 124
(Fig. 1a), and its crystal structure has been solved
[34]. This domain interferes with the FLS2-BAK1
signaling complex directly [25]. In consequence, it inhibits
mitogen-activated protein kinase (MAPK) signaling

downstream of FLS2 and promotes pathogen growth;
these activities are abolished in AvrPto proteins having a
single amino acid substitution, isoleucine-96-alanine
(I96A), in the CD [32]. MAPKs have been directly
implicated in defense-related transcriptional control in
Arabidopsis and tomato [35–37]. The second AvrPto
domain, which is not part of the solved structure of
AvrPto and which is dispensable for CD function is the C-
terminal domain (CTD) that spans amino acid residues
146 to 164. The host target of this domain is unknown,
but the domain is phosphorylated at several sites, with the
phosphorylation of serine-147 and serine-149 being
critical for promoting pathogen growth [38]. An AvrPto
protein with alanine substitutions in both of these residues
(S147A/S149A; referred to as 2xA) eliminates the contri-
bution of this domain to pathogen growth during infec-
tion [32]. A major difference between the CD and the
CTD is that only the former has been shown to inhibit
MAPK signaling downstream of FLS2 [32].
Both domains are also associated with separate

effector-triggered immunity (ETI) reactions. ETI is a
more powerful defense response than PTI which
includes localized programmed cell-death (PCD) in
response to the detection of T3Es or their effects, or
other pathogen molecules, by resistance (R) proteins
[39]. This response effectively stops the pathogen at
the expense of host tissue, and because of its severe
phenotype of tissue collapse, can be useful for dem-
onstrating effector delivery or function. The I96A
substitution in the CD eliminates the ability of the
host R proteins Pto kinase and Prf to coordinate and
cause ETI [40]. Similar to I96A, the 2xA mutation of
the CTD abolishes activation of an ETI response, but
in tobacco instead of tomato and conferred by the putative
R protein Rpa, that is distinct from Pto [32, 41]. This
observation means that the two domains are recognized
differentially by different protein-protein interactions in
nature, thus further strengthening the notion that they
behave like separate entities.
RNA-Seq is a powerful approach for monitoring

transcriptome changes in response to stimuli [42–44].
The method is used to discover changes in transcript
abundance that occur in specific developmental states
and responses to various stimuli. Recently, RNA-Seq
has been used to determine the transcriptional repro-
gramming that occurs in plant cells in response to
PTI and ETI, and the changes to the PTI-induced
transcriptome that bacteria make to facilitate infection
[4, 6]. Here, we take advantage of a recently devel-
oped DC3000 strain, D29E, which has all known
T3E-expressing genes deleted [45], to determine the
individual contributions of the AvrPto CD and CTD
on the host transcriptome at an early stage of the
infection process.
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Results
Use of the effector-deficient Pst strain D29E for monitoring
AvrPto effects on the host transcriptome
To determine whether the activities of the AvrPto CD
and CTD can be observed using strain D29E, we infil-
trated D29E bacteria expressing plasmid-encoded avrPto
into speck-resistant tomato leaves expressing Pto or into
tobacco leaves expressing Rpa. We observed ETI-
associated PCD in Pto-expressing tomato when the CD
was unaltered and in tobacco when the CTD was
unaltered (Fig. 1b). Forms of AvrPto with a substitution in
the CD (I96A) or the CTD (2xA) did not elicit PCD in
tomato or tobacco, respectively. An AvrPto variant carry-
ing both CD and CTD substitutions mentioned above,
hereafter referred to as CD−/CTD−, was unable to elicit
PCD in leaves of either plant species. Equal amounts of
AvrPto and the variants were expressed in D29E,
indicating that the differences in these reactions are
not due to a deficiency in effector abundance (Fig. 1c).
The same constructs used in this study had been pre-
viously observed to be both produced and secreted to
similar levels in vitro [32].
To examine the impact of the two domains on the

transcriptome in susceptible tomato leaves we infiltrated
the P. syringae strains expressing one of the four variants
of AvrPto individually into tomato leaves lacking a func-
tional Prf, Rio Grande-prf3 (RG-prf3), and harvested
tissue 6 h later. The strains did not exhibit differential
growth at this timepoint (Additional file 1: Figure S1).
The CD−/CTD− variant was used as a negative control

for domain activity as it does not affect PTI responses
associated with AvrPto and does not contribute to
pathogen growth in RG-prf3 tomatoes. Four independ-
ent replicated experiments were performed and cDNA
libraries were developed from each for RNA-Seq analysis
(Table 1). Initial analyses of the data showed clear
similarities among the four replicates within treat-
ments and similar quality of all the libraries (Additional
file 2: Table S1). Therefore, data from all four replicates
were used for subsequent analysis.

