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Resumo  

Lipophrys pholis é uma das espécies de blenídeos mais comuns da zona costeira 

Portuguesa. Residente em poças da zona intertidal, esta espécie apresenta um comportamento 

exploratório bastante desenvolvido durante o período de preia-mar, onde pode estar implícita a 

sua capacidade para memorizar características do território. Alguns autores sugerem que esta 

espécie de peixes não apresenta uma distribuição aleatória. Ao invés, selecionam ativamente 

determinadas poças de maré disponíveis na sua área vital. Durante a época de reprodução, que 

decorre de Outubro a Maio, os machos de L. pholis nidificam geralmente dentro de fendas e 

buracos, os quais podem ficar emersos por longos períodos de tempo durante o período baixa-

mar. Em alternativa estes machos também podem nidificar sob pedras, onde em ambos os casos, 

as fêmeas, que não fornecem quaisquer cuidados parentais, depositam os ovos. Encontrar e 

escolher o ninho certo é crucial para os machos terem sucesso reprodutor pois são estes que 

prestam os cuidados parentais. Em alguns estudos é mencionado que a agregação de ninhos e a 

proximidade entre machos é um fator importante para a atração das fêmeas.  

Assim, o conhecimento prévio das características específicas de uma determinada área, ou 

seja, a localização de potenciais refúgios, locais de nidificação, bem como o conhecimento de 

rotas de fuga preferenciais, pode desempenhar um papel importante na sobrevivência destes 

peixes, os quais, estão sujeitos a elevada pressão predatória. A memorização da posição dos 

refúgios e dos ninhos bem como a direção das rotas de fuga preferenciais têm como referencial 

pistas visuais conspícuas do habitat. Estas pistas visuais conspícuas “landmarks” são integradas a 

nível cerebral num referencial de “landmarks”, formando mapas espaciais da área familiar que os 

peixes usam para uma constante atualização da sua localização. As pistas do terreno podem ser 

proximais, i.e. localizadas dentro das poças habitadas pelos peixes, ou distais, i.e. localizadas fora 

das poças. Experiências de orientação mostraram que os indivíduos desta espécie também 

conseguem determinar a direção da área de residência a partir de locais não familiares localizados 

a várias dezenas de quilômetros do local de captura.  

Com este trabalho pretende-se, através da análise de registos de presenças de L. pholis ao 

longo de três anos sucessivos, testar a capacidade de homing e mais concretamente testar a 

fidelidade dos machos aos locais de nidificação e aos ninhos em particular. O comportamento de 

homing é definido no seu sentido restrito como o regresso de um animal a um local espacialmente 

definido onde possui um abrigo. Um dos benefícios do homing é que assegura que o animal volta 
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a uma área familiar, conferindo-lhe assim uma vantagem adaptativa (ver acima), apoiando a ideia 

de que a familiaridade é importante para a sobrevivência dos indivíduos. A maioria dos estudos 

sobre homing, em peixes intertidais rochosos, indica que embora os peixes regressem muitas 

vezes a um local específico, geralmente não estão exclusivamente vinculados a esse local. Assim, 

um peixe pode utilizar uma rede de locais ou abrigos, mais ou menos desenvolvida, que visita 

regularmente, sem estar permanentemente ligado a nenhum deles. 

Em L. pholis, e considerando que se trata de uma espécie aparentemente não-migratória, 

questiona-se qual será a funcionalidade de um sistema de navegação tão desenvolvido? Uma vez 

que se trata de uma população aberta a viver no seu habitat natural, e como não dispomos de 

meios que nos permitam registar os movimentos diários dos indivíduos, neste estudo utilizamos 

como uma aproximação de homing a capacidade que os machos adultos têm para retornar aos 

mesmos locais de nidificação após uma ausência mais ou menos prolongada durante o período 

não reprodutor. Assim, desde 2011 temos vindo sistematicamente a marcar e registar a presença 

de animais adultos de uma população de L. pholis estabelecida no Cabo Raso, Cascais, Portugal. 

No total, 211 animais adultos foram capturados e marcados individualmente com recurso 

a marcação electrónica por meio de cirurgia, libertados e seguidos periodicamente. Cento e 

quinze indivíduos foram recapturados considerando um intervalo mínimo de tempo nunca 

inferior a quinze dias após a data da sua marcação. A inspeção da área de estudo foi realizada 

duas vezes por mês durante os dias de maior amplitude de maré (i.e. no período de lua nova e de 

lua cheia). Durante as inspeções procurou-se ativamente registar a presença dos animais 

marcados. Indivíduos novos (i.e. adultos não marcados) e encontrados durante as inspeções, 

dentro da área de estudo, foram sendo sucessivamente marcados. A presença, posição relativa 

(coordenadas do local) e medidas corporais foram registadas para todos os peixes capturados. 

Para identificar os abrigos durante estes três anos, várias marcações metálicas foram inseridas na 

rocha com a ajuda de um berbequim. Ninhos espacialmente próximos uns dos outros foram 

agregados em secções. Foram ainda calculadas as distâncias entre as diversas secções de ninhos 

assim como as distâncias particulares entre os diversos ninhos.  

Estando descrito que esta espécie apresenta uma maior atividade exploratória durante a 

preia-mar do período diurno, assumiu-se que, se os peixes marcados, que apresentam 

posteriormente registo de recaptura, não foram amostrados é porque se encontram noutro local 

fora da área de amostragem. A análise dos registos de recaptura mostrou que os machos de L. 
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pholis, em geral, passam significativamente mais tempo na área amostrada durante a época de 

reprodução do que fora da época de reprodução. O mesmo não se verifica nas fêmeas com uma 

presença homogénea dentro e fora da época de reprodução. Interessante é que 54% dos machos 

regressaram ao mesmo ninho em épocas de reprodução distintas e esse número aumenta para 

83% se considerarmos o comportamento de fidelidade ao sector. Importante de mencionar é o 

facto de que as maiores distâncias entre recapturas observadas correspondem a indivíduos que 

foram capturados e marcados primeiramente em poças e posteriormente reencontrados em 

ninhos.  

O retorno dos machos ano após ano às mesmas áreas de nidificação, suporta a hipótese de 

que os peixes adquirem e armazenam vasta informação do meio envolvente utilizando-a 

posteriormente aquando do retorno em épocas de reprodução distintas. As observações 

resultantes deste trabalho indicam que os machos de L. pholis têm um comportamento de homing, 

mas mais importante é que representam um caso extremo deste comportamento, particularizando 

a sua fidelidade à área local até ao nível do ninho (ou seja, eles apresentam um comportamento 

de nest fidelity). Uma vez que nos é impossível seguir estes indivíduos devido a limitações 

técnicas (não existem dispositivos de GPS para estes animais), permanece em aberto a distância 

coberta nestas hipotéticas migrações verticais sazonais. 

