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ABSTRACT 

The structural, morphological and optical properties of manganese oxides supported on 

commercial ZnO, prepared by impregnation with manganese nitrate, were investigated. 

The nominal compositions of Mn in the samples were 5, 10, 15 and 20 %w/w.The X-

ray diffraction (XRD) experiments revealed the presence of the ZnO wurtzite phase in 

all the samples, and ZnMnO3 was also found in the samples with 15 wt%  

and 20 wt% of Mn. X-ray photoelectron spectroscopy (XPS) showed the presence of 

Mn2+ and Mn4+ in the xMnZnO samples. The results showed that the Mn2+ ions had 
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substituted the Zn2+ ions without changing the wurtzite structure of ZnO, while Mn4+ 

might be assigned to the ZnMnO3 impurity phase. The optical band gap was found to be 

3.3 eV for undoped ZnO samples and 3.10 eV for Mn-doped samples. The lattice defect 

distribution was investigated using the positron annihilation method. The results 

revealed that the average lifetime is a function of the Mn concentration and the 

formation of the ZnMnO3 phase.  

1. Introduction 
 

ZnO is one of the most important metal oxides due to its unique physical characteristics 

of wide and direct band gap (3.37 eV at room temperature). It is used in various 

applications such as optoelectronics [1–4], sensors [3–7] pharmaceuticals, etc. 

Additionally, ZnO is used as photocatalyst [5,6] and in different catalytic reaction such 

as steam reforming of alcohols [7,8], synthesis of methanol [9] and complete oxidation 

of CO [10] and trichloroethylene [11]. Also, doping ZnO with transition metal such as 

Mn and Cu could affect the electronic surface band structure of ZnO and change its 

applications [10,12,13].  

For synthesis of Mn doped ZnO bulk particles, several techniques such as reverse 

micelle [14], solid state reaction [15], sol-gel [16], solvothermal [17] and co-

precipitation [18] have been employed. Compare to others, impregnation has some 

advantages, for instance; easy synthesis, reproducibility, low temperature and 

inexpensive.  

Naturally, the interaction of doped atoms with the defects will modify the properties of 

the material in different ways, depending on the nature and concentration of the doped 

atoms. Positron annihilation spectroscopy (PALS) has been used to characterize surface 

defects in nanoparticles, due to its extreme sensitivity to the presence of vacancies in the 
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material [19]. Positron annihilation spectroscopy has been used to study different metal 

doped ZnO particles usually prepared by solid state reaction of ZnO and a metal oxide 

[20], such as Fe2O3 [21] and MnO2 [22–24]. Chemical reaction forces the dopant 

element to be introduced into the crystal structure of the compound.  

The aim of this paper is to evaluate and discuss the effect of Mn doping on the ZnO 

structure and its optoelectronic properties. The solids were prepared by impregnation of 

ZnO with Mn(NO3)2.4H2O, and the samples were characterized by a variety of 

techniques including X-ray diffraction, scanning electronmicroscopy, UV-Vis, and 

positron annihilation lifetime  spectroscopy (PALS). 

 

2. Experimental 
 

2.1. Sample preparation. 
            

Commercial ZnO (99.99%, Alfa Aesar, Johnson Matthey Co.) was previously 

calcined in air at 500 ºC during 2 hs. 

The Mn-doped ZnO samples with nominal compositions (wt% = 5, 10, 15 and 

20) of Mn were synthesized by the wet impregnation method. In a typical procedure, 5 g 

of commercial ZnO was added to 50 mL of Mn(NO3)2.4H2O solution with the 

appropriate concentration,  and the suspension was stirred at 30 oC for 1 h.  The 

products were filtered, washed with distilled water, and dried at 120 oC for 24 h. 

Finally, the solids were calcined in air at 500 oC for 2 h. The samples were named 

xMnZnO, where x is the nominal Mn wt% concentration of the sample.  The 

nomenclature of the samples is listed in Table 1. 

The obtained powders were pressed into 8 mm diameter pellets for positron 

annihilation lifetime measurements. 
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2.3. Characterization 
 

The manganese content was measured in a Varian AA 240 spectrophotometer 

after dissolving the catalysts in aqua regia. 

The samples were characterized by X-ray diffraction (XRD) methods using a 

Philips diffractometer. The diffraction patterns were recorded at room temperature from 

15 to 80º of 2θ using Cu Kα (λ = 1.5406 Å) radiation at 0.02º min-1 scanning speed and 

a counting time of 2 s per step.  

The BET specific areas were measured by N2 adsorption at liquid nitrogen 

temperature (77 K) in a Micromeritics Accusorb 2100 D sorptometer. 

The surface morphology of the samples was studied using scanning electron 

microscopy (SEM) in a Philips SEM 505 microscope. 

TEM measurements were performed with a JEOL 100 CXII microscope 

operated at 100 kV. 

