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RESUMO  

A malária é uma das principais doenças parasitárias do mundo, sendo a causa de mais de 1 

milhão de mortes todos os anos. Causada por um parasita eucariota intracelular, do género 

Plasmodium, a malária é transmitida através da picada de um mosquito fêmea do género 

Anopheles. Entre as cinco espécies que podem transmitir malária aos humanos, 

Plasmodium falciparum é o principal contribuidor para a morbilidade e mortalidade 

associadas à malária. O ciclo de vida do parasita é complexo e envolve um vetor, o 

mosquito, e um hospedeiro vertebrado. Durante o ciclo de vida no hospedeiro, existem duas 

fases principais: a fase hepática e a fase sanguínea. A infeção começa quando o mosquito 

injeta esporozoítos de Plasmodium na pele do hospedeiro vertebrado. Depois de atravessar 

a derme os parasitas entram no sistema circulatório e vão para o fígado, onde completam a 

fase silenciosa do seu desenvolvimento. Esta etapa de desenvolvimento assintomática 

acabará por levar à libertação na corrente sanguínea de milhares de novos parasitas 

chamados merozoítos, iniciando a fase sintomática da doença. Nos seres humanos, a fase 

hepática da infeção dura cerca de 6-10 dias onde o número de parasitas expande 

enormemente, até 40.000 vezes. Esta elevada taxa de multiplicação impõe uma 

necessidade significativa de nutrientes. Tal como outros agentes patogénicos intracelulares, 

é plausível que o parasita tenha desenvolvido mecanismos para explorar os recursos da 

célula hospedeira, nomeadamente o seu sistema endomembranar. 

 

O sistema endomembranar de uma célula eucariota é composto por diferentes organelos 

secretores e vesículas da via endocítica. A via de endocitose desempenha um papel 

importante em várias funções biológicas, tais como, a absorção de nutrientes, sinalização 

celular, e eliminação de agentes patogénicos. No fígado, o parasita desenvolve-se rodeado 

por endossomas e lisossomas do hospedeiro, embora não se observe fusão e acidificação 

do vacúolo. Estas observações sugerem que, em vez de eliminar o parasita, as vesículas 

podem ter um papel importante no seu desenvolvimento durante a fase hepática. Na via 

endocítica, o sistema de ubiquitinação controla inúmeros processos celulares, 

nomeadamente na regulação da sinalização e reciclagem dos receptores de membrana. O 

sistema ubiquitina é uma modificação pós-tradução que consiste na ligação de uma proteína 

ubiquitina a um substrato. O último passo de conjugação da ubiquitina à proteína alvo é 

catalisado por uma enzima E3 ligase, responsável pelo reconhecimento específico dos 

substratos. Os Cullin-RING ligases (CRLs) constituem a maior classe conhecida de E3s. Os 

CRLs são complexos proteicos constituídos por uma proteína estrutural (Cullin), que em 

mamíferos é composta por uma família com seis homólogos (Cullin 1, Cullin 2, Cullin 3, 

Cullin 4a, Cullin 4b, e Cullin 5); uma proteína com um domínio de ligação à ubiquitina; e uma 
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proteína de ligação ao substrato. Estas últimas são variáveis e conferem especificidade de 

ligação ao substrato. Recentemente, a Cullin 3 surge como um importante regulador do 

tráfico vesicular, em particular na secreção e maturação dos endossomas. A depleção de 

Cullin 3 resulta em defeitos no transporte da carga dos endossomas para os lisossomas. 

 

Dada a importância da associação do sistema endolisossomal durante o desenvolvimento 

do parasita dentro do hepatócito e o papel da Cullin 3 na via endocítica, o principal objetivo 

deste projeto foi avaliar o papel da Cullin 3 durante o desenvolvimento intra-hepático de 

Plasmodium. Para isso, utilizámos o modelo de roedores Plasmodium berghei, e realizámos 

ensaios funcionais de ganho ou perda de função, sobre-expressão de Cullin 3; bloqueio da 

ativação da Cullin 3 usando um inibidor de nedilação (MLN4924), e depleção da Cullin 3, 

usando siRNA.  

 

Começámos por verificar se a sobre-expressão transiente de Cullin 3 iria causar algum 

efeito sobre a infeção por Plasmodium, bem como na acumulação de vesículas em torno do 

parasita. Células HeLa foram transfetadas com um plasmídeo expressando Cul3-Myc; 36 

horas após a transfeção as células foram infetadas com esporozoítos de Plasmodium 

berghei que expressam Green Fluorescent Protein (GFP). A análise de três experiências 

independentes, feita por microscopia às 48 horas após a infeção, não permitiu identificar um 

número suficiente de células transfetadas e infetadas para poder tirar conclusões sobre o 

efeito da sobre-expressão da Cullin 3 na infeção por Plasmodium. A razão para isto foi a 

combinação da baixa taxa de transfeção (30%) com a extrema baixa taxa de infeção de 

células HeLa por Plasmodium (<1%).  

 

“Nedilação” é um tipo de modificação pós-tradução de proteínas, que envolve a adição da 

molécula ubiquitina-NEDD8 à proteína alvo. Muitos estudos mostraram que a “nedilação" 

desempenha um papel importante na ativação dos Cullin-RING ligases. MLN4924 é uma 

pequena molécula inibidora da atividade da NEDD8 activating enzyme (NAE) que se liga a 

um sítio ativo designado de NEDD8-MLN4924. Como resultado, a “nedilação” das Cullins é 

bloqueada levando à inactivação dos complexos CRL/SCF (Cullin-RING-ligases / Skp1-

Cullin-F box proteins) e, consequentemente, à acumulação de vários substratos dos Cullin-

RING ligases. Logo, o próximo passo foi avaliar o bloqueio da ativação da Cullin 3 usando o 

inibidor da “nedilação” MLN4924, durante a infeção por Plasmodium. A grande vantagem do 

inibidor MLN4924 é a sua elevada especificidade para a inibição dos Cullin-RING ligases. 

Além disso, MLN4924 é um composto já aprovado pela FDA (Food and Drug 

Administration). Neste estudo, utilizámos células de hepatoma humanas (Huh7) que foram 

submetidas a 24 horas de tratamento com MLN4924 antes da infeção com parasitas 
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Plasmodium berghei expressando GFP. Os níveis de infeção durante a invasão e o 

desenvolvimento do parasita foram analisados por citometria de fluxo e microscopia. Os 

nossos resultados demonstraram que, aparentemente, não há efeito significativo nos níveis 

de infeção por Plasmodium durante a invasão e o desenvolvimento. No entanto, devido ao 

facto do tratamento das células com MLN4924 provocar expressivas alterações celulares, 

não pudemos determinar concretamente o efeito do bloqueio da ativação da Cullin 3 durante 

a infeção por Plasmodium. 

 

Para avaliar o papel da Cullin 3 durante a infeção por Plasmodium de uma forma mais 

específica, utilizámos short interfering RNA (siRNA) para causar a depleção da Cullin 3 em 

células Huh7. As células foram transfetadas com siRNA para a Cullin 3, e após 36 horas de 

depleção foram infetadas com parasitas expressando GFP. Os níveis de infeção foram 

analisados por Quantitative real-time reverse transcription polymerase chain reaction (qRT-

PCR) e microscopia. Os resultados obtidos após 48 horas de infeção sugerem que a 

depleção da Cullin 3 por siRNA provoca uma redução do número de células infetadas com 

Plasmodium. 