D29E induces a PTI response that is suppressed by AvrPto
We first verified that our transcriptome profiles reflected
induction of PTI and not ETI. For this, we used a set of
6 marker genes identified previously [46] whose expres-
sion is induced specifically during PTI or ETI. Analysis
of these marker genes indicated that D29E inoculation
induced PTI only, and that the presence of wild type
AvrPto suppressed the expression of PTI-associated
genes (Fig. 2a). There was a small, statistically significant
increase in the ETI associated gene Solyc04g072280 for
D29E delivering the CD−/CTD−, but the RPKM levels
used in the comparison are either low or zero, WT
AvrPto does not stimulate any differential response for
this gene, and the other two ETI marker genes clearly
show no ETI induction.
We next investigated whether the RNA-Seq profiles

indicated D29E delivering the CD−/CTD− activated PTI
more broadly and whether wild type (WT) AvrPto gen-
erally suppressed the expression of PTI induced genes.
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Fig. 1 Delivery and expression of AvrPto and AvrPto variants. a A schematic of AvrPto showing the location of previously described alanine substitutions
which specifically inactivate the functional domain they are in. b Hypersensitivity response in leaves of S. lycopersicum Rio Grande-PtoR (RG-PtoR) and
Nicotiana tabacum L. c.v. W38 (W38). c Western blots showing protein abundance of AvrPto in D29E using a monoclonal anti-FLAG primary antibody
with AvrPto proteins in part B modified to have a C-terminal FLAG epitope in the same plasmid backbone and with the same promoter. An anti-avrPto
antibody used previously [31] detected non-specific proteins around 15 kDa, but gave similar results
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A previous RNA-Seq analysis of the 6 h post-inoculation
PTI response used the following criteria to limit the
number of analyzed genes, and we refer to these genes
as being ‘strongly up-regulated’, or ‘strongly down-
regulated’: a) a two-fold or greater change in transcript
abundance, up or down, measured in reads per kilobase
per million (RPKM), b) a p-value corrected for multiple
testing using the false discovery rate less than 0.05, and c)
an average of 3 RPKM or greater in at least one treatment
[4]. Using these criteria, we observed that over 90 % of the
genes strongly up-regulated in the previous study by flgII-
28, a flagellar PAMP, were strongly up-regulated by D29E
delivering the inactivated AvrPto, showing that, as ex-
pected, PTI is strongly induced in the new transcriptome
(Fig. 2b, Additional files 3 and 4).
Another 2314 genes were strongly up-regulated by

D29E in addition to those previously found to be in-
duced in response to flgII-28 [4]. In our earlier study,
flgII-28 induced a similar number of genes as non-
pathogenic bacteria, and those bacteria were infiltrated
using a higher titer than in the present study (approxi-
mately10 times the CFU/mL compared to that used
here). The additional induced genes we observed are
likely due to either the higher statistical power because
of our use of four replicates, the inoculation method
used (syringe infiltration used previously versus vacuum
infiltration here), or to unique characteristics of D29E, a
highly modified pathogen, instead of a non-pathogen.
A previous study also defined a set of genes that are

flagellin-induced, repressed by effectors (FIRE genes;
[4]). We expected that a similar set of genes might be
found by taking the set of genes that are strongly up-
regulated during infection with D29E and asking which
of these genes are down-regulated in the presence of
AvrPto. Approximately 70 % of the original FIRE genes
were found to be AvrPto-associated FIRE genes (Fig. 2c,
Additional file 3). The original FIRE gene set also
includes activity from AvrPtoB, another type III effector,
and this additional activity might account for the
remaining genes. The AvrPto-associated FIRE genes from
the new set in this study also include 845 additional genes
not included in the original FIRE set, perhaps a result of
the increased sensitivity seen in the comparison between

flgII-28 and D29E; if more PTI-associated genes are
strongly up-regulated in the new transcriptome, more
PTI-associated genes can be brought back below the
threshold for strong induction by effector activity.

The CD and CTD of AvrPto affect expression of the same
host genes
Using the same criteria for strong induction described
above, genes were identified that are strongly up- or
down-regulated by AvrPto, the CD or the CTD relative
to the CD−/CTD−. As expected, almost all genes that are
strongly up- or down-regulated by either domain are
similarly regulated by the WT (Fig. 3a and b, Additional
file 3). The CTD and CD also show a similar but unex-
pected pattern, with 96 % of genes that are strongly up-
or down-regulated by the CTD of AvrPto are also
strongly up- or down-regulated by the CD, respectively.
However, for both up- and down-regulated genes, the
CD affected about three-fold and two-fold more genes
that meet our cutoff for strong regulation, respectively.
To investigate if this difference between the domains
might be due to different signaling pathways being
affected, a GO term analysis of genes down-regulated by
the WT, CD, and CTD was performed. Virtually the
same statistically overrepresented GO terms were found
to be associated with each of these domains at similar
rates, providing evidence that the two domains affect
expression of essentially the same host genes (Fig. 3c,
Additional file 5). Thus, we surmised that the same
signaling pathways are affected by both domains, but
that these domains might additively contribute to PTI
suppression.