X-ray photoelectron spectra (XPS) of the samples were obtained using a 

multitechnique system, with a Mg X-ray source and a hemispherical PHOIBOS 150 

analyzer operating in the fixed analyzer transmission mode. Binding energies (BE: ±0.1 

eV) were calculated using adventitious hydrocarbon (C 1s = 284.6 eV) as the internal 

reference. Curve fitting was performed with the CasaXPS software. 

Optical characterizations were carried out by measuring the diffuse reflectance 

spectroscopy. All spectra were taken in the range of 200 - 800 nm using Perkin Elmer 

Lamdba 35 UV-vis spectrophotometer with integrating sphere attachment and 

spectralon reflectance standard. 
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 Positron annihilation lifetime measurements were collected in a conventional 

fast–fast coincidence system with two scintillator detectors (one BaF2 and one plastic 

BURLE), which provided a time resolution (FWHM) of 260 ps. The radioactive source, 

22NaCl (10 µCi), was deposited onto a Kapton foil (1.42 g cm-3) and sandwiched 

between two sample specimens. The source contribution (386 ps of 15% intensity 

assigned to the Kapton foil and a second one of around 1 ns with less than 1% intensity 

due to annihilation in the surroundings of the source) and the response function were 

evaluated from a reference sample (Hf metal) using the RESOLUTION code [25]. The 

lifetime spectra (2–3x106 counts) were acquired at room temperature and analyzed with 

the POSITRONFIT program [25]. 

 

3. Results 
 

3.1. Catalysts Characterization 

The nomenclature, along with the manganese content and the specific area of the 

studied samples, is listed in Table 1.  The sample specific surface area gradually 

increases with the increase in manganese content.  

A similar behavior was also observed when TiO2 is impregnated with Mn(NO3)2 

precursor [26], and in several Mn-doped ZnO samples prepared by different routes 

[5,27,28]. Also, Bhattacharyya and Gedanken [29] found that the surface area of 

Ag/ZnO composites increases due to the formation of Ag cluster over ZnO. In our 

work, the increment in surface area could be associated to the formation of a segregated 

ZnMnO3 phase, or by the decreasing grain size [30]. 

XRD patterns of the samples are shown in Fig. 1. The diffraction peaks of the undoped 

ZnO can be identified as belonging to a ZnO phase with a hexagonal wurtzite crystal 

structure [JCPDF card 36-1451] in which the strong diffraction peaks appear in (1 0 0), 
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(0 0 2) and (1 0 1) respectively [31]. Mn-doped ZnO samples also present the peaks 

corresponding to hexagonal wurtzite. However, in samples 15MnZnO and 20MnZnO,   

the appearance of additional peaks at 2θ = 30 and 35.5º, matches well with diffraction 

patterns of face-centered cubic ZnMnO3 [JCPDF 19-1461]. This last compound has 

been detected by other authors as an impurity phase. Its structure has not been clearly 

reported, however recent works have demonstrated that the ZnMnO3 phase has a 

related-spinel structure [32,33]. Mn has a solid solubility limit of about 13% in ZnO 

matrix [34]. The Mn concentration in the samples 15MnZnO and 20MnZnO are beyond 

the solid solubility limit, which could be responsible for the presence of ZnMnO3 

secondary phase. On the contrary, the Mn concentration of the samples 5MnZnO and 

10MnZnO are smaller than the solid solubility limit and the Mn ions were possibly 

diluted in the ZnO host matrix. 

Nevertheless, the existence of secondary phases in samples 5MnZnO, 10MnZnO cannot 

be excluded. Some secondary phases may be too small to be detected by XRD analysis 

and microstructures could not be seeing by TEM [34,35].  

 

As the Mn content increases, the diffraction intensity from ZnO (1 0 1) peaks drops, 

possibly due to a decrease in the crystallite size and crystalline quality [27]. In addition, 

a shift of (1 0 1) peak positions was observed. This is probably due to the substitution of 

the relatively large ionic radius Mn2+ (0.080 nm) ions at the smaller radius Zn2+ (0.074 

nm) sites [24,36,37]. On the other hand, the formation of ZnMnO3 is attributed to the 

much smaller radius of Mn4+ (0.060 nm) than that of Zn2+. 

The average crystal size (D) of the ZnO and Mn doped ZnO samples, was estimated 

using the Scherrer formula: 
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where λ is the X-ray wavelength, β is the angular line width of half maximum intensity, 

and θ is Bragg’s diffraction angle. Results are shown in Table 2. The crystallite size (D) 

in general has no change, except for the sample 20MnZnO. D has a little increment 

when manganese concentration reaches 5%, and then decrease when more manganese is 

added [38]. It means that some Mn ions may remain adhered to ZnO surface and not 

associated with ZnO lattice [39]. When the manganese concentration reaches near 20%, 

the decreases in the D value is more notorious, in coincident with other authors [40, 41]. 