 

Em conclusão, os nossos resultados demonstram que o composto MLN4924 não tem efeitos 

significativos durante a infeção por malária na fase hepática. Além disso, este inibidor 

apresenta demasiados efeitos adversos sobre as células hospedeiras, de modo que, a 

interpretação dos resultados não é conclusiva. No entanto, os resultados da depleção da 

Cullin 3 sugerem que esta pode ser relevante para a infeção por Plasmodium, uma vez que 

a depleção da sua expressão por siRNA reduz a carga parasitária. Contudo, mais 

experiências serão necessárias para elucidar os mecanismos moleculares por detrás deste 

efeito. As experiências realizadas não demonstraram qualquer efeito significativo na 

acumulação de vesículas em torno do parasita. Estas observações podem ser explicadas 

pelo facto do papel exato da ubiquitinação mediada por Cullin 3 na via endocítica 

permanecer ainda desconhecido. Esta proteína pode estar envolvida em cada uma das 

etapas da maturação dos endossomas, que incluem, alterações morfológicas, troca de 

componentes de membrana, movimento do endossoma para a região perinuclear, e 

formação de intraluminal vesicles (ILVs). Assim, um melhor conhecimento dos intervenientes 

moleculares que afetam direta ou indiretamente os processos de maturação do endossoma 

será importante para esclarecer a interação entre o parasita e a célula hospedeira, e 

contribuir para o desenvolvimento de novas estratégias para controlar a infeção por malária 

na fase hepática. 

 

Palavras-chave: Malária, Cullin 3; via endocítica; fase hepática; infeção por Plasmodium. 
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ABSTRACT 

 

Malaria is caused by Plasmodium parasites and transmitted by infected female Anopheles 

mosquitoes. There are two stages of malaria infection in mammals. The first stage occurs in 

the liver, where Plasmodium sporozoites invade and replicate extensively inside 

hepatocytes. This high multiplication rate imposes a significant demand of nutrients and 

therefore it is likely that Plasmodium has developed mechanisms to exploit the host cell 

resources. Recent studies established that interactions between Plasmodium berghei 

parasites and the host endocytic pathway are crucial for parasite growth during liver stage 

infection. Cullin 3 recently emerged as an important regulator of intracellular trafficking, in 

particular secretion and endosome maturation. Cullin 3 is specifically activated (neddylated) 

at the plasma membrane and is found associated with vesicular markers for intracellular 

trafficking. Additionally, depletion of Cullin 3 results in deformation of late endosomes and 

causes defects in the transport of endocytic cargo to lysosomes. Given the important 

association of host vesicles with Plasmodium parasites developing inside the hepatocyte and 

the role of Cullin 3 in endosome maturation, in this thesis, we proposed to characterized the 

role of Cullin 3 during Plasmodium intra-hepatic development using functional assays of 

gain- and loss- of function, namely by over-expressing Cullin 3 and blocking Cullin 3 

signaling using a neddylation inhibitor MLN4924 or depleting Cullin 3, using siRNA. Although 

gain-of-function experiments and the treatment with neddylation inhibitor MLN4924 were 

inconclusive, our results showed that Cullin 3 is apparently relevant in the context of malaria 

infection. In fact, depletion of Cullin 3 expression by siRNA reduced Plasmodium levels in 

Huh7 cells, suggesting that Cullin 3 signaling is important during liver-stage infection. 

However, more studies are necessary to confirm this phenotype and elucidate the molecular 

mechanisms behind it.  

 

 

Keywords: Malaria; Cullin 3; endocytic pathway; liver stage; Plasmodium infection. 
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1. INTRODUCTION 
 
 
1.1. Etiology of Malaria infection 
 

Malaria is a parasitic disease that has been a primary concern to humanity for centuries, and 

continues to be a leading cause of illness and death globally. It is estimated that 3.4 billion 

people around the world (one half of the world’s population) is at risk of malaria and 219 

million cases are estimated to have occurred. Only in sub-Saharan Africa the disease kills 

approximately 660,000 people annually, mostly children under five years of age, resulting in 

a child’s death in every 40 seconds (World-Health-Organization, 2013). Despite global 

economic development more people die from malaria nowadays than 40 years ago, being 

considered the fifth leading cause of death in low-income countries (Sachs and Malaney, 

2002). 

Malaria can be caused by five species of intracellular protozoan parasite that affect humans, 

and all of these species belong to the genus Plasmodium: P. falciparum, P. vivax, P. ovale, 

P. malariae and P. knowlesi. Of these, P. falciparum and P. vivax are the most deadly 

species and causative of severe disease (cerebral malaria, severe malarial anemia, placental 

malaria or acute lung injury)(Guerin et al., 2002). High mortality rates due to malaria are 

localized in tropical regions such as Sub- Saharan Africa, South East Asia, and around the 

Amazon rainforest in South America, as shown in Figure 1. 

Figure 1: Malaria mortality rates (percentage change between at 2000-2012). Tropical and 

subtropical regions are affected by malaria worldwide (adapted from WHO world malaria report, 2013). 

 

The impact of malaria is immense and extends far beyond measurement of mortality and 

morbidity. Besides its social impact malaria has health costs and obvious economic 

consequences, contributes to prevent social and economic growth in already impoverished 
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countries (Gallup and Sachs 2001). Currently, the fight against malaria is focused on 

mosquito eradication, reduction of human–vector contact and disease prevention and 

treatment using antimalarial drugs. A viable vaccine is not yet available, despite the 

significant efforts that have been made to develop one. Drug therapy, a key part in malaria 

control, faces increased resistance worldwide, with no drug being universally effective, and 

so malaria continues to be a threatening global health problem (Greenwood et al., 2005). 

 

1.2. Parasite and life cycle 

Malaria is caused by Plasmodium, an apicomplexan parasite transmitted to the vertebrate 

host through the bite of an infected female Anopheles mosquito. There are about 400 

different species of Anopheles mosquitoes, but only 30 of these are vectors of major 

importance in transmitting malaria, with the most common and efficient vector species being 

Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, Anopheles nili and 

Anopheles moucheti (Fontenille and Simard, 2004). Because of disparities in eco-systems 

across regions, differences may exist in the type of species that are predominant in 

transmitting the disease in different locations (Tanga et al., 2010).  

Apicomplexa are unicellular eukaryotes which are obligatory intracellular parasites with short-

lived extracellular stages. Unlike many other microbial organisms which utilize phagocytic 

properties of their host cells for invasion, apicomplexa invasion involves a specialized 

organelle particular to these parasites, the apicoplast. Plasmodium parasites have a complex 

life-cycle, consisting of the asexual stages, in the vertebrate host, and the sexual stages that 

take place in the mosquito vector. The infection in vertebrates starts when the mosquito 

injects Plasmodium sporozoites into the skin (Figure 2). After traversing the dermis the 

parasites enter the circulatory system and travel to the liver where they will complete the 

silent phase of their development (Matsuoka et al. 2002; Amino et al. 2006). In the liver, 

sporozoites migrate through several hepatocytes before establishing infection in one cell 

(Mota et al., 2001). The invasion of the final hepatocyte is done by inducing the invagination 

of the host cell membrane, resulting in the formation of a parasitophorous vacuole (PV) 

surrounded by a host cell-derived membrane (the parasitophorous vacuole membrane, 

PVM). This asymptomatic developmental step will eventually lead to the release of 

thousands of new parasites, called merozoites, into the bloodstream, initiating the 

symptomatic stage of the disease (Mota et al. 2001; van de Sand et al. 2005). The 

merozoites then invade red blood cells (RBCs) and mature into schizonts. Within the blood 

stages, merozoites either undergo repeated cycles of multiplication or transform into 

gametocytes, which are taken up by a female Anopheles mosquito. Within the mosquito, the 

parasite undergoes further transformation and the sexual replication takes place. After 
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approximately two weeks the mosquito becomes infectious for humans and the cycle repeats 

itself (Warrell and Gilles 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plasmodium spp. life cycle. (1) During a blood meal of a female Anopheles mosquito, 

sporozoites contained in the salivary glands are injected into the dermis of a vertebrate host. The 

sporozoites enter the bloodstream and travel to the liver (2) where they will traverse a few hepatocytes 

before invading a final one (3). The parasite will grow and replicate into thousands of merozoites that 

will be released into the blood stream (4) initiating the blood stage cycles of asexual replication inside 

RBC (5). Some merozoites can develop as gametocytes that can be ingested by another female 

Anopheles mosquito through blood meal (6), leading to a new cycle of infection (adapted from 

(Prudêncio and Mota, 2007). 