 Em conjunto, esses resultados suportam a ideia de que os mecanismos de navegação são 

característica geral dos vertebrados e que poderão ter evoluído a partir dum ancestral comum e 

manter-se nas diferentes classes: Peixes (e.g. salmões e enguias), anfíbios (e.g. salamandras), 

aves (e.g. pombo-correio), mamíferos (e.g. elefantes e morcegos) e répteis (e.g. tartarugas 

marinhas). Curiosamente, um artigo recentemente publicado em gobídeos, onde foram testadas as 

capacidades de memorização e aprendizagem, sugere que o comportamento de 

orientação/navegação está dependente da história de vida das espécies em questão. Numa arena 

artificial onde foram simulados os ciclos de maré, as espécies que habitam o intertidal rochoso, e 

contrariamente às espécies que habitam em areia aprendem rapidamente a memorizar a posição 

de poças o que lhes permitem evitar a sobre-exposição ao sol aquando do recuo da maré. Os 

autores sugerem que a ausência de necessidade das espécies que habitam em areia em procurar 

locais de abrigo contribuiu claramente para este resultado. Assim, dependendo do ambiente onde 

os animais estão inseridos e através de seleção natural os comportamentos de 

orientação/navegação poderão ser otimizados ou reduzidos.      
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Abstract  

Lipophrys pholis is one of the most common species of blennies that inhabits the 

Portuguese rocky shores. Usually residing in intertidal rocky pools, they perform exploratory 

behavior during high tide, which may elicit their ability to memorize terrain characteristics. For a 

non-migrant species, it has excellent homing abilities. Despite the ability to memorize the 

position of refuges based on conspicuous visual cues, displacement experiments showed that they 

can determine the homeward direction even at unfamiliar places tens of kilometers away from 

their home range; they can perform true navigation. But, why does a non-migrant species need 

such complex navigational skills? To answer this question we have started tagging adult animals 

from a population of L. pholis at Cabo Raso, Cascais, Portugal in 2011. Adults were captured, tag 

individually with a microchip introduced into the abdominal cavity and subsequently released in 

the place where they were previously captured. During field inspections, performed twice a 

month (i.e. during days of new and full moon), we actively searched for the presence of tagged 

animals as well as for new animals to be tagged. The presence, relative position (spatial 

coordinates) and body measures were recorded for all fish. The findings showed that many males 

return to the same area and to particular nests (i.e. Nest-site fidelity) in successive breeding 

seasons supporting the hypothesis that fish acquire large information of the surroundings, which 

they may use when returning to a previous breeding area. Therefore, these findings suggest that 

navigational mechanisms are widespread in vertebrates and may have evolved from a common 

ancestor to the different classes. A recent publication on gobies suggested that depending on the 

habitat where species live, natural selection have evolved to maximize or reduce the use of the 

navigational skills.   

 

Key Words: Lipophrys pholis; Nest-site fidelity; Homing; Behavior; Evolution; Navigation; 

Orientation; Vertebrates 
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Introduction 

 

Homing behavior, generally defined as “the ability of an animal to return to a spatially 

restricted location that it previously occupied following displacement to an unfamiliar site,” has 

been documented in a wide range of vertebrate species and it is expected to significantly improve 

fitness (Williams, 1957; Gerking, 1959; Papi, 1992; Bélichon et al., 1996; White and Brown, 

2013). One benefit related with homing behavior is that it ensures that the animal returns to a 

familiar area, where the location of food sources and predators may be known. Thus, supporting 

the idea that site familiarity is important to survival (Braithwaite and Girvan, 2003). However, 

for many species, homing poses extraordinary bioenergetics and navigational challenges (Reese, 

1989a; Dittman and Quinn, 1996; Bingman and Cheng, 2005; Lohmann et al., 2008; White and 

Brown, 2013).  

Homing is advantageous when the costs are overshadowed by the benefits, which may 

vary with sex and/or age (juveniles, immatures or adults) of the individuals (Gibson, 1968; 

Bélichon et al., 1996; Börger et al., 2008). Homing to familiar nesting areas (i.e. breeding site 

fidelity), supported with local knowledge of resources (e.g. sheltering or nesting sites and 

feeding) (Béslisle, 2005) or associated with stable social interactions (e.g. established dominance 

hierarchies and territorial boundaries) (Hoover, 2003), may increase fitness, by reducing the 

predation rate of nests and by enhancing the survival of adults, and reduce risks associated with 

nesting in new habitats (Burt, 1943; Bergerud and Gratson, 1988). Moreover, breeding success, 

defined as hatching a large number of descendants, can increase the probability of breeders return 

in subsequent years to the same area (Greenwood and Harvey, 1982). Site fidelity behavior has 

vital consequences for ecological processes, such the distribution and abundance of organisms or 

community structure (Fagan et al., 2007; Wang and Grimm, 2007), habitat selection (Hutto, 

1985), predator-prey dynamics (Lewis and Murray, 1993) and infection spread (Kenkre et al., 

2007). 

Habitat selection is a process involving a series of innate and learned behavioral decisions 

made by an animal about what habitat is suitable for its use (Hutto, 1985). Classical studies of 

habitat selection by deer mice (Peromyscus maniculatus) revealed that heredity and experience 

play a role in that decision (Wecker, 1964). Others factors driving habitat selection are: 1) forage 

quality and quantity; 2) cover availability; and 3) resting or denning sites; and each of these may 
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vary seasonally. However, if animals remain in their natal territories or return there to 

reproduction it represents a case of natal philopatry and may affect patterns of gene flow and 

fitness components like survival and reproduction. Increased inbreeding results as a price paid for 

some other advantages (see above) and may result in speciation of those populations (Reese, 

1989a). Alternatively, philopatry may result from processes of dispersal or migration, and with 

reaching sexual maturity, individuals start returning to the same location to breed, year after year; 

(breeding-site philopatry).  

Dispersal processes involve the movement of organisms from their location of birth to 

other locations at which they will reproduce and it can be divided into two components: 1) natal 

dispersal of young prior to first breeding; or 2) breeding dispersal of breeding adults (Greenwood 

and Harvey, 1982). Dispersal processes are relatively undirected in contrast to migration, which 

is the cyclical movement between specific regions (e.g. migratory birds and fish) and its 

evolution may be affected by both, individual selection and group selection. Importantly, animal 

movement is intrinsically dependent of the animals’ ability to orient and navigate (Greenwood 

and Harvey, 1982; Bergerud, 1988).  

Griffin (1952, 1955) characterized the navigational process according to their complexity 

and it allowed a first classification of the navigation behavior: Type I, it is the simplest possible 

navigational strategy, based on visual landmarks within the familiar territory and the use of 

random exploration when released at unfamiliar territory. This strategy is commonly called 

“piloting”; Type II, it is more complex than type I and it is defined as the process by which 

animals are able to move into a certain direction even when crossing unfamiliar territory; it 

require the use of one external referential (i.e. compass); Type III, it is the most complex 

navigational strategy, it requires sophisticated mechanisms and it makes use of at least two 

external referential (i.e. a map and a compass), it is called “true navigation” (Fig. 1). After 

Griffin’s classification a number of studies have monitored the homing ability of various animals, 

particularly birds (e.g. barn swallow, pigeons, little blue penguins), fishes (e.g. salmonids, 

codfish, eels) and sea turtles (e.g. green turtles and loggerhead turtles) (Matthews, 1951; Able, 

1980; Brannon, 1982; Groot, 1982; Nastase, 1982; Reese, 1989a, 1989b; Pledger and Bullen, 

1998; Robichaud and Rose, 2001; King and Withler, 2005; Westenberg et al., 2007; Lohmann et 

al., 2008). 
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Fig. 1 – The three different, though not mutually exclusive, modes of navigation presented here. (Left) Route 

following; (middle) path integration; and (right) map-like spatial representation. Labelling is given for left column: 

central place, e.g. home or nest, is indicated as a black diamond; visited site, e.g. feeder, as a filled circle. In the 

bottom diagrams, outbound paths in search of food are indicated as black dotted lines, homebound paths after a 

successful visit to a food source are shown as red dashed lines. In route following, the outbound path is retraced 

when returning home from the visit to a distant goal. In path integration, the homebound vector is incrementally 

updated by monitoring angles steered (α) and distances covered (d) during outbound travel; the home vector is 

played out when returning to the nest, and the straight path indicated by the home vector may be interrupted (with 

the vector still being continuously updated) when obstacles need to be got round (indicated by hatched areas). When 

using a map-like spatial representation, the animals are informed about the spatial layout of their surroundings, 

including obstacles; when homing, they should select the shortest (or otherwise preferred, e.g. sheltered) route back 

home. These different homing performances can be used to distinguish between navigation strategies, in particular, 

when designing appropriate homing experiments (Figure adapted from Wolf H., 2011 Journal of Experimental 

Biology, 214, 1629-1641). 

