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Interfacial properties in a discrete model for tumor growth
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We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular
tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is
self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32(2) that
governs the early time regime, (ii) the roughness exponent α = 0.49(2) related to the fluctuations in the stationary
regime, and (iii) the dynamic exponent z = α/β ' 1.49(2), which measures the propagation of correlations in
the direction parallel to the interface, e.g., ξ ∝ t1/z, where ξ is the parallel correlation length. Therefore, the
interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell
cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves
that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the
simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
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I. INTRODUCTION

The study and understanding of the processes involved
in tumor growth are topics of interdisciplinary interest that
have recently attracted the attention of the physics community
[1]. During the first stage of the process, called avascular
tumor growth, the proliferation of some cells might become
uncontrolled due to mutations of the regulatory genes involved.
Under these conditions, the tumor receives oxygen and
nutrients through its interface with the normal tissue. The
subsequent large oxygen demand induces the tumor cells to
produce angiogenic growth factors that stimulate the formation
of blood vessels capable of supplying the required nutrients.
After this second stage, known as angiogenesis, the process
enters a third stage of vascular growth, which begins when the
blood can reach the tumor [2].

Of course, the collective behavior of interacting living
cells observed on tumor growth is a complex and intriguing
phenomenon that is far from being well understood. Therefore,
and in order to gain insight into the processes involved,
biological and medical studies, which are mostly of an
experimental nature, can be complemented with the aid of
models, as is usual in physics and related sciences. For
this purpose, one basically has two main approaches: (i)
the formulation of continuous models by using differential
equations that are solved by means of mathematical and/or
numerical techniques [3–5] and (ii) a discrete approach where
the dynamics is implemented at the level of individual cells
[6–8]. Within this latter approach, tumor growth can be studied
with the aid of well-established techniques and tools developed
in the fields of statistical physics and computer simulations of
complex systems. Furthermore, multiscale models simultane-
ously involving the above-mentioned approaches have also
been formulated [9–11], e.g., nutrients and oxygen diffusion
can be treated by means of mean-field differential equations,
while the dynamics of cell proliferation and diffusion are
undertaken in a discrete fashion.

In spite of these efforts we are far from achieving the
ultimate goal of developing realistic models capable of helping

not only to understand the tumor growth process but also to
design adequate therapies. Therefore, it is still very useful to
study minimal models capable of capturing relevant features
of this rather complex system. Within this broad context, the
aim of this paper is to propose a simple discrete model of
avascular tumor growth that allows a detailed study of the
tumor interfacial properties. In fact, during tumor growth, the
maximum proliferation activity occurs at the growth interface
[7,12–14], and in the avascular regime nutrients arrive mostly
at the interface of the tumor. Furthermore, the dynamic scaling
theory [15,16] provides a powerful tool for the characterization
of growth interfaces. In fact, the development of self-affine
interfaces [15–18] can be rationalized in terms of critical
exponents that, as in the case of second-order phase transitions
[19], allow for the identification of few universality classes.
Systems belonging to a given universality class then share all
relevant interfacial properties independently of their intrinsic
complexity. For this reason, the search and understanding of
minimal models representing the above-mentioned universal
behavior is a topic of permanent interest since it contributes to
the identification of the underlying microscopic mechanisms
responsible for the outgoing macroscopic collective behavior
of the interface. In view of these advantages and usefulness, it
is not surprising that the dynamic scaling theory of interfaces
[15–18] has been applied to many biological systems such as
tumor growth [13,20], cell cultures [21,22], bacteria colonies
[23,24], and so on. Also, the proposed model for the study
of interfacial properties on avascular tumor growth can also
be used in order to describe the developing interfaces of two-
dimensional in vitro cell cultures often employed by biologists
as model systems for the study of cell proliferation under
well-controlled experimental conditions [21,22]. Furthermore,
we will also show that macroscopic quantities derived from the
proposed microscopic model, such as the density profiles of
growing cells and the growth velocity, can be described by
means of the continuous Fisher-Kolmogorov equation.

The paper is organized as follows: In Sec. II we present
descriptions of both the model for avascular tumor and cell
culture growth, as well as the simulation method. Section III
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is devoted to providing a brief theoretical background for the
treatment of interfaces. Results are presented and discussed in
Sec. IV, and, finally, our conclusions are stated in Sec. V.

