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Resumo

Na presente dissertação, investigamos de forma sistemática a forma como
a morfologia dendrítica subjaz as diferenças na atividade elétrica neuronal
que estão na base da geração de potenciais de ação. De forma a atingir este
objetivo desenvolvemos uma medida que quantifica as duas maiores fontes de
variabilidade morfológica: métrica e topologia, e ainda outros componentes
estruturais como canais iónicos. Baseado na nova medida, propomos um novo
mecanismo de sincronização que relaciona a estrutura dendritica à modulação
de currente axial que flui da árvore dendrítica até ao soma. Esta hipótese afirma
que quanto mais simétrica a estrutura electrotónica da célula é, mais currente
irá chegar ao soma das dendrites devido à sincronização obtida em virtude da
simetria estrutural.

De forma a testar a hipótese de sincronização foram simuladas duas exper-
iências usando modelos multi-compartimentais computacionais de células de
Purkinje, Piramidais e células do córtex Visual. Na primeira abordagem, as
estruturas das células foram quantificadas utilizando a nova medida e depois
comparadas com a quantidade de currente axial proviniente das dendrites que
atingia o soma. Na segunda abordagem, os potenciais de voltagem são medidos
ao nível do compartimento axo-somático de forma a se poder analisar se difer-
enças encontradas na condição axial induzem diferenças na atividade de spiking
da célula. Os resultados apoiam a hipótese de sincronização, pois neurónios
com estruturas electrotónicas com níveis de simetria mais elevados, exibem os
níveis mais elevados de currente axial a chegar ao soma para o mesmo estímulo.
As diferenças encontradas na condição axial correlacionaram-se com o tempo
que os neurónios levaram a atingir um potencial de ação, com os neurónios
mais simétricos a requerer menos tempo para o fazer. No entanto, diferenças
significativas não emergiram nos padrões de potenciais de ação, mas estes resul-
tados podem ser explicados por algumas limitações no protocolo de estimulação.
Em suma, os nossos resultados mostram que a medida desenvolvida é uma
alternativa promissora às abordagens morfométricas tradicionais, pois pode ser
utilizada com confiança para quantificar diferenças estruturais, podendo ser
aplicada a vários tipos de neurónios, providenciando uma ligação entre estrutura
e função.

Palavras-chaves: Estrutura-Função, Simetria, Estrutura Electrotónica,
Sincronização





Abstract

In this dissertation, we systematically investigate how dendritic morphology
underlies the differences in the electrical dynamics of the cell that lead to
spiking behaviour. To accomplish this goal we develop a new measure that
provides a quantitative account of the two most relevant sources of morphological
variability: metrics and topology, as well as of other structural components
such as ion channels. Supported by the new measure, we propose a new
synchronization mechanism that relates dendritic structure to the modulation
of axial current that flows from the dendrites to the soma. This hypothesis
states that the more symmetric the electrotonic structure of a cell is, the more
current will reach the soma from the dendrites due to the synchronism obtained
by virtue of structural symmetry.

To test the synchronization hypothesis two simulation-based experiments
using detailed multi-compartmental computational models of Purkinje, Pyrami-
dal and Visual cortical cells were conducted. In the first approach, by means
of the novel measure, the structure of the cells are quantified, and compared
with the amount of axial current reaching the soma from the dendritic tree.
In the second approach, voltage traces are measured at the axo-somatic com-
partment to analyse whether differences found in the axial current condition
induce differences in the output spiking patterns. Our results support the
synchronization hypothesis, as neurons with electrotonic structures with higher
levels of symmetry exhibited the highest amount of current reaching the soma
for the same stimulus. These differences correlated with the time that neurons
required to spike, with more symmetrical neurons requiring less time to do so.
Nevertheless, significant differences fail to emerge in the output spike trains, but
these results can be explained by some limitations in the stimulation protocol.
Overall, the results show that the proposed measure is a promising alternative
to traditional morphometrics measures as it can be used with confidence to
quantify structural differences, and can be applied across different types of
neurons while providing a bridge between structure and function.

Keywords: Shape-Function, Symmetry, Electrotonic Structure, Syn-
chronization
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Chapter 1

Introduction

In this first chapter, we start by putting the present work into a bigger perspective and
enumerate the main objectives of the research presented in the following manuscript. In
the final section of the chapter, we provide an overview of the thesis structure.

1.1 Context

The shape–function paradigm, i.e., the existence of a close link between shape and function
in nature, probably takes origin along with the beginning of human scientific thinking.
This paradigm finds an excellent field of application in Neuroscience in a branch named
Neuromorphology. This field yields not only the application of a set of techniques useful to
measure and characterize the geometrical properties of nerve cells and structures, but more
extensively cares about studying the relationship between the geometry of the nervous
structure and its functionality [8]. In particular, this thesis is on the subject of how the
structural features of single neurons may influences the electrical activity of the cell and
its firing behaviour .

However, the task of relating structure to function is not an easy one because the
brain is a extraordinarily complicated circuit. To make things more complicated the
components of this circuit are not homogeneous, but instead, there are many different
classes of neurons [15]. To fully understand the function of any circuit both the components
and the connections must be identified and understood, but this is an extremely difficult
task when considering the number of neurons in the brain [60].

Nevertheless, experimental and theoretical observations disclose many structural and
functional patterns, leading one to think that must be underlying organizational principles
that govern brain structure and allow the network to function [24].

Fundamental Research

One of the central questions in neuroscience is how particular tasks, or computations, are
implemented by neural networks to generate behaviour. The prevailing view has been
that information processing in neural networks results primarily from the properties of
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2 CHAPTER 1. INTRODUCTION

synapses and the connectivity of neurons within the network, with the intrinsic excitability
of single neurons playing a lesser role [69]. As a consequence, the contribution of single
neurons to computation in the brain has long been underestimated .

However, in recent years, the role of neurons in these computations has evolved
conceptually from that of a simple integrator of synaptic inputs until a threshold is reached
and an output pulse is initiated [73], to a much more sophisticated processor with mixed
analog-digital logic and highly adaptive synaptic elements [37, 59].

During this conceptual transition, it was realised that the morphology of a neuron,
notably its dendrites, play a critical role in brain function for two main reasons [59]. First,
neuronal morphology defines and is defined by the circuitry, being the synaptic contact
between the output axon of one neuron and the input dendrite of another the major
element of neuronal connectivity. As such, a precise morphology is crucial to establish the
connectivity required for the nervous system to operate normally. Secondly, the precise
morphology of a neuron and its membrane’s ion channel composition set the computations
that a neuron performs on its inputs, i.e., the propagation and integration of synaptic
input signals along the neuron’s membrane up to the axon initial segment, the location
where the neuronal output is typically generated. Therefore, it has been hypothesised and
demonstrated in some cases that neurons with different structures serve different functions
or endow different computational capabilities [24].

In spite of it is nowadays a given fact the existence of a link between structure and
function, the mechanisms underlying this link are poorly understood, and consequently
the impact of morphological differences on the cell behaviour remains insufficiently known
[69, 88]. This situation is a consequence of the complexity of single neurons: these cells
have many branches with irregularly varying diameters and lengths, their membranes are
populated with a wide assortment of ionic channels that have different ionic specificities,
and kinetics dependent on voltage and second messengers. Trying to incorporate every of
these biological details may obscure the focus on the essential structure-function relation,
whereas limiting investigations to highly abstract processes may reduce the biological
relevance of specific findings.

Moreover, scattered over the surface of the cell may be hundreds or thousands of
synapses, and synapses themselves are far from simple, often displaying stochastic and
use-dependent phenomena that can be quite prominent, and frequently being subject to
various pre and postsynaptic modulatory effects. In sum, even a single isolated neuron is
an intricate world on its own [49].

Despite this daunting complexity, even if the brain was perfectly static, it seems unlikely
that the genome could encode the location of every synapse and therefore the location of
every piece of a dendritic tree and axon from every neuron. It seems probable that the
genome specifies general rules, mechanisms or strategies for connectivity and structure,
and then connections form within the context of these general rules [8]. The long-term
end result of the collective effort by researchers in Computational Neuroscience at large is
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to identify these general rules and build a comprehensive structural and functional model
of the brain [72]. Such a model might have deep implications for scientific understanding
as well as technological development.

Translational Research

The unravelling of these general rules not only has importance for fundamental purposes
but also has many possible important applications at different levels. For example,
various studies report that many neuropsychiatric disorders are characterized by dendritic
and synaptic pathology, including abnormal spine density and morphology, synapse loss,
and aberrant synaptic signaling and plasticity [57, 66, 93]. Therefore, identifying and
understanding these changes in neuronal morphology are essential for understanding brain
function in normal and disease states.

Moreover, theories and methods of bio-inspired Artificial Intelligence, such as Neural
Engineering, aim at reproducing the functionalities of brains in order to engineer intelligent
machines. Issues addressed by Neural Engineering that Computational Neuroscience may
help shed a light on include high-level architectures that could reproduce cognitive abilities,
brain-computer interfaces and implementation of neural models in hardware [34, 46, 50].

1.2 Research Objectives

Taking into account what was previously mentioned, the scientific issue that motivates the
design and construction of the models analysed in the present thesis, is the question of
how signal integration is affected by the structure and biophysical properties of neurons.
Especially, the objectives of the present manuscript are:

• Systematically investigate how the physical parameters controlled by dendritic mor-
phology underlies the differences in the electrical dynamics of the cell that leads to
spiking behaviour.

• The developed approach should provide a quantitative account of the two sources
of morphological variability: metrics (size of the dendritic tree, segment lengths,
segment diameters) and topology (the way the segments of the dendritic tree are
connected) and possibly of others structural components such as ion channels.

• Since there are not any such measures in the literature, one of the main goals of the
research conducted was to create a measure as general as possible, i.e., that could be
applied across many types of neurons.

1.3 Research Contributions

The work developed in this thesis comprises the following contributions:
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• This thesis is the first to introduce in the Computational Neuroscience domain a
measure, e−X , that quantifies topological, metrical, passive and active properties of
neurons in a unified way.

• Our results show that e−X has a highly discriminative power, and it provides a direct
bridge between structure and function. We compare e−X to other more traditional
approaches.

• Based on the novel measure it is proposed a new structure based mechanism that
neurons may explore to integrate electrical signals. We hypothesised how symmetric
electrotonic dendritic structures lead to better electrical signals synchronization.

• Using computational models of artificial reconstructed neurons, we manipulate the
dendritic mechanism to determine if there is a causal link between the proposed
mechanism and the electrical behaviour of the cells. Our simulation-based experiments
show that the proposed mechanism is a robust and important factor modulating
axial current that causes neurons to spike.

1.4 Report Overview

In this section, we provide an overview of the thesis structure. In Chapter 2, we review
the state-of-the-art on the distinct subjects relevant to this dissertation. The chapter is
divided into three main sections that are dedicated respectively to the computational
approach in Neuroscience, the role of single neurons in information processing, and to the
realistic modelling of single neurons.

In chapter 3, we discuss the morphological features of dendritic tree structures, providing
an overview of quantitative procedures used to accomplish that. The main focus of the
chapter is on the description of morphological complexity of neurons and how one can
use this description to unravel neuronal function in dendritic trees and possibly in neural
circuits.

In chapter 4, we describe and discuss some advanced preliminaries, necessary in order
to understand the theoretical part of the research presented. Basically, we derive and
introduce a new measure that relates structure to function in single neurons, and in the
end of the chapter the research problem is stated.

In chapter 5, it is provided a description of the approach and method employed to solve
the stated problem, and in the final section of the chapter the results found are analysed
and discussed.

In chapter 6, the work done in the present thesis is positioned in the context of other
people’s efforts in the area. It is shown the principal differences and similarities with
respect to the details of the problem, the approach, the results, and the methodology.
Then we discuss directions for future work. Finally, we give a summary of the report and
present some conclusions.



Chapter 2

Background

This chapter includes a broad range of subjects relevant to this dissertation. The subjects
are presented in a top-down fashion. First, we are going to expose the reader to the
field of Computational Neuroscience, particularly to its advantages and disadvantages,
and how Neuroscience as a whole can benefit from this approach. Afterwards, we are
going to review the state of the art of single neuron computational abilities, this means
how they process information in order to execute certain tasks, providing theoretical and
experimental examples to support. In the final section of the present chapter, we will
introduce the techniques used to implement morphologically realistic models of single
neurons.

2.1 The Computational Approach

The use of computational tools to Neuroscience is known by a number of largely synonymous
names, such as Computational Neuroscience, Theoretical Neuroscience or Computational
Neurobiology. This field has a twofold approach: in one hand, it comprehends the use of
databases, the World Wide Web, visualization of data, storage and analysis of Neuroscience
data [6, 22, 78]. On the other hand, it attempts to analyse computational models of the
nervous system by using powerful computers to find numerical solutions to the complex
sets of equations needed to construct an appropriate model of certain parts of the nervous
system [16, 20, 38].

2.1.1 What is a Computational Model?

The complexity of the nervous system makes it very difficult to someone to theorise about
it, in a convincing manner, on how such system is put together and how it functions. To
aid our thought processes we can represent our theory as a computational model in the
form of a set of mathematical equations. The variables of the equations represent specific
neurobiological quantities, such as the rate at which impulses are propagated along an
axon, or the frequency of opening of a specific type of ion channel, and the equations

5



6 CHAPTER 2. BACKGROUND

themselves represent how these quantities interact according to the theory being expressed
in the model [16, 20, 37, 41].