 

 

The navigational strategy used by animals is then shaped by physiological constraints 

(e.g. age and sex) of the individual (Almada et al., 1992; Jorge et al., 2006, 2011a) and ecological 

demands (e.g. mountains or oceans) of the route (Bell, 2005; Marques et al., 2009). Also, in the 

marine environment, teleost fish face similar problems, with salmonids facing similar challenges 

when returning to their natal rivers to spawn (Nastase, 1982; Dittman and Quinn, 1996). Ocean 

currents represent a key environmental factor that greatly affects the movement and behavior of 

marine animals (Chapman et al., 2011). For instance, currents may influence the distribution and 

movements of pelagic animals in a variety of ways: 1) by determining the distribution of food 
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resources (Olson et al., 1994; Bost et al., 2009); or 2) by physically influencing their 

displacement (Girard et al., 2006; Cotté et al., 2007). Therefore, homing behavior and/or site 

fidelity are relatively common in marine systems and assume particular importance in 

environments with fluctuating conditions. The intertidal zone is one of those examples where 

conditions change over space and time and may have consequences for population processes such 

as recruitment and survival (Marnane, 2000). Moreover, fidelity to spawning places may result in 

reproductive isolation of those populations (see above “natal philopatry”). 

Among oviparous fish, parental care may be provided to eggs and/or offspring by one or 

both parents, with male parental care being the most common, through a wide range of mating 

behaviors. These include establishing a nest, defending, cleaning and providing appropriate 

conditions for the fertilized eggs to hatch and releasing the larvae from the nest (Blumer, 1979; 

Almada et al., 1990b; King and Withler, 2005).  

For intertidal fish, like L. pholis, survival and reproductive fitness can be dependent of the 

individual’s ability to return to its home, rock pool or nest after high tide feeding excursions 

(Bélichon et al., 1996; Ros et al., 2006). The males of this specie establish nests in crevices or 

holes that become immersed during the low tide. They defend a breeding territory centered on the 

nest, and almost never leave the area during the breeding season. When disturbed they show a 

large number of agonistic behaviors and produce a characteristic sound (Almada, 1990b). On the 

other hand, females must travel longer distances visiting several nests and spawning with males 

(Costa et al., 2011). Therefore, male blennies are hypothetically more site-attached than females 

(Almada and Santos, 1995; Costa et al., 2011). Interestingly, the motivation for homing is present 

only in the adult phase (Jorge et al., 2011b) but it appears to be independent of the sex and/or 

familiarity with the captured site (Ros et al., 2006; Jorge et al., 2011b; Thyssen et al., 2014).  

At the morphological level, L. pholis are benthic fish with a long and laterally elongated 

body (Faria et al., 1996). They also have mechanisms of resistance to transport, no swim bladder 

and large well developed pectoral fins that allow locomotion associated with the substrate (Faria 

et al., 1996). Moreover, they have great mobility of the head and have well developed eyes 

(Almada et al., 1990a). Their small size and high maneuvering capabilities allows them to 

occupy small cavities and crevices that provide protection against predators and/or accidental 

displacement due to water turbulence (Faria et al., 1996). The mucus associated with the absence 

of scales acts as a lubricant to facilitate movements in confined spaces and confer resistant to 
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drying (Faria et al., 1996). L. pholis have a life span up to ten years (Almada et al., 1990a; Faria 

et al., 1996), with a reproductive period that occurs during the cold-water period, from October to 

May (Almada et al., 1990a; Faria et al., 1996; Ferreira et al., 2012). 

Overall, rocky-intertidal fishes have restricted movements and good homing abilities 

(Williams, 1957; Gibson, 1969; Green, 1999). L. pholis appears to be capable of learning 

complex spatial relationships of familiar landmarks forming mental representations of the local 

environment (i.e. familiar map). In addition to their singular characteristics (see above) and 

abundance (i.e. it is one of the species that is a consistent component of the Portuguese littoral 

fish fauna), it offers an outstanding biological model to test navigational hypotheses and 

ultimately provide answers. In this work is described for the first time the degree of homing/site 

fidelity behavior in L. pholis. Site fidelity can be examined in two ways: either by measuring the 

long term persistence of individuals at home sites or by examining the drive of individuals to 

return to home sites after being displaced (Hartney, 1996). Here, site fidelity/homing was 

examined by recording the presence of tagged fish in the study area over three consecutive years. 

It is suggested that L. pholis are partial residents but not migrants. Therefore, it is important to 

clarify whether it is the onset of the reproductive behavior that is conditioning the development 

of the navigational system. 

Using an individually tagged population of adult L. pholis, it is the aim of the present 

study to understand their annual movements at the study area and how it conditioning the 

development of navigational strategies. Considering that L. pholis are mentioned as residents (see 

above) it is first hypothesized that adult individuals should spent equal time at the study area 

throughout life (i.e. between breeding and non-breeding seasons). Accordingly, the re-sight 

frequencies (f) of adult individuals should be equal in the breeding and non-breeding seasons. 

Alternatively, if this hypothesis is rejected either by the entire population or even by a particular 

sub-group (e.g. males or females) of the population, this means that the population or the sub-

group of the population is asymmetrically distributed on time at the study area. For example, 

individuals can just use the area for breeding or resting and feeding. Evidences that individuals 

appear in successive seasons, leads to the second hypothesis, that is, the distribution of 

individuals (d) in two distinct seasons, at the study area, is independent of its previous 

experience (here, d is given by the distance in meters between two re-sights in distinct 

seasons). Interestingly, the rejection of the second hypothesis may suggest that individuals 
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should return to specific sectors of the area (e.g. site fidelity) or even to a particular point in the 

area (e.g. nest fidelity). However, because homing is costly (see above), all individual may not 

return in the next season. Therefore, it will be interesting to observe whether the body condition 

of homing and non-homing individuals (Kb) is equal (third hypothesis).  
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Methods 

 

 

Subjects and Study Area 

 

 

At Cabo Raso, Portugal (38°42’N, 9°29’W) we monitored a 4000 m
2
 portion of an 

intertidal rocky-shore area of a vast rocky platform (Fig. 2A). The rocky platform is characterized 

by the presence of a large number of “appropriate” shelters (i.e. wholes or crevices that fish may 

use as refugee or nest) suggesting that shelters should not be regarded as a limiting resource. 