II. DESCRIPTION OF THE MODEL

In order to simulate the growth of tumor cells in vitro,
we assume a discrete two-dimensional sample given by a
square lattice of sides D × L, which represents a sector of the
glass substrate of Petri dishes in actual growth experiments
(see Fig. 1) [21,22]. Along the D direction (say, the vertical
direction) we define the lines of our system and identify the
spatial location of a cell in a given line by the index i (0 6
i 6 D − 1). Similarly, the L direction defines the columns
and the positions along them are identified by the index
j (0 6 j 6 L − 1). We take periodic boundary conditions
along the D direction, while for the L direction, which
corresponds to the tumor growth direction, the boundaries are
left open. The above choice will become more clear on the
definition of the tumor growth rules (see below). It is worth
mentioning that a similar experimental setup, where empty
(parallel) strips surrounded by cell-cultured ones are obtained
by using microfabricated stencils, has been used for the study
of collective cell migration patterns [25,26]. This methodology
is inspired in the classical scratch-wound-healing experiments
that also provide longitudinal fronts of cell cultures suitable
for the study of interfacial patterns on cell migration [27,28].

In the proposed model, each site of the lattice with coordi-
nates (i,j ) can be occupied by a cell or empty. Furthermore, the
proliferation cycle will be considered in three steps: the first
part of interphase (I1 cells) that represents the G1 phase, the
second part of interphase (I2 cells) that represents the synthesis
(S) and the G2 phase, and the mitotic phase (M cells) [29].
So, each cell in the lattice can be in three different states, as
follows: I1, I2, and M , as defined above. Note that the I1 state
represents a cell that has been just divided, so it is ready to
evolve into the state I2.

We further assume a homogeneous distribution of nutri-
ents irrespective of the state of the (i,j )th site. The above
assumption is supported by the experimental setup used in
Refs. [21,22], where concentration gradients of the nutrients

FIG. 1. (Color online) Sketches of a standard experimental setup
[21] (left-hand side) and the simulation geometry used in the present
work (right-hand side). A stripped stencil is (vertically) placed along
a Petri dish, allowing the cell culture to proliferate up to the borders
of the strip. Subsequently, the stencil is removed, setting the initial
condition for the measurement of the cell culture that invades the
empty space along two longitudinal fronts. See also the similar
experimental setup used by Poujade et al. [25]. The rectangular
geometry of our model captures a D × L sector of the culture such that
a growth front develops along the horizontal L axis and its interface
runs along the perpendicular D direction. More details in the text.

are negligible. Of course, that assumption is less realistic for
the case of in vivo tumor growth. The rules for the dynamic
evolution of the system, which depend on the state of each
particular cell, are the basis of the simulation algorithm and
are defined as follows: (i) A cell of type I1 spontaneously
becomes an I2 cell remaining at the same site. (ii) A cell
in the state I2 can either grow, becoming a cell in state M

with probability P G
I , or diffuse into a nearest-neighbor site

with probability P D
I = 1 − P G

I . Since an M cell occupies
two neighboring sites, the growth process can proceed only
if a randomly selected neighboring site of the original I2

cell is actually empty. In the same fashion, diffusion of an
I2 cell is allowed to proceed only to a neighboring empty site.
(iii) Finally, a cell of type M splits out into two I1 cells,
occupying the same sites as the original ones, with probability
P G

M . Also, this type of cell can diffuse and rotate (in steps of
π/2 degrees in the square lattice) with probabilities P D

M and
P R

M , with P G
M + P D

M + P R
M = 1, respectively. Of course, these

two latter processes involve randomly selected neighboring
sites and they are constrained by excluded volume.

In order to implement the simulations, a cell is selected at
random and, depending on its state, we proceed according to
the above-defined dynamic rules. After each random selection
the simulation time ts is increased according to tnew

s = told
s +

1/Ntot, where Ntot = NI1 + NI2 + NM is the total number of
cells in the system. The initial condition is selected by locating
I1 cells filling the first column (j = 0) of the substrate. In this
way, the culture can grow along the L direction and a growth
interface that essentially runs parallel to the D direction is
naturally established (cf. Fig. 1). Figure 2(a) shows typical
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FIG. 2. (Color online) (a) Typical snapshot configuration ob-
tained for a system of vertical side D = 64 and for P G

I = P G
M = 0.10,

P D
I = 0.90, P D

M = 0.89, and P R
M = 0.01. Cells are shown by means

of solid dots of different colors depending on their type (as indicated),
while empty sites are white. The subsequent snapshots illustrate the
procedure used to locate the interfaces of the aggregate, as follows: (b)
Here, the percolating cluster linked to the initially filled column of I1

cells, on the left-hand side of the sample, is shown by means of black
dots. Also, lakes and islands are shown by means of fuchsia and
turquoise dots, respectively. (c) For the sake of clarity, we remove
islands and lakes and show the MVI (green dots), whose average
position is shown by the vertical red line. (d) As in (c) but for the
SVI. More details in the text.
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snapshot configurations that give insight into the geometry
used and the shape of the growing culture.