 

Although the clinical symptoms only appear during the erythrocytic stage of Plasmodium’s 

life cycle it should not be disregarded that the asymptomatically pre-erythrocytic stage (also 

referred to as liver stage) is essential for the malaria infection outcome. However, many 

aspects of parasite development inside the liver cell are still poorly understood, mainly due to 

the relative inaccessibility and low abundance of these stages for detailed cellular and 

molecular studies (Kappe and Duffy, 2006). Also, large and detailed studies of liver stage 

development are difficult due to the prerequisite of freshly extracted infectious sporozoites 

(breeding of infectious mosquitoes is a necessity) and to the low infection rates obtained in 

vitro (Prudêncio and Mota, 2007) and in vivo (Heussler and Doerig, 2006). Despite these 

restrictions, malaria researchers have been working towards an understanding of the biology 

behind the malaria liver stage and, during this journey, huge steps have been made to 

disclose the processes involved in this stage. A significant amount of in vitro and in vivo 

research has been conducted on this stage by taking advantage of model rodent malaria 

parasites, such as P. berghei and P. yoelii (Prudêncio, Rodriguez, and Mota 2006; Bano et 
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al. 2007). These models are analogous to human and primate parasites in terms of biology, 

physiology and life cycle (Sherman, 1998). Furthermore, these parasites are not dangerous 

to humans representing good models for experimental studies of mammalian malaria 

(Sherman, 1998). The availability of transgenic rodent Plasmodium parasites that express 

fluorescent or luminescent reporter proteins (Franke-Fayard et al. 2004; Frevert et al. 2005) 

has provided novel opportunities to examine in real time the development of liver stages, 

both in cultures of isolated hepatocytes or hepatoma cell lines and in laboratory animals 

(Amino et al., 2006).  

1.3. Endocytic pathway during Plasmodium liver infection 

The invasion of hepatocytes by malaria sporozoites is characterized by the formation of a 

Parasitophorous Vacuole Membrane (PVM), a process involving partial invagination of the 

host cell plasma membrane, although the molecular players involved in PVM formation and 

maintenance remain largely unknown (Mota et al., 2001). Once this specialized intracellular 

niche is established, parasite replication and growth may commence. Dramatic 

morphological as well as gene expression modifications occur at this stage and the parasites 

achieve one of the highest replication rates known within eukaryotic species  (Sturm et al. 

2006; Albuquerque et al. 2009; Stanway et al. 2011). In humans, the hepatic stage of the 

infection lasts 6-10 days during which the number of parasites expands enormously, up to 

40,000 fold. This high multiplication rate imposes a significant demand of nutrients and 

therefore it is likely that Plasmodium has developed mechanisms to exploit the host cell 

resources. Key to an intracellular lifestyle is the ability to interact with the host 

endomembrane system to uptake nutrients and/or avoid pathogen degradation. As such, 

intracellular pathogens have evolved a variety of mechanisms to achieve this, for example, 

by blocking fusion with the lysosomes, as is the case with Salmonella, Mycobacterium and 

Legionella species (Méresse et al. 1999; Vergne et al. 2005; Isberg, O’Connor, and 

Heidtman 2009). The endomembrane system is comprised of the different organelles of the 

secretory and endocytic pathways that are suspended in the cytoplasm of eukaryotic cells. 

The endomembrane system includes: the nuclear envelope, the endoplasmic reticulum, the 

Golgi apparatus, lysosomes, vacuoles, vesicles, endosomes and the cell membrane. The 

endocytic pathway starts with endocytosis forming a vesicle. The endocytosed cargo is 

usually delivered to the early endosome where sorting occurs. Cargo-specific sorting leads to 

distinct subsequent cargo itineraries. Cargo can be routed from the early endosome to late 

endosomes and lysosomes for degradation; to the trans-Golgi network (TGN); or to recycling 

endosomal carriers that bring the cargo back to the plasma membrane (Grant and 

Donaldson, 2009). Endocytic pathways plays key roles in several biological functions, such 

as, nutrient uptake, cell signaling, and changes in cell shape (Nebenführ, Ritzenthaler, and 
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Robinson 2002; Sigismund et al. 2008). In the liver, Plasmodium parasites develop 

surrounded by host late endosomes and lysosomes, as show in figure 3. Although no fusion 

and acidification of the parasitophorous vacuole is observed (Lopes da Silva et al., 2012). 

These observations suggest that, rather than parasite elimination, host vesicles from the 

endolysosomal pathway could be important for schizont development, but the mechanism 

remains elusive. 

 

Figure 3: Plasmodium berghei parasites develop in liver cells surrounded by vesicles from the 

host endolysosomal pathway. Hepa1-6 cells were transduced with GFP-Rab7a (red) prior to 

infection with P. berghei sporozoites, fixed at the time-points indicated and subsequently stained with 

anti-Hsp70 antibody (green). Samples were stained with anti-CD63 (red) and anti-GFP (green) 

antibodies. (Hpi, hours post-infection. Scale bars: 10 μm; adapted from Lopes da Silva et al. 2012). 

 

1.4. Ubiquitination and the Family of Cullin-RING ligases (CRLs) 

Ubiquitin system is a post-translational modification that consists in the attachment of an 

ubiquitin to a substrate protein. The protein modifications can be either a single ubiquitin 

protein or chains of ubiquitin (Pickart and Eddins, 2004). Ubiquitin system involves three 

enzymatic components that participate in a cascade of ubiquitin transfer reactions: ubiquitin-

activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3) 

(Mukhopadhyay and Riezman, 2007). Ubiquitination is a major player regulating many 

biological processes, such as protein trafficking, DNA repair, protein–protein interactions, 

and proteolysis (Hershko and Ciechanover 1998; Pines and Lindon 2005). The last step of 

ubiquitin conjugation is controlled by E3 ubiquitin ligase, which is responsible for the specific 

recognition of the substrates of the ubiquitin system. One prominent collection of E3 

enzymes are the Cullin-RING ligases (CRLs). CRLs are multimeric protein complexes 

composed of a Cullin scaffold that bridges a C-terminal domain (CTD)-bound, RING E3 
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enzyme, and an N-terminal domain (NTD)-interacting substrate adaptor module. CRLs play a 

role in diverse cellular processes, including multiple aspects of the cell cycle, transcription, 

signal transduction, and cell growth, among others (Petroski and Deshaies 2005; Lu and 

Pfeffer 2013). This diversity of functions is given by each of the adapters present in the 

complex. The Cullin family is highly conserved among species; six different Cullins proteins 

have been identified in mammals (Cullin 1, Cullin 2, Cullin 3, Cullin 4a, Cullin 4b and Cullin 

5), each Cullin forms a distinct class of CRLs consisting of different adapters and/or 

substrate recognition subunits (Marín, 2009). The activity of CRLs is regulated by the 

reversible conjugation of a small ubiquitin-type protein, with highly conserved 81-residues, 

known as Neural precursor cell Expressed Developmentally Down-regulated protein 8 

(NEDD8), a process called neddylation (figure 4) (Wimuttisuk and Singer 2007; Bennett et al. 

2010). This activation process is essential for the association of the CRL with the E2 

enzyme, delivering the ubiquitin moiety to the target proteins (Wu et al. 2005). 

 

 

 

 

 

  

 

 

 

 

Figure 4: Regulatory mechanisms governing Cullin-Ring ligase activity (adapted from Bennett et al. 

2010). 