Holes and crevices in vertical walls were often occupied by individuals from different fish 

species, such as Lipophrys trigloides (Valenciennes, 1836) or Coryphoblennius galerita 

(Linnaeus, 1758). Invertebrates, mostly crabs (Carcinus maenas and Eriphia verrucosa), algae 

and sediments were also observed inside those shelters throughout the year, inferring important 

ecological transitions in shelters and surrounding areas. 

From April of 2011 to May of 2014, a set of more than two hundred shelters and four 

pools were inspected twice a month during full-moon and new-moon periods. Seventy shelters 

that contained L. pholis eggs were classified as nests. The shelters/nests were identified with 

metallic marks that were attached to the rock with the help of an electric drill and grouped into 

sectors according to their position and proximity to other nests (see appendix I and Fig. 2B). 

Distances between sectors and between nests were measured, with a flexible ruler, to the nearest 

centimeter. Sectors length varied from 3 and 19 meters with the mean sector length of 10 meters 

(Table 1). The shortest distance between nearby sectors varied between 5m and 38m and the 

mean distance between nearby sectors was 20 m. 

A group of four persons actively searched for the presence of adult L. pholis. Individuals 

that were previously tagged as well as individuals that were captured as new and tagged for the 

first time were registered for their presence, relative position, presence or absence of eggs in the 

shelter, and body measures (total body length and weight). In total, 211 adult shannies (i.e. total 

body length ≥ 70mm), of both sexes were captured and marked. 



    8 

 

Fig. 2 – Study area in the context of the species distribution range (A). Asterisk represents the geographical 

location of the sheltered rocky platform at Cabo Raso, Portugal, (38°42’N, 9°29’W). The maroon area represents 

the highest rate of occurrence of L. pholis in the Eastern Atlantic (information taken from www.fishbase.org). 

Details about the location and spatial distribution of the nest sectors (B). Letters from A to D represent the intertidal 

pools (white polygons). Numbers from 1 to 12 represent the sectors of shelters and nests (white lines). 
 

Table 1 - Sectors lengths and pools areas. Total number of occupied nests by sector. For relative position of 

sectors and pools in the study area see Fig. 2B. 

 

Sector Number of nests Perimeter of the sector Pool Area of the pool 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

6 

14 

12 

2 

3 

8 

3 

2 

2 

2 

14 

2 

6,28m 

17,80m 

19,20m 

4,1m 

9,43 m 

17,0m 

15,3m 

10,9m 

3,0m 

9,81m 

2,10m 

6,33m 

A 

 

 

B 

 

 

C 

 

 

D 

 

14,3 m2 

 

 

12,5 m2 

 

 

12,5 m2 

 

 

18,0 m2 
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Experimental procedure 

 

 

Individuals were captured by carefully removing them from their holes by means of a 

blunt hook or from their tide pools by means of hand nets. Captured fish were anaesthetized with 

MS-222 (tricaine methanesulphonate, Sigma) and went through surgery for tagging; an electronic 

tag (IA-100A, TROVAN) was introduced into the abdominal cavity of each single fish. An 

antiseptic solution containing 9-12% of povidone-iodine was used for minimize the risk of 

infection. Fish were sutured with absorbable suture line and were placed in an aerated tank until 

complete recovery. Body weight, total and standard length and sex were determined while fish 

were anaesthetized (see appendix I). The entire procedure took approximately 10 min and was 

extremely safe since no casualties due to manipulation were reported in 211 surgeries. 

Electronic tags were identified with a microtransponder reader (LID-560 Pocket Reader, 

TROVAN) adapted to a flexible cable (length: 1m; diameter: 1cm) holding the probe at the 

extremity (see appendix II). This adaptation to the microtransponder reader allowed the 

identification of tagged fish without the need to remove them from the shelter/nest. Therefore, 

this adaptation minimizes the re-sight impact on tagged fish once they did not need to be 

removed from the shelter/nest. 

 

Statistical analysis 

 

 

In most cases, data did not follow a normal distribution failing normality tests or other 

parametric assumptions (see appendix III). Although parametric analysis is often more powerful 

than non-parametric alternatives if sample size is small or parametric assumptions are not 

completely met the inverse is true (Siegel and Castellan, 1988). Therefore, Non-parametric tests 

were implemented whenever necessary. 

Firstly, it was hypothesized that individuals spent equal time throughout live at the study 

area. Therefore, the null hypothesis to be tested is: frequencies of re-sight (f) at the breeding and 

the non-breeding seasons is equal [H0: f (Breeding) = f (Non-breeding); H1: f (Breeding) ≠ f 

(Non-breeding)]. The presence of males (n=64) and females (n=13) in the breeding and non-

breeding seasons in the study area were compared with the Wilcoxon matched pair test. Since 

individuals were tagged over a large period of time and because tagging times were discrepant 
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among individuals, re-sights rates were calculated for each fish having in account the date of the 

first capture. Median times of presence in breeding and non-breeding seasons for males and 

females were also calculated. Moreover, the time spent by males in incubation was calculated 

based on records of presence/absence of eggs.  

Secondly, it was hypothesized that individuals were random distributed between seasons. 

Homing, nest-site fidelity was tested using the distance of re-sight of single individuals in two 

distinct breeding seasons (n=29). To avoid potential biases, each individual only contributed once 

with a par of re–sights to the pull. The pair of re-sights was randomly selected. The distances of 

re-sights were then grouped as following: Sector fidelity, individuals that returned to the same 

nest [0] or to a place less than 5 meters distant from the previous re-sight ]0-5]; Possible sector 

fidelity, individual that returned to a place that distance 5-15 meters from the previous re-sight 

]5-10] and ]10-15]; Sector change, individual that returned to a place that distance more than 15 

meters from the previous re-sight ]15-20] and ]20-∞[. Classes were defined based on the average 

perimeter of sectors (see Methods – Subjects and Study Area). Therefore the null hypothesis to 

be tested here is: the place of re-sight in a given season is independent from the place of re-sight 

in the next season, that is given by the distance between the two re-sights [H0: [0] = ]0-5] = ]5-

10] = ]10-15] = 15-20] = ]20-∞[; H1: At least one class is different from the others]. A uniform 

distribution of data among the various classes was analyzed using the χ2 
test. Comparisons 

between groups (i.e. Sector fidelity, Possible sector fidelity and Sector change) were performed 

using the Fisher exact test.  

Thirdly, it was hypothesized that homing is influenced by the individual body condition.  

The total body length (TL) and weight (W) were used to calculate the condition factor 

(Kb), which is independent of length and constant for equally nourished fishes (Le Cren, 1951).  

Kb = weight x 100/(length)
b
 

Where b is a constant. The constant b is determined by calculating the regression line of the 

logarithmic length weight relationship for the whole population (see appendix III). Therefore, the 

null hypothesis to be tested is: the Kb of homing and non homing individuals is equal [H0: Kb 

(Homing) = Kb (Non-homing); H1: Kb (Homing) ≠ Kb (Non-homing)]. A t-test was used to 

search for differences between homing and non-homing males in terms of mean and a F-test to 

search for differences in terms of variance of Kb values.  