The influence of different percentages of Mn on the surface morphologies of 

commercial ZnO was studied by SEM (figure not show). With the increase in the 

manganese amount, higher agglomeration is observed. Fig. 2 (a) and (b) shows the SEM 

image of ZnO and 10MnZnO samples, respectively. Manganese addition to ZnO 

generates irregular globular particles. Fig. 2 (c) shows the TEM image of 10MnZnO 

sample. Different kinds of shape, such as irregularly shaped nanoparticles, larger 

rectangular platelets and hexagonally shaped nanoparticles, are visible in the 10MnZnO 

sample. 

In order to know about the chemical bonding structure of Mn-doped ZnO samples, the 

XPS spectra for the valence bonds of Mn 2p3/2, Zn 2p3/2 and O 1s states were recorded.  

The corresponding binding energies of the above states are summarized in Table 3. As 

shown in Fig. 3, the spectra of Zn 2p3/2 of the ZnO and Mn-doped ZnO samples exhibit 

a symmetric single peak that could be nicely fitted to a single peak, ruling out the 

possibility of existence of a multiple component of Zn in these samples.  

The peak corresponding to Zn2+ ions in ZnO, shifted to lower binding energies as a 

function of the Mn concentration (see Table 3). This shift in binding energy is due to the 

partial substitution of Zn in ZnO lattice by Mn2+ ions and Zn–Mn bonding structure 

[42].  In addition, as it was remarked by Ilyas et al., [43] the different bonding states of 
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the elements on the surface will result in a shift in the binding energy towards a lower 

value. Zn atoms bonded to manganese (which are less electronegative than oxygen) will 

contribute to the shift of the Zn 2p3/2 peak [44]. Another reason of the shift in the 

binding energy could be the reduced average crystallite size, which is coincident with 

the XRD results [45].  

The O1s spectra of the samples are plotted in Fig. 4. In the Mn-doped ZnO samples the 

O 1s peak could be reproduced by two components: a low binding energy peak (OI), 

ascribed to lattice O and a high binding energy peak (OII), assigned to surface adsorbed 

O, OH- groups and O vacancies [46]. Some authors have reported a correlation between 

the surface concentration of the OII species and the catalytic activity, due to the higher 

mobility of the OII species compared to the OI species [47]. The concentration of OI 

and OII species are listed in Table 3. The pure ZnO presents higher concentrations of 

OII species than OI species. When manganese is added to ZnO, in samples 5MnZnO 

and 10MnZnO, the OII/OI ratio change and reaches the 15 and 28%, respectively. 

However, when the manganese solubility limit is surpassed (15MnZnO and 20MnZnO), 

the percentage of OII species is much higher than OI species, suggesting the possibility 

of the formation of too many oxygen defects in the oxide after the incorporation of 

manganese in excess [48].  

For the evaluation of the Mn valence state, the Mn2p3/2 spectra were studied. Although 

Mn 3s level is usually used for the determination of the Mn oxidation state, this energy 

region was overshadowed by the presence of a very strong Zn 3p peak, and thus Mn 2p 

lines were analyzed.  The spectra of Mn 2p3/2 of the manganese supported samples are 

presented in Fig. 5. In the manganese doped ZnO samples, the Mn2p spectral shape 

could be related with two Mn2p3/2 components centered near 642 eV, which could be 

associated to Mn2+ and Mn4+ species [49]. The presence of Mn2+ is expected in Mn-
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doped ZnO due to the replacement of Zn2+ at the lattice site, while Mn4+ might be 

assigned to the ZnMnO3 impurity phase [50]. The area of the two different valence 

bonds was calculated in order to estimate the atomic concentration of Mn2+ and Mn4+. 

As it can be seen in Table 3, the Mn2+ atomic percentage decreases with increasing the 

manganese content, whereas the Mn4+ concentration increases with increasing the 

manganese content. Similar results were obtained by Duan et al. [50] and Singhal et al. 

[51] over Mn-doped ZnO nanoparticles.  

As the concentration of Mn4+ ions increases, the percent of OII species also increases. 

The presence of the Mn4+ ions causes more oxygen vacancies in the surface region of 

Mn-doped ZnO samples. 

The absorption spectra for the manganese-doped ZnO nanoparticles are shown in Fig.6. 

We plotted the Mn rich samples in Fig. 6(a) and the Mn poor ones in Fig.6 (b) for 

clarity. There is a drastic change between them; when Mn concentrations reach the 

solubility limit in ZnO, two different slopes are observed (arrows in Fig. 6(b)).  

This phenomenon can be attributed to the formation of a new phase, ZnMnO3, as was 

also reported by XRD results. 

According to Tauc−Mott’s relation for allowed direct transitions, the photon energy (Ef) 

dependence of the absorption coefficient (α) can be described by [50]: 

(αEf)2= B(Ef− EG)       (2) 

where B is a constant and EG is the band gap of the material. From Eq. 2, by 

extrapolating the linear portions to the x-axis and from the corresponding intercepts, the 

direct energy band gap can be obtained (Fig. 7).  