 

1.5. Regulation and maturation of endocytic pathway by Cullin 3 

The Cullin 3 forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase. Compared 

to other Cullin-based complexes, the Cullin 3 is quirky: it does not require different adapters 

in order to recognize its target protein, but only requires a protein with a bric-a-

brac/tramtrack/broad-complex (BTB) domain for recognizing activity (Andérica-Romero et al., 

2013). It has been shown that Cullin 3 is specifically activated (neddylated) at the plasma 

membrane and found associated with vesicular markers for intracellular trafficking (Hubner 

and Peter, 2012). In addition, Cullin 3-mediated ubiquitilation has recently emerged as a 

potencial regulator involved the endolysosomal pathway, in particular secretion and 

endosome maturation (Huotari et al., 2012). Depletion of Cullin 3 by RNA interference (RNAi) 
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affects intracellular trafficking of two well-studied cargos—the influenza A virus (IAV) and the 

epidermal growth factor receptor (EGFR). Upon Cullin 3-depletion, infection of IAV 

decreases dramatically. Cullin 3-mediated ubiquitylation appears to be needed for IAV 

penetration from late endosomes and/or subsequent viral uncoating. Moreover, EGFR 

degradation is significantly delayed in Cullin 3-depleted cells that also resulted in the 

deformation late endosome and lysosome morphology (Huotari et al., 2012). However, the 

BTB domain-substrate receptors involved in Cullin 3 endosomal transport remains 

unidentified (Stogios et al. 2005; Schnatwinkel et al. 2004). The endocytic pathway is 

regulated at different levels by ubiquitination. The covalent attachment of one, or more, 

ubiquitin moieties to a certain membrane receptor may regulate the entry in the pathway, the 

recycling of the receptor or its degradation in the lysosome (Chen and Sun, 2009). The 

dissection of the molecular and functional mechanisms underlying the endocytic pathway is 

central for the understanding of many physiological and disease processes (Sigismund et al., 

2008).  
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2. Aims 

Given the important association of the host endocytic pathway vesicles with developing 

Plasmodium parasites in the hepatocyte and the role of Cullin 3 in regulation and endosome 

maturation, the main goal of this project was to evaluate the role of Cullin 3 during 

Plasmodium intra-hepatic development. Using the rodent model Plasmodium berghei we 

aimed at: 

 

I. Analyze the effect of over-expressing Cullin 3 on parasite development; 

 

II. Block Cullin 3 signaling in hepatocytes, using a neddylation inhibitor and/or depleting 

Cullin 3 using siRNA, and access the effect on Plasmodium development and association 

with endo-lysosomes. 
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3. Materials and Methods 
 
3.1. Culture of human cell-lines 
 

Two cell-lines were used: the human hepatoma cell line (Huh7) and the human cervix 

carcinoma cell line (HeLa). Huh7 cells were cultured in RPMI-1640 supplemented with 10% 

heat-activated Fetal Bovine Serum (FBS), 1% penicillin/streptomycin solution, 1% L-

Glutamine, 1% Non Essential Amino Acids and HEPES buffer (all from Gibco/Invitrogen). 

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 

10% FBS, 1% penicillin/streptomycin solution, 1% L-Glutamine, 1% Non Essential Amino 

Acids and 1% HEPES (all from Gibco/Invitrogen). Cells were cultured in petri dishes or flat 

bottom plates of 6, 24 or 96 wells and incubated at 37ºC with 5% CO2. Culture medium was 

changed every 48 hours. For experimental setups, cells were detached with trypsin solution 

for 5 min at 37°C. The action of trypsin was stopped by resuspending the cells in an 

appropriate volume of complete medium. Cells were recovered by centrifugation at 1.200 

revolutions per minutes (rpm) for 5 minutes, room temperature in a bench top centrifuge with 

a swing out rotor (Eppendorf centrifuge 5810R). Cells were counted by microscopy using a 

Neubauer chamber. An appropriate number of cells was seeded in appropriate dishes/plates 

and further incubated in a 5% CO2, 37°C incubator. 

3.2. Plasmodium berghei transgenic-line 

For this study was used the transgenic Green Fluorescent Protein (GFP) – expressing P. 

berghei ANKA (PbGFP, parasite line 260 cL2; Franke-Fayard et al., 2004). Anopheles 

stephensi mosquitoes that had blood a meal from mice infected with GFP - P. berghei 

parasites were housed in appropriate cages in humidified incubators, in compliance with the 

guidelines from the Ethics Committee of the Institute. At about day 24 post-feeding, P. 

berghei-infected salivary glands were dissected from infected mosquitoes into an appropriate 

volume of DMEM medium in a 1.5 ml microtube. Then they were smashed and passed 

through a cell strainer. The number of sporozoites from each dissection were counted using 

a Neubauer chamber previously placed in a humidity chamber for 10 min, by calculating the 

average of sporozoites per quadrant x 104 x dilution factor x volume. 

3.3. Infection with Plasmodium berghei sporozoites 

Infections were performed with freshly dissected Plasmodium berghei sporozoites, 

resuspended in an appropriate volume of RPMI-1640 or DMEM complete medium 

supplemented with 0,02% Fungizone. For each experiment, the determined amounts of 

sporozoites were added to cells that were then centrifuged at 3000 rpm for 5 min, at room 
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temperature. Cultures were incubated at 37°C, 5% CO2 for the appropriate period of time. 

Culture medium, supplemented with 0.02% Fungizone, was changed every 24 hours. 

3.4. Over-expression of Cullin 3  

Reverse transfection of HeLa cells was performed using GeneJuice Transfection Reagent 

(Novagen), following the manufacturer’s instructions. Briefly, for 6-well plate transfection 

experiments, 3 μl of GeneJuice were mixed with 100 μl serum-free medium into a sterile tube 

in separate wells and incubated for 5 min at room temperature. For each well, 2 μg of 

plasmidic DNA were added to the GeneJuice Transfection Reagent/serum-free medium 

mixture. The GeneJuice Transfection Reagent/DNA mixture was incubated for 15 min at 

room temperature and then added to the freshly trypsinized HeLa cells. This was followed by 

the addition of 300000 HeLa cells per well in DMEM supplemented with 10% FBS, 1% 

penicillin/Streptomycin solution, 1% L-Glutamine, 1% Non-Essential Amino Acids and 1% 

HEPES, the medium was changed at 24h post-transfection. For 24-well plate transfection 

experiments, 1.5 μl of GeneJuice were mixed with 25 μl serum-free medium into a sterile 

tube in separate wells and incubated for 5 min at RT. For each well 0.5 μg of plasmidic DNA 

were added to the GeneJuice Transfection Reagent/serum-free medium mixture. The 

GeneJuice Transfection Reagent/DNA mixture was incubated for 15 min at room 

temperature and then added to the freshly trypsinized HeLa cells. This was followed by the 

addition of 50000 HeLa cells per well in DMEM supplemented with 10% FBS, 1% 

penicillin/Streptomycin solution, 1% L-Glutamine, 1% Non-Essential Amino Acids and 1% 

HEPES, the medium was changed at 24h post-transfection. The cells were incubated for 30 

hours and infected with P. berghei sporozoites as previously described. 

3.5. Inhibition of CRLs activation through neddylation inibition 

MLN4924, inhibitor of NEDD8-activating enzyme (Millennium Pharmaceutics, Inc.; Soucy et 

al., 2009) was resuspended in Dimethyl Sulfoxide (DMSO) in a stock concentration of 30 

mM. The final concentration used of MLN4924 was obtained by diluting the stock in complete 

medium. MLN4924 was added to the cells 24h before-infection. Technical duplicates were 

done for each condition and DMSO was used as a control.  

