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ABSTRACT 

 
The lack of access to diagnostics is a global problem which causes underdiagnosis of various 

common and treatable diseases. In certain areas, the access to laboratory services and 

medical experts is extremely limited, such as in sub-Saharan Africa, with often less than one 

practising pathologist per one million inhabitants. Annually, hundreds of millions of 

microscopy samples are analysed to diagnose e.g. infectious diseases and cancers, but the 

need for more is significant. During the last decade, technological advancements and 

reduced prices of optical components have enabled the construction of inexpensive, 

portable devices for digitization of microscopy samples; a procedure traditionally limited to 

well-equipped laboratories with expensive high-end equipment. By allowing digitization of 

samples directly at the point of care (POC), advanced digital diagnostic techniques, such as 

the analysis of samples with medical ‘artificial intelligence’ (AI) algorithms, can be utilized 

also outside high-end laboratories – which is precisely where the need for improved 

diagnostics is often most significant.  

The aim of this thesis is to study how low-cost, POC digital microscopy, supported 

by automatized digital image analysis and AI can be applied for routine microscopy 

diagnostics with an emphasis on potential areas of application in low-resource settings.  

We describe, implement and evaluate various techniques for POC digitization and 

analysis of samples using both visual methods and digital algorithms. Specifically, we 

evaluate the technologies for the analysis of breast cancer tissue samples (assessment of 

hormone receptor expression), intraoperative samples from cancer surgeries (detection of 

metastases in lymph node frozen sections), cytological samples (digital Pap smear 

screening) and parasitological samples (diagnostics of neglected tropical diseases). 

Our results show how the digitization of a variety of routine microscopy samples is 

feasible using systems suitable POC usage with sufficient image quality for diagnostic 

applications. Furthermore, the findings demonstrate how digital methods, based on 

computer vision and AI, can be utilized to facilitate the sample analysis process to e.g. 

quantify tissue stains and detect atypical cells and infectious pathogens in the samples with 

levels of accuracy comparable to conventional methods.  
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In conclusion, our findings show how technological advancements can be leveraged 

to create general-purpose digital microscopy diagnostic platforms, which are 

implementable and feasible to use for diagnostic purposes at the POC. This allows the 

utilization of modern digital algorithms and AI to aid in analysis of samples and facilitate 

the diagnostic process by automatically extracting information from the digital samples. 

These findings are important steps in the effort to develop novel diagnostic technologies 

which are usable also in areas without access to high-end laboratories, and the technologies 

described here are also likely to be applicable for diagnostics of other diseases which are 

currently diagnosed with light microscopy. To our knowledge, no similar academic project 

of this magnitude that investigates these diagnostic technologies has been conducted. 
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1 INTRODUCTION 

 

Light microscopy has for centuries remained the relatively unchanged diagnostic standard 

for a number of diseases (Farahani, Monteith, 2016). The examination of samples with light 

microscopes is widely utilized in clinical work and scientific research, although having 

certain downsides - such as being labour-intensive, time-consuming and prone to 

subjectivity. One practical limitation of the technique is the requirements for trained 

experts on-site to perform the sample analysis process, which is a problem in areas lacking 

access to medical experts. Digital microscopy and computer-aided diagnostics have been 

proposed as solutions, but the shift towards digital methods in the field of microscopy 

diagnostics has been slow. The introduction of slide scanners during the end of the 20th 

century enabled microscopy samples to be digitized for remote viewing and analysis using 

digital methods, and technological advancements since has enabled large-scale digitization 

of samples at high resolution (Pantanowitz et al., 2018). Digital technologies can potentially 

facilitate the analysis of samples in a number of ways by e.g. allowing remote viewing of 

samples, automatically detecting objects of interest, improving turnaround time for analysis 

of slides and increase diagnostic accuracy, but the adaptation has been slow especially in 

routine clinical work (Montalto, 2016). One limitation to wider-scale adaptation of digital 

microscopy is the requirement for expensive and bulky digitization equipment, which has 

limited the techniques mainly to well-equipped laboratories (Isaacs et al., 2011, Hernández-

Neuta et al., 2019). During recent years, technologies have been developed to enable 

digitization of microscopy samples also outside the laboratory, using devices which are 

significantly smaller and more cost-efficient compared to traditional alternatives. The 

potential for this type of devices to provide platforms for digital diagnostics in field 

settings, by utilizing e.g. camera phone components, has been recognized in multiple 

studies (Boppart, Richards-Kortum, 2014; Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019). 