Table 1 lists the obtained values for the band gap energy [eV] as a function of Mn 

concentration, as well as the values for different Mn oxides taken from the literature. As 

can be seen, the results demonstrated that Egap changes with Mn concentration [52].  
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In order to characterize the defects induced by the preparation method, positron 

annihilation lifetime measurements were performed. The lifetime spectra for all samples 

were decomposed into three exponential decays according to: 

 
)/exp()( i

i
i tItn τ−=∑  

 
being the relative intensities Ii, normalized, ΣΙi =1. After background subtraction and 

convolution with the resolution function, the parameters that characterized each positron 

state, λi, annihilation rate (λi = 1/τi) and its intensity Ii are obtained by means of 

POSITRONFIT program [25]. 

The presence of two lifetime components is an usual feature for II-VI semiconductor 

compounds, since intrinsic and extrinsic defects (such as vacancies, interstitials, etc.) 

introduced during crystal growth and doping are unavoidable [54]. The two-state 

trapping model [55] predicts a two-component fitting of the spectrum, the shorter one 

(τ1) from free annihilation of positrons and the other (τ2) from trapped positrons at 

defects. The longest component,τ3, takes into account the ortho-positronium 

annihilation formed in large voids present in the material. In the present study, this 

component (~ 1500ps) maintains its intensity around 3-4% so that has not been included 

in the forthcoming discussion. 

The evolution of positron annihilation parameters with Mn concentration was analyzed. 

(Fig. 7). The obtained value of τ1 for the un-doped ZnO (186 ps) is greater than reported 

values for bulk lifetime but lower than mono-vacancy type defects lifetime for this 

semiconductor [56]. So the observed first component can be assumed to be a mixed 

state of positrons annihilating with free electrons in defect-free regions and at structural 

defects as VZn. As already mention, the second lifetime (~380 ps) is sensing positrons 

trapped at vacancy clusters (nanovoids) or at intersection interfaces (i.e. triple lines) [56, 
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57]. No high variation is observed in both lifetime components when Mn atoms are 

added up to a concentration of 5 wt% (5MnZnO sample) from which a slightly increase 

is observed in both τ1 and τ2. On the contrary, their respectively intensities show a 

different behavior. While I1 maintains almost constant, I2 increases for 1MnZnO and 

5MnZnO indicating an increment in those trapping centers associated to larger open 

volume defects. For higher Mn contents increase both lifetimes and I2 which may be 

due to the formation of a new phase with different positron trapping centers. 

Since the above-mentioned point defects constitute positron trapping centers leading to 

similar positron lifetime components that cannot be separated, we also evaluated the 

average positron lifetime defined by 

 

i
i

iave I ττ ∑=  

 

This statistical parameter displays positron trap behavior independently of the lifetime 

components proposed for each spectrum. It can be seen from Fig.7 that the average 

lifetime does not show a monotonic trend with increasing Mn content. This indicates 

that new positron traps are being generated with doping. The average lifetime decreases 

from 345 ps for pure ZnO to 323 ps for doped 5MnZnO, showing an increase from this 

concentration up to 348ps for the highest doped sample 20MnZnO. It is known that 

ZnO semiconductors present monovacancies in both sublattices, VZn and VO, the last 

one being positively charged and unattractive to positrons. Also, the association of 

different monovacancies can occur, such as divacancies (VZn-VO) or trivacancies (VZn-

VO-VZn) [58]. So, the pure ZnO sample has intrinsic point defects yielding a high value 

for the average lifetime, which is even higher than the known value for single crystals 

and powders due to its nanosized nature [55]. As doping increased, Mn2+ atoms 

occupied the VZn, reducing the lifetime associated with defects, τ2, and in consequence, 
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the average lifetime. This situation remains until the Mn concentration exceeds its 

solubility limit in ZnO; thereafter, the average lifetime rises/increases again. This fact is 

in agreement with the above XRD and XPS results, which showed the formation of an 

impurity phase (ZnMnO3) and the increase of oxygen vacancies (OII species). At this 

stage, positrons sense many electron densities inside the sample, i.e., two ZnO and 

ZnMnO3 phases and their corresponding point defects (monovacancies, interstitials, 

etc.), all of them with similar lifetime values. In consequence, an increment of the 

average lifetime value is observed. 

Conclusions 

A series of manganese oxides supported on commercial ZnO were prepared. XRD data 

showed that all the samples present the wurtzite structure. An impurity phase (ZnMnO3) 

was detected in samples 15MnZnO and 20MnZnO. The XPS experiment confirmed the 

existence of Mn2+ and Mn4+ species and the increase of oxygen vacancies in the Mn-

doped ZnO samples. The results showed that the Mn2+ atoms occupied the VZn, 

reducing the lifetime associated with defects, τ2, and the average lifetime. This situation 

remains until the Mn concentration exceeds its solubility limit in ZnO, associated with 

the formation of ZnMnO3; thereafter, the average lifetime rises again. 