The CD affects expression of the same host genes as the
CTD but to a greater degree
Because of the highly similar nature of our gene sets, we
hypothesized that the additional genes affected by the
CD compared to the CTD are an effect of more genes
meeting the statistical cutoffs for strong induction, and
not because of an additional set of genes being separately
regulated by the CD. We therefore wished to analyze the
relative induction strength of the CD compared to the
CTD for all genes significantly regulated by either domain.

Table 1 Treatments used for RNA-Seq analysis of PTI suppression by physical domains of AvrPto

Treatment Concentration Comment Average total reads
(in millions)

Average reads mapped
(in percent)

Mock 10 mM MgCl2, 0.02 % silwet No bacteria 15.2 93.1

D29E pCPP45::avrPto OD600 0.02 Wild-type 15.6 93.6

D29E pCPP45::avrPto(I96A) OD600 0.02 Core domain (CD) inactivated 16.3 94.1

D29E pCPP45::avrPto(2xA)a OD600 0.02 C-terminal domain (CTD) inactivated 16.6 94.3

D29E pCPP45::avrPto(I96A, 2xA)a OD600 0.02 ‘CD−/CTD−‘ 14.9 93.8
a2xA represents the presence of both S147A and S149A
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To perform this analysis, it was necessary to use a method
that compares the relative induction values of all genes
that meet our criteria for strong induction as a group, thus
allowing us to see if there is a trend in induction values
close to our cutoff of two-fold change where the CD
meets the cutoff, but not the CTD.

A method was therefore devised where induction
ratios were plotted as coordinates on a two dimensional
chart with logarithmic axes (see Methods for details). A
strong correlation was found between the induction
values relative to the CD−/CTD− mutant for the set of
genes that meet the criteria for significant regulation
changes for either domain (Fig. 4a). A simple power
function of y = 0.99x1.5, where x is the induction by the
CTD and y is the induction by the CD, was derived from
a linear regression analysis performed on the inductions
when the logarithm is taken of each coordinate, also
known as a log transformation (see Methods). This
regression has an R2 value of 0.96 for the log base 2
transformed data set without further modification, indi-
cating a strong correlation. This correlation is true for
both up- and down-regulated genes, showing that the
CD is more potent to the same quantitative level than
the CTD for all genes showing strong regulation in
either of these sets. Therefore, the CD and CTD affect
the same genes, but the CD shows a greater effect in
this dataset.

GO process term CD% CTD % WT %

Response to biotic 
stimulus

38.3% 36.0% 37.6%

Response to hormone 
stimulus

41.7% 31.7% 39.9%

Defense response 36.8% 33.9% 35.7%

Response to wounding 23.6% 22.6% 22.0%

Cellular aromatic 
compound metabolic 
process

27.4% 20.4% 25.9%

Up - WT Up - CTD

Up - CD

Down - WT Down - CTD

Down - CD

BA

C

Fig. 3 The C-terminal domain regulates a subset of the genes
regulated by the core domain. a Venn diagram showing the number
of genes that are significantly down-regulated, relative to D29E
expressing the CD−/CTD−, by D29E expressing AvrPto (WT), AvrPto(2xA)
(CD), or AvrPto(I96A) (CTD). b Venn diagram including the number of
genes that are significantly up-regulated. c The top five defense-related
gene ontology (GO) terms called from the set of genes down-regulated
by AvrPto relative to the CD−/CTD−, calculated using the ‘GO term
enrichment analysis’ tool with the False Discovery Rate metric [59].
Shown are the percentages of genes belonging to each GO term out of
the total genes in that set for those significantly down-regulated by the
each domain or the WT. Adjusted p-values for all GO terms shown are
below 0.05 for all treatments

Up - flgII-28 Up - CD-/CTD-B
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*
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Fig. 2 D29E induces PTI-associated gene expression that is suppressed
by AvrPto. a Expression data for ETI- and PTI-specific marker genes
described previously [6]. Gene expression values are RPKM averages of
the four independent trials, and the error is one standard deviation
based on those four replicate experiments. An asterisk indicates that
the gene expression level is significantly different from a mock
inoculation (p < 0.05) based on p-values corrected for multiple testing
using the false discovery rate. b Venn diagram showing the number
of genes whose transcript abundance is significantly increased in
response to flgII-28 or D29E expressing CTD−/CD−, or both [4]. The
criteria used are a positive-fold change of 2 or greater, an average
RPKM of 3 or greater in at least one treatment, and a p-value of 0.05 or
less. These criteria are the same used previously [4]. c Venn diagram
including genes either meeting the criteria for a FIRE gene as described
previously, or induced by D29E expressing CTD−/CD− and then
relatively repressed by D29E expressing AvrPto using the same
statistical criteria as for the FIRE genes [4]
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This same trend that was observed between the CD
and CTD was also observed between WT AvrPto and
the individual domains (Fig. 3a and b). To test whether