Statistical analyses were performed with Statistica v.12 (Statsoft Inc., Tulsa, USA). 
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Results 

During the three years survey 211 fish were captured and tagged: 161 males and 50 

females. From those 113 were at least re-sighted once giving a re-sight rate of 60% for males 

(N=95) and 36% for females (N=18). Re-sight rates within the study area during the breeding and 

non-breeding seasons showed significant differences for males (Z= 2.85, p<0.01; Fig. 3A). No 

significant differenced were found for females (Z=1.29, p>0.05; Fig. 3B). Accordingly, the first 

null hypothesis [H0: f (Breeding) = f (Non-breeding)] was rejected for males but not for females. 

Many males were absent from nests/shelters and tide pools during the non-breeding season (Fig. 

3A), suggesting that they move elsewhere. Moreover, during the breeding season, males spent 17 

days in average at the study area and 21 days with egg incubation (Fig. 3A and C).       

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3 – Distribution of re-sights by the breeding and non-breeding seasons (A) males re-sight frequency; (B) 

females re-sight frequency; Lines represent single individuals. Black lines have a positive slope; grey lines have a 

negative slope. (C) MIT - Male incubation time. Black symbol represents the median value (21 days); box represents 

the quartiles and; whiskers the maxim and minim values. 
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Fig. 4 – Homing in male L. pholis.  (A) Distribution of males re-sighted in successive breeding seasons. Classes of 

distances (in meters) were aggregated as following: [0; 5] sector fidelity;] 5; 15] possible sector fidelity and] 15; ∞[ 

sector change. Differences were tested using χ2 test. Statistical significance is given as follows: **p<0.01; 

***p<0.001. (B) Profile of re-sighting for six representative males that showed sector fidelity (White symbols with 

black outline - sector fidelity; black symbols and red symbols- possible sector fidelity; white symbols with red 

outline– sector change). Date is set by the format day / month / year. The bunded areas with R’s define re-sightings 

in the breeding season. 
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Because many males were not present in the study area outside the breeding season (Fig. 

3A), it is important to observe whether in successive breeding seasons males return (home) to the 

same sectors of nests or to the same nest (Fig. 4). Findings show that the distribution of males 

from one breeding season to the next is not randomly distributed (χ
2

(5)= 22.4 p< 0.001). 

Therefore, the second null hypothesis [H0: [0] = ]0-5] = ]5-10] = ]10-15] = 15-20] = ]20-∞[] was 

rejected by the subpopulation of adult males. Breeding males that arrived to the area in 

successive breeding seasons had in consideration their previous location (i.e. “sector fidelity” is 

different from “possible sector fidelity” or “Sector change” Fisher exact test, p<0.01 and p<0.001 

respectively, see Fig. 4A). A detailed analysis showed that 45% of the males returned to the same 

nest (Fig. 4A and see black open circles in Fig. 4B). This number increased to 83% if we 

consider a 5 meters radius area around the nest of the previous breeding season (Fig. 4A and see 

black open symbols in Fig. 4B). The remaining 17% of the cases in which the distance calculated 

may suggest a change of sectors (Fig. 4A), field observation confirm that there is no real change 

of sectors. Moreover, field records showed that the two individuals that changed sectors might be 

on the move to their previous nests once they were re-sighted in pools followed by re-sights 

nearby their previous nests (Fig. 4A and see red symbols in Fig. 4B). 

Homing is generally associated with body condition. For this population the regression 

equation resultant from the logarithmic length weight relationship was: 

 

Log W=-1.8+2.9*Log TL 

 

Where b is equal to 2.9 (Fig. 5A).  The comparison of the condition factor Kb between homing 

and non homing males showed that there was no differences in terms of means (t=0.03, p>0.05; 

Fig. 5B), but there is differences in terms of variances with homing males presenting much lower 

variance around the mean value than non-homing males (F=1.77, p<0.05; Fig. 5B). Interestingly, 

the third null hypothesis [H0: Kb (Homing) = Kb (Non-Homing)] was not rejected although 

differences in the variance but not in the mean may suggest that Kb is playing a role in this 

process.  
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Fig. 5 – Condition factor Kb. Regression line from the logarithmic length (Log TL) weight (Log W) relationship 

(A). Data is available in Appendix III. Mean (squares) body condition factor (Kb) and the 95% confidence interval 

of the mean (whiskers) for non-homing and homing males (B). Significant variance is given by the F test as 

following: * p<0.05.   

 

 

 

 

 

 

 



 15 

Discussion 

 

 

Our results indicated, as in many other animals (Thorrol et al., 2001), homing behavior is 

an important component of the annual cycle of L. pholis. Because it was shown that males of this 

intertidal fish left the study area during the non-breeding season and returned to the same sector 

of nests, and in many cases returning to the same nests year after year (Fig. 3A, 4A and B). This 

behavior represents a striking example of nest-site fidelity. Interestingly, the time spent by males 

in the breeding area is similar to that spent on incubation (Fig. 3C), suggesting that breeding 

males do not spend much time searching for appropriated nests and generally prefer to make use 

of previous known sites. Also relevant is the fact that homing males, in general, had very low 

variance for the body condition factor (Fig. 5B), suggesting that this is a key feature influencing 

the return of males in successive breeding seasons.  

The return of fish, year after year, to the same breeding sectors, after a more-or-less 

prolonged absence during the non-breeding season, is very interesting as this represents a first 

record of this behavior in L. pholis. Site fidelity supported by a homing mechanism has obvious 

implications at the intraspecific level with increased competition associated with territoriality and 

mating, and vulnerability to density-dependent effects. Consequently, site fidelity may limit 

mating opportunities, increase the strength of localized competitive interactions (e.g., due to 

localized depletion of resources), and/or increase vulnerability of individuals to habitat 

degradation (e.g., Wall and Herler, 2008). At the interspecific level site fidelity as several 

advantages allowing knowledge on other species that inhabits the same holes and crevices (see 

Introduction). For example, L. pholis released low agonistic responses against Coryphoblennius 

galerita, being frequently ignored (Almada et al., 1990b), but strongly attack crabs (Carcinus 

maenas) with vigorous biting until drive them out from the shelters (Almada et al., 1990b). Thus, 

philopatric individuals may benefit by breeding with others having similar co-adapted genes well 

adapted to local conditions (Shields, 1982). The fact that this species present a higher number of 

agonistic behaviors than sister species corroborates this idea (Francisco et al., 2011).  

Long-term data series on re-sighted individuals are the best way to learn about philopatric 

and migratory behaviors (e.g., Tuttle 1976; Dwyer, 1984). In many species a balance is 

maintained between the proportions of individuals dispersing and the proportion remaining 

http://www.sciencedirect.com/science/article/pii/S0022098112000676#bb0175
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philopatric such that inbreeding and resource competition are minimized (Gompper et al., 1998). 

Findings showed that some males return in successive years while others don’t, suggesting that 

inbreeding, could be maintained low by this process. Indeed, Francisco et al. (2006) showed that 

there is no significant population genetic structure along the Portuguese coast in L. pholis. 

Alternatively, gene flow might be maintained through larval dispersal processes. After hatching, 

the highly developed larvae may be dispersed along the coastal area with the help of permanent 

southward surface circulation characteristic of the breeding season time in Portugal. 

Consequently, biological and behavioral characteristics of larvae may play a role in all this 

process allowing gene flow and preventing population divergence. 