In this paper we will focus our attention on the properties
of the growth interface of the cell culture. For this purpose,
it is useful to recall that there are many possible definitions
of such an interface. Therefore, we will define two interfaces
that are relevant for the present study, namely the so-called
single-valuated interface (SVI) and the multivaluated interface
(MVI), respectively. In order to locate these interfaces, one,
first, determines the biggest cluster of cells (connected by
means of nearest neighbors) in contact with the initially filled
first column of the culture, i.e., the so-called percolation cluster
[30–33], which is shown by means of black dots in Fig. 2(b).
This cluster is denoted as land. On the other hand, empty
sites in contact with the last column of the sample, which is
never reached by the culture, are linked through both nearest-
and next-nearest-neighbor sites and form a large cluster that
is termed the sea [notice that sites belonging to this cluster
are in white in Fig. 2(b)]. The sites that are not connected
with either the largest cluster of land or sea are identified as
islands and lakes [see also Fig. 2(b)], respectively, but they
are irrelevant. In fact, the interface is given by the seashore
where land and sea are in contact [30–33], which is shown
in Fig. 2(c) after removing lakes and islands. We call the set
of these sites hk,k = 1, . . . ,Nint, the MVI, where hk is the
horizontal coordinate (L direction, see Figs. 1 and 2) of the
kth cell belonging to the MVI, and Nint is the number of cells
of the MVI. The MVI of the snapshot depicted in Fig. 2(a) is
shown in Fig. 2(c). On the other hand, for the case of the SVI,
the interface has a very simple definition: after disregarding
the islands, one has to follow a single line of the sample and
by starting from the sea, the first site of land found is just
a site of the SVI (for a similar definition see Ref. [33]), as
shown in Fig. 2(d). Therefore, the SVI is given by the set
of sites (hk,k = 1, . . . ,Nint = D). Note that for the MVI one
may have Nint > D. For further technical details on the method
used for the location of the interfaces, see, e.g., Refs. [30–33].

It is worth mentioning that models similar to that studied
here have been proposed, see, e.g., Smolle et al. [34] and
references therein. However, these early studies are mostly
of a qualitative nature and no attempts have been made to
fully characterize the interfacial properties by using scaling
methods.

III. BRIEF THEORETICAL BACKGROUND.

A useful tool for the characterization of interfaces is the
well-established dynamic scaling theory developed by Family
and Vicsek [15–17]. The methodology relies on the evaluation
of the interface width (W ) and its rationalization in terms of
exponents, which in turn may define a universality class. So,
as in the study of second-order phase transitions [35], a set of
different models sharing the same critical exponents are said
to belong to the same universality class.

In order to define the interface width, first, one needs to
identify the cells located at such an interface. Let hk (0 6
hk 6 L − 1 and 1 6 k 6 Nint) be the horizontal coordinate
(L direction; see Figs. 1 and 2) of the kth cell belonging to the
interface, where Nint is the number of cells belonging to the
interface. We then define the average interface position hhi as

the mean value of hk , namely

hhi = 1

Nint

NintX
k=1

hk, (1)

where for the SVI one has Nint = D while for the MVI one
may have Nint > D. Now the interface width can be evaluated
as the rms deviation of hhi, namely

W =
vuut 1

Nint

NintX
k=1

(hk − hhi)2. (2)

According to the experience gained in the study of growth
interfaces [15,16], by starting the measurements from a flat
interface, as in our case, which assumes a line of cells located
in the first column of the sample as the initial condition, one
has that, at early times, the width increases according to

W ∝ tβ, (3)

where β is the growth exponent. During the growth process it
is expected that correlations between cells will start to develop.
In particular, one has that correlations along the interface can
be described by a typical correlation length (ξk(t)), which in
turn grows,

ξk(t) ∝ t
1
z , (4)

where z is the dynamic exponent. The above paragraphs
essentially outline the expected dynamic behavior of a growth
interface in an infinite sample. However, both in the exper-
iments and in our simulations, one has to deal with finite
samples of a given width (say D, as shown in Figs. 1 and 2).
Therefore, ξk cannot grow indefinitely, as stated by Eq. (4), but
now it grows only up to a given crossover time (tc) according to

ξk(tc) ∝ D ∝ t
1
z
c . (5)

Furthermore, as t → tc, one also observes deviations from
the prediction of Eq. (3) since now the growth of the interface
width becomes slower, and eventually it fluctuates around
some saturation (or stationary) value (Ws , for t > tc).

Now, in order to give a unified description of the above-
outlined arguments as in the case of second-order phase
transitions [35,36], the dynamic scaling theory states that
the interface width is a homogeneous function of two char-
acteristic lengths (W (D,ξk)), namely ξk, which reflects the
properties of the system under study, and D, which is set
by the experimental or simulation conditions. The following
scaling ansatz then can be formulated:

W (D,ξk) = W (D,t) = tβf

µ
D

ξk

¶
= tβf ∗

µ
D

t
1
z

¶
, (6)

where f ∗(u) is a suitable scaling function. In particular, one
has that

f ∗(u) =
½

const, u → ∞
uα u → 0

, (7)

where α is the roughness exponent. In this way, in the early
time limit t → 0 (i.e., u → ∞), one recovers Eq. (3), while
in the long-time regime t → ∞ (i.e., u → 0), one has that
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the interface width becomes saturated at D-dependent values
according to

Ws(D) ∝ Dα, (8)

where the above relationship is accomplished when z = α
β

, so
only two of the exponents are actually independent.