reduced induction values are a major reason why fewer
genes meet the statistical cutoff for the individual
domains compared to the WT, the genes up- and down-
regulated by the WT protein were plotted on a two
dimensional chart (Fig. 4b). Each gene is plotted three
times for comparison, one for each of WT, CD and CTD
induction values. The induction values are all relative to
the CD−/CTD- mutant. Here, both domains up- and
down-regulate in the same direction as the WT, but to a
generally lower degree. The CD is generally closer than
the CTD to the WT in induction, although the reso-
lution between the CD and CTD is reduced at lower
WT induction values. Therefore, WT AvrPto, the CD,
and the CTD each affect expression of the same genes
but with different potencies.

The product of the inductions by the CD and CTD
approximates the WT induction for down-regulated genes
Since both the CD and CTD of AvrPto regulate genes as
if they are weaker versions of the WT, we hypothesized
that the addition of inductions of the two domains might
approximate the WT induction value. Since the do-
mains’ induction values relative to the CD−/CTD− have
a linear relationship when plotted in a logarithmic chart,
we propose that log[CD] + log[CTD] is the most appro-
priate method for combining their induction values,
which can be re-written log[CD*CTD] (see Methods).
When the induction values for the CD and CTD are

multiplied together and plotted against the WT value for
each gene using logarithmic axes, the values for the wild
type protein seem to approximate the average value of
the simple combination of induction for each domain,
but only for genes down-regulated by WT AvrPto
(Fig. 5a). A local average (includes neighboring genes in
both the up- and down-regulation direction) of each
product of the two domains for genes down-regulated
by WT AvrPto returns an average value close to the WT
for all frames, demonstrating that the average product of
the CD and CTD induction values is close to the WT
(Additional file 6: Figure S2). However, the up-regulated
induction values of the WT are not approximated by the
product of induction values of each domain; instead, the
product overestimates the WT considerably and with
increased severity for higher WT gene induction
values (Fig. 5a).
This inconsistency between the up- and down-

regulated genes is surprising since the individual do-
mains appear to fit a single regression. One common
test to show if a regression or model is appropriate is to
look at the distribution of differences between the model
and an observation, commonly referred to as residuals.
If the differences are normally distributed, colloquially
known as a Bell curve where two standard deviations ac-
count for 95 % of observations, or lognormal in the case
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of logarithmically distributed data, it is evidence for the
validity of the model. We simulated a lognormal distri-
bution for the up- and down-regulated sets of the data
using the standard deviation and median values for the
underlying normal function (statistics done on the log
transformed data set), and used the same number of
data points for each set to also get a sense for typical
variance with our data sets up- or down-regulated by
WT (n = 1471 and 1273, respectively) (Fig. 5b). For the
set strongly up-regulated by WT, when non-log trans-
formed, the median is 1.34 fold and a standard deviation
is 1.23 fold. For the set strongly down-regulated by WT,
they are 1.03 fold and 1.30 fold, respectively. The higher
median value for the up-regulated set reflects the
overestimation of the model, where the median value of
approximately 1 for the down-regulated set reflects its
accuracy. Both histograms show a distribution consistent
with a lognormal distribution for the difference between
the simple model and the WT. In the up-regulated genes
there is a slight over-abundance of genes in the middle
of the curve, and a mild skew towards higher values.
Additionally, we have included a probability plot analysis
which supports the interpretation here (Additional file 7:
Figure S3). We were not able to determine from this
dataset if the CD or CTD contributed more to the differ-
ence seen between WT and the model for the up-
regulated genes. Overall, these observations are consistent
with the method of analyzing relative induction values
logarithmically, and suggest the difference between the
model and observation may be naturally occurring and
not an artifact. We therefore searched for a possible cause
of the asymmetry in Fig. 5a.