L. pholis have a long breeding season (see Introduction) although, males only spent 21 

days on average with incubation per breeding event (Fig. 3C), which raises a number of 

questions. Is reproduction so costly that males are only able to have one single reproductive event 

per breeding season? Or, alternatively, do males undergo several reproductive events, but in areas 

so far apart that this has not yet been observed? Interestingly, the incubation time largely exceeds 

the larvae development cycle of 15 days (Faria et al., 2001), suggesting that males maximize time 

incubating more than one single oviposition. Field observations corroborate this idea with several 

reports of nests with eggs in three distinct stages of the development: egg and embryo with 

distinct yellowish; egg with white/silvery coloration; hatched egg (see appendix III – Fig.4). On 

the other hand, empirical data also suggests that a good body-condition factor is a key to males 

return to the home territory in successive breeding seasons, as too-slim or too-fat males do not 

generally return. Altogether, these findings highlight that one aspect counting for the short time 

period spent with incubation is the higher costs it may represent.     

Because the time spent by males in the breeding season (17 days) is shorter than the 

incubation time (Fig. 3B and 3C; and see above), it suggests that many males visit the area 

without reproducing (short visits). The reasons for that may be several and may be dependent of 

the physiological state of the animal (Vehrencamp 1979, 1983; West-Eberhard, 1984; Emlen, 

1991). Accordingly, males that were not in good shape may opt by leaving the area without 

reproducing in that breeding season (Fig. 5B), or in contrast they may opt to have a poor 

reproductive event with consequences that, in the worse scenario, it will cause the individual’s 

death. In all this process shelter/nest is an important resource that individuals have to balance 
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when taking a decision. In Salaria pavo keeping the right nest is crucial for the individual 

reproductive success (Gonçalves et al., 2003). 

Habitat selection is therefore crucial in the life cycle of animals, because it can affect 

most components of fitness. It has been proposed that some animals cue on the reproductive 

success of conspecifics to select breeding habitats (Danchin et al., 1998). The fish are one of the 

groups of the animal kingdom with more reproductive plasticity. Have multiple reproductive 

phenotypes, since the gonochorism (Gonçalves et al., 1996), through imitation of morphological 

and behavioral female characters by some male and ending in hermaphroditism with sex 

changing once in a lifetime (Sunobe and Nakazono, 1993), or even with multiple sex changes 

throughout life (Sunobe, 1993; Oliveira et al., 1999). This plasticity allows a specific population 

to adjust their reproductive response in terms of the environment in which it operates. 

Colony size is also important in the performance of breeding (Salomon et al., 2008). In 

some cases the aggregation of nests can also be an advantage in appealing to females, even 

suggesting a better reproductive display (Faria et al., 2000; Faria and Almada, 1999, 2001; 

Amorim, 2011).  However, breeding in colonies strongly enhance sexual selection and drives 

species evolution towards speciation (Møller et al., 1998). Although there are costs associated 

with the increased size of the colony, such high rates of transmission of parasites, higher 

competition for food and other limiting resources like nests. Factors like breeding density, habitat 

and nest characteristics and sex have also related to nest-site fidelity (West-Eberhard, 1984; 

Switzer, 1993; Brockman, 1997; Dubois et al., 1998; Pyle et al., 2001; Beheler et al., 2003). Low 

food availability may increase competition and inhibit reproduction by some individuals 

(Clutton-Brock et al., 2001; De Luca and Ginsberg, 2001). 

Nest-site fidelity is considered to be an adaptative strategy in numerous groups (Vergara 

et al., 2006). In birds, also it can result in higher survival rates for adults, and contributing to the 

maintenance of the social status, however over successive breeding seasons it might increase 

ectoparasitism (Sonerud, 1987, 1988; Vergara et al., 2006). Nevertheless, the absence of males 

during the non-breeding season to return in the next breeding season clearly solves this problem 

(Fig. 2A). In birds, migrant populations have shown to have lower rates of ectoparasites when 

compared to sedentary populations (Pyle et al., 2001; Vergara et al., 2006). Also affecting nest-

site fidelity is the breeding success. Failing in breeding, producing fewer or no offspring, tend to 

be the most likely reason to change nest-sites in the next breeding season. Within population first 
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breeders tend to be more affected by this problem than old more experienced breeders (Pyle et 

al., 2001). Changes of nest are more frequent in young individuals and usually followed by mate 

changes (Schulz, 1998; Naves et al., 2006). 

The Pacific salmon is able to precisely locate the same tributaries and streams of their 

natal river, to spawn after years feeding offshore (Dittman and Quinn, 1996). Our findings 

suggest some similarities between the behavior patterns of salmon and L. pholis, since each of 

these species has a very precise homing mechanism and a very good spatial memory. We have 

reports of males failing to return in the following breeding season, to return 2 years later, to the 

same nests. This, clearly supports the idea that fishes acquire and memorize large information of 

the surroundings which, they can recall in successive breeding seasons when they want to 

pinpoint a specific nest (Braithwaite and Girvan, 2003; Burt de Perera and Guilford, 2008; White 

and Brown, 2014). The re-sightings of fish invariably found less than ten meters away from the 

site of the first capture (Fig. 4B), suggests that homing males have a very precise navigational 

mechanism (Jorge et al., 2011b). Our findings corroborate previous studies, indicating that: 1) L. 

pholis has excellent navigational abilities, being able to accurately determine homeward 

direction, even in unfamiliar places; 2) L. pholis is able to acquire and memorize a large amount 

of information on the surrounding features, needed for pinpointing specific locations in the home 

area. 

Although we have an area 20 meters long (Fig. 4B), the largest distances between re-

sightings found in this work (i.e. 20m) correspond to individuals that were first captured in pools 

and then found in nests (see red symbols in Fig. 4B).  Probably, in those re-sights, the individuals 

were moving into the area to nest, while in subsequent re-sight they were found in the chose nest. 

Interestingly, this suggests that fish do not reach the area randomly but instead search for 

appropriated corridors that lead them to the chose nests. This supports the common idea of high 

resilience of these fish to a specific spawning area (Faria and Almada, 1999, 2001).  

The hypothesis that homing males might have several reproductive events in a given 

breeding season is, nevertheless, very interesting. If this were the case, then it could be expected 

that such behavior would enhance the development of a navigational system. It is suggested that 

while some fish have the ability to use both visual (Burt de Perera and Guilford, 2008) and 

olfactory marks (White and Brown, 2013; Burt de Perera and Guilford, 2008), the absence of 

adaptive benefits from its use, simply make them not use these qualities. Fish living in the 
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intertidal zone have a highly accurate awareness of their geographic location and therefore, an 

animal’s behavior and cognition is shaped by the habitat in which they live (Burt de Perera and 

Guilford, 2008). For example, sand species of gobies show almost no flexibility to develop 

spatial learning abilities (White and Brown, 2013). Others can use panoply of environmental cues 

to learn the position of the refuge (Gibson, 1968; Dodd et al., 2000; Jorge et al., 2011a; White 

and Brown, 2013).  

Altogether, these findings support the idea that navigational mechanisms are widespread 

in vertebrates and could have either evolved repeatedly in different lineages or it was a legacy of 

a common ancestor and maintained in various lineages across the different classes (Rodda and 

Phillips, 1992): from fish (Brannon, 1982; Groot, 1982; Reese, 1989a; Walker et al., 1997) to 

amphibians (Phillips et al., 1995; Diego-Rasilla et al., 2005), to reptiles (Lohmann et al., 2008), 

to birds (Nastase, 1982; Jorge et al., 2009; Pledger and Bullen, 1998), to mammals (Holland et 

al., 2006).  
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Future perspectives 

 

One of the central questions of this work was to observe whether males, absent from the 

study area in the non-breeding season, return to the same sectors of nests, or to the same nest in 

successive breeding seasons, and how these life history traits affect the development of the 

navigational system. Interestingly, the findings showed that males spent a short time period with 

incubation leaving the question whether males invest in several reproductive events or 

alternatively the costs of each reproductive event are so high that they only invest in a single 

reproductive event per breeding season.  