3.6. Knockdow of Cullin 3 with siRNA 

Cells were transfected with target specific or scramble siRNA sequences purchased from 

Ambion. According to the manufacturer’s instructions, 5 nM powder of oligonucleotide 

sequence was re-constituted with 100 μl of Nuclease-free RNase-free H2O to obtain 50 μM 

stock solutions. Stocks were stored at -80◦C. A working concentration of 2 μM was prepared 
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from a 50 μM stock solution by adding an appropriate amount of Nuclease-free RNase-free 

H2O. For 96-well plate transfection experiments, 1.5 μl of target specific or control siRNA was 

pre-diluted with 8.5 μl of OptiMEM in separate wells. This was followed by the addition of 10 

μl of a pre-diluted mix of Lipofectamine RNAi MAX in OptiMEM. To every 9.8 μl of OptiMEM, 

0.2 μl of Lipofectamine RNAiMAX was added and mixed before being added to the 

siRNAOptiMEM mix. The 1:1 siRNA pre-dilution and Lipofectamine RNAi MAX pre-dilution 

were mixed well and incubated for 20 min at room temperature. The 20 μl of 

siRNA/Lipofectamine complex was transferred per well to a new 96-well plate for cell culture. 

This was followed by the addition of 6000 cells per well in a final volume of 100 μl of DMEM 

supplemented with 10% FBS, 1% L-Glutamine, 1% Non-Essential Amino Acids and 1% 

HEPES without antibiotics. Unused edge wells were filled with H2O or PBS and the cells 

were incubated at 37ºC, 5% CO2. For 24-well plate, 7.5 μl of target specific or control siRNA 

was prediluted with 42.5 μl of OptiMEM and mixed in 1:1 ratio with a Lipofectamine RNAi 

MAXOptiMEM mix that was prepared by pre-diluting 1 μl of Lipofectamine RNAi MAX with 49 

μl of OptiMEM. The siRNA/Lipofetamine mix was transferred to a new 24-well plate and 

40000 cells were added in 400 μl of DMEM complete medium without 

penincillin/streptomycin. Cells were incubated for 36 hours and infected with P. berghei 

sporozoites as previously described. 

3.7. Flow cytometry analysis 

Flow cytometry analysis was done for the in vitro infections with the GFP-expressing 

Plasmodium berghei parasite line, PbGFP, as previously established (Prudêncio et al., 

2008). This technique offers the possibility of further dissecting the infection process in terms 

of percentage of cells invaded and intracellular development of the parasite. Based on the 

experimental design, cells that had been previously seeded in 24-well plates were infected 

with 40000 GFP-expressing P. berghei sporozoites in the presence of 0.02% fungizone. The 

plates were further incubated for 5h, 24h or 48h. In order to assess percentage of invasion, 

infection was stopped at 5 hours post-infection. The culture medium was removed and cells 

were rinsed twice with PBS. An appropriate volume of 0.05% trypsin was added to cells and 

incubated for 5 min at 37◦C. Cells were re-suspended in an appropriate volume of 10% FBS-

supplemented PBS in order to inhibit the action of trypsin. Cells were centrifuged for 5 min at 

2000 rpm. Supernatant was removed and cells were re-suspended in about 250 μl of 2% 

FBS-supplemented PBS for analysis using the Blue Laser (488 nm) and appropriate gating 

of cells (see gating strategy in Appendix II). 
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3.8. Immunofluorescence  

For intracellular localization of Plasmodium berghei in Huh7 cells or HeLa cells by 

immunofluorescence, Plasmodium berghei infected cells were seeded on glass coverslips on 

24-well plates, previously transfected with siRNA or subjected to drug treatments. At the 

appropriate time-points cells were washed with PBS, and fixed with 4% paraformaldehyde 

(PFA) for 15 min at room temperature. Cells were then washed twice with PBS and 

incubated 10 min at room temperature with permeabilization solution (PBS 1X with 0.1% 

Triton X or 0.1 % saponin). Cells were washed twice with PBS for 10 min. The blocking step 

was performed in blocking solution (PBS 1X with 1% bovine serum albumin) for 30 min at 

room temperature. Cells were incubated with primary antibodies in blocking solution for 1h in 

a humid chamber. After three washs in PBS, samples were incubated with secondary 

antibodies in blocking solution for 45 min in a humid chamber and washed again three times 

with PBS. The mounting step was performed using Fluoromount G solution. Slides were 

allowed to dry in a dark place. The list of antibodies and dilutions used are listed in Appendix 

I, table 3. 

 

Confocal images were acquired using LSM 510 META confocal microscope with the 

following parameters: excitation at 405 nm, Band Pass (BP): 420 nm-480 nm, excitation at 

488 nm, BP: 505 nm-530 nm, excitation at 594 nm: Long Pass (LP): 615 nm. Images were 

processed with Image J software. 

3.9. Western blots 

Western blots were done with MiniProtean Tetra Cell equipment (BioRad). 1.5 mm Tris-

glycine SDS-PAGE resolving and stacking gels were prepared at 10%. Gels were loaded 

with 40 μg of samples and 7 μl of molecular weight marker (Precision Plus Protein™ Dual 

Color Standards - BioRad or ColorBurst™ Electrophoresis Marker - Sigma). Running buffer 

was prepared with Tris, Glycine, SDS and H2O. Gels were run at constant voltage of 120 V 

until samples entered the resolving gel and then voltage was increased to 180 V. Transfer to 

nitrocellulose membrane was performed using iBlot® Dry Blotting System (Life 

Technologies) for 7 min 30 sec. Blocking of nitrocellulose membrane was done in a 5% BSA 

solution in TBST 0.1% (blocking solution). Membrane was incubated in blocking solution 

during 1h at room temperature with slow agitation. Primary antibody incubation was done 

overnight at 4ºC in slow agitation. Nitrocellulose membranes were washed three times in 

TBST 0.1% with rapid agitation during 10 min at room temperature. Secondary antibody 

incubation was done at room temperature during 1h with slow agitation, followed by three 

washes with TBST 0.1% with rapid agitation during 10 min at room temperature. Detection of 
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the immunoblot was done by incubating the membranes 1 min in the dark with detection 

solution (Supersignal West pico chemiluminescent substrate HRP – ThermoScientific) and 

proceeding to the exposure and developing of films (Fuji medical X-ray film, Fujifilm). 

3.10. RNA extraction and quantification 

RNA was extracted from cells using High Pure RNA Isolation kit (Roche) or Trizol Reagent 

(Invitrogen) according to the manufacturers´ instruction. With High Pure RNA isolation kit, 

cells were rinsed briefly with RNase-free PBS and resuspended in two-third volume of lysis/-

binding buffer and one-third volume of PBS. The sample was transferred to a High Pure filter 

tube and inserted in a collection tube. The samples were centrifuged for 15 sec at 8000 x g. 

The flow-through liquid was discarded and the High Pure Filter tube was re-inserted in the 

collection tube. One hundred microlitres of DNase I in DNase incubation buffer was added to 

each Filter tube and incubated for 15minutes at room temperature. The column was washed 

once with 500 μl of Wash Buffer I by centrifuging at 8000 x g for 15 sec and twice with 500 μl 

and 200 μl of Wash Buffer II by centrifuging at 8000 x g for 15 sec and 2 min respectively. 

The RNA was eluted with an appropriate volume of Elution Buffer by centrifuging at 8000 x g 

for 1 min. To isolate RNA using Trizol reagent, cells were homogenized with an appropriate 

volume of Trizol reagent and incubated for 5 min at room temperature to allow the complete 

dissociation of nucleoproteins. An appropriate volume of chloroform was added to the 

homogenate and the tubes were shaken vigorously with hand for 15 sec. For every ml of 

Trizol used, 0.2 ml of chloroform was added. The Trizol-chloroform mixture was incubated for 

2-3 minutes at room temperature and centrifuged at 13000 rpm for 15 min at 4 ºC. The 

resultant colorless upper aqueous phase was transferred to a fresh microtube. In order to 

precipitate the RNA from the aqueous phase, an appropriate volume of isopropanol was 

added, mixed thoroughly, incubated for 10 min at room temperature, and centrifuged for 10 

min at 13000 rpm at 4 ºC. For every ml of Trizol, 0.5 ml of isopropanol was used for RNA 

precipitation. The supernatant was removed and the pellet was mixed with 1 ml of 75% 

ethanol, vortexed and centrifuged at 7500 x g for 5 minutes at 4ºC. The supernatant was 

removed and the pellet was redissolved in an appropriate volume of RNase-free water and 

incubated at 55-60ºC for 10 min to inactivate RNase. RNase-free sealable microtubes were 

used for this purpose. RNA was quantified in a NanoDrop® ND-1000 Spectrophotometer 

machine using 1 μl of sample. 