AvrPto has a greater proportional impact on genes that
are down-regulated during PTI
We hypothesized that the overestimation by the simple
multiplicative model seen in Fig. 5a of genes up-
regulated by WT AvrPto reflects a saturation effect
(where the values are influenced by a theoretical limit
they cannot exceed). This hypothesis is based on Fig. 4a
where the up- and down-regulated gene sets for the CD
and CTD follow the same trend regardless of the direc-
tion of regulation, up or down. A saturation effect for
only up-regulated genes could potentially address the
imbalance seen between the up- and down-regulated
genes seen in the WT, but not the domains individually.
At the early time point 6 h, it was shown previously

[4] that during a successful infection with DC3000 the
number of genes that meet the criteria for up- and
down-regulation is decreased relative to a non-pathogen,
and also shows more than twice the number of genes
that are up-regulated compared to down-regulated. This
supports the idea that effector proteins in DC3000, in-
cluding AvrPto, alter the transcriptome to appear closer
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multiplying the inductions relative to the CTD−/CD−. Each gene is
plotted 2 times with the same X coordinate and a variable Y coordinate
based on identity, indicated by color. b Histograms of residual values of
WT compared to the CD−/CTD− compared to the model combining the
effects of both domains (gray). Histograms are binned according to
value in 2^(1/16) sized bins. A simulated random lognormal distribution
is shown in red, and contains the same number of data points as the
set plotted from the transcriptome. The sets plotted are either those
in Fig. 5a down-regulated (upper) or up-regulated (lower) by AvrPto.
The sum of bin heights has been set equal to 1. Probability plots are
included in Additional file 7: Figure S3 for both normal and
log-normal distributions
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to a mock inoculation state, and also that PTI up-
regulates genes more strongly than it down-regulates
genes. We hypothesized, specifically, that the mock
inoculation state represents a theoretical limit for tran-
script level modifications for effector proteins which
block a signal that activates defense signaling.
To test our hypothesis, we used the same plotting

strategy, but used a comparison of the induction values
of D29E delivering the CD−/CTD− mutant compared to
a mock inoculation (representing PTI induction), then
compared these to D29E delivering WT AvrPto com-
pared to a mock inoculation (Fig. 6a, Additional file 8:
Figure S4). These show that for nearly all genes signifi-
cantly up- or down-regulated by PTI, AvrPto brings
their induction value closer to a mock inoculation value.
AvrPto seems to target mostly, if not totally exclusively,
genes whose expression levels are modified by PTI. A
difference can be seen between the genes that are up-
and down-regulated here: for PTI up-regulated genes,
the average slope of the AvrPto-modified induction
values appears to be closer to PTI (slope = 1) than for
the down-regulated genes, where the change in apparent
slope is more severe. This difference in shape shows that
AvrPto has a proportionally greater effect up-regulating
genes that are down-regulated during PTI.
In support of the saturation hypothesis are the number

of genes that meet the statistical criteria for strong
induction with and without CD and/or CTD activity
(Fig. 6b, Additional file 9). Relative to a mock inocula-
tion, D29E delivering the CD−/CTD− mutant up-
regulates 4450 genes, 2270 (51 %) of which are still
significantly up-regulated with AvrPto activity. However,
there are 2847 genes belonging to the corresponding
down-regulated set, of which only 466 (16 %) are still
down-regulated upon delivery of AvrPto. The down-
regulated set of genes in this case is made of genes that
are up-regulated by AvrPto relative to the CD−/CTD−

mutant, the same set where we see a potential saturation
effect. This ability of AvrPto to bring over 80 % of the
genes below our standard for strong regulation supports
our hypothesis.
If saturation is preventing AvrPto from further up-

regulating genes that are down-regulated by PTI, and
the limit of transcriptional modifications by AvrPto
result is the mock-inoculation state, then we should see
few or no genes that are down-regulated during PTI
increased past a mock- inoculation state when AvrPto is
delivered. In Fig. 6a only a few PTI down-regulated
genes have their transcript levels modified above that of
a mock state by AvrPto. However, the combined effect
of the two domains relative to a mock infiltration,
performed similarly to Fig. 5a, where the differences
relative to the CD−/CTD− are multiplied, would result in
20 % of the genes down-regulated by PTI (induction 0.5

or less) being instead up-regulated compared to a mock
state (Fig. 6c). A similar pattern is not found for the
genes up-regulated by PTI, which instead seem to have
the same general pattern in degree and variance for the
multiplied product of the relative induction values for
the CD and CTD.
The genes that are down-regulated during PTI are the

same genes that are up-regulated by AvrPto relative to
the CD−/CTD− variant, meaning that for the same genes
for which we observe a putative saturation effect of the
WT induction values relative to the CD−/CTD− via the
multiplication of the two domains’ induction values, we
also observe a putative saturation effect of the WT in-
duction values relative to a mock infiltration. We con-
clude that our data set is consistent with the hypothesis
that a mock inoculation serves as a theoretical limit for
AvrPto modifications to the PTI-induced transcriptome
at 6 h, that PTI proportionally more strongly up-
regulates than down-regulates genes in response to
DC3000 PAMPs, and that the modifications to the PTI-
induced transcriptome by WT AvrPto in this dataset are
saturated only for genes down-regulated during PTI.
Therefore, AvrPto has a stronger proportional effect on
genes down-regulated during PTI, and the genes up-
regulated during PTI are more resistant to effector me-
diated modifications of the PTI-induced transcriptome.