Advantages

A key advantage of computer modelling is its ability to wrestle with complexity that often
proves daunting to otherwise unaided human understanding, and because of this, the use
of computer models to understand how the brain works has been a critical contributor
to scientific progress in this area over the past few years. Solving these equations by
analytical or simulation techniques enables us to show the behaviour of the model under
given circumstances, and thus address the questions that a certain theory was designed to
answer [16, 20]. By doing so, these models can be used as explanatory or predictive tools,
removing ambiguity from theories and complement empirical experiments (sometimes
some computational models can even explore conditions that are very difficult to test
empirically).

Disadvantages

Nevertheless, in all fields where computer models are used, there is a fundamental distrust
of these models. They are themselves complex, created by people, and have no necessary
relationship to the real system in question.

A key aspect of computational modelling is determining values for model parameters
and often these will be estimates at best, or even complete guesses. To avoid this drawback,
a good model must be constrained by empirical data at as many levels as possible, and
they must generate predictions that can then be tested empirically [41].

Another known issue in computational modelling in general, and in computational
modelling applied to Neuroscience in particular, is the trade off between incorporating
sufficient details to account for biological complexity, and reducing this complexity to a
bare minimum to make the model tractable [49]. The nature of the scientific question
that drives the modelling work will largely determine the level at which the model is
to be constructed, and therefore the level of details to be incorporated, but the general
rue of thumb is to develop the simplest possible model that captures the most possible
data. Often this is a matter of judgement on what phenomena someone regards as being
important, and once again, this will vary depending on the scientific questions being
addressed with the model.

2.1.2 Developing a Computational Model

To develop a computational model in neuroscience the researcher has to decide how to
construct and apply a model that will link the neurobiological reality with a more abstract
formulation that is analytical or computationally tractable. As previously mentioned,
guided by neurobiological data, decisions have to be made about the level at which the



2.2. THE SINGLE NEURON 7

model should be constructed, the nature and properties of the elements in the model and
their number, and the ways in which these elements interact. Having done all this, the
performance of the model has to be assessed in the context of the scientific question being
addressed.

Conceptual Model

The first step is to formulate a conceptual model that attempts to capture just the essential
features that underlie a particular function or property of the physical system. If the
aim of modelling is to provide insight, then formulating the conceptual model necessarily
involves simplification and abstraction [16, 20, 41].

When we formalize our description of a biological system, the first language we use is
Mathematics, by doing so one specify the theory in a non-ambiguous and precise way. The
conceptual model is usually expressed in mathematical form, although there are occasions
when it is more convenient to express the concept in the form of a computer algorithm.

Section 2.2.3 is concerned with mathematical and conceptual representations of phe-
nomena relevant to model single neurons.

Computational Model

A computational model is a working embodiment of a conceptual model through the
medium of computer simulation [16, 20, 41]. It can assist hypothesis testing by serving as
an artificial laboratory preparation in which the functional consequences of the hypothesis
can be examined. The conceptual model, and the hypothesis behind it, determine what is
included in the computational model and what is left out.

Such tests can be valid only if the computational model is as faithful to the conceptual
model as possible. This means that the computational model must be implemented in a
way that does not impose additional simplifications or introduce new properties that were
not consciously chosen by the user. Otherwise the interpretation of the results obtained
can become compromised, because they just might be a byproduct of distortions produced
by trying to implement the model with a computer.

Section 2.3 of the present chapter will deal with the techniques used in the constructions
of morphologically realistic models of single neurons.

2.2 The Single Neuron

The fundamental building block of every nervous system is the single neuron. Understand-
ing how these sophisticated elements operate is an integral part of the quest to solve the
mysteries of the brain. An important contemporary concept of the neuron doctrine is that
the neuron is made of several regions with different functions interacting in complex ways
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Nervous System
1 m

Subsystems
10 cm

Neural Networks
1cm

Microcircuits
1mm

Neurons
100 µm

Dendritic subunits
10 µm

Synapses
1 µm

Signaling Pathways
1 nm

Ion Channels
1 pm

Neural Fields

Networks of Sim-
plified Neurons

Cascade and
Black-box Models

Reduced Compart-
mental Models

Multi-compartmental
Models

Figure 2.1: To fully comprehend the nervous system it is required to understand it at many
different levels, at spatial scales ranging from metres to nanometres or smaller. At each of
these levels there are different computational models for how the elements at that level function
and interact. The appropriate level of description depends on the particular goal of the model.
Multi-compartmental Models: morphologically realistic models that focus on how the spatial
structure of a neuron contributes to its dynamics and function [49, 41]. Reduced Compart-
mental Models: these models offer a good compromise between realism and computational
efficiency when studying single neurons [49, 41]. Cascade and Black-Box Models: these
models are the highest level models for single neuron modelling, and basically they are simplified
functional models of neural spike responses [49]. Neural Networks of Simplified Neurons:
interconnected sets of reduced compartmental neurons that simulate the function of biological
neural networks, such as synchronization and oscillations [37]. Neural Fields: are even higher
level models of neural networks; the equations are tissue level models that describe the activity
(i.e. pattern formation) of large chunks of neurons populations [37].
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Neuronal Component Conceptual Model Computational Model

Figure 2.2: Creating a computational model of neuronal component/phenomena involves two
steps. The first step deliberately omits real-world complexities to produce a conceptual model.
In the second step, this conceptual model must be faithfully translated into a computational
model [20].

and these functionally diverse regions correspond to anatomically distinct parts of the cell
[56].

The axon is a component of a neuron specialized to distribute or conduct nerve impulses
generally over great distances. It is smooth and only sends off branches at long intervals, if
at all. It is commonly surrounded by a barrier of non-nervous cells called neuroglia inside
the central nervous system, and schwann cells outside (see Figure 2.3).

The dendrites are tree-like structures specialized for collecting information from other
neurons, neuroglia, circulating hormones and extracellular signals to the cell body or soma.
Vertebrate dendrites are commonly highly branched, irregular in thickness, thorny and are
covered by cocktail of excitable channel types. The neuronal cell membrane, explores its
permeability to different ions and concentration gradients across the membrane to perform
complex manipulations of signals representing internal and external worlds.

In the following subsections, we will provide an overview of Cable Theory applied to
model the spread and propagation of voltage and currents in neurons. This approach
started with Wilfrid Rall’s seminal contributions in the sixties [83]. Particularly, the
equations that are going to be presented in the following pages constitute the base of the
multi-compartmental models used later in this thesis.

2.2.1 Dendritic Integration

The input-output relation in neurons can be studied in two opposing points of views:
neural encoding and neural decoding [27]. On one hand, neural encoding refers to
the study of how neurons respond/integrates a particular stimulus, and the construction
of models that attempt to predict the response to those stimuli. This is the topic of the
present subsection.

In the other hand, neural decoding is concern with analysing the amount of information
encoded by sequences of action potentials. This issue will be briefly exposed in the following
subsection 2.2.2.

A typical neuron receives inputs from thousands of other neurons through the contacts
on its synapses (see Figure 2.3), and dendrites receive the far majority of these synaptic
inputs [56]. The inputs produce electrical transmembrane currents that change the
membrane potential of the neuron. Synaptic currents produce changes, called postsynaptic



10 CHAPTER 2. BACKGROUND

Figure 2.3: The axon terminal buttons are the connection points between sending neurons
(pre-synaptic) and the synapses of receiving neurons (post-synaptic). Most synapses are on
dendrites, which is where the neuron integrates all the input signals. Then, all these signals
flow into the main dendritic trunk and into the cell body or soma, where the final integration
of the signal takes place. The thresholding takes place at the start of the axon, named axon
hillock. The axon also branches widely and is what forms the other side of the synapses onto
other neuron’s dendrites, completing the next chain of communication [56].

potentials (PSPs). Small currents produce small PSPs; larger currents produce significant
PSPs that can be amplified by the voltage-sensitive channels embedded in the neuronal
membrane and lead to the generation of an action potential or spike – an abrupt and
transient change of membrane voltage that propagates to other neurons via the axon [56].

In an active neuron the superposition of passive and active electrical properties serves
to allow the cell the possibility of summing the transmembrane potential either linearly or
nonlinearly and to reach depolarization levels sufficiently high to trigger action potentials
[84].

Passive Properties

Even though it is rare to find fully passive dendrites in the mammalian brain, i.e., that do
not contain voltage-dependent membrane conductance, it is important to recognize that
the passive properties of the dendritic tree provide the backbone for the electrical signalling
in dendrites, and enhance the computational power of neurons, making understanding
the passive properties of dendritic trees crucial for the fully comprehension of the single
neuron computations [60, 83].

In terms of signal propagation, dendrites behave like electrical cables with medium-
quality insulation, and this propagation depends on Rm and Cm that may vary from cell
to cell [60, 84]. As such, passive dendrites linearly filter the input signal as it spreads
to the soma, where it is compared with the threshold. This filtering tends to attenuate
and temporally delay the dendritic signal as a function of the distance it travels and the
frequency of the original signal. Thus a brief and sharp excitatory postsynaptic potential
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Figure 2.4: Voltage traces of EPSP recorded ate the soma, from synapses located away from the
soma and close to the soma. Passive dendrites function as a low-pass filter and slows the time
course as measured at soma, thus increasing temporal summations at the soma.

(EPSP) that originates in the dendritic tree will be transformed into a much smaller and
broader signal when it arrives at the soma. Nevertheless, these factors are not the only
factors that influence the PSPs propagation in a dendritic tree. The geometry of the
dendritic tree, coupled with a unique synaptic architecture, influences signal propagation
as well and may implement specific computations [45, 84].

Synaptic events are conductance changes, rather than voltage sources, and their
interaction is significantly constrained by dendritic morphology. Spatial summation
describes the interaction of coincident synaptic inputs and depends on their relative
locations within the dendritic tree, and temporal summation describes the interaction
of coincident synaptic inputs and depends on their relative offset and time course (which
itself depends on τm = Rm ∗ Cm) [84]. One important result regarding these two types of
summation is that sublinear summation is expected for synapses located close together (or
temporally correlated), but it is minimal, or non existent for spatially (temporal) separated
inputs. However, this sublinear summation is modulated by interactions between spatial
and temporal summation, with summation reaching almost linear additivity when a certain
balanced is reached between the two. For example, if two synapses are contiguous spatially,
the summation is maximum when a certain amount of temporal delay between the onset of
both happens, and vice-versa, until a limit is reached and the two synapses do not interact
electrically. This happens because the depolarization caused by one synaptic event reduces
the driving force at nearby synaptic locations [45]. These principles governing dendritic
integration of EPSPs apply similarly to IPSPs (inhibitory postsynatic potentials).

Taking into account the principles stated, and the interaction between excitatory and
inhibitory PSPs, it is obvious that with certain synaptic arrangements in a passive dendritic
tree alone, nonlinear computations can be implemented (see Figure 2.5 as an example).

Active Properties

Many types of neurons display voltage-dependent membrane conductances in their den-
drites. The presence of these active conductances in dendrites has important consequences
for synaptic events and their integration. Depending on their voltage dependence, ionic
specificity, and kinetics, dendritically expressed voltage-gated channels have the poten-
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Figure 2.5: Neuron model that mimics the algorithm implemented by auditory neurons. The
model consists of a soma (centre) and two cylindrical dendrites. The task of a brainstem auditory
neuron is to perform coincidence detection in the sound localization system, i.e. it has only to
respond if the inputs arriving from both ears coincide in a precise manner, while avoiding a
response when the input comes from only one ear. Inputs to each ear do not produce strong
enough PSPs, but the input from both ears is summed and compared with threshold, and
this sum exceeds the threshold, whereas if the input arrives only to one ear the output is not
large enough. Agmon-Snir et al. [1] showed that dendrites of these neurons might implement a
similar algorithm. This is an example of how the dendritic tree geometry, coupled with a unique
synaptic architecture, implements specific computations that are beneficial for single neurons
computations. (This picture was taken from [1])

tial to amplify, dampen, and shape synaptic responses as they propagate through the
dendritic tree, expanding the computational repertoire of a neuron [59, 60, 69]. While a
comprehensive discussion of all dendritically expressed channels is beyond the scope of
this review, several dendritic conductances stand out at being especially important for
synaptic integration across a wide range of neurons, such as:

• active dendrites can influence the integration of PSPs is by amplification of inputs,
because the fact that passive dendrites attenuate the synaptic input. There have
been proposed several mechanisms, all off them with experimental support, for this,
namely sypnatic scaling, subthreshold boosting, local dendritic spikes, global dendritc
spikes [69, 21].

• interactions between voltage-dependent conductances can also underlie the generation
of intrinsic subthreshold oscillations, which have been demonstrated in various cell
types (e.g. place fields in hippocampus [3]).

• strong local dendritic nonlinearities, caused by the presence of voltage-gated and
calcium channels, may transform a dendritic tree in a set of multiple subunits, such
as single dendritic branches, that independently process input and convey the signal
to the soma through an amplitude boosting nonlinearity [35, 69].

Besides the information just stated, there are many other ways in which voltage-
dependent conductances can shape membrane-potential dynamics and neural computation
that we have not reviewed here.
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Computation Biophysical Mechanism
Addition or subtraction Dendritic summation of excitatory and/or inhibitory inputs
Subtration Shunting inhibition plus integrate-and-fire mechanism

Multiplication or division Synaptic interaction
Gain modulation via synaptic background noise

High-pass filter Firing rate adaption
Low-pass filter Passive membrane properties
Toggle switch Bistable spike generation

Table 2.1: Basic computations that follow from generic neuronal properties. These simple
computations can be used together in the same neuron to create algorithms that process the
information in a behavioural relevant way, e.g. collision avoidance, sound localization, motion
detection [49].