In a more general fashion, the scaling behavior of the
interface can also be investigated by evaluating the structure
factor S(q,t) or power spectrum [16,18,21,22,37]

S(q,t) = h| 1√
Nint

NintX
n=1

hn(t)e−iqn|2i, (9)

where q = 2πn/Nint, with n = 1, . . . ,Nint/2. Now a quite
general dynamic scaling hypothesis can also be formulated
for the structure factor, yielding [18]

S(q,t) = q−(2α+1)s(qt1/z), (10)

where the scaling function has the general form

s(u) ∼
½

u2(α−αs ) if u À 1

u2α+1 if u ¿ 1
, (11)

where αs is the spectral roughness exponent, which can only
be evaluated by measuring the structure factor [18]. For the
sake of completeness, one can make use of

W 2(D,t) = 1

D

X
q

S(q,t) (12)

in order to obtain a relationship between the structure factor
and the width of the interface [cf. Eqs. (2) and (6)].

As already mentioned, the set of exponents that characterize
a given interface determines its universality class. Within this
context, it is worth mentioning some relevant examples, e.g., in
(1 + 1) dimensions the Kadar-Parisi-Zhang (KPZ) universality
class gives α = 1/2, β = 1/3, and z = 3/2. The first studied
model belonging to the KPZ universality class is most likely
the Eden model [38], which was proposed for the description
of the growth of compact tumors or bacteria colonies. Very
recently, Huergo et al. [21,22] have shown that the growth
interface of in vitro cellular cultures of Vero (African green
monkey kidney) cells belongs to the KPZ universality class,
since they have determined α = 0.50(5) and β = 0.33(2)
for essentially two-dimensional cultures performed in Petri
dishes [21,22]. Also, the interface of a model for tumor
growth proposed by Drasdo et al. [6,7,39] exhibits interfacial
properties consistent with the KPZ universality class.

On the other hand, Brú et al. [13] claimed that a large
variety of cultures, as well as two-dimensional slices of
real three-dimensional tumors, may belong to the molecular
beam epitaxy (MBE) universality class since they deter-
mined the following exponents α = 1.5 ± 0.15 (α = 3/2),
β = 0.38 ± 0.07 (β = 3/8), and z = 4.0 ± 0.5 (z = 4), where
the figures between brackets are the exactly known values
of the exponents [16,40]. The MBE universality class was
originally found in the field of condensed matter physics, more
specifically in a model for the MBE of thin solid films. The
claims of Brú et al. [13] on the universality class of their
samples originated a long-standing controversy [41,42] that
still remains open, e.g., Block et al. [6] have suggested that

the experiments of Brú et al. [13] should be reanalyzed and
improved by tracking the path of marked cells in order to test
the role of surface diffusion that is a key ingredient to yield
MBE features.

IV. RESULTS AND DISCUSSION

We simulated the growth of cell colonies, as described in
Sec. II, on samples of different sizes, e.g., 1000 6 L 6 10 000
and 64 6 D 6 512, while averages are taken over a number
ns of different samples, where typically one has 1000 6
ns 6 5000. Hereafter, we use P G

I = P G
M , P D

I = 1 − P G
I ,

P D
M + P R

M = P D
I , and P R

M = 0.01.
Figure 3(a) shows plots of the average position of the growth

interface hhi versus time as obtained for different values of the
growth probability P G

I . The straight lines obtained indicate that
our interfaces grow at constant speeds and, from the slopes, one
can determine the growth velocity (vg), as shown in Fig. 3(b).
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FIG. 3. (Color online) (a) Plots of the average position of the
growth interface hhi versus time as obtained for different values
of the growth probability P G

I (0.01 6 P G
I 6 0.99), as indicated. (b)

Log-log plots of the growth velocity (vg) versus P G
I as obtained from

the slopes of the straight lines shown in (a). The dashed line (slightly
shifted up for the sake of clarity) has slope γ = 0.47(4) as follows
from the best fit of the data obtained according to Eq. (13) and for
P G

I < 0.10. The inset shows a zoom of the region where vg exhibits
a maximum. More details in the text.
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It is worth mentioning that a linear dependence in plots of
hhi versus time has been reported for the propagation front of
Vero colonies cultured in Petri dishes, as obtained by using two
different experimental procedures [21]. Also, for some special
experimental conditions, the steady wound edge advancement
in crowded cultures has been reported [27]. Furthermore, our
simulation results show that for low values of P G