Discussion
We used the recently developed DC3000 derivative
strain D29E to investigate how the CD and CTD affect
host gene expression at an early stage of the infection
process. Previously we had used a DC3000 strain having
deletions in both avrPto and avrPtoB to study the com-
bined effect of these effectors, but the 27 other actively-
delivered effectors of this strain could obscure host
responses as other effectors have been shown to target
PTI signaling complex proteins or downstream signaling
[1]. Supporting this idea, we found more genes affected
by a single domain of AvrPto here than by the deletion
of two effector genes, including avrPto. We did notice,
however, that D29E is a stronger inducer of PTI than
even non-pathogenic Pseudomonas strains, and it
could be that some activity of the T3SS is further
inducing PTI.
The CD and CTD of AvrPto were found to contribute

multiplicatively to the suppression of virtually the same
PTI-induced genes. This is true even though the two do-
mains are responsible for triggering separate hypersensi-
tive responses putatively through different R genes,
suggesting that they have distinct host virulence targets
and mechanisms. Furthermore, only the CD has been re-
ported to inhibit activation of an early MAPK cascade
[32], which in theory might be expected to result in
different gene induction profiles. However, the two
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domains have been reported to make similar, additive
contributions to bacterial growth during infection of
tomato without other apparent differences, which is
consistent with our findings here [32].
Our initial analysis revealed that the CD strongly

affected the expression of a set of genes in addition to
those strongly regulated by the CTD. Similarly, the WT
strongly affected the expression of a set of genes in
addition to those regulated by the CD. The genes regu-
lated by any form of AvrPto are associated with generally
the same gene ontology terms, further suggesting that
they are involved in the same regulatory pathways. A
plausible explanation for this is that the CD and CTD
affect the same genes but to different magnitudes, and
achieve this by targeting the same signal-transduction
apparatus but at different locations.
To quantify the difference in magnitude, we independ-

ently developed a simple regression analysis method, key
elements of which were first developed in a theoretical
paper and previously applied to microarray data, includ-
ing the multiplying of relative induction values from
partial stimuli [47]. We direct the reader to Konishi
2005 for a detailed theoretical basis of this method. The
regression method enabled us to create a simple linear
regression of log-transformed relative induction values
for the two domains. Using this approach, we found that
by adding together the log effects of the CD and CTD
relative to the CD−/CTD− mutant, the WT could be
approximated for down-regulated genes. We then pre-
sented evidence that the deviation from this trend in the
AvrPto up-regulated genes is potentially the result of a
saturation effect, stemming from a natural imbalance in
the magnitude by which genes are up- and down-
regulated during PTI. Evidence for such an imbalance
was seen in previous studies from our group [4, 6], but
now we can assign a significance to it: the higher
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Fig. 6 AvrPto has a proportionally greater effect on genes down-
regulated during PTI. a Scatterplot where the horizontal coordinate
equals induction by D29E delivering the CTD−/CD− relative to a
mock inoculation without bacteria, representing the PTI-induced
transcriptome. Included are all genes significantly up- or down-
regulated by PTI in this experimental setup. In red are the values for
the same genes when WT AvrPto is delivered. b The number of
genes with significantly altered transcript abundance compared to a
mock infiltration for the CTD−/CD−, CTD, CD and WT. Above the axis
is the number of genes that are strongly up-regulated, and below is
the number of genes that are strongly down-regulated. The number
of genes is written adjacent to the bar. c Scatterplot with all genes
represented in Fig. 6a plotted with the same horizontal coordinate.
Each gene is represented three times. In red are WT AvrPto modifications
relative to a mock infection. In blue are the same genes as red except
the reductions in PTI induction from each domain has been applied
similarly to Fig. 5a. Note that the members lower left quadrants from
Fig. 5a are now in the upper right quadrant here, and those in the
upper right in Fig. 5a are now in the lower left
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magnitude of up-regulation by PTI resists transcriptional
suppression by AvrPto of this set of genes which include
the components of defense considered most important
for pathogen resistance. Multiple T3Es within a single
effector repertoire often appear to redundantly target
the same pathway, but the reason for this has remained
unclear, though it is generally thought to either confer
additional benefits, or that redundancy is somehow
important though individual effectors may be sufficient
[21, 22, 48]. The multiple T3Es that seem to target this
pathway then have potentially evolved to repeatedly
target the set of genes up-regulated during PTI, with
their repeated disruptions providing additional necessary
reductions to the PTI-modified transcriptome.
The host target of the CTD is unknown, but the CTD-

modified transcriptome points towards a role in disrupt-
ing early signaling. The solved structure of AvrPto does
not contain the region of the highly-unstructured CTD,
and it is unknown if these domains interact physically.
The data presented here are highly suggestive that these
domains target the same pathway even though they
seem to be physically, functionally and immunologically
distinct. Furthermore, we find no evidence in this data-
set for domain-specific effects on the transcriptome.
The hypothesis that the CD and CTD target the same