Figure 2.6: Action potentials are generated and sustained by ionic currents through the cell
membrane. The ions most involved are sodium, Na+, and potassium, K+. In the simplest case
an increase in the membrane potential activates (opens) Na+ (and/or Ca++ channels), resulting
in rapid inflow of the ions and further increase in the membrane potential. Such positive feedback
leads to sudden and abrupt growth of the potential. This triggers a relatively slower process of
inactivation (closing) of the channels and/or activation of K+ channels, which leads to increased
K+ current and eventually reduces the membrane potential. (This picture was taken from [51])

2.2.2 Spiking

Neurons are slow, unreliable analog units, yet working together they carry out highly so-
phisticated computations in cognition and control [77]. Action potentials play a crucial role
among the many mechanisms for communication between neurons, and other physiological
processes such as cell division, fertilization, morphogenesis, secretion of hormones, ion
transfer and cell volume control [52]. They are abrupt changes in the electrical potential
across a cell’s membrane, and they can propagate in essentially constant shape away from
the cell body along axons and toward synaptic connections with other cells (see figure 2.4).

Threshold

A lot of attention has been spent trying to experimentally determine the firing voltage
thresholds of neurons, but unfortunately, no clear voltage value was found above which
neurons fire. Instead it has been proposed, a new concept called rheobase, i.e., the minimal
amplitude of injected current of infinite duration needed to fire a neuron.[51].

Having this concept in mind, neurons can be classified in terms of its excitability
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into two great classes: integrators and resonators [51]. The first class has well defined
thresholds, and if a certain amount of positive current reaches the soma there will be
enough depolarization to induce an action potential, i.e., they integrate the signals; and
the higher the frequency of the input, the sooner they fire.

On the other hand, the second class may not display a well defined threshold, instead
they respond preferentially only to certain frequencies of the input, so the occurrence, or
not, of spiking behaviour is dependent on the temporal characteristics of the stimulus.

Neural Code

Action potentials convey information through their timing. A chain of action potentials is
called a spike train, i.e., a sequence of spikes events which occur at regular or irregular
intervals. The analysis of how neurons communicate through spike trains is one of the
greatest endeavours of modern Neuroscience, and it is named as the neural code [27].

Known coding strategies used by single neurons can be divided approximately into
rate codes and temporal codes, but these terms have been used inconsistently and
are prone to confusion [27]. In the former, the number of spikes within a time window
correlates with some stimulus attribute, i.e., emphasis is put on average spiking activity.
In the former, special importance is given to precise spiking time, being this precision
used to encode information. It has been found that the this temporal resolution is on
a millisecond time scale, indicating that precise spike timing is a significant element in
neural activity [37].

In sum, variability is a prominent feature of neural activity and its sources and functional
implications are the focus of much investigation [43]. Different patterns of spike trains
place limits on the reliability of signals, but can also provide a rich language for neuronal
populations and their interactions. This analyses of variability [43] it is out of the scope of
this thesis, but it is important to focus on the fact that different temporal patterns of spike
trains may have different neurocomputational properties, and cause different responses on
the postsynaptic neuron [52, 53, 86].

2.2.3 Cable Theory

Neurons display a wide range of dendritic morphologies, ranging from compact arborizations
to elaborate branching patterns. At the simplest level, the dendritic tree can be treated as
a passive electrical medium that filters incoming synaptic stimuli in a diffusive manner.
The current flow and potential changes along a branch of the tree may be described with a
second-order, linear partial differential equation commonly known as the cable equation
[9, 17, 32, 33, 37, 41, 60, 64]1.

Even though the derivation of the cables equations are out from the scope of this review,
it is import to note that the cable equation is based on a number of approximations: (i)

1Any of these references provide excellent reviews to linear, and nonlinear cable theory, and serve as our basic
references in the following subsection.
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magnetic fields due to the movement of electric charge can be neglected; (ii) changes
in ionic concentrations are sufficiently small so that Ohm’s law holds; (iii) radial and
angular components of voltage can be ignored so that the cable can be treated as one-
dimensional medium, and (iv) for the linear case, dendritic membrane properties are
voltage-independent (passive), that is, there are no active elements.

Linear Cable Equation

The basic equation governing the dynamics of the membrane potential in thin and elongated
neuronal processes, such as axons or dendrites, is the cable equation. A nerve cable consists
of a long thin, electrically conducting core surrounded by a thin membrane whose resistance
to transmembrane current flow is much greater than that of either the internal core or the
surrounding medium. Injected current can travel long distances along the dendritic core
before a significant fraction leaks out across the highly resistive cell membrane. The cable
equation2 is a partial differential equation (PDE) with the form:

Cm
∂V

∂t
= Em − V

Rm

+ d

4Ra

∂2V

∂x2 + Ie
πd

(2.1)

In the cable equation the membrane potential is a function of distance x along a continuous
cable, and time V (x, t) and Ie(x, t) is the current injected per unit length at position x.

Boundary Conditions

In Cable Theory, there are three boundary conditions with important physical significance:
killed end, leaky end and sealed end.

The simplest case is that of a killed end, in which the end of the neurite has been
cut, and it means that the intracellular and extracellular media are directly connected at
the end of the neurite. Thus the membrane potential at the end of the neurite is equal to
the extracellular potential. To model this, one specifies the value of V = 0 to one of the
egdes of the cable.

If the end of the neurite is intact, a different boundary condition is required, named
selead end. Here, because the membrane surface area at the tip of the neurite is very
small, its resistance is very high. Since the axial current is proportional to the gradient of
the membrane potential along the neurite, zero current flowing through the end implies
that the gradient of the membrane potential at the end is zero.

It can also be assumed that there is a leaky end; in other words, that the resistance
at the end of the cable has a finite absolute value. In this case, the boundary condition
is derived by equating the axial current, which depends on the spatial gradient of the
membrane potential, to the current flowing through the end.

2Please see list of symbols
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Analytical Solutions

The cable equation can be solved analytically for these boundary conditions, i.e., one can
find mathematical expressions for the time course of the membrane potential at different
points along a passive cable in response to pulses of current or continuous input such as
step current. Solving an equation analytically (in this case) means that an expression for
how the membrane potential depends on position and time can be derived as a function
of the various parameters of the system. Although modern computers can numerically
integrate the equations with high resolution, looking at analytical solutions can give a
deeper understanding of the behaviour of the system.

Several key concepts associated with the linear cable equation for a single finite or
infinite cylinder are the space constant λ, determining the distance over which a steady-
state potential in an infinite cylinder decays e-fold3 , the neuronal time constant τm,
determining the charging and decharging times of V (x, t) in response to current steps, and
the input resistance Rin, determining the amplitude of the voltage in response to slowly
varying current injections.

The voltage in response to a current input, whether delivered by an electrode or by
synapses, can be expressed by convolving the input with an appropriate Green’s function.
For passive cables, this always amounts to filtering the input by a low-pass filter function,
what does add by itself an important nonlinearity to neurons, and consequently enrich
their computational capabilities, as it was shown in many occasions [83].

Nonlinear Cable Equation

Given the widespread existence of different classes of ion channels, namely voltage-activated,
calcium-activated ion channels, and transmitter-activated ion channels involved in synaptic
transmission, a realistic model of a biological neuron has to account for these nonlinear
elements. However, analysing the properties of linear (passive) cable is still important
because one needs to study the concepts and limitations of linear cable theory before
advancing to more complex nonlinear phenomena.

The inclusion of these nonlinear elements4 leads to the generalization of equation (2.1)
into the following PDE:

Cm
∂V

∂t
= −

∑
k

Ii,k(x) + d

4Ra

∂2V

∂x2 + Ie(x)
πd

(2.2)

Basically, at any point in the neuron, the sum of axial currents flowing into the point
is equal to the sum of the capacitive, ionic and electrode transmembrane currents at that
point.

Nevertheless, we have seen that analytical solutions can be given for the voltage along
a passive cable with uniform geometrical and electrical properties, but unfortunately, the

3This is the parameter controlling the voltage decay on classical electrotonic distance reviewed on section 4.3
4Ion channels can exhibit complex dynamics that is in itself governed by a system of differential equations.
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same approach will not work because the formalism based on Green’s functions cannot be
applied to the previous equation, and therefore no analytical solutions can be found. So,
the behaviour of the different kinds of nonlinear cable equations that may be created are
better studied using numerical simulation methods, or by analysing the phase plane of the
equation(s).

2.3 Multi-compartmental Models

As we see in section 2.2.1, the cable equation can be solved analytically only for simple
cases, because even if the active conductances formed by nonlinear ion channels were
neglected, a dendritic tree is at most locally equivalent to a uniform cable. Numerous
bifurcations and variations in diameter and electrical properties make it really hard to
find a solution analytically.

2.3.1 Spatial Discretization

When the complexities of real membrane conductances are included, the membrane
potential must be computed numerically. This is done by splitting the neuron being
modelled into separate compartments, and approximating the continuous membrane
potential V (x, t) by a discrete set of values representing the potential within the different
compartments. This approach assumes that each compartment is small enough so that
there is negligible variation of the membrane potential across it. In sum, the branched
architecture typical of most neurons is dealt with by combining different cable equations,
with appropriate boundary conditions in one big system of PDE’s and solve it numerically
[16, 20, 41].

In a multi-compartment model, each compartment satisfies an equation similar to
equation (2.2), but the compartments are coupled to their neighbours. The following
equation determines how the voltage Vj in compartment j changes through time:

Cm
dVj
dt

= −
∑
k

Ii,k,j + d

4Ra

Vj+1 − Vj
l2

+ d

4Ra

Vj−1 − Vj
l2

+ Ie,j
πdl

(2.3)

where j + 1 and j − 1 are the adjoining compartments. When the compartments is at a
branching point, instead of just two adjoining compartments there will three, and since,
there are no data for the systematic occurrence of trifurcations in dendritic trees, this will
be the highest possible number of adjoining compartments.

The single biggest problem with constructing a compartmental model is to choose at
what resolution capture the actual morphology of the real neuron being modelled. In one
hand, increasing morphological accuracy means better approximation of the real system,
but the other hand, more compartments and greater model complexity.

After the morphology has been compartmentalised, those compartments must be
divided into electrical compartments. The choice of compartment size is an important
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Figure 2.7: From left to right, biological neuron, multi-compartmental model, reduced com-
partmental model, single compartment model. The general approach in multi-compartmental
modelling is to represent parts of the dendritic tree, soma and axon as quasi-isopotential sections
with simple geometric forms, such as spheres or cylinders. This allows easy calculation of
compartment surface areas and cross-sectional areas, which are needed for calculation of current
flow through the membrane and between compartments. The bigger the number of compartments
in a model is, the better is the accuracy of that model (this picture was taken from [27]).

parameter in the model and the output of because is required a good balance between
accuracy and computational efficiency. There are several rules that can be used but the
one used in the models designed in the present thesis is the dλ rule [20]. Basically, an
electrical compartment can not have a size bigger than 10% of λf , where λf :

λf = 1
2

√
d

πfRaCm
(2.4)

and f is set to be betweeen 50-100 Hz. Nevertheless, the choice depends on the desired
spatial accuracy needed for the particular situation to be simulated. If one needs to know
the value of a parameter, such as axial current, that varies over the cell morphology,
to a specific spatial accuracy, then we must design a model with a sufficient number of
compartments to meet that accuracy.

2.3.2 Temporal discretization

After the spatial discretization one has a large system of ordinary differential equations
for the membrane potential at the chosen discretization points as a function of time.
This system of ordinary differential equations has to be treated by numerical integration
methods, i.e., algebraic expressions that approximate the differential equations are derived
and by doing so it allows the calculation of quantities at specific predefined points in time
[16, 20, 41].

Moreover, neurons are distributed analog systems that are continuous in space and
time, but digital computation is inherently discrete. Because of this fundamental disparity,



2.4. SUMMARY 19

implementing a model of a neuron with a digital computer raises too many purely numerical
issues that have no relationship to the biological questions that are of primary interest,
yet must be addressed if simulations are to be tractable and produce reliable results.

There are several numerical integration methods, and the use of a particular set of
these methods may vary from simulator to simulator. The discussion of these methods is
out of the scope of this thesis, but NEURON software [20], the package used to create and
simulate the models present in the this thesis, makes available the following integration
methods: backward Euler method, Crank-Nicholson, CVode, and DASPK. The choice
between different methods is readily accessible for the users of the package, but the
best way to determine which is the method of choice for a particular problem is to run
comparison simulations while using these different methods, and different time-steps (∆t).

2.4 Summary

In this chapter, we introduced the field of Computational Neuroscience, particularly the
topic of single neurons computations. First, we start by introducing some conceptual
concerns of this field, and then we move to explain some of the single neurons computation
properties. Afterwards, there was exposed how to model neurons as physical systems with
Cable theory and Compartmental models.





Chapter 3

The Shape-Function Paradigm

This chapter focus on the morphological features of neuronal structure, particularly
dendritic trees structure. We provide an overview of quantitative procedures for data
collection, analysis, and modelling of dendrite shape. Our main focus lies on the description
of morphological complexity and how one can use this description to unravel neuronal
function in dendritic trees and neural circuits.