I (P G
I < 0.1),

i.e., when diffusion plays a key role in the overall behavior of
the culture (since P D

I = 1 − P G
I ), the log-log plot of vg versus

P G
I [Fig. 3(b)] yields a straight-line behavior that is consistent

with a power-law dependence of the form

vg ∝ P G
I

γ
, (13)

where, from the best fit of the data, the exponent γ = 0.47(4)
is obtained, i.e., a figure that suggests that γ = 1/2 exactly
should hold [see the dashed line in Fig. 3(b)]. By increasing
P G

I one observes that vg still grows but with a monotonically
decreasing slope until it reaches a maximum value just for
P G

I = 1/2 [see the inset of Fig. 3(b)] and subsequently vg

decreases slightly. This behavior is consistent with an optimal
growth whose maximum speed is achieved when the growth
and diffusion probabilities are the same (P G

I = P D
I = 1/2).

Figures 4(a), 4(b), and 4(c) show log-log plots of the inter-
face width (W ) versus time as obtained for samples of different
sizes (as specified in the plots) and growth probabilities given
by P G

I = 0.99, 0.50, and 0.10, respectively. In this way, we
selected three representative growth probabilities within the
range of maximal growth velocity, which lies in the range of
Fig. 3(b) that is amplified in the corresponding inset.

It is worth mentioning that Fig. 4(a) combines results
obtained during the early time regime (t < 2 × 103) and
the stationary regime (t > 2 × 103), which were obtained by
means of different simulation runs in order to save CPU time
and achieve better statistics. For the cases P G

I = 0.99 and
P G

I = 0.50 we show results obtained by measuring the SVI,
which coincide with those corresponding to the MVI, since
the formation of overhangs is negligible. On the other hand,
for P G

I 6 0.10 when cell diffusion becomes large enough,
one observes the formation of overhangs and clusters of cells
detached from the main culture that may be incorporated due
to the growth process (see, e.g., the snapshots of Fig. 2).
Under these circumstances the SVI does not provide a realistic
description of the system, so we report results obtained by
measuring the MVI.

In all cases shown in Fig. 4 we observed an initial increase
of W according to equation (3), which is followed by a
crossover behavior to a saturation value, as already expected
according to the discussion of Eq. (8) in Sec. III. Then, by
fitting the early time behavior of the interface width, we
obtained β = 0.32(2) for all studied values of P G

I [see the
dashed lines in Figs. 4(a)–4(c)]. On the other hand, since in
order to obtain a reliable value of the roughness exponent
by using Eq. (8) one needs additional simulations performed
with even larger lattices than those already shown in Fig. 4,
we evaluated the structure factor S(q,t) [Eq. (9)] for the
stationary regime of the interface, as shown in Fig. 5. In the
stationary regime, of course, the structure factor is independent
of time [18], and it scales as

S(q,D) ∝ q−(2αs+1)D2(α−αs ). (14)
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FIG. 4. (Color online) Log-log plots of the interface width (W )
versus time as obtained for different sample sizes, as indicated, and
for different sets of parameters, as follows: (a) P G

I = 0.99, (b) P G
I =

0.50, and (c) P G
I = 0.10. For the cases P G

I = 0.99 and P G
I = 0.50 we

show results obtained by measuring the SVI, while for P G
I = 0.10, W

is evaluated by using the MVI. The dashed lines have slopes β = 1/3
and have been drawn for the sake of comparison. More details in the
text.

In Fig. 5(a) we observe that S(q) is independent of D, so
α = αs . Also, from the best fit of the data we obtained −(2αs +
1) = −1.965(50), i.e., αs = α = 0.482(25). As discussed in
Ref. [18], if one has that α = αs , then the structure factor
exhibits nonanomalous behavior [cf. Eqs. (10) and (11)], i.e.,
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FIG. 5. (Color online) (a) Log-log plots of the structure factor
S(q) versus q as obtained during the saturation regime of the interface.
Data obtained for different lattice sizes as indicated and taking P G

I =
0.99. Results averaged over 1000 different samples. The dashed line
is the best fit of the data and it has slope −(2α + 1) = −1.965. (b)
Scaling plot of the data already shown in (a) according to Eqs. (10)
and (11) and obtained by taking α = 1/2. More details in the text.

a characteristic feature of the KPZ universality class. Also, the
scaling behavior of S(q), as expected according to Eq. (14), is
nicely verified by our data [cf. Fig. 5(b)].