 

Acknowledgements 

The authors acknowledge the CONICET and UNLP (Argentina). We are thankful to 

Lic. P. Fetsis and Lic. M. Theiller. This work was supported by CONICET (PIP 942), 

CICPBA and ANPCyT (PICT 2012-2366).  

 

References 
 
[1] N. Kiomarsipour, R. Shoja Razavi, Characterization and optical property of ZnO 

nano-, submicro- and microrods synthesized by hydrothermal method on a large-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 
 

scale, Superlattices Microstruct. 52 (2012) 704–710.  

[2] S. Benramache, B. Benhaoua, Influence of substrate temperature and Cobalt 
concentration on structural and optical properties of ZnO thin films prepared by 
Ultrasonic spray technique, Superlattices Microstruct. 52 (2012) 807–815.  

[3] T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Improving the 
ethanol sensing of ZnO nano-particle thin films - The correlation between the 
grain size and the sensing mechanism, Sensors Actuators, B Chem. 152 (2011) 
73–81.  

[4] Y. Sun, Z. Zhao, P. Li, G. Li, Y. Chen, W. Zhang, J. Hu, Er-doped ZnO 
nanofibers for high sensibility detection of ethanol, Appl. Surf. Sci. 356 (2015) 
73–80.  

[5] K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic 
studies of transition metal doped ZnO nanoclusters, Microporous Mesoporous 
Mater. 134 (2010) 195–202.  

[6] R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, S.H. Kim, Ce-doped 
ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye, 
Ceram. Int. 41 (2015) 7773–7782.  

[7] W. Cai, P.R. de la Piscina, N. Homs, Oxidative steam reforming of bio-butanol 
for hydrogen production: effects of noble metals on bimetallic CoM/ZnO 
catalysts (M=Ru, Rh, Ir, Pd), Appl. Catal. B Environ. 145 (2014) 56–62.  

[8] J.A. Torres, J. Llorca, A. Casanovas, M. Domínguez, J. Salvadó, D. Montané, 
Steam reforming of ethanol at moderate temperature: Multifactorial design 
analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts, J. 
Power Sources. 169 (2007) 158–166.  

[9] H. Lei, R. Nie, G. Wu, Z. Hou, Hydrogenation of CO2 to CH3OH over Cu/ZnO 
catalysts with different ZnO morphology, Fuel. 154 (2015) 161–166.  

[10] B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, D. Mehandjiev, Catalytic 
and photocatalytic activity of lightly doped catalysts M : ZnO ( M = Cu , Mn ), 
Mater. Chem. Phys. 123 (2010) 563–568.  

[11] J.-C. Chen, C.-T. Tang, Preparation and application of granular ZnO/Al2O3 
catalyst for the removal of hazardous trichloroethylene., J. Hazard. Mater. 142 
(2007) 88–96.  

[12] M. Ashokkumar, S. Muthukumaran, Enhanced room temperature ferromagnetism 
and photoluminescence behavior of Cu-doped ZnO co-doped with Mn, Phys. E 
Low-Dimensional Syst. Nanostructures. 69 (2015) 354–359.  

[13] R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. Boubaker, P. Petkova, M. 
Amlouk, Effect of Mn content on structural, optical, opto-thermal and electrical 
properties of ZnO:Mn sprayed thin films compounds, J. Alloys Compd. 645 
(2015) 100–111.  

[14] M. Mazhdi, J. Saydi, M. Karimi, J. Seidi, F. Mazhdi, A study on optical, 
photoluminescence and thermoluminescence properties of ZnO and Mn doped-
ZnO nanocrystalline particles, Opt. - Int. J. Light Electron Opt. 124 (2013) 4128–
4133.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 
 

[15] V.M. De Almeida, A. Mesquita, A.O. De Zevallos, N.C. Mamani, P.P. Neves, X. 
Gratens, V.A. Chitta, W.B. Ferraz, A.C. Doriguetto, A.C Sabioni, H.B. De 
Carvalho, Room temperature ferromagnetism promoted by defects at zinc sites in 
Mn-doped ZnO, J. Alloys Compd. 655 (2016) 406–414.  

[16] V.D. Mote, Y. Purushotham, B.N. Dole, Structural, morphological, physical and 
dielectric properties of Mn doped ZnO nanocrystals synthesized by sol–gel 
method, Mater. Des. 96 (2016) 99–105.  

[17] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M. Said, A. 
Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar 
and visible light photocatalysis, Mater. Des. 101 (2016) 309–316.  

[18] Q. Gao, Y. Dai, C. Li, L. Yang, X. Li, C. Cui, Correlation between oxygen 
vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized 
by co-precipitation technique, J. Alloys Compd. 684 (2016) 669–676.  