3.1 Dendritic Shape Paradigms

The shapes of the dendritic arborization of neurons is a unique property which differentiates
the nervous tissue from all the other tissues of the organism. Over fifty years ago, Ramón
y Cajal observed a great number of neurons stained with the Golgi method in a variety
of species. The comparison of dendritic morphologies of neurons located in homologous
regions of the brains of different animals led him to formulate what is called the shape
hypothesis.

In a broader perspective, the shape hypothesis is a concept within other principles
operating in evolution. The evolution of progressively more complex functions has been
made possible by the evolution of more complex structural patterns, hence more complex
connectivity and greater differences between individual neurons. From lower to higher
animals there is a scale of increasing complexity in connectivity patterns that is made
possible by greater structural specificity and resolution in the morphogenetic mechanisms
by which neurons become a highly complex system. How neurons grow into the fantastic
patterns of connections that bring about their properties, which make in turn their
richness of behaviours, remains unknown. We know that the driving forces of evolution
have created the conditions for an enormous increase in the number of elements,and this
structural complexity is the background that provides for complex manipulations of signals
representing internal and external worlds [85].

In the shape-function paradigm, there have appeared two not opposing views which
try to explain the structural diversity found in the dendritic trees. These two views differ
on the emphasis they put on which factors influence the most the shape of dendritic trees.

21
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Figure 3.1: Different dendritic morphologies are present through neural systems. (A) Cereberall
Purkinje cell, (B) α motorneuron, (C) Neostriatal spiny neuron, and (D) Interneuron.

On one hand, we find the computational paradigm where the emphasis is put on how
the dendritic structural differences, coupled with synapses and ion channels, may enable
the implementation of different computations that influences the firing output [8, 24]. On
the other hand, we find the wiring optimization paradigm, and in this framework
dendritic shape in particular, and the brain in general, are seen as a huge optimization
problem. Basically, dendrites are a mean to maximize a neuron connections to to other
neurons, while keeping wiring length and volume to a minimum, while taking into account
metabolic constraints [12, 26, 80].

3.2 Structural and Function Relationship

Studying dendritic trees reveals mechanisms of function in a neuron in terms of its
connectivity and computation. Neurons of different types serving different functions should
noticeably differ in the morphology and/or physiology of their dendrites. Indeed, up
to this day, dendrite morphology represents one of the main criteria for classification
of neurons into individual types [15]. At the same time, due to its wide implication in
neuronal functioning, dendritic morphology plays a role in many pathological cases, as
stated in section 1.1. Different facets of neural function can therefore be studied directly
taking advantage of knowledge of dendrite morphology: the role of different cell types,
malfunctions in nervous tissue, development of neural function, and emergence of function
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in the single cell and in the circuitry. For all these reasons, neuronal morphology lies at
the core of many studies in neuroscience.

3.2.1 Neuronal Morphometry

Quantitative measures of neurite morphology are extracted from microscopy data. After
an initial stage in which neuronal tissue is prepared and neurons are stained or labelled,
a neuron most prominent features are accessible by visually inspecting it under the
microscope. Some general features such as overall size, spatial embedding, and branching
complexity can already be resolved at this stage, but for a thorough quantification of the
dendrite structure, a reconstruction, i.e., a digital representation of the morphology is
required.

This step is named tracing, and there are many softwares packages which accomplish
this reconstruction in a automatic way, the most used is Neurolucida (proprietary), [47]
but there are many freely available tools such as the TREES Toolbox [25], amongst others
[47]. In principle, these reconstructions of morphologies from neural tissue preparations
could provide objective criteria and relieve the human labor associated with manual
reconstruction. However, none of the software packages available at present provide tools
to flawlessly reconstruct the entire cell, and manual intervention is still required in most
cases because of histological, optical and operator-linked distortions.

All these experimental data are continuously being accumulated and put into a digital
format, but there are very few archives that are publicly available through the Internet
to make this data readily accessible. Several labs host their own databases that can be
accessed through the Internet, but the most complete database is NeuroMorpho.org [78].
In this database thousands of morphology files from a large number of different labs, are
available freely in the public domain in a standardized .swc format.

In the .swc format [18], neuronal morphology is a set of connected nodes directed
away from a root node. Since each node is attributed one diameter value, the segments in
the graph each describes a truncated cone (frustum), where the starting diameter of one
frustum is the ending diameter of the parent frustum. The morphologies are encoded as
plain ASCII text files that contain seven values to describe each node: (1) the node index
starting at the value; (2) a region code describing whether a node belongs to the soma,
the dendrite, or any other region of the neuron; (3–5) x, y, z coordinates; (6) the diameter
at the node location; and (7) the index of the parent node. In principle, most neuronal
structures can be represented in sufficient detail with this approach.

Once the digital reconstructions are obtained and stored, they can be used for further
analysis and quantification and be used to address distinct research questions. Mor-
phometry, the quantitative study of neuronal structures, can be divided into two main
categories: topological and geometric morphometrics.
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Topological Measures

Topological analyses disregard the metric features and describe the connections in the
dendritic tree structure. Quantitative description of branching structures is well developed
in graph theory. A graph Γ is a pair (V,E) o a finite set V of vertices or nodes and a set
E of unordered pairs, called edges or links, of different elements of V . Thus, when there is
an edge e = (i, j) for i, j ∈ V , we say that i and j are connected by the edge e and that
they are neighbours, i j. A special type of graph in which the edges do not form loops is
called a tree, i.e., ∀e ∈ E, e 6= (i, i).

This abstract object is put in correspondence to a neuronal tree, where the three types
of vertexes are the root, the branch point and the terminal tips. The two types of elements
connecting the vertexes are intermediate segments and terminal segments. The root is the
point of origin of the tree, located conventionally at the soma. The branch point is the
vertex into which one segment enters and two or more segments exit. It is said that, at
the branch point, the parent segment gives rise to two or more daughter segments. Such a
branch point is called a bifurcation or multifurcation point. If all branch points of a tree
are bifurcations then the tree is binary (which is the case for real dendrites). A part of the
tree composed of a certain subset of connected branches and vertexes is called the subtree.

Particularly, one of the most used measures for quantitatively distinguish dendrites
has been partition asymmetry that assesses the topological complexity of a neuronal tree
based on the normalized difference between the degree of two daughter subtrees at a
branch point. The partition asymmetry index ranges from 0 (completely symmetric) to 1
(completely asymmetric) [91]. The partition asymmetry index Ap is defined as:

Ap = |r − s|
r + s− 2 (3.1)

with r and s indicating the number of terminal tips of each subtree, where r ≥ s, and
indicates the relative difference in the number of branch points (r− 1) and (s− 1) between
the subtrees. This indicator does not allow one to distinguish all the tree types of the
same degree, however, other measures have even less discriminative power [64].

Measure Definition
Number of stems Total number of segments leaving from the dendritic root
Number of branch points Total number of branch points in thre tree
Branch order Topological distance from the dendritic root
Degree Termination points downstream of the node under investigation
Partition asymmetry Topological complexity of a tree

Table 3.1: List of frequently used morphometric measures to quantify neuronal topology [24].

Metrical Measures

In contrast to topological properties that have no metric interpretation, geometric properties
consider the spatial embedding of a tree. Metrical parameters which characterize the
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Figure 3.2: Left image - Topological analyses disregard the metric features and describe
the connections in the graph underlying the dendritic tree structure. Right image - For a
geometrical analysis, the tree is embedded in space and length values play a role (this picture
was from [24]).

extent and thickness of the dendritic segments are the segment length, the diameter and
the membrane area. The lengths of individual segments allow the construction of the
cell metrical variables used in morphometrical studies and in simulations of electrical and
electrodiffusive properties of neurons. Such variables are the total dendritic length, which
is the sum of lengths of all segments constituting the dendritic arborization and the path
length, which is the sum of lengths of the consecutive segments forming the path between
a given origin and a terminal point, e.g., between the root and a certain terminal tip.
Nevertheless, this review of metrical measures is far from exhaustive, since morphological
and morphometrical studies of neural shape and texture are becoming more and more
important in the field of neurosciences due to the recognized close link between shape and
function at molecular, cellular and tissutal level, more exotic measures started to appear
on the literature [81].

Measure Definition
Total length Summed segment lengths of all segments in a tree
Segment length Path length of the incoming segment toward a node
Dimension Width, height, and depth of the bounding box
Taper rate The uniform decrease in diameter across a dendritic branch

Table 3.2: List of frequently used morphometric measures to quantify neuronal metrics [24].

3.2.2 Structure Influences Function Hypothesis

In addition to ion-channel composition, dendritic morphology appears to be an important
factor modulating firing pattern. In many cell types, including neocortical and hippocampal
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pyramidal cells, neuronal firing patterns are correlated with dendritic morphology. Results
from modelling studies also suggest a relationship between dendritic morphology and firing
pattern (e.g. [70, 88]). It has long been assumed that neuroanatomical variability has an
effect on the neuronal response, but not until the last decade it was attempted to quantify
these effects. Furthermore, in electrophysiological studies, usually the neuroanatomy is
rarely quantified, and in neuroanatomical studies electrophysiological response is rarely
properly measured.

Particularly, computational techniques have the potential of bridging the gap between
electrophysiology and anatomy, and testing the morphology influences physiology hy-
pothesis. Computational techniques include modelling of neurophysiology, modelling and
measurement of neuroanatomy, and mining publicly available archives of anatomical and
electrophysiological data. Indeed, the neuromorphology effects on neurophysiology usually
is studied by mining electronic archives for neuroanatomical data, utilizing computational
modelling techniques to simulate neuronal firing behavior, and quantifying the effect by
correlating the morphometrics described above with electrophysiological measurements
of simulations. The general method consists of converting morphological measurements
from 3D neuroanatomical data into a computational simulator format. In the simulation,
active channels are distributed evenly across the cells so that the electrophysiological
differences observed in the neurons would only be due to morphological differences. The
cell morphometrics and the cell electrophysiology in response to current injections are
measured and analysed.

However, the majority of these studies are mainly correlative [2, 11, 70, 87, 92] , focus
on morphologically very distinct cell classes, use only the physiologically less appropriate
stimulation protocol of somatic current injection, and make no distinction between the two
sources of morphological variability: metrics and topology, and consequently, the effects of
dendritic size and topology on firing patterns, and the underlying mechanisms, remain
poorly known.

Remarkable exceptions, on the topological side, are [30, 88, 89], in these studies
the influence of dendritic topology on the generation of specific firing patterns was
systematically addressed. Basically, what one can infer from this studies is that topological
differences (measured from partition asymmetry index) may function as an on-off switch
for certain firing patterns such as bursting.

On the other hand, exceptions on the metrical side are [61, 62, 64, 63, 65]. In
these, metrical differences are quantified, and then how these differences influence the
propagation of electrical current from the dendrites to the soma is analysed. This allowed
the introduction of some biophysically based criterion for the electrical distinction between
metrically (a)symmetrical dendritic branches.
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Problem: Linking Geometry, Topology and Function

When trees are equivalent in their topology but clearly distinct in metrical sizes (e.g. in
length or thickness), undoubtedly the topological quantitative characterization of trees is
not sufficient to classify the dendritic structure, and vice-versa. For example, unequally
long segments may form unequally or equally long multisegment paths; the metrical
description is further complicated by differences in diameters which exist even between
equally long segments, and all these differences have influence on the electrical behaviour
of the cell.

Moreover, although metrical differences between subtrees happen as often as differences
in topology, quantitative indicators of metrical symmetry/asymmetry are far less elaborate
than those used in topology studies. The need for some complementary description of
metrical properties has not yet been met, and neither quantitative measures that combine
both kinds of measures [64].

3.2.3 Electrotonic Distance

What one can realise from these previous mentioned studies, is that unfortunately, it is
difficult to infer and analyse how neuronal form affects electrical signaling because of the
different parameters that have to be taken into account. As new metrics and more cells
are put in the analysis, the parameter space has the potential of exploding and making
analysis undoable, specially if one wants to account for topological and metrical factors.

For this reason, it was developed a quantitative yet intuitive approach to the analysis
of electrotonus of neuron that takes into account certain morphological aspects. This
approach transforms the architecture of the cell from anatomical to electrotonic space,
making a connection between morphology and function [58, 79].

Classic Electrotonic Distance

The electrotonic distance can characterize the efficiency, or the degree of coupling, between
any particular synaptic input site and the cell body where the initiation of the action
potential occurs. This measure is defined as the physical distance x scaled by the length
constant λ1 :

X = x

λ
. (3.2)

Similarly, the electrotonic length of a finite cable (i.e. dendrite) is the total length l scaled
by the length constant

L = l

λ
. (3.3)

1The voltage decreases to e−1, that is, to 37% of its original value, at λ and to e−2, or 13% of its original value
at 2λ, and so on
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A more general expression for X between two points i and j, applicable to cables of varying
geometry or membrane properties, is

X =
∫ xj

xi

dx

λ(x) . (3.4)

However,this measure is misleading. In an infinite cylinder, there exists a simple
exponential relationship between the electrotonic length and the voltage attenuation. In
all other structures, it does not provide a measure of the efficacy of signal transfer, since
the underlying space constant assumes the convenient fiction of an infinite and constant
cylinder. So, depending on the type of boundary condition imposed, the actual voltage
attenuation in a cable can be stronger (for a killed-end) or weaker (for a sealed-end) than in
an infinite cylinder with the same diameter and membrane parameters. This difference can
be substantial in real trees, given the heavy load imposed by all the additional branching
[60].