In parallel, the field of digital image analysis is undergoing a paradigm shift with the rise of 

‘artificial intelligence’ (AI) for medical diagnostics. These novel software algorithms have 

demonstrated a remarkable performance in complex image-analysis tasks, such as the 

analysis of microscopy samples (Bera et al., 2019), and could provide important diagnostic 

support tools and reduce the workload for clinicians especially in resource-constrained 

areas.  



 14 

Lacking access to laboratory services and diagnostics negatively impacts the 

treatment of diseases and outcome for the patient (Adesina et al., 2013) and the global need 

for improved front line diagnostic testing is significant in many geographical regions for 

multiple diseases (World Health Organization, 2017). By leveraging these digital diagnostic 

techniques, there is a potential to improve access to diagnostics and healthcare on a global 

level (Figure 1).  

 

Figure 1. Point-of-care digital diagnostic workflow. Schematic image illustrating steps in a 

digital diagnostic pipeline which includes sample acquisition, digitization, uploading, 

analysis and verification of results.  

 

To study the diagnostic potential of the technologies here, we describe, develop and 

evaluate several approaches to digital microscopy supported by automatized digital image 

analysis methods, which are feasible for POC usage. We apply these methods for diagnostics 

of various common conditions, which would be likely to benefit significantly from improved 

front line diagnostics. Specifically, we study the analysis of cancer tissue samples for 

assessment of hormone receptor status (ER-receptors in breast cancer), detection of 

metastases in lymph node frozen sections, the cytological screening for cervical cancer and 

the diagnostics of the most common neglected tropical diseases (NTDs).  
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2 REVIEW OF THE LITERATURE 

2.1 From optical to digital microscopy 

Optical microscopy, or light microscopy, is the traditional type of microscopy that utilizes 

visible light and an arrangement of one or more lenses to magnify images of microscopy 

samples. The light microscope is one of the oldest instruments still in use in medical 

diagnostics and scientific research, and has remained relatively unchanged since the 17th 

century (Chen, Zheng & Liu, 2011). Optical microscopy has been the diagnostic standard for 

a variety of diseases by allowing visual analysis of specimens at high magnification to 

enable visualization of pathogens, such as bacteria and parasites and assessment of detailed 

tissue morphology and structure - features which are vital e.g. in cancer histopathology 

(Chan, 2014). The resolving power of a conventional light microscope is mainly determined 

by the objective lens used and is dependent on the wavelength of the light source used. For 

conventional optical microscopes (using visible light) this means that the resolving power is 

theoretically limited to approximately 0.2 µm, due to the wavelength of visible light (~400 

nm). Although conventional microscopes remain essential tools for clinicians, the visual 

microscopy examination of samples has certain downsides, such as being time-consuming, 

labour-intense, prone to subjectivity and requiring the presence of trained microscopists 

on-site. During the last decades, there has been an increased interest in the field of digital 

microscopy and digital pathology (Pantatonowitz et al., 2011). Digital microscopy is a field 

which combines pathology with digital technologies (Griffin, Treanor, 2017). Digital 

imaging systems, such as digital microscopes or whole-slide scanners, are platforms capable 

of transforming physical microscopy specimens (glass slides) into digital formats and 

represents a key component in the digital pathology workflow. Modern high-resolution 

slide scanners support digitization of specimens at sub-micrometre resolution into digital 

images, so-called whole-slide images (WSIs) (Figure 2). Similarly to optical microscopes, the 

specimen in digital microscopes is also magnified with an objective lens, but the 

corresponding image is relayed directly (or through lens arrays) to an electronic detector 