3.11. cDNA synthesis and quantitative RT-PCR 

The synthesis of the cDNA from the RNA templates was synthesized using the AMV Reverse 

Transcriptase kit Roche cDNA synthesis kit. Briefly, 50 ng of RNA was used in each reaction. 
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The cDNA synthesis protocol was carried out in a Bio-rad machine as follows: 25ºC for 10 

min, 55ºC for 30 min, and 85ºC for 5 min. To determine the levels of gene expression study, 

reactions of Quantitative real-time reverse transcription polymerase chain reaction (qRT-

PCR) using SYBR® Green reagent an intercalating double-stranded DNA were made. The 

reactions were performed using 50 ng of RNA converted into cDNA (cDNA was diluted 

appropriately for use containing 2 μl corresponding to 50 ng RNA), for total reaction volume 

of 20 μl. Thus, the reactions were performed for each well with 0.4 μl of each specific primer 

(10 μM), forward and reverse, 10 μl mix BioRad, 7,2 μl of milli-Q water sterile RNAse free, 2 

μl of cDNA from each sample. The thermocycling conditions were: initial step of 50ºC for 2 

min, 95ºC for 10 min, followed by 40 cycles at 95ºC for 15 sec and 60ºC for 1 min, melting 

stage was done at 95ºC for 15 sec, 60ºC for 1 min, and 95ºC for 30 sec (7500 thermocycler 

Fast Real-Time PCR System, Applied Biosystems). HPRT primers were used as a house-

keeping gene for normalization in all experiments. For each sample, technical duplicates 

were performed, allowing the detection of possible errors. The dissociation curves were also 

added at the end of the reactions. Negative controls were used (NTC = no template control, 

NRT = no reverse transcriptase) to confirm the absence of possible contaminants in the 

reagents used. The results were analyzed using the software program 7500 - Version 2.0.6. 

Relative expression of each gene of interest, normalized to the house-keeping gene, in each 

experimental condition (relative to control) was calculated using the delta-delta Ct method. 

 

The primers used in the study are provided in Appendix I, table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

4. RESULTS AND DISCUSSION 

 

The role of Cullin 3 in Plasmodium intra-hepatic development and association with 

endo-lysosomes 

 

There are two stages of malaria infection in mammalian hosts, the first phase occurs in the 

liver and is clinically silent. The infection starts when the mosquito injects Plasmodium 

sporozoites into the dermis of an individual during a blood meal by an infected female 

Anopheline mosquito. Within a few minutes after deposition, the sporozoites migrate through 

the dermis, enter the circulatory system and travel to the liver (Amino et al. 2006; Matsuoka, 

Yoshida, Hirai, and Ishii 2002) where they migrate through several hepatocytes before 

invading a final one (Mota et al., 2001). During intrahepatic development, a single sporozoite 

undergoes extensive rounds of replication generating tens of thousands of blood stage-

infectious merozoites (van de Sand et al., 2005). Studies by Lopes da Silva and colleagues 

showed that P. berghei parasites develop in the liver surrounded by host vesicles, namely 

late endosomes and lysosomes, although no clear aggregation of early and recycling 

endosomes was observed (Lopes da Silva et al., 2012). Recent data revealed that Cullin 3 

plays important roles in vesicular trafficking, in particular secretion and endosome maturation 

(Huotari et al., 2012). It has been shown that Cullin 3 is specifically activated by neddylation 

at the plasma membrane and associates with vesicular markers for intracellular trafficking. In 

addition, depletion of Cullin 3 results in the deformation of late endosomes and causes defect 

in the transport of endocytic cargo to lysosomes (Huotari et al., 2012). Given the important 

association of the host vesicles with the developing Plasmodium parasites in the hepatocyte 

and the role of Cullin 3 in regulation and endosome maturation, in this thesis, we aimed at 

characterizing the role of Cullin 3 during Plasmodium intra-hepatic development. For this, we 

have performed functional assays of gain- and loss- of function, namely by over-expressing 

Cullin 3 and blocking Cullin 3 signaling using a neddylation inhibitor MLN4924 or depleting 

Cullin 3, using siRNA. 

 

4.1. Over-express Cullin 3 and analyze the effect on parasite development 

We started by checking whether over-expressing Cullin 3 would have any effect on 

Plasmodium infection, as well as in the accumulation of vesicles around parasite.  

We began by evaluating the rate/efficiency of transfection in the human hepatoma cells 

(Huh7) usually used in our infection setups, and in the HeLa cells. For this we used a 

plasmid expressing GFP and analyze the level of GFP expression by flow cytometry. The 
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HeLa cells showed better transfection efficiency (30%) compared with cells Huh7 that 

showed a transfection rate of 0,77% (Figure 5). Based on these results we choose HeLa 

cells to proceed for the evaluation of the effects of over-expressing Cullin 3 during 

Plasmodium infection. We transfected HeLa cells with a plasmid expressing Cul3-Myc. 36h 

after transfection cells were infected with freshly dissected GFP-expressing P. berghei 

sporozoites. The analysis was performed by microscopy. Transfected cells were detected 

with either an anti-Cul3 or anti-myc antibody and parasites were detected using a PVM 

marker (anti-UIS4 antibody) (Figure 5).  

After the analysis of three independent experiments we could not identify sufficient numbers 

of cells that were both transfected and infected to be able to draw any conclusions on the 

effect of Cullin 3 over-expression on Plasmodium infection. The reason for this might be the 

combination of the low transfection rate quantified here (30%) with the extremely low 

infection rate of HeLa cells by Plasmodium (<1%). In order to overcome this difficulty, one 

possibility for further gain-of-function studies would be to create a cell line stably expressing 

Cullin 3. 

Figure 5: Over-expression of Cullin 3. Huh7 cells and HeLa cells were transfected with pCMV-GFP 

plasmids and analyzes by flow cytometry at 36 hpt (A). HeLa cells were transfected with pCMV-Cul3-

myc plasmids and infected with P. berghei sporozoites.  Analysis was performed through microscopy. 

Cells were stained with anti-Myc antibody (green); anti-Cul3 antibody (magenta) and Nuclei were 

stained with DAPI (blue; B). Scale bars: 10 μm. 

DAPI Myc Cul3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HUH7 HeLa

%
 t
ra

n
s
fe

c
ti

o
n

o
f
G

F
P

-p
la

s
m

id

HUH7

HeLa

A

B



17 
 

4.2. Blocking Cullin 3 signaling, using the neddylation inhibitor MLN4924, in 
Plasmodium liver stage infection 

Neddylation, the process of adding the ubiquitin-like molecule NEDD8 to target proteins, is a 

type of protein post-translational modification. Occurs through the action of a neddylation 

cascade similar to that used in the ubiquitin system. It involves the successive action of 

NEDD8-activating enzyme E1 (NAE), NEDD8-conjugating enzyme E2 (Ubc12), and NEDD8-

E3 ligase (Xirodimas et al., 2008). Many studies showed that neddylation plays an important 

role in ubiquitin-mediated proteolysis by modification of Cullins (Soucy et al., 2009). 

MLN4924 is a newly discovered small molecule inhibitor of NAE (Petroski, 2010). 