[19] S.K. Sharma, P.K. Pujari, K. Sudarshan, D. Dutta, M. Mahapatra, S. V. Godbole, 
O.D. Jayakumar, A.K. Tyagi, Positron annihilation studies in ZnO nanoparticles, 
Solid State Commun. 149 (2009) 550–554.  

[20] L.C.Damonte, V.Donderis, M.A.Hernández fenollosa, Dopants incorporation in 
ZnO mechanical milled powders sensed by positrons, Hyp.Int. 179 (2007) 73-79. 

[21]  D. Wang, Z.Q. Chen, D.D. Wang, J. Gong, C.Y. Cao, Z. Tang, L. Huang, Effect 
of thermal annealing on the structure and magnetism of Fe-doped ZnO 
nanocrystals synthesized by solid state reaction, J. Magn. Magn. Mater. 322 
(2010) 3642–3647.  

[22] S. Chattopadhyay, S. Dutta,  A. Banerjee, D. Jana, S. Bandyopadhyay,  A. 
Sarkar, Synthesis and characterization of single-phase Mn-doped ZnO, Phys. B 
Condens. Matter. 404 (2009) 1509–1514. 

[23] D. Sanyal, M. Chakrabarti, A. Chakrabarti, Synthesis and positron 
characterizations of ferromagnetic Zn0.98Mn0.02O and paramagnetic Zn0.98Mn0.02O 
samples, Solid State Commun. 150 (2010) 2266–2269.  

[24] Q. Li, Y. Wang, J. Liu, W. Kong, B. Ye, Structural and magnetic properties in 
Mn-doped ZnO films prepared by pulsed-laser deposition, Appl. Surf. Sci. 289 
(2014) 42–46.  

[25] P. Kirkegaard, N.J. Pedersen, M.M. Eldrup, PATFIT-88: A Data-Processing 
System for Positron Annihilation Spectra on Mainframe and Personal Computers, 
1989. 

[26] J. Li, J. Chen, R. Ke, C. Luo, J. Hao, Effects of precursors on the surface Mn 
species and the activities for NO reduction over MnOx/TiO2 catalysts, Catal. 
Commun. 8 (2007) 1896–1900.  

[27] M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong, N.R. Khalid, 
Enhancing visible light responsive photocatalytic activity by decorating Mn-
doped ZnO nanoparticles on graphene, Ceram. Int. 40 (2014) 10085–10097.  

[28] D. Li, H. Haneda, Enhancement of photocatalytic activity of sprayed nitrogen-
containing ZnO powders by coupling with metal oxides during the acetaldehyde 
decomposition., Chemosphere. 54 (2004) 1099–110.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 
 

[29] S. Bhattacharyya, A. Gedanken, A template-free, sonochemical route to porous 
ZnO nano-disks, Microporous Mesoporous Mater. 110 (2008) 553–559.  

[30] X. Li, Z. Hu, J. Liu, D. Li, X. Zhang, J. Chen, J. Fang, Ga Doped ZnO Photonic 
Crystals with Enhanced Photocatalytic Activity and Its Reaction Mechanism, 
Applied Catal. B, Environ. 195 (2016) 29–38.  

[31] S.S. Abdullahi, Y. Köseoğlu, S. Güner, S. Kazan, B. Kocaman, C.E. Ndikilar, 
Synthesis and characterization of Mn and Co codoped ZnO nanoparticles, 
Superlattices Microstruct. 83 (2015) 342–352.  

[32] M. Peiteado, S. Sturm, A.C. Caballero, D. Makovec, Mn3−xZnxO4 spinel phases 
in the Zn–Mn–O system, Acta Mater. 56 (2008) 4028–4035.  

[33] M. Peiteado, A.C. Caballero, D. Makovec, Diffusion and reactivity of ZnO–
MnOx system, J. Solid State Chem. 180 (2007) 2459–2464.  

[34] C. Jing, Y. Jiang, W. Bai, J. Chu, A. Liu, Synthesis of Mn-doped ZnO diluted 
magnetic semiconductors in the presence of ethyl acetoacetate under 
solvothermal conditions, J. Magn. Magn. Mater. 322 (2010) 2395–2400.  

[35] S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M. Helm, J. 
Fassbender, Using x-ray diffraction to identify precipitates in transition metal 
doped semiconductors, J. Appl. Phys. 103 (2008) 07D530.  

[36] H.B. Ruan, L. Fang, D.C. Li, M. Saleem, G.P.. Qin, C.Y. Kong, Effect of dopant 
concentration on the structural, electrical and optical properties of Mn-doped 
ZnO films, Thin Solid Films. 519 (2011) 5078–5081.  