New Electrotonic Distance

The new electrotonic distance always has a simple, direct relationship to attenuation,
regardless of cellular anatomy, whereas the classical measure only has meaning in cells
that meet several very specific constraints [19, 95]. Let i and j be spatial indices along a
branched structure without loops. The voltage attenuation between two points i and j is
defined as,

Aij = Vi
Vj

(3.5)

where the first subscript i gives voltage at the location of the current input, and the
second subscript j the voltage at the location of the recording electrode. Then, taking the
logarithm log-attenuation is defined as,

Lij = lnAij = ln Vi
Vj

(3.6)

A general expression Lij analogous to equation (3.3) is

Lij =
∫ xj

xi

dx

λeff (x) (3.7)

where the effective space constant λeff = |V (f = 0, x)/(dV (f = 0, x)/dx)| is the functional
generalization of the classical definition for λ

Properties

Here we catalogue briefly some important properties of the quantities defined above that
will be useful in interpreting the morphoelectrotonic transform:

1. The log-attenuation is not in general symmetric:

Lij 6= Lji (3.8)
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2. Since the response is always greatest at the site of injection, Vi ≥ Vj so that Lij ≥ 0.

3. If a point j is on-path from i to k, then the total log-attenuation is just the sum of
the respective partial measures. That is, the log-attenuation is additive for j between
i and k,

Lik = Lij + Ljk. (3.9)

This property allows the introduction of a sort of pseudo attenuation metric. Additivity
constitutes a feature of log-attenuation, rendering it somewhat similar to a distance
measure2. Because the log-attenuation between two points in an infinite cable equals the
electrotonic distance between them, Lij can be viewed as a generalization of the traditional
notion of electrotonic distance to arbitrary cable structures.

Can this measure, be used to develop a quantitative approach to measure dendritc
structure that does not directly takes into account the physical parameters of the architec-
ture of the cell, but considers instead this electroctonic space as a pseudo metric, and by
doing solve the problem stated previously? This hypothesis will be further explored in the
next chapter.

3.3 Summary

In this chapter, we reviewed the field of structure-function relation in Neuroscience,
particularly the topic of dendritic shape. First, we start by introducing two not opposing
views of dendritic shape paradigms, and then we move to explain how this structures can
be quantitatively measured. Afterwards, there was exposed the state of the art on how
these measures are being used to elucidate the link between structure and function in
single neurons. In the end of the chapter, some tensions and future prospects in the field
were analysed.

2Note that Lij is not a true metric, since symmetry does not hold due to the asymmetry in the voltage
attenuation.





Chapter 4

A New Structural Measure

In this chapter we derive and introduce a new measure that relates structure to function.
We develop a quantitative approach that does not directly takes into account the physical
properties of the architecture of the cell (i.e. anatomical variables and ion channel
composition), but instead considers the electrotonic distance of the cell as the metric, and
by doing so we are able to reduce some of the parameters to be analysed, while creating a
bridge between structure and function.

To the best of our knowledge, the contribution presented here is novel in three as-
pects: (i) this measure can account for variations in metrical, topological and biophysical
components of the cell whole at the same time; (ii) it uses a rather abstract framework
for quantifying structural differences and because of the previous (iii) it has a highly
discrimanitive power.

In section 4.3., using the new measure we are at position of fully address the the
question of how synaptic efficacy is affected by the anatomical and biophysical properties
of the postsynaptic cell, and we hypothesise a new mechanism for current synchronization
in dendrites, making predictions that are experimentally testable.

4.1 Symmetry

The concept of symmetry is a fundamental one in science. Symmetry is important not
only as a tool in structure determination in physics, chemistry, biology [29, 31, 76], but as
a basis for understanding dynamical processes as well [71].

Everyone has some idea of what symmetry is, for instance, we recognize the bilateral
(left-right) symmetry of the human body, of the bodies of many other animals, and of
numerous objects in our environment. The word symmetry commonly refers to the fact
that the shapes and dimensions of some objects repeat themselves in different parts of the
object, or when the object is viewed from different perspectives.

In science, of course, the recognition and utilization of symmetry is often more sophis-
ticated, but what symmetry actually boils down to in the final analysis is that, if the
situation/structure possesses the possibility of a change that leaves some aspect of the

31
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Figure 4.1: Diagram of the Perovskite crystal structure. Due to the spatial symmetry of crystals,
many important physical properties of a crystalline material depend on the orientation of
the sample with respect to some specifically defined coordinate directions. Examples of such
properties are electrical conductivity, elasticity, the piezoelectric effect, and nonlinear optics [31].

situation/structure unchanged we have symmetry, i.e., symmetry is immunity to a possible
change. On the other hand, if a change is possible but some aspect of the situation is not
immune to it, we have asymmetry.

If a change is made to a physical system, either a discrete object or a mathematical
formula describing a physical property, this is called a transformation. If a system appears
to be exactly the same before and after the transformation, it is said to be invariant
under that transformation. Symmetry in nature plays a critical role in everything from
our understanding of the nature of elementary particles to our models of the structure
of galaxies in the universe. Almost all of the laws of nature have their root in some type
of symmetry. Because of this, if we elucidate the symmetry of a physical system we can
predict many of its physical properties [71].

In modern times, symmetry is defined mathematically by Group Theory. In Group
Theory symmetry becomes a universal property of mathematical structures, for instance,
the symmetry of a set (e.g. points, numbers, functions) is defined by the group of self-
mappings (automorphisms) that leaves unchanged the structure of the set (e.g. proportional
relations in Euclidean space, arithmetical rules of numbers, etc.). The application of Group
Theory allows the determination of many of the physical properties of that system and
some of these properties correlate with functional properties of the system (e.g. see Figure
4.1) [23, 28, 40]. Therefore, symmetry seems an appropriate concept to help fully quantify
the structural differences between dendritic trees that latter may play a role in neuronal
function. Basically, the more symmetric a dendritic tree is, the more similar its branches
and branching pattern should be, and the other way around for asymmetrical trees. But
how can one apply such concept to dendritic trees?
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4.2 Dendritic Tree as a Graph

A graph is the mathematical structure representing binary relationships between discrete
elements (see subsection 3.2.1). These elements are the vertices of the graph, and the
relationships are encoded as connections or edges between vertices. Such a graph can then
be a network, that is, the substrate of dynamical interactions carried by the edges between
processes located at the vertices [55].

Particularly, as a graph, a tree is represented by a set of labelled nodes connected
by edges. Since most statistics describing a neurons branching relate to the root (e.g.
branch order, which increases after each branch point on the way from the tree root to all
terminal nodes) it makes sense to attribute a directionality to the edges and to define the
root as the node with the index 1. All edges lead away from the root, that defines their
directionality uniquely.

Figure 4.2: Example of how a dendritic tree is represented by a set of labelled nodes connected by
edges in a graph. There are four different types of nodes: root of the graph is the meeting point
for the dendrites and the soma, leafs (or tips) of the graph are defined as the termination points
of the dendrites, the binary branching nodes of the graph are defined as the dendrites branching
points, and the continuation points, are nodes used to account for frustum in certain software
packages. A dendritic branch begins at the root (i.e. the stem branch) or with a branching point,
and it ends with another branching point or a terminal point [25].

When neuronal trees are regarded as graphs, their branching structure can be well
described with the corresponding directed adjacency matrix dA, a quadratic matrix of size
NxN , where N is the number of nodes in the tree. As mentioned earlier, the direction
of the edges shows away from the first point, representing the arbitrary starting vertex
S = 1, the root of the tree. Note that the widely used .swc format for storing neuronal
morphology is nothing else than a sparse representation of the adjacency matrix since it
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simply attributes to all nodes (row index) a parent node (column index). Of course, most
large graphs arising in applications are sparse, that is, between most pairs i, j, there is no
edge. This means that most of the entries of the adjacency matrix are 0′s. For example,
the following tree with N = 8,

1

2

6

8 7

3

5 4

will have the following adjacency matrix:


0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0


Not each possible directed adjacency matrix represents a possible neuronal tree, since

loops and branching points with more than two child branches are possible, but do not
exist in natural dendritic trees. Therefore, dA never contains more than two entries in one
column and no entry will lay directly on the diagonal. Also, each node has exactly one
parent, apart from the root, which has none. Each row of dA therefore contains exactly
one entry apart from the first, which contains none. If for some reason, it is necessary to
better describe the relation between nodes weights can be attributed to edges, and instead
of 1′s in dA we simply put a specific number instead. In order to derive most dendritic
branching statistics using the typical descriptions, an algorithmic formulation by recursion
is required to walk through dA and collect statistics, and by doing so, formal measures
can be applied to dendritic structures.

4.2.1 Algebraic Graph Theory

After translate a dendritic tree into a graph, it becomes possible to to apply the concept
of symmetry to trees through Algebraic Graph Theory [10, 13, 39, 42].
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There are two main connections between graph theory and algebra. These arise from
two algebraic objects associated with a graph, its adjacency matrix and its automorphism
group:

1. In one, the automorphism group of a graph can be regarded as the collection of all
permutation matrices that commute with the adjacency matrix, and provides a way
to study symmetry in graphs.

2. The other one, Spectral Graph Theory, is the study of properties of a graph
in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of
matrices associated to the graph, such as its adjacency matrix. This topic will not
be covered in the present manuscript.

An isomorphism between graphs Γ1 = (V1, E1),Γ2 = (V2, E2) is a bijection Φ : V1 → V2

that preserves neighbourhood relations, that is, i ∼ j iff Φ(i) ∼ Φ(j). In other words,
i and j are connected by an edge precisely if their images under Φ are. Isomorphisms
preserve the degrees of vertices, that is, ni = nΦ(i) for every vertex i. An automorphism of
Γ is an isomorphism from Γ onto itself. The identity map of the vertex set of Γ is obviously
an automorphism, but there may or may not be others, depending on the structure of
Γ. The automorphisms of Γ form a group under composition. We can then quantify the
symmetry of Γ as the order of its automorphism group, i.e., a bigger the order means more
symmetry.

From these definitions, another key concept in Algebraic Graph Theory arises:

• Edge Automorphism- An edge automorphism of a graph Γ is a permutation of
the edges of Γ that sends edges with common endpoint into edges with a common
endpoint. The set of all edge automorphisms of Γ from a group called the edge
automophism group of Γ. Furthermore, if the edges have weights, then for the
permutation to happens the edges must have equal weights.

1

2

3 4

Figure 4.3: The star graph S4 has six vertex automorphisms: (3, 4, 1, 2), (3, 1, 4, 2), (4, 3, 1, 2),
(4, 1, 3, 2), (1, 3, 4, 2), (1, 4, 3, 2).
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4.3 The new Measure

As previously mentioned, the topology of a tree is determined by the connectivity pattern
of its segments, and its metric properties are the geometrical values of its branches. If one
translated a dendritic tree to a graph, branching points would be vertices of that graph,
and branches would be edges (i.e. the graph would be embbeded in metric, and weights
wij would be atributed to edges). In this terms, a dendritic tree could be formalised as
a graph, and its properties encoded in its adjacency matrix, opening the opportunity of
exploring it with formal graph theoretical measures.

Obviously, similarities or differences in electrical states of dendritic parts are accom-
panied by smaller or greater heterogeneity of topological and metrical parameters of
the arborizations, making these structural variations central to the understanding of the
observed phenomena. Therefore, the study of its symetrical properties would enable one
to fully quantify this heterogeneity, where the more symmetric a dendritic tree is, the
more similar its branches and branching pattern should be, and the other way around
for asymmetrical trees. This could be quantified by vertex automorphism, for topological
patterns, and by edge automorphism, for metrical parameters.

Dendritic Tree

Graph

Automorphism
Group

Edge
Automorphism

Vertex
Automorphism

Topological
Parameters

Metrical
Parameters

Electrotonic
Distance

Translate

Symmetry

New Metric

Modelled by

Modelled by

Nevertheless, the attribution of a single number wij that establishes the relationship
between nodes is non-trivial for two reasons:
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• Metrical parameter transition to the adjacency matrix is not trivial because a branch
may vary in many different variables, such as, length or diameter.

• Ion channel composition of a dendritic tree affect the electrical behaviour of the
cell, but these are orthogonal to structural parameters, what can blur the structural-
function relationship [4, 5, 48, 54, 75]

To solve this problem, the graph that represents the dendritic tree may be embedded
in a new metric, that not only takes into account the physical variables of the cell (i.e.
anatomical variables), but instead considers the electrotonic distance as the distance
metric, and by doing so reduce some of the parameters to be analyzed, and providing a
direct relation between structure and function, i.e., each weight of dA would be wij = Lij,
the electrotonic distance of that branch. This approach clearly provides a link between
structure and function.

Measure e−X

At first sight, the concept of a tree as defined above seems appropriate for that task.
However, when one wants to operationalize this idea Group Theory is too stiff for this
task because, (i) a graph when embedded in a metric, the exact spatial symmetry limit of
the edges needed to perform the permutations, it is obviously unobtainable in practice
due to the influence of small, random fluctuations in physical systems, making edge
automorphism a virtual impossible condition to be satisfied. Moreover if the measure
wants to be discriminative it needs to account for bigger or smaller levels of more or less
symmetry. On top of that, (ii) algebraic graph theory in general, and computational
algebraic graph theory in particular are more concerned in the generation of graphs, than
on the analysis of graphs, making the analysis of the dendritic trees a practical problem
as well for implementation reasons [14, 36, 74].