An organism’s environment may be thought as everything other than itself that may affect 

its development, survival, or reproduction. Interactions with environmental factors also affect the 

spatial distribution of organisms, and therefore their population structure. Understanding the 

process of colonization of new habitat patches is critical to clarify the proximate mechanisms 

involved in the distribution of a species and particularly in the formation of breeding 

aggregations. Colonial breeding is a form of social mating behavior, in which individuals 

aggregate within densely distributed breeding territories that contain no resources other than 

nesting sites. It is a widespread phenomenon in animals, but still lacks a consensus on how 

coloniality has evolved. The oldest explanation for coloniality is that high density reduces nest 

predation as an answer to dilution effects, group vigilance and communal defense (Götmark & 

Andersson, 1984; Campagna et al., 1992). Conversely, many examples suggested that predation 

risk increase with nest density and might result from colonial nests are more conspicuous to 

predators than solitary nests. (e.g. Tinbergen et al., 1967; Birkhead and Hudson, 1977; Burger, 

1987; Götmark and Andersson, 1984; Bellinato & Bogliani, 1995; Brown, 1999). Contributing to 

conspicuity of colonial nests are the higher rates of acoustic, visual and olfactory cues emanating 

from them, leading to higher attack rates in colonies (Götmark and Andersson, 1984; Varela, 

2007; Chapman et al., 2011). Therefore, for future work is important to observe the function of 

the agglomeration of nests, and how they impact the courtship display and the reproductive 

success. The effect of individual’s behavior on their fitness often depends on what other members 

of the population are doing. In this instance, the fitness associated with a particular trait is 

frequency-dependent, it depends on the traits of at least some other members of the population 

and the optimization of this theory uses the concept of an evolutionarily stable strategy. We need 
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to test whether breeding failure or productivity in the previous breeding season is affecting nest-

site fidelity. If breeding failure does not affect nest-site fidelity, we corroborate that with high 

rates of recaptures, as obtained in this work. 

Another interesting question to answer is whether larvae are able to imprint on features 

from the natal area and return as adults to the same places. Using microsatellites and paternity 

tests we intend to test whether future breeding males in the area are descendants from males that 

presently breed there. Thus may be able to confirm if inbreeding is minimized and the proportion 

of individuals dispersing and remaining philopatric is balanced.  
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APPENDIX I A  
 

 

Fig. 1 – Overwiew of sectores. (A) Enlarged view of sectors between 1 and 6; (B) Enlarged view of sectors 6 and 

7; (C) Structuring of the nests in sector 11; (D) Wall with shelters in sector 2; (E) Pool B (F) Pool C. 



 ii 

Fig. 2 – Tagging procedures: Sighting (A); Capture (B); Record conditions of development of eggs (C); 

anaesthetization, surgery (D), recovery (F) and release (G). Determining total and standard length while fish were 

anaesthetized (E); Fish went through surgery to introduce an electronic tag (IA-100A, TROVAN) (D); Fish placed in 

an aerated tank until complete recovery (F). 
 



 iii 

 

Fig. 3 - The external morphology of L. pholis: the male’s genital papilla was located about midway from the anus 

to the first soft anal ray and was characterized by a globular protuberance (A). The female’s genital papilla, 

however, was located closer to the first soft ray, which was largely embedded in dermal tissue, with only the tip of 

the ray remaining visible (B). In both views of the external morphology of the ano-genital area (a) anus; (sr) tip of 

first soft anal ray and (go) genital opening. (Adapted from Ferreira et al., 2010). 

 

 

Fig.4 – Events of embryonic development of Lipophrys pholis: Day 1- Blastocist (A); Day 2-Embryo recognizable 

(B); Day 5- Embryo almost reaching the margin of the yolk (C); Day 8- Embryo longer than egg major axis (D); 

Day 16- Hatching (E); Above, the numbers indicated the total number of days that the eggs take to hatch. In field 

eggs are in three distinct stages of the development: egg and embryo with distinct yellowish (B); Egg with 

white/silvery coloration (D); Hatched egg (E) (Adapted from Faria et al., 2000). 
 

A B 
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Fig. 1 – Microtransponder reader (LID-560 Pocket Reader, TROVAN) adapted to a flexible cable (1cm of 

diameter)(A).Electronic tags (ID100-A T.CRISTAL ISO FDXA)(B) 
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APPENDIX III 
 

Statistical analysis – Tests of Normality 
 

The Tests of Normality tables shows the Kolmogorov-Smirnov test with Lilliefors correction and 

adjustment yet another test developed especially for normal law, the Shapiro-Wilk test. For 

samples of size greater than or equal to 30 advises the Kolmogorov-Smirnov test with Lilliefors 

correction; for samples of smaller size is more suitable to the Shapiro-Wilk test. The 

Kolmogorov-Smirnov easily accepts the H0 hypothesis that the Kolmogorov-Smirnov test with 

Lilliefors correction. 

Table 1 – Test of Normality table for distances between sectors of the study area. 

 

 Shapiro-Wilk 

Statistc df Sig. 

Distances (meters) between 

sectors 

0,646 29 0,000001 

 
Table 2 – Test of Normality table for weights from both sexes of L. pholis. 

 

 

Kolmogorov-Smirnovª 

Statistc df Sig. 

 Weights (grams) from both 

sexes 
0,100 119 N.S. 

 

 
Table 3 – Test of Normality table with total lengths (cm) from females and males of L. pholis. 

 

 

Kolmogorov-Smirnovª 

Statistc df Sig. 

Total lengths (centimeters) 

from both sexes 
0,052 119 N.S. 

ª Lilliefors Significance Correction 



 

 

Table 4 – Test of Normality table with total lengths (cm) and weights for males of L. pholis with homing and non-

homing. 

 

Shapiro-Wilk 

Statistc df Sig. 

Weight (g) in homing and 

non-homing males 

0,959 144 0,000001 

Total lengths (cm) in homing 

and non-homing males 

0,985 144 N.S. 

 

 

Table 5 – Table with the Total lengths (cm), weights (g), sex discrimination (N=190) and definition of individuals 

who return two successive breeding seasons (N=26). Totalizing 127 marks in males that may or may not be 

recaptured but are not sighted two successive breeding seasons. 