[37] K. Ravichandran, K. Karthika, B. Sakthivel, N. Jabena Begum, S. Snega, K. 
Swaminathan, V.Senthamilselvi , Tuning the combined magnetic and 
antibacterial properties of ZnO nanopowders through Mn doping for biomedical 
applications, J. Magn. Magn. Mater. 358-359 (2014) 50–55.  

[38] S. Husain, F. Rahman, W. Khan,  H. Naqvi, Effects of Mn substitution on 
structural and optical properties of ZnO nanoparticles, in: AIP, 2013: pp. 33–34.  

[39] Sharda, K. Jayanthi, S. Chawla, Synthesis of Mn doped ZnO nanoparticles with 
biocompatible capping, Appl. Surf. Sci. 256 (2010) 2630–2635.  

[40] S.-J. Han, T.-H. Jang, Y.B. Kim, B.-G. Park, J.-H. Park, Y.H. Jeong, Magnetism 
in Mn-doped ZnO bulk samples prepared by solid state reaction, Appl. Phys. 
Lett. 83 (2003) 920.  

[41] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.. Muth, J. Narayan, Structural, optical and 
magnetic properties of diluted magnetic semiconducting Zn1−xMnxO films, 
Solid State Commun. 121 (2002) 371–374.  

[42] C. Cong, L. Liao, C. Li, L. Fan, K. Zhang, Synthesis, structure and ferromagnetic 
properties of Mn-doped ZnO nanoparticles, Nanotechnology. 16 (2005) 981–984.  

[43] U. Ilyas, R.S. Rawat, G. Roshan, T.L. Tan, P. Lee, S.V. Springham, S. Zhang, L. 
Fengji, R. Chen, Quenching of surface traps in Mn doped ZnO thin films for 
enhanced optical transparency, Appl. Surf. Sci. 258 (2011) 890–897.  

[44] W. Xiao, Q. Chen, Y. Wu, T. Wu, L. Dai, Ferromagnetism of Zn0.95Mn0.05O 
controlled by concentration of zinc acetate in ionic liquid precursor, Mater. 
Chem. Phys. 123 (2010) 1–4.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

[45] Y.Y. Tay, S. Li, C.Q. Sun, P. Chen, Size dependence of Zn2p3⁄2 binding energy 
in nanocrystalline ZnO, Appl. Phys. Lett. 88 (2006) 173118.  

[46] V.P. Santos, O.S. Soares, J.J.W. Bakker, M.F.R. Pereira, J.J.M. Órfão, J. Gascon, 
F. Kapteijn, J.L. Figueiredo, Structural and chemical disorder of cryptomelane 
promoted by alkali doping: Influence on catalytic properties, J. Catal. (2012).  

[47] V.P. Santos, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, The role of lattice 
oxygen on the activity of manganese oxides towards the oxidation of volatile 
organic compounds, Appl. Catal. B Environ. 99 (2010) 353–363.  

[48] D. Hu, X. Liu, S. Deng, Y. Liu, Z. Feng, B. Han, Y. Wang, Y. Wang, Structural 
and optical properties of Mn-doped ZnO nanocrystalline thin films with the 
different dopant concentrations, Phys. E Low-Dimensional Syst. Nanostructures. 
61 (2014) 14–22.  

[49] C.-J. Li, G.-R. Xu, Zn–Mn–O heterostructures: Study on preparation, magnetic 
and photocatalytic properties, Mater. Sci. Eng. B. 176 (2011) 552–558.  

[50] L. Duan, X. Zhao, J. Liu, W. Geng, H. Xie, S. Chen, Structural, thermal and 
magnetic investigations of heavily Mn-doped ZnO nanoparticles, J. Magn. Magn. 
Mater. 323 (2011) 2374–2379.  

[51] R.K. Singhal, M.S. Dhawan, S.K. Gaur, S.N. Dolia, S. Kumar, T. Shripathi, U. 
Deshpande, Y. Xing, E. Saitovitch, K. B. Garg, , Room temperature 
ferromagnetism in Mn-doped dilute ZnO semiconductor: An electronic structure 
study using X-ray photoemission, J. Alloys Compd. 477 (2009) 379–385.  

[52] H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO 
nanorod mediated multi-mode cancer treatment, Biomaterials. 32 (2011) 1906–
1914.  

[53] N.M. Hosny, A. Dahshan, Facile synthesis and optical band gap calculation of 
Mn3O4 nanoparticles, Mater. Chem. Phys. 137 (2012) 637–643.  

[54] R. Krause-Rehberg, H.S. Leipner, T. Abgarjan, A. Polity, Review of defect 
investigations by means of positron annihilation in II-VI compound 
semiconductors, Appl. Phys. A. 66 (1998) 599–614.  

[55] P. Hautojärvi, C. Corbel, Positron Spectroscopy of Defects in Metals and 
Semiconductors, in: A. Dupasquier, A.P. Millis (Eds.), Positron Spectrosc. 
Solids, Amsterdam, 1995: pp. 491 – 532.  