pathway is attractive since the two domains are in the
same polypeptide and simultaneously could disrupt PTI
signaling at or just downstream of the BAK1/FLS2 com-
plex. This is not necessarily the same as having the same
mechanism. For example, if the CD blocks MAPK acti-
vation, while the CTD targets a signaling component for
proteolysis, then similar changes to the transcriptome
might be observed though the mechanisms are different.
Investigations into whether the two domains interact
with the same or different proteins in a PRR-containing
protein complex would provide clarity to how these
domains achieve similar profiles.
There are several effector proteins that are known to

have separate physical domains with distinct properties.
Two domains with different biological activities have
been described for the Salmonella T3E SptP; the GTPase
activating activity causes cytoskeletal rearrangements,
while the activity of its tyrosine phosphatase has an
unknown role in virulence promotion [49, 50].
Xanthomonas TALENs also have a modular structure,
with separate domains for DNA-binding and RNA
polymerase activating activities [51]. Pseudomonas
effector AvrPtoB is a well-documented example of an
effector protein that targets multiple plant immunity
proteins [25]. Its N-terminal domain binds to and
inhibits kinase activity of Bti9 a possible PRR, while a
central domain binds to BAK1 and interferes with
FLS2/BAK1 immune signaling [11, 12, 27]. Targeting
of multiple immune complexes by separate domains

within an effector protein is possibly what is occurring
with the CD and CTD of AvrPto.
On a broader scale, the methodology devised here

could be used to dissect whether or not two proteins
affect the same signaling pathways and whether they
have the same magnitude of impact on the transcrip-
tome. It can also identify overlaps in function. Usually,
and as we originally planned, RNA-Seq is used to
identify individual genes within a transcriptome that
differentiate two different stimuli. Here, we have instead
used it to quantify the stimuli and describe the structure
of the transcriptome. We suspect that similar methods
could be used on existing data sets to uncover more
features of the dynamic transcriptome.

Conclusions
RNA-Seq is a powerful tool for investigating pathogenicity
factors that target host immune signaling pathways, espe-
cially combined with pathogens modified to have reduced
pathogenicity. As shown here, such analyses can reveal
subtle differences in the contribution of pathogenicity
factor protein domains to immune suppression. Two
alanine-substitution mutants representing the inactivation
of separate physical domains of the type III effector protein
AvrPto are shown to affect the same genes, but to different
degrees. When used to model the whole protein containing
both active domains, a key difference between genes up-
and down-regulated during pattern-triggered immunity is
revealed. Genes are more strongly up-regulated than down-
regulated during PTI, making up-regulated genes more
resistant to muting by bacterially derived effectors.

Methods
Strains
D29E is the only bacterial strain used in this study [45].
pCPP45 and pDSK519 based vectors were transformed
into D29E using standard electroporation protocols [52].
Details of the strains and plasmids used are presented in
Additional file 10.

Hypersensitive response
Bacteria suspended in 10 mM MgCl2 were syringe
infiltrated into leaves of Solanum lycopersicum cv. Rio
Grande-PtoR and S. lycopersicum cv. Rio Grande-prf3
leaves at an OD600 of 0.02 and Nicotiana tabacum
W38 at an OD600 of 0.2. Leaves were photographed
24–48 h after infiltration.

Assays for expression
Expression of AvrPto in D28E, the parent of D29E, was
assayed as described previously, except that the AvrPto
molecules contained a C-terminal FLAG epitope peptide
fusion, and this was detected using an anti-FLAG HRP-
conjugate antibody (Sigma Aldrich A8592) [53].
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Pathogen inoculation
S. lycopersicum cv. Rio Grande-prf3 plants were infiltrated
approximately 3 weeks after transplanting between 9 and
11 am and harvested 6 h after inoculation. Inocula
consisted of 0.02 % Silwet, 10 mM MgCl2, and bacteria
resuspended at OD600 0.02. The four side leaflets of the
youngest fully expanded leaf were harvested, their main
vein removed, and snap-frozen in liquid N2 with small
steel balls for RNA extraction. Four independent replicate
experiments were performed in four sequential weeks.

RNA Extraction, cDNA library construction and RNA-Seq
analysis
The RNA-Seq methods were performed exactly as
described previously [6].

Data analysis
Data analysis was performed using Microsoft Excel and
the Enthrought Canopy Python distribution [54]. The
modules SciPy, Ipython, MatPlotLib, and xlrd were the
modules primarily used [55–58].