What one needs to overcome this hurdle, is a measure that could mimics vertex and
edge automorphism concepts, while being sensitive to different levels of (a)symmetry, and
being easily computed and implemented, therefore:

1. If one considers the simplest dendritic tree, with a single branching point, this tree
is translated into a graph with four nodes, the soma (s) the root of the branching
point r and two daughters d1 and d2 nodes, each one connected to the root by an
edge, namely wrd1 and wrd2 . Following from algebraic graph theory, a permutation
between d1 and d2 would be possible iff the neighbourhood relations between all
nodes would stay the same (condition trivially satisfied in this particular case) and
edge automorphism must be verified as well, and for the later wrd1 = wrd2 must
hold. Taking this example to a more practical case, a dendritic tree constituted by
a simple branching point, if the two daughter branches have the same electrotonic
distance this corresponds to the most symmetrical case for the total wiring length of
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wrd1 +wrd2 . For the total wiring length of wrd1 +wrd2 , the bigger the height (i.e. the
distance from the root to one of the nodes) of either d1 or d2, the more asymmetric
the tree will be. This notions of (a)symmetry can therefore be expressed in the form
of a simple ratio between the distances between both edges of the branching point.
In the symmetrical one will have ratio = d1/d2 = 1, and in the asymmetrical cases
one will have ratio < 1 (ratio → 1 as it gets increasingly more symmetrical and
ratio→ 0 as it gets increasingly more asymmetrical).

wrd1 wrd2
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r

d1 d2

wrd1

wrd2
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d2
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wrd2
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r

d1

d2

Figure 4.4: Symmetry ratio visualization

2. However, the electronic coupling between dendritic branches not only depends on the
degree of (a)symmetry between them, but size plays a role too. Even for branching
patterns that hold the same ratio, differences in total electrotonic distance influences
the coupling of these structures, with bigger total wiring lengths promoting more
signal attenuation, and vice-versa (see section 3.2.3). To overcome this situation,

the ratio defined above can be altered to wrd1/wrd2

wrd1 + wrd2

this way when the total wiring
length is the same, the difference between the asymmetrical and symmetrical patterns
will be the same as in the previous ratio, but at the sime time differences in the
total electrotonic structures are take into account as well. In this new formulation as
wrd1 +wrd2 → 0 the bigger the electrotonic coupling will be, and as wrd1 +wrd2 →∞
the smaller the electrotonic coupling will be.
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Figure 4.5: Size effect visualization. The trees represented in this figure are scaled up versions of
the first tree. If the symmetry ratio defined above was not normalised these trees would have
virtually the same electrotonic structure.
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3. From graph theory one knows that a binary tree can be decomposed or generated
from a set of subtrees, and since the electrotonic distance enjoys the property of
additivity (see equation 3.9) the structure of an arbitrarily complex dendritic tree
can be computed using the information from each of its subtrees in a recursive way.

4. Following 1, 2 and 3 to quantify the electrotonic extent of a dendritic tree, we
introduce a new measure called e−X . For a given binary dendritic tree with N nodes,
we compute and sum for each internal node in, the ratio defined below:

X =



∑in
i=1

wri
/wli
wti

, if wri
≥ wli

∑in
i=1

wli/wri

wti
, if wli > wri

(4.1)

where wri
is the sum of all electrotonic paths Pri

of the right subtree rooted at the
given internal node, computed from the soma to each leaf of this subtree,

wri
=

nri∑
ri=1

Pri
(4.2)

the same holds for wli ,

wli =
nli∑
li=1

Pli (4.3)

and,
wti = wri

+ wli (4.4)
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Figure 4.6: Illustration of the only electrototonic path of the right subtree rooted at node 6 (Pr6)
of the left tree. The tree has three internal nodes: 2, 3, 6.

5. So, when Pri
→ 0, i.e. when electrotonic distance is decreasing and electrotonic

coupling is increasing, X → ∞ and e−X → 0, and when Pri
→ ∞, i.e. when

electrotonic distance is increasing and electrotonic coupling is decreasing, X → 0
and e−X → 1, therefore one may interpret e−X , as a generalised measure of signal
attenuation that takes into account the structure of the neuron. When e−X = 0 there
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is no signal attenuation, and when e−X = 1 the signal attenuation is maximal and
there is no signal reaching the soma1 .

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

X Factor

e
−

X
 

Figure 4.7: e−X and X factor relation. X is the structural factor that depends on the tree’s
metrical and topological information, and it is exponentiated for data visualization purposes and
to facilitate data analysis.

4.3.1 Hypothesis

From what was stated in the previous subsection, one can easily postulate another corollary
that straightforwardly emerges from the analysis of e−X : if the size effect Pri

is the same
across different cells, and the symmetry factor is the only varying factor, when ratio→ 1,
i.e., the more symmetric condition, X will be bigger than when ratio → 0, i.e., more
asymmetric condition, therefore e−Xsym < e−Xasym . Therefore, since e−X is a generalised
measure of signal attenuation, one can conclude that in more symmetrical structures the
attenuation is smaller than in more asymmetrical conditions.

Nature is assumed to be causal, and when organisational patterns are observed in
Nature usually they are the basis of similar functions, behaviour or dynamics. Given
a particular set of physical circumstances the same physical behaviour is expected to
occur whenever and wherever these structures are repeated. So symmetry in terms of a
neuron’s electrotonic structure, seems to play an important role in signal integration, being
a possible mechanism for the modulation of axial current that flows from the dendrites to
the soma. The biophysical substrate for this hypothesis is synchronization, because the
electrotonic structure of the cell is more symmetric, it implies that the electrical behaviour
of the cell will be similar, i.e., the current flowing from different paths will have similar
dynamics, and because of that will spatially sum in a more efficient way. Therefore, we
are at position to state the following testable experimental predictions:

1. more symmetric electrotonic structures will achieve higher levels of current measured
at the soma, other things being equal.

1e−X is a measure of synaptic efficiency, it should not be forgotten that it represents a relative measure, and
whether or not the cell spikes by exceeding a threshold depends on the absolute amplitude of the somatic PSPs
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2. these different levels of current measured at the soma will be translated into different
output behaviours of the cell.

and the following methodological prediction:

3. Measure e−X will be discriminative across different neuron types, when other fre-
quently used measures are not (see appendix A).

4.4 Summary

In this chapter, we introduced a new structural measure for synaptic efficiency. First,
we started by reviewing the field of Algebraic Graph Theory, and introduced some key
concepts of the area that are behind the rationale of the new measure. Afterwards, we
derived the new measure e−X that solves the problem stated in the previous chapter. In
the end of the chapter, and supported on this new measure two experimental predictions,
and a methodological one were made.





Chapter 5

Simulations

In this chapter we give a description of the approach and method used to test the predictions
and hypothesis stated in section 4.3.1, concerning the validity of the measure e−X . This
chapter consists of four main sections. In section 5.1., an overview of the experimental
conditions is provided. In Section 5.2, we expose the artificial reconstruction process of
the simulated neurons that we use to manipulate the synchronization mechanism. In
section 5.3, we describe the simulation-based experiments performed to test the stated
predictions and hypothesis. Finally, in section 5.4, we show the core results of the thesis
and the statistical analysis of the data. The results show that the proposed synchronization
mechanism is a robust and important factor modulating axial current that causes neurons
to spike.

5.1 Experimental Conditions Overview

Since realistic modelling of single neurons has reached a relatively mature phase, we took
advantage of the capability of such models to simulate conditions that are difficult to test
experimentally. Three different types of neurons were collected by examining electronic
archives of neuroanatomical data, and for each neuron type, the dendritic trees were
artificially modified, while maintaining the same total wiring lengths, with the intention of
causing changes at the electrotonic structure of the cell in terms of (a)symmetry. Moreover,
each neuron type differs in its total wiring length, so one can investigate how size, and
different topologies influences the processing of synaptic inputs in a dendritic tree, while at
the same time verify the discriminative power of measure e−X . In the simulations, active
channels are distributed across the cells to achieve greater biophysical realism, and then
electrophysiological differences observed in the neurons are measured and compared with
e−X values. The analysis and model code for this thesis is available in the accompanying
cd-ROM.

To test the hypothesis stated in the last chapter in a systematic way, two different
conditions were simulated: Axial current condition- the amount of axial current
reaching the soma from the dendrites is measured. Spike train condition- voltage traces

43
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are measured at the axo-somatic compartment to collect spiking patterns.

5.2 Artificial Reconstructions

Figure 5.1: Shape diagram of the original collected neurons.

Purkinje Pyramidal Visual
Total wiring length (µm) 5759.001 8483.71 4278.82
Branching Points 299 60 327
Terminal Tips 300 61 328
Number of stems 1 1 1
Number of branches 599 121 655
Branches diameter (µm) 1 1 1

Table 5.1: Morphometric statistics of the original collected trees after processing.

Data Retrieval

In the present study, to determine the effects of electrotonic variability on electrophysiology
in neurons, a cerebellum Purkinje, a neocortical layer 5 Pyramidal, and a Visual cortex
cell (see Figure 5.1) were obtained from the Neuromorph.org archives [78]. Afterwards,
the .swc files with the cells topological and metrical information (see Table 5.1) were
imported to MATLAB for further processing.

Morphological Noise

Whatever the acquisition and the data processing system, it is difficult to retrieve the real
original neuronal structure without errors because of histological, optical and operator-
linked distortions. To solve this problem, further processing of the dendritic trees from
the collected cells was done using the TREES toolbox [25] trees from MATLAB.

For simplicity in the application of measure e−X and in the analysis of the results, in
the present study only neurons with one dendritic tree were considered, therefore the first
step of dendritic processing was the removal of the basal dendritic tree from the layer 5
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Noise

Artificial
Neurons

.swc file
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.swc file
Pyramidal

.swc file
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ver_tree
zcorr_tree
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Generation
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MATLAB

neurommorph.org delete_tree

NEURON

Figure 5.2: Work flow from the cells artificial reconstructions

Pyramidal cell using the function delete_tree from the TREES toolbox. Afterwards, for
minimizing the influence of artifacts on the cells geometric and topological information, a
series of functions from the TREES toolbox were applied to the dendritic trees, respectively
the actions performed were, verification of the integrity of the .swc files (vert_tree),
correction of sudden shifts in the z-axis (zcorr_tree), and removal of trifurcations points
(elimt_tree).

Generation of Artificial Trees

After the integrity of the samples was verified, 27 new dendritic trees were generated, nine
from each type, in a total sample N = 30. Basically, these new trees only differ from
the original ones in terms of the length of its branches, i.e., they maintained the original
topology. The first step in the creation of the artificial trees was the generation of new
length values for the branches, this was done by creating a uniform random variable over
the interval (0, 20) and retrieving samples of numbers that equals the number of branches
of each neuron type (see table 5.1). The values found in the previous step were used to
create a vector on TREES toolbox environment that replaced the original branch values,
using function morph_tree. To maintain the total wiring length the trees were rescaled
to their respective the original total wiring length (see Table 5.1) using the scale_tree
function. Afterwards, using distance matrix methods, eight new trees were generated for
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each type. These new trees’ branch lengths lie in between the random and original trees,
this was done to create a gradient in terms of (a)symmetry between the random generated
trees and the original trees. The final step of this process was accomplished on NEURON
software [20], where a soma (length=35µm, diameter=25µm) and an axon (length=110µm,
diameter=4µm) were attached to all trees, this was done following the protocol from [70]
and [88], and the dendritic branches diameters were equalised to 1 µm.

5.3 Computer Simulations

The models are implemented on NEURON and capture the general features of a real
neuron. Standard compartmental modelling techniques were used to simulate spatially
extended neurons with passive electrical structure, four voltage-dependent currents: a
fast sodium current (ḡNa), a slow voltage-dependent non-inactivating potassium current
(ḡKm), a fast non-inactivating potassium current (ḡKv), a slow calcium-activated potassium
current (ḡKca), and a high voltage-activated calcium current (ḡCa); all cells have the same
number of evenly distributed ion channels. The cells are activated by dendritic stimulation
(see [44]), being stimulated by the same number of excitatory synaptic current that are
regularly distributed across the dendritic trees (see Table 5.2). All currents were calculated
using conventional Hodgkin-Huxley-style kinetics with an integration time step of 250 µs.
For the specific rate functions of each current and respective kinetics schemes, we refer to
[70] and [88], or to the .mod files in the accompanying cd-ROM.

Before the actual two conditions were simulated, a pre-condition where the electrotonic
distances (Lij) were calculated on NEURON software was performed. Then, these values
were used to create a MATLAB vector that was morphed to each tree (N = 30), creating
a tree with the same topological structure of the original ones, but where the metrical
parameters were replaced for electrotonic values of each branch.