After determining both β and α, we are ready to test the
dynamic scaling ansatz given by Eq. (6), since one should
obtain a data collapse of curves corresponding to different
sample sizes just by plotting W/Dα versus t/Dz at log-log
scales. These data collapses are shown in Figs. 6(a), 6(b),
and 6(c), as obtained for P G

I = 0.99, 0.50, and 0.10, re-
spectively. It is worth mentioning that the best collapses are
obtained by assuming the exponents corresponding to the KPZ
universality class, namely α = 1/2, β = 1/3, and z = 3/2,
as suggested by our previous evaluation of the exponents
from Figs. 4 and 5. Also, other universality classes, such as
MBE (α = 3/2, β = 3/8, z = 4) [40] and Edwards-Wilkinson
(α = 1/2, β = 1/4, z = 2) [43], can safely be disregarded.
Our findings then agree with the exponents determined for
in vitro cultures of Vero colonies, namely α = 0.50(5) and
β = 0.33(2) [21,22]. On the other hand, the onset of interfacial
roughening of an initially homogeneous culture has been
observed for the collective motion of both an epithelial
monolayer [25] and brain tumor cells [28], but no attempts
to determine the roughness exponents has been reported.
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FIG. 6. (Color online) Log-log plots of the scaled width, W

Dα

versus t

Dz , as it follows from Eq. (6), and applied to the data already
shown in Fig. 4. The data collapse is achieved, in all cases, by using
the exponents of the KPZ universality class, namely α = 1/2 and
z = 3/2. More details in the text.

Furthermore, the experimental and simulation geometry
shown in Fig. 1 are also suitable for the evaluation of the
density profiles of the growing cells, as depicted in Fig. 7(a),
which show plots of the density profiles of cells I1, I2, and M

versus the axis perpendicular to the growth front (i.e., the x

axis in Fig. 1).

032713-6



INTERFACIAL PROPERTIES IN A DISCRETE MODEL . . . PHYSICAL REVIEW E 87, 032713 (2013)

50 100 150 200 250
L L

0.2

0.4

0.6

0.8

1

D
en

si
ty

 p
ro

fil
es

 
I2  - t=64 
M - t=64
I1  - t=64
I2  - t=256
M - t=256
I1  - t=256
I2  - t=1024
M - t=1024
I1  - t=1024

(a)

80 0 85 0 90 0

0.2

0.6

1

D
en

si
ty

 p
ro

fil
es

D 64
D128

840 880 920 960
L

0.2

0.6

1

D
en

si
ty

 p
ro

fil
es

I2
M
I1
All cells

(b)

FIG. 7. (Color online) (a) Plots of the averaged density profiles of cells of types I1, I2, and M as obtained for P G
I = 0.10 and samples

of width D = 64. The different types of cells are indicated. Measurements at times t = 64,256, and 1024, respectively, from left to right. (b)
Averaged density profiles of I2 cells as obtained for samples of width D = 64 and D = 128 and for P G

I = 0.10. The inset shows that the
density profile of all types of cells present in the culture is almost the same as the one corresponding to I2 cells only. Results corresponding to
all density profiles are averaged over 5000 realizations. More details in the text.

All these curves were obtained at different times and one
observes the growth of compact cultures of I2 cells with ρ = 1
up to h ' hhi − W/2. Subsequently, and within the interfacial
region, the profile decreases smoothly in an S-shaped fashion.
The compact structure observed in the bulk of the culture
is in agreement with the qualitative snapshot configuration
shown in Fig. 2. Also, M and I1 cells exhibit “Gaussian-like”
profiles and they are always close to the interface of the front.
This scenery is consistent with the experimental observation
that during tumor growth the maximum proliferation activity
occurs at the growth interface [7,12–14]. On the other hand,
Fig. 7(b) shows density profiles obtained for samples of
different width. Here, one observes that the S-shaped tail of
the profiles depends on D, in agreement with the fact that the
interface width increases as Ws ∝ Dα [cf. Eq. (8)]. Moreover,
the inset of Fig. 7(b) shows that the difference between the
density profiles of all types of cells and the one corresponding
to I2 cells only is almost negligible, a fact that we will use
in order to support some theoretical calculations that are
developed below.

The density profiles of I2 cells shown in Fig. 7(a), or the
profiles of all types of cells shown in the inset of Fig. 7(b), are
nothing else but a microscopic (discrete) way of measuring
the so-called traveling waves, which can be related to the
solution of the Fisher-Kolmogorov (FK) equation [44]. It is
worth mentioning that the density profiles are obtained by
integrating (actually, by adding) the amount of cells distributed
in d = (1 + 1) dimensions along the vertical direction, cf.
Figs. 1 and 2, so they correspond to 1d projections of the
mass of the culture. Therefore, they can well be described
by the traveling waves that are solutions of the FK equation
in d = 1 dimension. In fact, the one-dimensional stochastic
FK equation for the normalized local density cells, u(x,t),
reads

∂u

∂t
= D∗ ∂2u

∂x2
+ αP u(1 − u) + ²

p
u(1 − u)η(x,t). (15)

Here the cell mobility is accounted for the first term of the
right-hand side with the diffusion constant D∗, while cell

proliferation at a constant rate αP is considered by means of
the second term of the right-hand side. Also, we considered the
effect of the noise (third term of the right-hand side), where
η(x,t) is a Gaussian white-noise process in space and time
satisfying hη(x,t)i = 0 and hη(x,t)η(y,s)i = δ(x − y)δ(t −
s). We will refer to the coefficient ² as the noise strength, which
one may think of as being proportional to 1/

√
N , where N is

the saturation population at a lattice site or in an appropriately
defined correlation volume.