Mechanistically, MLN4924 inhibits NAE activity through the binding to NAE at the active site 

forming a covalent NEDD8-MLN4924 adduct (Brownell et al., 2010). As a result, Cullin 

neddylation is blocked leading to CRL/SCF (Cullin-RING-ligases / Skp1-Cullin-F box 

proteins) inactivation and consequently to the accumulation of several key substrates of 

CRLs. One advantage of MLN4924 is the high specificity toward the CRLs inhibition. In 

addition, this compound is approved FDA (Food and Drug Administration).  

 

We started by confirming the effect the compound MLN4924 in accumulation of 

autophagosomes vesicles upon blocking Cullin neddylation in our system. The protein 

microtubule-associated protein light chain 3 (LC3), a mammalian homolog of yeast Atg8, is 

known to exist on autophagosomes, and therefore, is a widely used marker for 

autophagosomes (Kabeya et al. 2000; Mizushima 2004). Thus, we have performed a 

microscopy analysis of HeLa cells expressing GFP-LC3 treated with 1 μM the compound 

MLN4924 during 24 hours, according to what is described in the literature (Lin et al. 2010; 

Zhao et al. 2012). We observed that MLN4924 at 1 μM within a period of 24 hours causes 

accumulation the LC3, and thereby assure the proper functioning of the compound in our 

hands (Figure 6). 
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Figure 6: Effects of MLN4924 in the accumulation of LC3 vesicles. Microscopy analysis of HeLa 

cells expressing GFP-LC3 treated for 24 hours with 1μM MLN4924 or vehicle (DMSO) as control. 

Staining of vesicles with an anti-LC3 antibody (green) and cell nuclei stained with DAPI (blue). Scale 

bars: 10 μm. 

 

Next we evaluated the effect of the neddylation inhibitor MLN4924 during Plasmodium 

infection. We first analyzed Plasmodium invasion at 5 hpi. We used human hepatoma cells 

(Huh7) that were infected with freshly dissected GFP-expressing P. berghei sporozoites. The 

cells were infected 24 hours after treatment with 1 μM or 10 μM of MLN4924. Control cells 

were treated with vehicle alone (DMSO) and all the results were normalized to DMSO at 1 

μM. Infection parameters were quantified at 5 hpi by flow cytometry. We observed that none 

of the concentrations significantly affect cell viability (Figure 7A). Similarly, no effect was 

observed in the levels of Plasmodium invasion when cells are treated with MLN4924, as 

evidenced by the green bars when compared to the control, grey bars (Figure 7B). 
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Figure 7: Effect of neddylation inhibition in Plasmodium berghei invasion. Flow cytometry 

analysis of P. berghei infected Huh7 cells submitted to treatment with 1 or 10 μM of MLN4924 (green 

bars) and DMSO (grey bars), The cell confluency (A) and infection levels (B) were determined at 5 hpi 

and normalized to 1 μM DMSO. 

 

We next evaluated the effect of inhibiting host Cullin 3 signaling using neddylation inhibitor 

MLN4924 in Plasmodium infection levels at 48 hpi. As before, Huh7 cells were infected with 

GFP-expressing P. berghei sporozoites 24 hours after the treatment with 1 μM of MLN4924. 

Control cells were treated with DMSO and all the results were normalized to DMSO. Infection 

parameters were quantified at 48 hpi by flow cytometry. Our results show that treatment with 

the lowest concentration of the compound, MLN4924 (1μM) severely interferes with cell 

numbers (Figure 8A), most likely through the induction of cycle arrest. In addition, the effect 

on infection levels is only mild, as evidenced by the green bars when compared to the 

control, grey bars (Figure 8B). 

 

 

Figure 8: Effect of neddylation inhibition in Plasmodium berghei levels of infection at 48 hpi. 

Flow cytometry analysis of P. berghei infected Huh7 cells submitted to treatment with 1 μM MLN4924 

(green bars) or DMSO (grey bars). The cell confluency (A) and infection levels (B) were determined 

and normalized to DMSO. 
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The effect of MLN4924 on cell growth was further explored aiming to identify any potential 

cell morphological alterations and eventual indirect effects on Plasmodium infection. For this 

we performed microscopy analysis using Huh7 cells infected with GFP-expressing P. berghei 

sporozoites 24 hours after the treatment with MLN4924 (1 μM). As before, control cells were 

treated with vehicle alone (DMSO). The results were normalized to DMSO control. 

Consistently with previous results, when cells were treated with MLN4924 the effect on cell 

number was observed. We further observe, both by flow cytometry as well as by microscopy, 

the phenotype of increased cell size, with enormous and irregular nuclei (Figure 9A and 9B), 

suggesting that indeed the compound is causing cell cycle arrest. Interestingly, although the 

number of parasites at 48 hpi is not altered (Figure 9C), their size is strongly reduced (Figure 

9D and 9E) suggesting that the development of Plasmodium parasites upon treatment with 

the compound is affected. 

 

 

Figure 9: Effect of neddylation inhibition in cell cycle and Plasmodium berghei development. 

Analysis of Huh7cells  treated with 1 μM MLN4924 or DMSO showing the differences in cells size 

upon treatment evidenced by flow cytometry (FSC-histogram) (A) or microscopy analysis (B). In the 

same experiments, the total number of parasites at 48 hours post-infection was quantified (C) and 

schizont size was quantified by measuring the area (D). Representative images of parasites at 48 hpi. 

For microscopy analysis cells were stained with anti-Hsp70 antibody (parasite cytoplasm; green) and 

nuclei with DAPI (blue). 
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Overall, our data demonstrate that although there is no significant effect in Plasmodium 

infection levels (Figure 8B and 9C), the development of the parasites is strongly affected 

upon treatment MLN4924 (Figure 9D). However, treatment with MLN4924 also lead to highly 

altered morphology in the host cells, which depicted abnormally increased size, enlarged and 

irregular nuclei (Figure 9B). In fact, these and other effects have been previously  described 

in the literature, mechanistic studies of MLN4924 action in growth suppression of tumor cells 

revealed that MLN4924 effectively induced apoptosis (Soucy et al. 2009; Milhollen et al. 

2010; Swords et al. 2010; Milhollen et al. 2011) and senescence (Lin et al. 2010; L. Jia, Li, 

and Sun 2011) in several human cancer cell lines. These observations are associated with 

DNA damage response, G2 phase arrest; likely triggered by DNA replication due to 

accumulation of DNA-licensing proteins, resulting from inactivation of CRL/SCF E3 ligase 

(Luo et al. 2012; Blank et al. 2013). For these reasons it is not possible to draw any 

conclusions on the effect of the blocking Cullin 3 signaling in Plasmodium infection, through 

the use of MLN4924. 

 

4.3. SiRNA-mediated knockdown of the host cell Cullin 3 

To better evaluate the role of Cullin 3 during liver stage Plasmodium infection we used a 

more specific approach. We used siRNA-mediated knockdown to cause depletion of Cullin 3 

in the host cell and evaluate the possible effects on Plasmodium infection. 

 

We first assess Cullin 3 mRNA levels after siRNA-mediated Cullin 3 depletion in hepatoma 

cells. Three different siRNA oligonucleotides targeting human Cullin 3 (named, Cul3#1, 

Cul3#2 and Cul3#3) were transfected in Huh7 cells. In all experiments, control cells were 

transfected with a scramble (non-targeting) siRNA oligo (Neg control). Cullin 3 mRNA levels 

were measured by qRT-PCR at 36 hours and 84 hours post-transfection (Figure 10A and 

10B, respectively). The results were normalized as a percentage in relation to the negative 

control. In order to confirm the decrease also in Cullin 3 protein levels upon depletion, 

transfected Huh7 cells were also analyzed by western blot 84 hpt.  The western blot analysis 

shows that after knockdown Cullin 3 protein levels are also reduced (Figure 10C; Cullin 3 has 

a molecular weight of approximately 75KDa). 
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Figure 10: Levels mRNA and protein expression after siRNA-mediated knockdown Cullin 3. Two 

validated siRNA oligonucleotide targeting human Cullin 3 were reverse-transfected into Huh7 cells and 

mRNA levels analyzed by qRT-PCR at 36 hours (A) and 84 hours (B) post-transfection. Huh7 cells 

were transfected with pooled Cullin 3 siRNA oligos or scramble siRNA and subsequently, lysed and 

immunoblotted with anti-Cul3 and anti-γTubulin (γ-Tub) as loading control (C). 