Axial Current Condition

To test the first hypothesis stated in chapter 3, we investigate how the (a)symmetry of
the dendritic trees influences the electrical dynamics of the cells. In this condition, the
dendrites from all cells are active (see table 5.2), but the soma and axon are passive, to
mimic the blockade of the trigger zone. This is done to make sure that the current reaching
the soma was from the dendrites, and not from the opening of the active conductances
present in the axo-somatic compartment. Then the synapses are activated once in a
synchronous manner, i.e., all at the same time just one time (1Hz), and the axial current
is measured at the site where the stem and soma connect. For better resolution, the soma
and axon are compartmentalised, each with 9 segments.
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Purkinje Pyramidal Visual

Dendrites Soma Axon Dendrites Soma Axon Dendrites Soma Axon Units

Ra 80 80 80 80 80 80 80 80 80 Ωcm
Cm 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 µFcm−2

ḡleak 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 0.3 ∗ 10−5 pS µm−2

ḡNa 29.4624 0|20 0|30000 20 0|20 0|30000 39.6544 0|20 0|30000 pS µm−2

ḡKm 0.1473 0|0.1 0 0.1 0|0.1 0 0.1983 0|0.1 0 pS µm−2

ḡKv 0 0|200 0|2000 0 0|200 0|2000 0 0|200 0|2000 pS µm−2

ḡKCa 4.4193 0|3 0 3 0|3 0 5.9482 0|3 0 pS µm−2

ḡCa 0.44193 0|0.3 0 0.3 0|0.3 0 0.59482 0|0.3 0 pS µm−2

dsyn 0.000221 0 0 0.00015 0 0 0.000297 0 0 pS µm−2

∆t 250 250 250 250 250 250 250 250 250 µs
Temp 37 37 37 37 37 37 37 37 37 ◦C
nseg dλ 9|dλ 9|dλ dλ 9|dλ 9|dλ dλ 9|dλ 9|dλ

Table 5.2: Parameters of the simulations for each neuron in both conditions

Spike Train Condition

In this condition, dendritic tree, soma and axon have active properties. Voltage traces are
measured at the axo-somatic compartment to analyse whether differences found at the
axial current condition induce differences at the output spiking patterns. The stimulation
protocol is similar to the one in the axial current condition, i.e., regular and synchronous,
but the synaptic activation frequencies were 1Hz, 4Hz, 7Hz, 10Hz, 20Hz, 50Hz and 100Hz
and the regular stimuli were delivered at constant inter-spike intervals corresponding to
the input frequency.

5.4 Results and Discussion

Before our initial experiments were conducted, the electrotonic distances of all dendritic
branches (Lij) were computed for every neuron (N = 30), and were used to create a
MATLAB vector that was morphed to each corresponding tree. Specifically, we attempted
to match the records for each of the dendritic tree segments present in the NEURON
simulation output with the segments in the MATLAB tree description. Due to differences
in representation between the two files, a match was not always identified, which we refer
to as a parsing error. For nine Purkinje cells, from the total number of branches (599), the
number of parsing errors were 3± 0 (mean±s.d.), but one tree got 19 parsing errors, and
for this reason it was excluded from the statistical analysis. For the Pyramidal cells, from
the total number of branches (121), the parsing errors were 0.4± 0.5164, and finally for
the Visual cells, from the total number of branches (655), the parsing errors 4.72± 4.24.

5.4.1 Axial Current Condition Results

The goal of the first set of simulations was to find support for the synchronization hypothesis
stated in section 4.3.1, and particularly, to test the first experimental prediction, which
states that more symmetric electrotonic structures will achieve higher levels of current
measured at the soma, other things being equal. Taking into account that in these
simulations (i) the number of synapses, and density of ion channels are the same across all
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cells, (ii)the total electrotonic distance is constant in each cell type, and (iii) the amount
of current injected is the same across all cells, the isolation of the symmetry variable is
assured.

Furthermore, since intra-cell type have different geometrical arrangements, and each
neuron type differs in its total electrotonic distance and topology, one can investigate how
size, topology and geometry influence the processing of synaptic inputs in a dendritic tree,
while providing a definitive test to the discriminative power of e−X .

After the synapses were activated in a synchronous manner (1Hz), the time-courses
of the axial currents reaching the soma were integrated (

∫
Iaxialdt) and plotted against

the e−X values of each tree (see Figure 5.3). For all three different cell types, and across
all cell types, the plots could be well fitted1 (R2/R̄2 > 0.85) with negative exponential
functions (a ∗ e−bx + c). The fitting parameters values and residues analysis values for all
conditions, are reported in Table 5.3.

Intra-cell Analysis

By analysing the plots (Figure 5.3) from each individual cell type, it is easy to recognize
that as e−X decreases, the amount of axial current increases. Since, e−Xsym < e−Xasym , one
can interpret these results as an evidence that supports the synchronization hypothesis,
as it clearly confirms the first experimental prediction, i.e., more symmetrical structures
achieve higher levels of current at the soma. Therefore, structural symmetry seems to play
an important role in signal integration, being a possible a mechanism for the modulation
of axial current that flows from the dendrites to the soma.

Overall Analysis

In the overall condition, i.e., the analysis of the plot of all cells against all axial current
values, the same negative exponential relation between e−X and the quantity of axial
current reaching the soma is found. Despite the small differences between values of fitting
parameters, the overall shape of the relationships did not change much across conditions
(see Figure 5.3), even for the overall condition. Furthermore, the 95% predictive bounds
are close to the fitting curve, providing a good indication of the predictive power of the
negative exponential model. In addition, the narrow range of fitting parameter values
quantitatively confirms this analysis (see Table 5.3).

e−X Analysis

Moreover, e−X was capable of discriminating the structural differences between intra
cell types, and across cell types, and these differences highly correlate with functional
differences, confirming its discriminative power, and its direct relation between structure

1Note that in all conditions, except the Visual condition, have (R2/R̄2 > 0.9), possibly the lower values for the
former condition are caused by the higher number of parsing errors which blured the e−X vs. Iaxial relation.
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N Model Type
a ∗ e−bx + c

SSE R2 R̄2 RMSE

Purkinje 9 7.11 ∗ e−0.7566x 1.992e−5 0.931 0.931 0.001578
Pyramidal 10 1.924 ∗ e−0.6548x 1.854e−4 0.9313 0.9227 0.004813
Visual 10 8.144 ∗ e−0.3957x − 0.7 6.986e−5 0.8744 0.8587 0.002955
All cells 29 7.11 ∗ e−1.82x + 0.26 1.624e−2 0.9891 0.9887 0.02452

Table 5.3: Fitting parameter values and residues analysis for the e−X vs. axial current relation.

and function. This correlation can be attested by the goodness of the fit of the observations
(Table 5.3).

Robustness Assessment

In order to evaluate the qualitative and quantitative generality of the proposed synchro-
nization mechanism, i.e., if this mechanism is robust to different conditions, we conducted a
thorough analysis on the X factor from e−X . As stated in section 4.3, X = ∑ wrd1/wrd2

wrd1 + wrd2

,
the ratio on the numerator assesses the topological and geometrical differences of the
dendritic tree, and the sum on the denominator the electrotonic cell’s size. Taking this
into account, we computed the mean value of ∑

wrd1/wrd2 for each neuron type, and also
computed the total electrotonic distance (∑wij) from each neuron type, interpreting these
values as indicators for the overall cell’s (a)symmetry and size, respectively. Then these
indicators were compared with the average of the integrated axial current time-courses
from each cell type.

Regarding the total electrotonic distance the results found were: for the Pyramidal
type ≈ 489.2 , Purkinje type ≈ 2133.8, and Visual type ≈ 2178.6. By definition (see
section 3.2.3), less signal attenuation was expected for the Pyramidal type, and more
attenuation for the Purkinje and Visual type. Therefore, the amount of current reaching
the soma for the former should be bigger than for the remaining types, and vice-versa.
Nevertheless, the average of the integrated axial current time-courses reaching the soma
were: Pyramidal type ≈ 1.513 , Purkinje type ≈ 4.575, and Visual type ≈ 5.43, i.e.,
the amount of axial current increased when the total electrotonic distance increased as
well, which by the electrotonic distance definition does not make sense. However, the
the average ∑

wrd1/wrd2 for each cell type follows a similar pattern as the one found at
the integrated axial current mean values, with Pyramidal cell types having lower values
(≈ 28.11), and the Purkinje (≈ 160.95) and Visual (≈ 140.49) cell types showing bigger
and similar higher values, leading one to conclude that the increased axial current was
caused by differences in the electrotonic architecture of the cell that override the size effect.
These results suggest that current synchronization by structural (a)symmetry is robust to
differences to neuronal size across cell types.

Besides size alone, topological and geometrical differences present in neurons, whether
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Figure 5.3: Fitting plots for the e−X vs. axial current relation. The neurons within each of the
cell types can be well fitted by a negative exponential model with small residuals (see Table
5.3). Since measure e−X is exponentiated, this corresponds to a positive linear fit between the
structural factor X and the amount of axial current reaching the soma. Overall, the metric can
also be used to predict axial current, based only on structural features, even if the cell type is
not known.
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from the same type or from different types, have influence on single neurons dynamics and
have an important role in dendritic integration [2, 11, 70, 87, 92]. The mechanism(s) behind
these differences are poorly known, but from the analysis of the data from the simulation-
based experiments performed in this thesis, one can speculate that synchronization can play
a role in these long reported physiological differences. With more symmetric structures
providing more synchronization, and vice-versa, functioning as a modulatory mechanism
that neurons can computationally explore. Additionally, e−X can be used with confidence
to quantify those structural differences, while providing a bridge between structure and
function. Following these results, e−X can provide valuable insights to the ongoing efforts
of correlating dendritic structure and neuronal activity in various cell classes.

5.4.2 Spike Train Condition Results

Different patterns of spike trains, and their precise timing, may have different neurocom-
putational properties, and cause different responses on the postsynaptic neuron. In order
to evaluate whether the heterogeneity of electrical dynamics found in the axial current
condition, attributed to variability in the electrotonic structure, influences the output
behaviour of single neurons, one main experimental setup was conducted that was analysed
in two different ways: (i) the amount of time that all neurons took to the exhibit the
first spike when stimulated, and (ii) the voltage traces were recorded for different input
frequencies, to ascertain if the spectrum of firing patterns across cells were different.

Time to Spike Analysis

After the synapses were activated in a synchronous manner (1Hz), the voltage traces of
all cells (N = 29) were recorded, and the time required to the first spike was measured
at the precise moment when the membrane potential reversal happened. One of the
recorded observations from a Pyramidal cell was distant from other observations and it was
considered an outlier and was removed from further analysis, the remaining observations
(N = 28) were then plotted against the e−X values of each tree (see Figure 5.4). For
all three different cell types, and across all cell types, the plots could be well fitted2

(R2/R̄2 & 0.85) with exponential functions (a ∗ ebx + c). The fitting parameters values and
residues analysis values for all conditions, are reported in Table 5.4.

Intra-cell Analysis. By analysing the plots (Figure 5.4) from each individual cell
type, it is easy to recognize that as e−X increases, the amount of time required for a cell
to spike increases as well. Taking into account the results from the axial current condition,
one can interpret these results as an evidence that supports the synchronization hypothesis,
as it clearly confirms the second experimental prediction, i.e., more symmetrical structures
achieve higher levels of current at the soma, which in turn make a cell reach its threshold
sooner than more asymmetrical cells.

2Once again, the Visual condition has the lower values of fitness, probably due to the higher number of parsing
errors which blurred the e−X vs. time to spike relation.
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Overall Analysis. In the overall condition, the same exponential relation between
e−X and the amount of time required for a cell to spike is found. Despite the differences
between values of fitting parameters, the overall shape of the relationships did not change
much across conditions (see Figure 5.4), even for the overall condition.

It is important to note, that the model type used to fit the value is the same as
in the axial current condition, making these fits even more credible, and points to a
close relation between structure and the time required to a neuron to spike. Once again,
the 95% predictive bounds are close to the fitting curve, providing a good indication of
the predictive power of the exponential model. In addition, the narrow range of fitting
parameter values quantitatively confirms this analysis (see Table 5.4).

Spike Train Analysis

In this condition, all cells (N = 29) were activated with the following pre-synaptic
frequencies: 1Hz, 4Hz, 7Hz, 10Hz, 20Hz, 50Hz and 100Hz. The stimuli were delivered at
constant inter-spike intervals corresponding to the input frequency.

For each cell type, differences on the spike train patterns fail to emerge. For pre-synaptic
frequencies ranging from 1-20 Hz, there was no variation between all cells (N = 29), with
the output frequencies being equal to the input frequencies, i.e., 1Hz±0, 4Hz±0, 7Hz±0,
10Hz±0, 20Hz±0, and the output patterns showed similar inter-spike intervals (see Figure
5.5). Differences on the spike train behaviour only appeared at 50Hz and 100Hz, although
these differences were only significant across cell types, and not in intra types. The
Purkinje cells showed an average spiking rate of 13Hz±0, 50Hz (mean ± s.d., finput) and
13.8Hz±0.42, 100Hz. Pyramidal cells showed an average spiking rate of 10.9Hz±0.32,
50Hz and 12.9Hz±0.32, 100Hz. Finally, Visual cells showed an average spiking rate of
13Hz±0, 50Hz and 14.2Hz±0.42, 100Hz (see Figure 5.5). General qualitative trends can be
drawn from these data, particularly (i) cells with similar e−X values have similar output
behaviour, and (ii) cells with higher e−X values exhibit spike trains with higher frequencies.