By neglecting the stochastic term, the FK equation has been
used to describe some biological systems, e.g., the migration of
brain tumor cells cultured in vitro [28], the dynamic behavior
of bacterial populations [45], and so on. We have solved the
FK equation by using standard integration methods (see, e.g.,
Fig. 8), which show results obtained by taking ² = 0 and
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FIG. 8. (Color online) Density profiles obtained by solving Eq.
(15) for αp = 0.1 and D∗ = 0.9 in the absence of noise (² = 0).
For the sake of comparison, in the inset we show results obtained
for the discrete growth model (DGM) by taking different values of
the sample width D and P G

I = 0.10. Here, data collapse is achieved
after proper normalization of the horizontal axis (see the text). The
solid line corresponds to a solution of the Fisher-Kolmogorov (FK)
equation (15) for αp = 0.1 and D∗ = 0.9 in the absence of noise
(² = 0). More details in the text.
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assuming the following initial condition:

u(x,0) =
½

1, if x 6 0

0, if x > 0
. (16)

In order to compare our numerical results with simulations
of the discrete model, we recall that, in the latter case,
the S-shaped tail of the profiles depends on the length
of the vertical integration range (D) since it spreads around
the half-density point, i.e., u(hhi) = 1/2, over a region given
by h ' hhi ± W/2, where W is the D-dependent average
width of the profile. Therefore, simulation results obtained by
using different sample widths can be collapsed by properly
normalization of the horizontal axis, e.g., by taking xN =
{x − x(hhi)}/W , as shown in the inset of Fig. 8. Here, we
observe not only the excellent data collapse achieved but also
that the universal collapsed curve is in remarkable agreement
with the numerical solution of the FK equation. This result
strongly suggests that the traveling waves of the FK equation
can be identified with the (universal) collapsed curves of the
discrete model, as obtained by proper normalization and for a
suitable set of parameters, e.g., D∗ and αP .

As becomes evident, we postulated the FK equation for a
single cell type, an assumption that is justified by the fact that
the density profiles measured for our model and all types of
cells are almost the same as the profiles corresponding to I2

cells only [cf. the inset of Fig. 7(b)].
It is worth mentioning that the traveling waves propagate at

constant velocity [44], in agreement with our simulation results
shown in Fig. 2(a). With the aid of the profiles evaluated by
using the FK equation in the absence of noise (² = 0), we
determined the velocity of the traveling waves (vTW), which
is conceptually equivalent to the so-called growth velocity
(vg) within the discussion context of the results shown in
Fig. 3(b). The velocities evaluated for different values of
αp and by D∗ = 1 − αp, in agreement with our simulation
model that takes P D

I = 1 − P G
I , are shown in Fig. 9. As in

the case of our results obtained by using the discrete growth
model (DGM), vTW exhibits a maximum just at αp = 1/2,
and for lower values of αp (e.g., αp 6 0.2) the behavior of
vTW versus αp is consistent with Eq. (13). Furthermore, the
best fit of data yields γ = 0.48(3), in excellent agreement
with the simulation results, namely γ = 0.47(4). The exponent
γ = 1/2, obtained by fitting the results of the FK equation,
is expected since the exact result for the limit velocity is
vTW ∼ p

D∗αp [44], which for low values of αp, i.e., the limit

D∗ → 1 (since D∗ = 1 − αp), one has vTW ∼ α
1/2
p . However,

the agreement obtained with the exponent corresponding to the
numerical Monte Carlo simulations is in principle nontrivial at
all and further supports our description of the density profiles
by means of the FK equation. On the other hand, a direct
comparison between our simulation and numerical results (cf.
the inset of Fig. 9) shows a remarkable qualitative agreement.