[56] L.C. Damonte, L.A. Mendoza Zélis, B. Marí Soucase, M.A. Hernández 
Fenollosa, Nanoparticles of ZnO obtained by mechanical milling, Powder 
Technol. 148 (2004) 15–19.  

[57] S.K. Neogi, R. Karmakar, A.K. Misra, A. Banerjee, D. Das, S. Bandyopadhyay, 
Physical properties of antiferromagnetic Mn doped ZnO samples: Role of 
impurity phase, J. Magn. Magn. Mater. 346 (2013) 130–137.  

[58] T. Ghoshal, S. Kar, S. Biswas, S.K. De, P. Nambissan, Vacancy-type defects and 
their evolution under Mn substitution in single crystalline ZnO nanocones studied 
by positron annihilation, J. Phys. Chem. C. 113 (2009) 3419–3425.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Tables 

Table 1. Nomenclature, composition and Egap values for direct transitions of the Mn- 
doped ZnO solids ( * Atomic Absorption Spectroscopy) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Nominal  

Mn (wt%) 

Observed 

Mn (wt%)* 

SBET (m
2
 g

-1
) Egap (eV) 

ZnO 0 0 3 3,18 

5MnZnO 5 3 4 3,19 

10MnZnO 10 9 6 3,20 

15MnZnO 15 12 9 3,6 

20MnZnO 20 17 11 3,7 

Mn2O3    3,69 [52] 

Mn3O4    3,75 [52] 
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Table 2. . XRD peak position and crystallite size of Mn-doped ZnO samples. 

 

Sample 

Peak 

position,  

2θ (ο) 

Average  

crystallite 

size,  

D (nm) 

Strain 

(%)  

 

d-

Value  

(Å) 

Cell parameters 

(Å) 

 

 

        

c/a 

 

a=b 

 

c 

ZnO 36.32 51.39 0.23 2.4713 3.2427 5.2033 1.605 

5MnZnO 36.28 52.31 0.22 2.4745 3.2467 5.2107 1.605 

10MnZnO 36.28 51.38 0.23 2.4745 3.2474 5.2068 1.603 

15MnZnO 36.26 51.38 0.23 2.4753 3.2509 5.1947 1.598 

20MnZnO 36.31 46.22 0.25 2.4721 3.2450 5.1976 1.602 
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Table 3. XPS results of the Mn-doped ZnO solids. 

Sample Zn 2p O 1s  Mn2p3/2 

ZnO 1021.6    530.3  (40) 532.2 (60)    

5MnZnO 1021.3   530.5  (87) 532.5  (13)  640.5 (76) 643.4 (24) 

10MnZnO 1021.4   531.1  (78) 532.5 (22)  640.8 (75) 643.6 (25) 

15MnZnO 1021.0    529.3 (18) 531.2 (82)  640.9 (68) 642.6 (32) 

20MnZnO 1020.9   529.1 (17) 531.0 (83)  640.7 (65) 642.5 (35) 
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Figure Captions. 

Figure 1. X-ray diffraction patterns of samples:  (a) ZnO; (b) 5MnZnO; (c) 10MnZnO; (d) 

15MnZnO and (e) 20MnZnO. 

Figure 2. Images of samples: (a) SEM image of ZnO; sample 10MnZnO: (b) SEM image of 

10MnZnO; (c) TEM image of 10MnZnO; (d) Zn mapping and (e) Mn mapping of 

10MnZnO. 

Figure 3. XPS spectra of the(a) ZnO; (b) 5MnZnO; (c)10MnZnO; (d) 15MnZnO and (e) 

20MnZnO in the Zn 2p core level region. 

Figure 4. XPS spectra of the (a)ZnO; (b)5MnZnO; (c)10MnZnO; (d) 15MnZnO and (e) 

20Mn-ZnO in the O 1s core level region. 

Figure 5. XPS spectra of the (a) 5MnZnO; (b)10MnZnO; (c) 15MnZnO and (d) 20Mn-ZnO 

in the Mn 2p core level region. 

Figure 6. Plot (αEf)2 vs Ef of Mn-ZnO samples. (a) ZnO; (b) 5MnZnO; (c)10MnZnO; (d) 

15MnZnO and (e) 20MnZnO 

Figure 7. Positron annihilation parameters evolution with Mn  content. 
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Figure 2.  
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Figure 3. 
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Figure 4.  
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Figure 5. 
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 Figure7.  
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Highlights for “Structural and optical properties of ZnO and Manganese-doped ZnO” 
 
 
 
Mn oxides supported on ZnO were prepared by impregnation with manganese nitrate. 
 
Mn4+ concentration increases with increasing the manganese content. 
 
Segregation of ZnMnO3 phase is observed for high Mn concentration. 
 
Above manganese solubility limit too many oxygen defects in the oxide are formed.  
 
Average positron annihilation lifetime evolution accompanies defect generation. 
 