(i.e. light-sensitive sensor, such as a CCD or CMOS sensors), which samples the continuous 

(analogue) signal into discretely-sized data in the form of pixels in the digital image. The 

image sensor ideally has a pixel pitch (density of pixels) smaller than the minimum 

resolvable distance by the objective lens to avoid degradation of the resolving power by the 
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sensor. Thus, in digital systems the resolving power, or spatial resolution, is determined not 

only by the objective lens used but also the features of the sensor, e.g. the number of pixels 

and distance between pixels (the so-called sampling interval), and also the features of the 

display monitor (Sellaro et al., 2013). The sampling frequency required to accurately 

reproduce features in the digital image is determined by the Nyquist criterion, and is 

approximately equal to twice the highest spatial frequency of the specimen. This implies 

that, for example, at the diffraction limit of 0.2 µm for visible light, a digitizer must be 

capable of sampling at intervals that correspond to 0.1 µm or less to accurately capture 

details in the sample. While the optical magnification of conventional light microscopes is 

most often expressed with a dimensionless coefficient (e.g. 5x, 10x or 100x) which describes 

the ratio between the image observed through the microscope and the size of the object as 

viewed with the naked eye, digital magnification is measured differently. As the digital 

image consists of discrete pixels captured by the image sensor, the pixels represent the 

absolute upper limit of the image’s resolution (i.e. no visual information exists which is 

“smaller” than the pixels). This image is viewed on a display with a separate resolution, 

which in turn determines the part of the image which is reproduced (e.g. for one sensor 

pixel to equal one pixel of the display, a standard 1920 x 1080-pixel monitor can only 

display a small part of a 40 000 x 40 000-pixel digital slide at a given time). When adjusting 

the digital magnification (zooming) in the digital image, the ratio between the sensor pixels 

and the monitor pixels is changed, but the information in the image file is not altered. As 

the size of the display can vary (e.g. a cell phone or computer screen), it is necessary to 

know the physical size of the individual pixels to be able to determine the ratio between the 

size of the object on the sample and the displayed image on the monitor. Given the 

dimensions of microscopic features in pathology, this per-pixel spatial metric is often 

expressed as µm/px for digital microscopes to allow unambiguous comparison of images 

from different systems. High-end whole slide scanners typically support digitization of 

slides at high magnification using 20x or 40x objectives with pixel sizes of 0.50 – 0.25µm/px 

(Evans et al., 2017). Although the imaging performance of digital microscopes typically is 

described only with the magnification power of the objective lens and the sensor pixel size, 

the actual resolving power (minimum resolvable distance) of the system depends on the 

combination of components used, but typically is around 2-2.5 times the pixel size for high-

end scanners which corresponds to approximately ~0.5 µm (Zarella et al., 2018). Whole-

slide scanners utilize digital microscope systems with robotics to automatically move the 
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glass slides while simultaneously focusing and capturing image data from different 

locations in the sample. The corresponding WSI is constructed by assembling individual 

images, consisting of square-shaped separate fields-of-views (FOVs) from the sensor (tile-

based scanners), or longer image strips (line-based scanners), into a single image file 

containing the whole digitized sample, in a process called stitching. Digitized, i.e. 

“scanned”, samples are stored either on local hard drives or uploaded to cloud servers for 

remote access before viewing. Virtual microscopy is a broad term used for viewing and 

sharing of digital samples, e.g. for applications in remote diagnostics or education. The term 

telepathology is commonly used specifically to refer to the practice of pathology at a 

distance by remote viewing of WSIs. The utilization of digital microscopy allows digital 

image analysis methods to be used to aid in sample analysis. For this, the term computer-

aided diagnosis (CAD) has been used to describe digital pathology (and other image-based 

medical fields) with digital image analysis. Currently, conventional whole slide digitization 

systems are mainly limited to well-established and advanced laboratories, as the 

implementation of these systems is expensive and require extensive supporting digital 

infrastructure (e.g. network, storing, viewing of slides), dedicated trained personnel to 

operate the equipment and regular service and maintenance (Isaacs et al., 2011, Zarella et 

al., 2018). 