Plots of relative induction values
For these genes, the base 2 logarithmic transformation is
made of the induction values to aid human interpret-
ation (the base 2 logarithm is made for each datum indi-
vidually). A base 2 logarithmic axis is used accordingly.
Each coordinate along the horizontal axis represents the
relative induction value of a gene in the data set in order
to make a comparison. Generally, this will be the data
set that best represents the statistical cutoffs used for
defining the set of genes plotted. The vertical coordi-
nate(s) for each gene are then plotted in the same way,
but several vertical coordinates may be used for the
same gene.

Regression analysis
A linear regression was performed on the base 2 log-
transformed set of induction values for the genes plotted
in Fig. 4a. The r2 value was derived from the fit of this
line to the log-transformed data set. The regression for-
mula is derived from the linear regression equation,
rearranged from log2[y] = m • log2[x] + b.

Moving average analysis
A program was created that takes an average of the ver-
tical coordinate for each gene and the ten-gene window
of the closest genes, both greater and less, in horizontal
coordinate value. The average was then plotted for each
gene. Similar results are achieved using greater or
smaller window sizes and can be changed relatively eas-
ily in the program provided. The 21-gene window pre-
sented in Additional file 6 represents a balance for
presentation between over-smoothing and noise.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
The raw reads data is available at NCBI Sequence Read
Archive (SRA) under accession SRP065499. Data from
processed reads is available at the Tomato Functional
Genomics Database (http://ted.bti.cornell.edu/) under
accession D013 in ‘RNA-seq data’.
The Python computer code in IPython Notebook format

used to analyze this data is available at https://github.com/
jnw29/AvrPto_Transcriptome.

Additional files

Additional file 1: Figure S1. D29E populations delivering any form of
AvrPto are stable at 6hpi. Growth data for D29E strains delivering AvrPto
6 h after infiltrating using the same concentrations as in the samples
prepared for RNA-Seq. The counts are an average of three independent
experiments performed on sequential weeks with similar results. No
significant growth or death is seen at 6 h. (PDF 198 kb)

Additional file 2: Table S1. Read quality of the RNA-Seq reactions used
in this study. (XLSX 12 kb)

Additional file 3: Excel workbook. Lists of genes showing significant
regulation in Figs. 2 and 3, including the criterion data. (XLS 1602 kb)

Additional file 4: Excel workbook. Lists of genes meeting the criteria used
in Rosli et al. 2013 in Fig. 2, including the criterion data. (XLSX 71 kb)

Additional file 5: Excel workbook. Lists of gene ontology terms associated
with each domain in Fig. 3. (XLSX 910 kb)

Additional file 6: Figure S2. A 21-gene window moving average of
the effect of the combined domains. A 21-gene window average
(includes the gene at the X coordinate which represents a gene down-
regulated by WT AvrPto plus 10 on either side) is shown for each gene in
the set down-regulated by WT AvrPto relative to the CD−/CTD− (blue line)
except for the 10 genes with the highest and lowest inductions by WT
AvrPto. The WT values are shown in black and the multiplied domains
induction as transparent red for comparison. Each gene is represented 3
times except for the 20 mentioned previously not included in the moving
average, those genes are represented twice. This set of averages centered
on individual genes shows that the trend of the down-regulated by WT
AvrPto gene set, arranged by WT-induction values, is roughly matched by
the trend in the two domains combined. A linear regression of the log base
2-transformed set of the genes shown in the moving average against the
WT AvrPto values returns values that translate into a power function
regression of 1.1x0.97 with an r2 value of 0.97 (see script for additional
details). This suggests that noise is a limiting factor in combining domain
induction values together for individual genes, but the trends may be
accurate with the proper reference. (PDF 153 kb)

Additional file 7: Figure S3. Probability plot analysis on log-transformed
relative induction models. Probability plots generated using SciPy module
for Python showing normal distributions are more consistent with the
log-transformed data sets. Plots A and B are made using log transformed
data of the residuals (differences) between the multiplied model and WT
data for the genes down- and up-regulated by AvrPto, respectively. The R2
values of A and B are 0.981 and 0.989, respectively. Both plots are heavy
tailed and indicate some over-representation of values around the average
compared to an ideal lognormal distribution. (PDF 51 kb)

Additional file 8: Excel workbook. Lists of genes up- and down-
regulated relative to a mock inoculation, used in Fig. 6b. (PDF 300 kb)
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Additional file 9: Figure S4. No group of genes in this transcriptome
are seemingly regulated independently of PTI. A scatterplot where the X
coordinate equals induction by D29E pCPP45::avrPto(I96A,2xA) relative
to a mock inoculation without bacteria, representing the PTI-induced
transcriptome. Only RPKM values were used to select this data set, and
there is not a set of genes strongly up- or down-regulated by the CD or
CTD combined independently of PTI. (XLS 2504 kb)

Additional file 10: Table S2. Strains and plasmids used in this study.
(XLSX 10 kb)
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