 
 

Individual Sex 

TL 

(Total 

length) 

W 

(weight) 

Successiv

e 

breeding 

seasons 

074D_1A67 M 16 49  

074D_1B3E F 16 50  

074D_1C16 M 14 42  

074D_210A M 13,2 30  

074D_217A M 12,8 27  

074D_2438 M 15,4 47  

074D_24C3 M 14,5 40  

074D_24C5 M 13,7 34  

074D_271A F 12,9 31  

074D_27B6 M 11,9 22  

074D_28ED F 12,2 17  

074D_2989 M 12,9 29  

074D_2C08 M 16,3 60  

074D_3811 M 14 30  

074D_3B8E M 14 35  

074D_3CF8 M 13 28  

074D_3F20 F 14 38  

074D_436F M 16,1 37  

074D_442C M 13 36  

074D_44E3 M 16,1 61  

074D_4B5A M 12,3 21  

074D_4E35 M 11,5 21  

074D_505A F 13,2 30  

Individual Sex TL W Successiv

(Total 

length) 

(weight) e 

breeding 

seasons 

074D_505E M 18,2 71  

074D_5279 M 18,1 77  

074D_5495 M 12,5 26  

074D_5496 M 12,7 29  

074D_58DE M 17,3 71  

074D_5A42 M 16,4 63  

074D_5C72 M 16,3 51  

074D_5F42 M 13 34  

074D_60AB F 13,8 40  

074D_6217 F 12,3 19  

074D_6585 M 15,3 52  

074D_68E4 M 12,9 38,5  

074D_6993 M 15,5 47  

074D_6AD9 M 11,3 18  

074D_6ADC M 12,9 29  

074D_6ADE M 14,7 36  

074D_6ADF M 12,2 24  

074D_6E16 M 13,1 26  

074D_7095 M 13,5 30  

074D_7D2F M 15,8 47  

074D_7E21 M 14,4 32  

074D_7F8E M 12 25  

06DE_39F1 F 11 5,5  

06DE_94CD M 16,1 50,5  



 vii 

06DE_9884 F 15 50  

06DE_A8F4 M 16,4 44  

06DE_C810 M 11,7 21 X 

06DE_AA8A M 18 64  

06DE_EFF3 M 13 28,2  

06DF_0DFC F 10,9 10,5  

06DF_0EC7 F 12 21  

06DF_0E61 M 13,8 31,4 X 

06DF_0F2E M 9,8 20  

06DF_0F31 M 11,7 18  

06DF_0F32 M 10,9 13  

06DF_0F9A M 13,9 20  

06DF_100B F 14,1 32  

06DF_1071 M 16,2 47  

06DF_1149 ? 12,4 23  

06DF_114D M 11,4 18  

06DF_11B5 M 13,5 26 X 

06DF_11B9 M 16,3 60 X 

06DF_1222 M 12 23  

06DF_1227 M 17 47  

06DF_1291 M 15,8 59  

06DF_13D0 M 13,4 30 X 

06DF_1369 M 10,6 13  

06DF_143E M 11,4 18  

06DF_143F M 11,2 15  

06DF_14B F 10,8 11  

06DF_14B1 F 11,8 21,5  

06DF_1530 M 11,4 13  

06DF_162D F 12,5 24  

06DF_1634 M 13,5 27  

06DF_172E F 11,5 21  

06DF_1732 M 16,1 41,5  

06DF_17AE F 14,9 40  

06DF_17B3 M 10,9 15  

06DF_1831 M 16,2 52  

06DF_18B4 M 14,7 33,5  

06DF_18B6 M 14,9 36  

06DF_1AC7 M 17,7 64,5 X 

06DF_1AC9 M 17,5 67 X 

06DF_1B53 M 14 39  

06DF_1BD9 F 15 45  

06DF_1BDB F 11,8 19  

06DF_1C5C F 11,7 19,5  

06DF_1D6B M 13,9 28  

06DF_1D6D M 9,5 10 X 

06DF_1D6E M 15,5 48  

06DF_1DFD M 13 19 X 

06DF_1E7F M 13,1 27,5  

06DF_1F04 F 13,3 16,5  

06DF_2010 F 13,5 36  

06DF_2073 M 17,4 64,5  

06DF_2097 F 13,2 24  

06DF_211A M 12 21  

06DF_211E M 14,5 44 X 

06DF_222B F 11,4 16  

06DF_2334 M 12,8 27,5 X 

06DF_2335 M 10,2 13  

06DF_2442 F 14 35  

06DF_2449 M 15,6 45  

06DF_244D M 12,8 26 X 

06DF_24C9 F 13,6 31,5  

06DF_24D1 M 13,3 19  

06DF_26ED M 13,6 32,7  

06DF_26F0 F 11 19  

06DF_26F1 M 16 46  

06DF_266D M 12,3 31 X 

06DF_2663 M 12,4 23,1 X 

06DF_2773 M 18,5 52  

06DF_2778 M 15,5 41  

06DF_27FC M 15 33  

06DF_27FE M 16,1 45,5  

06DF_2887 M 14,6 45  

06DF_2911 M 15,4 30,5  

06DF_299C M 16,4 53  

06DF_2A20 M 14,1 39  

06DF_2A23 M 12,7 28 X 

06DF_2A27 M 14,2 35  

06DF_2A2D F 11 19  

06DF_2AB5 M 14,1 31  

06DF_2ABB M 11,4 22,5  

06DF_2B37 M 12,7 21 X 

06DF_2B44 M 14,2 32,5  

06DF_2C57 M 13,5 31 X 

06DF_2C58 M 13,8 42  

06DF_2C61 M 10,1 11  

06DF_2CB3 M 12,4 21  



viii  

06DF_2D73 M 17,1 59 X 

06DF_2D76 M 17,1 56  

06DF_2DFC M 12,9 26  

06DF_2E02 M 13,9 30 X 

06DF_2E88 M 14,5 36 X 

06DF_2E8C F 14,6 36  

06DF_2FA0 M 16 45,5  

06DF_3026 F 12,5 20  

06DF_302A M 15,7 45  

06DF_302D M 13,9 31  

06DF_313B M 14 26  

06DF_313D M 15,6 41  

06DF_31C1 F 11,4 15  

06DF_324A M 15,8 42  

06DF_32D4 F 11,1 15  

06DF_3356 M 11 15  

06DF_3357 F 13,6 24,5  

06DF_3359 M 13,1 26  

06DF_33DB M 11,5 18  

06DF_33DE M 16,5 45 X 

06DF_33E0 M 14 28 X 

06DF_34E8 M 12,2 22,5  

06DF_34EC F 12,6 21  

06DF_356B M 12 21,5 X 

06DF_35F3 F 12,2 21  

06DF_35F6 M 14,9 41 X 

06DF_3644 F 14,6 31  

06DF_366F M 15,3 50  

06DF_3676 F 14,9 37  

06DF_36F0 M 12,6 20,5  

06DF_36F3 F 10,6 14  

06DF_36F8 F 14 31,5  

06DF_3773 F 12,3 29  

06DF_37F6 F 10,9 15,5  

06DF_3872 M 14,3 24,5  

06DF_38EF F 12 21  

06DF_38F0 M 13,1 31  

06DF_38F7 M 13,6 29  

06DF_3970 M 12,9 25  

06DF_39E7 M 11,5 16  

06DF_3A63 M 10,4 16  

06DF_3AD9 M 11,8 20,5  

06DF_3ADD M 13,4 27,1  

06DF_3ADE M 16,5 50  

06DF_3ADF M 16,4 43,66  

06DF_3B57 M 15,2 45,5  

06DF_3B58 M 13,4 24,5 X 

06DF_3BD0 M 13 29,5  

06DF_3C43 F 10,9 16  

06DF_3C44 F 14,3 40  

06DF_3CB3 M 14,4 45 X 

06DF_3D26 F 12,2 20  

06DF_3D28 M 10,5 13  

06DF_3E04 M 12 11  

06DF_3E75 M 14,1 30  

06DF_5DFF M 10,4 10  

0713_5DAF M 11,2 17  

 

 