 

Figure 2. Whole slide scanner 

at FIMM laboratory (University 

of Helsinki). Image showing 

high-end whole-slide scanner 

(1), which is connected to a 

desktop computer (2) used to 

control the device and manage 

the digitized samples (whole 

slide images). 
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2.1.1 Structure of a digital microscopy workflow 

A typical digital pathology (microscopy) workflow consists of certain fundamental stages; 

digitization of samples, interface for accessing and viewing digital samples, sharing of 

data, data archiving and digital analysis (Pantanowitz et al., 2011).   

Conventionally, the digitization of samples is performed with whole-slide scanners, 

as discussed in the previous section. Compared to conventional examination of samples 

with light microscopes, the interface for viewing digital WSIs is typically a computer display. 

Although being fundamentally different, this method has certain advantages, such as 

allowing the viewing of larger sample areas at a given time, improved ergonomics and 

potentially faster turnaround time for sample analysis (Vodovnik, 2016). By transferring 

physical samples into digital format, sharing and remote access to digital samples is possible 

over the internet, by e.g. uploading of slides to shared servers (Williams, Bottoms & 

Treanor, 2017). This provides opportunities for collaboration and has been widely 

implemented in areas such as education, research and remote consultations (Pantanowitz et 

al., 2018). Compared to the storage of physical samples, archiving and retrieving of digital 

samples is more convenient than storing and retrieving collections of glass slides. Notably, 

as the size of high-resolution WSIs can be substantial (multiple gigabytes), requirements in 

terms of IT infrastructure and hard drive capacity can be considerable for more sizeable 

collections of slides. Finally, the digitization of samples has resulted in significant new 

opportunities for digital analysis of samples and CAD. By utilizing automatized digital 

algorithms and software the analysis of samples can be facilitated by e.g. automatically 

detecting objects of interest, classification of samples and quantification of tissues and 

histological stains (Bera et al., 2019). This is discussed in more detail in the corresponding 

section on computer-aided microscopy diagnostics (2.3).  

2.2 Digital microscopy at the point of care  

 
Access to routine, real-time images of microscopy samples in all resource settings could 

significantly contribute to improving screening, diagnosis and treatment monitoring of 

various common diseases (Boppart, Richards-Kortum, 2014). POC diagnostics is an 

alternative to laboratory-based testing, where diagnostic information is provided in an 

outpatient setting to aid in clinical decision-making and reduce the time and equipment 
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required. During the last decade, a number of portable image-based solutions for POC 

diagnostic testing have been developed and tested for medical applications (Zhu et al., 

2013; Saeed, Jabbar, 2017; Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019). Compared to 

conventional imaging solutions, such as traditional slide-scanners, this type of platforms 

offers multiple potential advantages, such as being more cost-efficient and portable, while 

still enabling real-time imaging of biological samples near the patient for early detection of 

diseases (Taruttis, Ntziachristos, 2012). By utilizing mobile phone connectivity and global 

data networks, captured images can be instantaneously shared remotely for expert 

consultations or uploaded to cloud servers e.g. for image analysis purposes (Smith et al., 

2011). Inadequate or delayed access to diagnostics negatively affects the outcome for the 

patient, leads to additional visits and unnecessary referrals and delays initiation of adequate 

treatment interventions (Adesina et al., 2013). By leveraging advances in 

telecommunication technology and optics, there is an opportunity to develop novel 

solutions for improved diagnostics at a global level (Boppart, Richards-Kortum, 2014). In 

addition to providing a platform for rapid, front-line digital microscopy in low-resource 

areas without access to laboratory infrastructure, POC digital microscopy has potential 

applications also in higher-resource areas to facilitate analysis of samples e.g. in locations 

without on-site pathologists; such as operating suites where assessment of samples is 

required to guide the surgeon during operations, e.g. by determining tumor margins and 

detecting metastatic tissue (Pleijhuis et al., 2009).  