 

The next step was to evaluate the possible effects of Cullin 3 depletion on Plasmodium 

infection. We choose one oligonucleotide (Cul3#1) to proceed with the analysis; this oligo 

was chosen based on knockdown efficiency and stability (Figure 10A and 10B). Transfected 

Huh7 cells were infected with GFP-expressing P. berghei sporozoites 36 hpt and infection 

was analyzed by measuring Pb 18S rRNA levels by qRT-PCR at 48 hpi. The results 

suggest that the knockdown of Cullin 3 leads to a decrease in Plasmodium infection at 48 hpi 

(Figure 11A). To check if this effect was due to a decrease in numbers or in parasite 

development we performed the same experiment but this time analyzed by microscopy, 

counting the number and measuring the area of the parasites. Parasites were stained using 

an anti-Hsp70 antibody (parasite cytoplasm). The result of number of the parasites is 

normalized to Neg control. Consistently, we observed a decrease in Plasmodium numbers at 

48 hpi upon Cullin 3 knockdown (Figure 11B). However, the parasite development did not 

showed significant alterations (Figure 11C and 11D).  
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Figure 11: Effect of siRNA-mediated knockdown Cullin 3 in Plasmodium liver stage infection. 

The siRNA Cul3#1 was reverse-transfected into Huh7 cells and 36h later cells were infected with 

sporozoites. Infection was analyzed by qRT-PCR 48h after sporozoite addition. Data represent mean 

± SD of two independent experiments (A). Microscopy analysis revealed that the total number of 

parasites at 48h post-infection is decreased (B). Schizont size was not significantly altered (C). 

Representative images of parasites at 48 h post-infection in Neg control and siRNA Cul3#1 stained 

with anti-Hsp70 antibody. Scale bars: 5 μm (D). 

 

Taken together, our results suggest that depletion of Cullin 3 by siRNA affects Plasmodium 

infection levels at 48 hpi. However, further experiments are necessary to confirm and 

elucidate the mechanism behind the effect of depletion of Cullin 3 in the infection by 

Plasmodium. 

 

To evaluate the effect of Cullin 3 depletion in the accumulation of vesicles (endolysosomes) 

around the parasite we performed a microscopy analysis of transfected Huh7 cells, infected 

with P. berghei sporozoites. Cells were stained for parasite anti-Hsp70 (cytosol) and anti-

UIS4 (PVM) antibodies and for late endosomes and lysosomes, using anti-LAMP1 antibody. 

Raw integrated density was measured with ImageJ. We observed no significant differences 

in vesicle aggregation around the parasite and in the host cell cytosol when the cells are 

depleted of Cullin 3 (Figure 12). 
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Figure 12: Effect of depletion of Cullin 3 in the accumulation of vesicles around the parasite. 

Huh7 cells transfected with SiRNA oligo infected with Pb sporozoites were stained with anti-LAMP1 

(red), anti-HSP7 (parasite cytoplasm; green) and anti-UIS4 (PVM marker; magenta) antbodies. Nuclei 

were stained with DAPI (blue). Scale bars: 10 μm. 

 

The cellular and molecular interactions that occur between the malaria parasite and the host 

liver cell remain largely unknown. Currently, studies reveal a novel Plasmodium – host 

cellular interaction, where host vesicles from the endolysosomal pathway could be important 

for schizont development (Lopes da Silva et al., 2012). Lopes da Silva and colleagues 

suggest two alternative hypotheses for the presence of the vesicles around the parasite, 

either act as a host defense mechanism, or alternatively, that they could somehow be used 

by the parasite for its own benefit, possibly as a rich source of nutrients (Lopes da Silva et 

al., 2012). Recently, Cullin 3 has been identified as a regulator of endocytic pathway. 

Depletion of Cullin 3 resulted in the deformation of late endosome and a defect in the 

transport of endocytic cargo to lysosomes (Huotari et al., 2012). Our results suggest that host 

Cullin 3 is important for Plasmodium infection in hepatoma cells, however no significant 

alterations are observed in the distribution or accumulation of vesicles around the parasite 

upon Cullin 3 depletion. The endosome maturation process after cargo uptake at the plasma 

membrane involves several distinct steps, including morphological changes, exchange of 

membrane components, movement of the endosomes, a Rab switch, formation of 

intraluminal vesicles (ILVs), a drop in luminal pH and acquisition of lysosomal components. 

Cullin 3-mediated ubiquitination could directly or indirectly affect any of these processes (Kim 

et al., 2011), which can explain why we did not see any alterations in vesicle accumulation. 

Therefore, further studies should be performed in order to better understand how Cullin 3 

signaling influences Plasmodium infection.  
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5. CONCLUSION 

In this thesis we proposed to characterize the role of Cullin 3 during Plasmodium intra-

hepatic development. Although gain-of-function experiments and treatment with the CRLs 

activation inhibitor MLN4924 were inconclusive, our results showed that Cullin 3 is 

apparently relevant in the context of malaria infection. In fact, depletion of Cullin 3 expression 

by siRNA reduced Plasmodium levels in Huh7 cells, suggesting that Cullin 3 signaling is 

important during liver-stage infection. However, more studies are necessary to confirm this 

phenotype and elucidate the molecular mechanisms behind it. Nevertheless, our results also 

showed that accumulation of vesicles around the parasite was not altered upon Cullin 3 

depletion. The exact role of Cullin 3-mediated ubiquitination in the endocytic pathway still 

needs to be defined. Further understanding of the players that directly or indirectly affect any 

of the endosome maturation processes may be important to clarify the interaction between 

Plasmodium parasite and the host cell, therefore to develop new strategies to control malaria 

liver-stage infection. 
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7. APPENDIX 

Appendix I: Primers, siRNA sequences and antibodies. 

Table 1: Primers used in qRT-PCR experiments 

Gene name Reverse Forward 

Cullin 3 ATG CTG GAG TGT GAG CTG TC ACG ACA GGA TAT TGG CCC AC 

Pb 18S rRNA GGA GAT TGG TTT TGA CGT TTA TGT G 
AAG CAT TAA ATA AAG CGA ATA 

CAT CCT TAC 

hHPRT CAAGACATTCTTTCCAGTTAAAGTTG TTTGCTGACCTGCTGGATTAC 

 

 

Table 2: siRNA sequences 

Sequence ID SiRNA 

ID# 

Sequence, sense 

5´-3´ 

Seguence, antisense 

5´-3´ 

Cul3#1 139189 
GCU UGG AAU GAU CAU 

CAA Att 

UUU GAU GAU CAU UCC 

AAG Ctt 

Cul3#2 217187 
GCU AUG GUG AUG AUU 

AGA Gtt 

CUC UAA UCA UCA CCA 

UAG Ctg 

Cul3#3 139188 
GCU CUA CAC  UGG ACU 

AAG Att 

UCU UAG UCC AGU GUA 

GAG Ctt 

 

Table 3: Antibodies. 

Primary Antibodies Dilution 

Anti-Hsp70 1:200 

Anti-UIS4 1:1000 

Anti-LC3 1:200 

Anti-LAMP 1:200 

Anti-Myc 1:200 

Anti-Cul3 1:300 

 

Secondary Antibodies and dyes Dilution 

Anti-mouse Alexa 488  1:400 

Anti-Rabbit Alexa 594  1:400 

Anti-Goat Alexa 555  1:400 

Anti-Goat Alexa 633  1:400 

Anti-Rabbit Alexa 647  1:400 
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DAPI 1:1000 
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Appendix II: Gating strategy for flow cytometry analysis of infected cells 

 

 

 

 