Concluding, the electrotonic structure of the cell, measured by e−X , seems to affect
the output behaviour of the cell, however, the results found in these simulation-based
experiments were not conclusive. We think the results found in the spike train condition
were caused by an inadequate stimulation protocol used in these simulations, being
homogeneous in space and constant in time. Even though it is an improvement to the
somatic stimulation protocol widely used in related works on the field [70, 90], this protocol
still is quite artificial when compared with the stochastic pre-synaptic stimulation found in
real neurons [67, 68]. We strongly believe, that a more natural activation of synaptic inputs
would be expected to exacerbate the influence of morphology on output patterns, and more
expressive differences could arise in intra-cell types, and across cell types. Accordingly,
this direction should be taken in future work to better support our postulation.
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Figure 5.4: Fitting plots for the e−X vs. time to spike relation. The neurons within each of the
cell types can be well fitted by an exponential model with small residuals (see Table 5.4). Since
measure e−X is exponentiated, this corresponds to a negative linear fit between the structural
factor X and the time to first spike. Overall, the metric can also be used to predict the the time
required to a neuron to spike , based only on structural features, even if the cell type is not
known. This is important because demonstrates a systematic link between neuronal structure
and a functional property.
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N Model Type
a ∗ ebx + c

SSE R2 R̄2 RMSE

Purkinje 9 0.04121 ∗ e0.4168x 6.957e−6 0.9759 0.9725 0.0009969
Pyramidal 9 0.3802 ∗ e0.1263x 1.494e−5 0.9941 0.9933 0.001461
Visual 10 0.01166 ∗ e0.9027x 7.146e−5 0.8715 0.8555 0.002989
All cells 28 0.01312 ∗ e0.7886x 0.2006 0.8553 0.8497 0.08783

Table 5.4: Fitting parameter values and residues analysis for the e−X vs. time to spike.
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Figure 5.5: Average spiking rate plot for the three cell types. Cells with similar e−X values
(Purkinje and Visual) have similar output behaviour, and cells with higher e−X values (Purkinje
and Visual) exhibit spike trains with higher frequencies.

5.5 Summary

In this chapter, we described the simulation-based experiments used to test the synchroniza-
tion hypothesis, and to test the discriminative power of e−X . First, we started by indicating
the methods used in the artificial reconstructions of the simulated cells, then a description
of the simulations ensued. Regarding the experimental results, we highlight a number of
points. First, our results demonstrate how the electrotonic structure of a neuron may
shape the electrical dynamic interactions in single neurons. Particularly, support for the
synchronization hypothesis was found, as the first experimental prediction was confirmed.
Second, the results analysis led to the confirmation of the methodological prediction , and
e−X can be used with confidence to quantify those structural differences, while providing
a bridge between structure and function. Third, the second experimental condition was
inconclusive, as significant differences fail to emerge in some conditions. Nevertheless, this
may be accounted by some limitations in the stimulation protocol. Overall, the results
show that measure e−X is a promising alternative to traditional morphometrics measures
as it can be used with confidence to quantify structural differences, and can be applied
across different types of neurons while providing a bridge between structure and function.



Chapter 6

Conclusions

In this chapter we summarise the contributions of the dissertation, and discuss directions
for future work, and possible extensions, improvements and refinements that the work
done here could still benefit from. A brief conclusion ensues.

6.1 Summary and Contributions

We consider that the objectives defined in section 1.2 were reached. We have developed
a new measure that quantitatively accounts for variations in metrical, topological and
biophysical components of the cell all at the same time, and because the way it is defined
it has shown a highly discriminative power (see section 4.3). Other efforts in the literature
could only account for just one of these parameters at a time (e.g., the partition asymmetry
index [91]) and undoubtedly those measures cannot sufficiently characterize dendritic
structure. e−X on the other hand, came to fill the need for a measure that could provide a
link between geometry, topology and function, and the results analysis lead us to conclude
that it can be used with confidence to quantify those structural parameters.

Before e−X , because of the methodological hindrance supra mentioned, the effects of
dendritic size, topology, geometry, and its underlying mechanisms, on neuronal dynamics
remained poorly known. This situation was exacerbated by some methodological flaws,
such as the use of the less appropriate stimulation protocol of somatic current injection in
simulation-based experiences [70, 90]. To overcome this, we used e−X to systematically
investigate how synaptic efficacy is affected by the anatomical and biophysical properties
of the postsynaptic cell, particularly, how the physical parameters controlled by dendritic
morphology underlies the differences in the electrical dynamics of the cell.

We proposed and tested the synchronization hypothesis, which states a new mechanism
that neurons can explore to process PSPs (see section 4.3.1). Basically, the combination of
topological, metrical and biophysical structural components of a neuron emerge a specific
electrotonic structure of that particular cell. The more symmetric this structure is, the
more similar the electrical behaviour of the cell will be, i.e., the current flowing from
different paths will have similar dynamics, and consequently will spatially sum in a more
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efficient way. Therefore, structural differences may serve as mechanism for modulating
axial current that flows from the dendrites to the soma that influence the output behaviour
of the cell.

Support for the synchronization hypothesis was found, as more symmetric electro-
tonic structures achieved higher levels of current measured at the soma compared with
asymmetrical structures, when injected with the same current. Moreover, on the second
experimental condition the synchronization hypothesis enjoyed some support, as differences
found in the axial current condition correlated with the time that neurons required to
spike, with more symmetrical neurons requiring less time to do so. Nevertheless, significant
differences fail to emerge in the output spike trains, but these results can be explained by
some limitations in the stimulation protocol and needs further analysis in the future (see
section 5.4).

6.2 Future Work

In this section, we describe possible future developments for e−X , and to the methods used
to test the synchronization hypothesis. The subsections presented overview three main
areas of future work, namely: (i) new stimulation protocol, (ii) using the new differential
equations solver CVode, and (iii) try to validate the results found here in a bigger and
broader range of neurons.

New Stimulation Protocol

The stimulation protocol used in these simulations was not the most adequate since it was
homogeneous in space and constant in time. Even though it represents an improvement to
the somatic stimulation protocol widely used in related works on the field [70, 90], it is still
quite artificial when compared with the random and asynchronous kind of pre-synaptic
[67, 68] stimulation found in biological neurons. We strongly believe that a more natural
activation of synaptic inputs would be expected to exacerbate the influence of morphology
on output patterns, and more expressive differences could arise in intra-cell types, and
across cell types, specially in what regards the output behaviour of the cell. This is a
crucial development that the work done here could still benefit from.

Code Optimization

NEURON software has recently been upgraded with a new built-in differential equations
solver named CVode, which is a multi order variable time step integration method [20].
One of the main reasons why this new solver was integrated on NEURON was the necessity
to increase the accuracy of the electrotonic distance computation. However, most .mod
files containing the ion channels’s kinetics schemes found on the literature, particularly
the ones used in this thesis, are not compatible with this new integrator and need to be
generalized to enjoy these performance benefits. Although it is hard to tell exactly by how
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much, it is conceivable that this new integrator could greatly increase the accuracy of the
electrotonic distance computation making the structure-function relation more clear.

Bigger Sample and Applications

Probably the most obvious extension that the work done in this study could benefit from
is conduct the simulation-based experiments on a larger and eclectic sample of neurons.
This would provide a bigger statistical power, and would enable the validation of the
results found in the present manuscript, and further test the predictive of e−X .

On a different note, this large neuronal sample could be used for a systematic account
of different neuron cell types. Since the neuron classification is a basic prerequisite for
understanding the nervous system functional patterns, measure e−X could provide a
helpful tool for the explicit classification of known neuron types into functional classes
[15]. Particularly, one possible and interesting translational application for measure e−X

would be the study and prediction of structural aberrant cells behaviour [57, 66, 93].

6.3 Overview

Only a few years ago, the brain computational power was seen only as the result of network
connectivity, and in this perspective, single neurons were no more than an passive integrator
devices [73]. Nowadays, individual neurons are seen as extremely complex structures, that
perform many kinds of computations, and dendrites with theirs morphological diversity
clearly play an important role in information processing [69]. These structural differences
make the basis for differences in electrical dynamics of single neurons [24].

It is known that neuroanatomical variability has an effect on the neuronal response, and
numerous studies attempted to quantify these effects, some of them tried to vary and analyse
metrical features of dendritic trees holding the rest of the parameters [61, 62, 64, 63, 65],
while other studies tried a different approach and varied the topological features of a
dendritic tree [30, 88, 89]. Some have made an effort to isolate the effect of morphology
from variations in physiology, while other studies have done just the opposite and altered
the physiology to overcome differences in morphology [48]. In all cases, variations in
shape, ionic channel composition, even within the same cell class, caused variations in
the electrical dynamics of the cell and in neuronal responses. Even though all these data
that has been accumulated, few mechanisms have been proposed that relate structure to
function [24].

Synchronization Mechanism and Single Neurons

If we accept that the artificial conditions of our simulation-based experiments mimic
different states of neuronal activity, the synchronization mechanism proposed in this
manuscript may be at least one structure based mechanism that neurons can exploit
computationally. But how?
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One specific example where neurons can benefit from the synchronization mechanism
may be found in sensory neurons [56]. For example, a neuron might be driven by an
external stimulus which is suddenly switched on, this may happen in a realistic situation
where abrupt changes in the environment are quite common, as for instance when the
photoreceptors in the retina receive a new visual input. The processing of an abrupt
change from a noisy environment may have crucial biological and adaptive relevance, as it
may be a predator, an hazardous object, etc., consequently, information about the onset of
that particular stimulus needs to be quickly and reliably available in the brain for further
processing [56]. Therefore, we can imagine a code where the precise timing of the first
spike after the reference signal has tremendous importance [37]. To obtain a quick and
reliable response to an input, a more symmetrical electrotonic structure may increase
the synchronization of the current released due to the signal transduction, consequently
increasing the amount of current reaching the soma, making the probability of a neuron
to spike increase, and the time required to spike decrease.

Back to the Network

Although neurons are powerful computational devices they have limitations [59], and
to put neurons back into networks is the ultimate step for the comprehension of the
nervous system. One important task is to explore how different neuron types, with
their different structures interact with each other in the network, showing how specific
emergent behaviours such as synchronization and oscillations arise, and how these observed
phenomenon underlie information processing [7, 94].

6.4 Conclusion

This thesis showed that measure e−X is a promising alternative to traditional morphometrics
measures as it can be used with confidence to quantify structural differences, and can
be applied across different types of neurons while providing a bridge between structure
and function. This was empirically demonstrated with two different simulation-based
experiments, where e−X discriminated different neuronal structures and at the same
time correlated with different relevant functional properties of the modelled cells. Our
contributions represent a new step in the iterating loop of model prediction, experimental
test, and model adjustment that hopefully will allow us to correlate neuronal structure
to function then to behaviour, providing a deeper understanding of how single neurons
structure contribute to computation in the brain.



Appendix A

Measures Comparison

In this appendix, we introduce a sort of benchmark for different morphometric measures
and e−X . The chosen measures are used in many different studies and are representative of
topological and metrical morphometrics (see section 3.2.1). This analysis strictly evaluates
the discriminative power of the three analysed measures, and it is not concerned about on
how they are applied in the literature, or on how they are derived.

The Measures

The analysed measures were the following:

• Topological asymmetry [24, 88, 89, 91] - It is a topological measure which char-
acterizes the binary tree as the mean value of all its Ap (see section 3.2.1), ranging
from j = 1 to j = n − 1, where n − 1 is the number of branching points. The
partition asymmetry values ranges from 0 (completely symmetric) to 1 (completely
asymmetric), and it is defined in the following way:

At = 1
n− 1

n−1∑
j=1

Apj
(A.1)

• Mean path length [8, 82, 89] - The mean path length is the sum of all dendritic
path lengths measured from tip to soma divided by the number of terminal segments
and it evaluates the overall metrical size. Thus, for a given tree with n terminal
segments, the mean path length Pt is:

Pt = 1
n

n∑
j=1

Pj (A.2)

• e−X- See section 4.3.1.

Toy Models

For a systematic evaluation of the measures discriminative power, we used a set of 23
neurons consisting of all the topologically different trees with eight terminal segments and
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Figure A.1: All the different degree eight topologies. For display purposes, some segments have
been lengthened, but all segments have the same length in the analysis.

sixteen nodes (see figure A.1). The trees may be thought of as representing the backbones
of potentially larger dendritic arborizations. All segments in the tree, intermediate and
terminal segments, have the same length (l = 1), so the different tree topologies do not
differ in total dendritic length.

Results

The results found are reported in table A.11:

Topological Asymmetry Mean Path Length e−X

1 0.86 5.375 0.90326
2 0.67 4.750 0.75336
3 0.66 4.875 0.80156
4 0.64 5.000 0.80399
5 0.62 5.125 0.81701
6 0.62 4.375 0.74260
7 0.60 4.625 0.76447
8 0.57 4.875 0.74394
9 0.57 4.250 0.89405
10 0.57 5.250 0.82633
11 0.45 4.375 0.65040
12 0.43 4.500 0.66635
13 0.42 4.625 0.69419
14 0.38 4.125 0.76305
15 0.38 4.250 0.65990
16 0.38 4.625 0.70522
17 0.37 4.750 0.72755
18 0.36 4.875 0.74198
19 0.33 4.250 0.67798
20 0.31 4.500 0.69417
21 0.29 4.125 0.61714
22 0.17 4.250 0.56967
23 0 4.000 0.51879

Table A.1: Measures comparison results. Trees are organized accordingly to Figure A.1, being
number 1 the leftmost tree and 23 the rightmost tree. The topological asymmetry measure could
not discriminate three sets of trees from each other (5, 6); (8, 9, 10); (14, 15, 16). The mean
path length measure could not discriminate six sets of trees (2, 17); (3, 8, 18); (6, 11); (7, 13,
16); (9, 15, 19, 22); (12, 20). On the other hand, e−X could discriminate all trees.

1Only the first five decimal places of e−X are shown table A.1.
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