Summing up, we conclude that, in the absence of noise,
the FK equation provides a suitable mean-field description
of the density profiles and propagation velocity, which is in
full qualitative agreement with the simulation of the discrete
growth model. Of course, a more quantitative fit is no longer
possible due to the discrete versus continuous nature of time
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FIG. 9. (Color online) Log-log plots of the propagation velocity
of the traveling waves vTW versus αp as obtained from the profiles
calculated by using the FK equation. The dashed line (slightly shifted
up for the sake of clarity) has slope γ = 0.48(3), as follows from the
best fit of the data obtained according to Eq. (13) and for αp 6 0.2.
The inset shows a comparison of the results obtained by using our
discrete growth model [cf. Fig. 3(b)] and the solution of the FK
equation. The data are normalized with respect to the maximum value
of the velocity for the sake of comparison. More details in the text.

and space involved in the DGM and the FK equation,
respectively.

We have already compared well-averaged simulation pro-
files with the solutions of Eq. (15) in the absence of noise.
However, in most experimental situations it is only possible to
measure the growth of a limited number of cultures or tumors,
a fact that introduces stochastic ingredients and behavior into
the results to be analyzed. In those cases, it is more convenient
to work with the stochastic FK equation, i.e., with ² 6= 0, in
order to achieve a more realistic comparison (cf. Fig. 10).
In fact, by shifting the horizontal axis so u(x) = 1 for x ' 0 in
order to rescale the time, one observes a rather good qualitative
agreement between the solutions of the stochastic FK equation
and the results of a single simulations of our proposed discrete
growth model.
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FIG. 10. (Color online) Density profiles obtained by solving the
Fisher-Kolmogorov (FK) equation (15) for αp = 0.1 in the presence
of noise (² = 1). For the sake of comparison, we show Monte Carlo
simulation results obtained for the discrete growth model (DGM)
with D = 64 and P G

I = 0.10. More details in the text.
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V. CONCLUSIONS

We presented and studied by means of extensive simulations
a minimal discrete model for avascular tumor and cell culture
growth, which incorporates the effects of excluded volume,
cell proliferation, diffusion, and rotation. By performing a
detailed finite-size scaling study complemented by a spectral
analysis of the growth interface, we conclude that it is self-
affine and belongs to the KPZ universality class. In fact, this
interface is described by the following critical exponents: the
early time roughening is governed by the growth exponent β =
1/3, the stationary roughness of the interface is characterized
by the exponent α = 1/2, while the correlations along the
interface grow in time with a dynamic exponent z = α/β =
3/2. This finding is in agreement with recent determinations
of the interfacial properties of cultures of cancerous cells
performed in vitro [21,22]. Also, the concentration profiles of
the cells of the growing aggregate can be rationalized in terms
of the propagation of traveling waves, which are derived from
the discrete (microscopic) model and can be compared with the
solutions of both the standard and the stochastic (macroscopic)
Fisher-Kolmogorov equations.

It could be considered that the used geometry for the
characterization of the interface, i.e., a front with linear
symmetry, may be a limitation of the analysis since most
in vitro experiments of tumor cell growth in Petri dishes
are performed by starting with a “seed” culture placed in
the center of the substrata, i.e., a geometry that leads to
a circular pattern. However, by carefully comparing results
obtained for the same kind of cells and experimental conditions
but using both types of geometries (with linear and radial
symmetry), it has been shown [21,22] that the KPZ nature
of the interface remains unchanged. So, we have selected the
linear geometry for our simulations not only based on that
finding but also due to the fact that the linear geometry allows
the straightforward evaluation of the complete set of exponents
in order to determine the universality class of the interface
(for a discussion of the experimental shortcomings involved

in the determination of interfacial exponents by using radially
growing pattern, see Ref. [46]).

Furthermore, we recognize that our minimal model neglects
intracellular interactions based on cell signaling through, for
example, growth factors or cytokines. Moreover, the mechan-
ical properties of the cells (beyond the excluded volume) are
disregarded. However, despite these simplifications, our model
is capable of capturing the essential features of the interfacial
properties of two-dimensional cultures of cancerous cells
performed in vitro [21,22,47]. Certainly the characterization of
the tumor growing interface properties in a three-dimensional
culture or in an actual tumor is much more difficult. In fact, for
its simplicity, our model is expected to be more appropriate for
the description of two-dimensional cell cultures in vitro. In this
way, as pointed out by Smolle et al. [34], in vitro systems are
usually simpler and easy to study, but often they do not reflect
the actual in vivo situation of tumors. However, the study of in
vitro systems has some advantages as compared to their in vivo
counterpart: relatively easy reproducibility and the possibility
of performing dynamic studies of the culture evolution.

Therefore, while the processes involved in both tumor
and cell culture growth are quite complex, we show that the
complementary analysis of the results obtained by using both
a minimal model for discrete growth and a simple continuous
equation is capable of accounting for the universal features
of the growth interface by capturing only a few, but the most
relevant, underlying ingredients. In this way, the proposal and
understanding of minimal models represent a topic of interest
since they contribute to the characterization of a complex
phenomenon. Of course, for a complete description of the
tumor growth, a more complete model is necessary, but this is
beyond the scope of the present work.
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