 

2.2.1 Important features of point-of-care diagnostic platforms 

 

As traditional digital microscopy and whole slide-scanning solutions tend to be high in cost 

and large in size, they are not ideal for POC applications in rural settings. To address these 

limitations, efforts have been made to develop compact and cost-effective solutions. 

According to the World Health Organization (WHO), POC diagnostic tests and equipment 

should meet the so-called ASSURED criteria by being Affordable, Sensitive, Specific, User-

friendly, Rapid and robust, Equipment-free and Deliverable to end-users (Peeling, R. W. et 

al., 2006). Especially in low-resource environments, the minimization of cost is particularly 

important for both the device itself and per-test cost of sample analysis (Drain et al., 2014). 

Ideally, POC imaging devices should be small in size to allow for portability and durable 
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enough to withstand environmental factors, such as extreme weather conditions, presence 

of water and moisture and resistant to dust and disinfection protocols (Yager, Domingo & 

Gerdes, 2008). Especially in peripherally located and resource-constrained areas, the lack of 

infrastructure often means that continuous, stable access to power is limited, favouring 

solutions where alternate power sources, such as batteries, can be used. As access to trained 

medical and technical personnel in rural areas is limited, devices should preferably be 

usable with minimal training while still providing rapid, reliable results to aid in clinical 

decision making without the need for follow-up visits or additional patient contacts. 

Furthermore, possible local supply chain limitations need to be considered when developing 

digital microscopy solutions for low-resource areas (Boppart, Richards-Kortum, 2014). 

2.2.2 Miniaturized digital microscopes as platforms for medical diagnostics 

 

To date, several cost-efficient, miniaturized solutions for digitization of biological samples 

have been developed and tested for field diagnostics of a variety of diseases (Perkel et al, 

2017). Many of these devices have been tested in laboratory conditions (Saeed, Jabbar, 

2017), but several have also been evaluated in clinical settings; mainly in Africa for 

diagnostics of parasitic diseases (Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019) (Table 1). 

In general, for most current POC digital imaging systems, the highest achievable spatial 

resolution is lower (~1 µm) compared to the maximum spatial resolution achievable for 

typical laboratory high-end whole slide scanners (~0.5 µm). However, as a number of 

difference technological approaches have been studied for these applications, the resolving 

power of the systems varies substantially depending on the components used (e.g. 0.63 – 

2.5 µm) (Zhu et al., 2013), and generalisation is therefore difficult.   

The majority of the work on bringing optical imaging for medical diagnostics to the 

POC has been conducted during the last decade. Even before this, early studies such as the 

one conducted by Stothard et al. in 2005, demonstrated how infectious parasites (S. 

mansoni) could be visualized in field-settings in samples with an inexpensive, handheld 

field-microscope (with an attached single lens reflex camera to capture images) with 

reasonably high levels of sensitivity (85%) and specificity (96%) (Stothard et al., 2005). 

Following this, innovations and improvements in engineering, optics and digital 

technologies have resulted in significantly more advanced devices, which have shown 



 21 

potential for field diagnostics of a variety of diseases. At an early stage, the potential to 

leverage smartphone technologies to create small-sized digital imaging devices was 

recognized. In 2009, Breslauer et al. demonstrated in a proof-of-concept study how 

mounting a camera phone to a microscope enabled visualization of malaria parasites (P. 

falciparum; in blood smears), tuberculosis bacilli (in Auramine-o stained sputum smears) 

and atypical erythrocytes for sickle-cell anaemia diagnostics (in blood smears), thus 

demonstrating that the imaging performance achievable with a smartphone is sufficient to 

resolve features essential for diagnostic purposes (Breslauer et al., 2009). During this year, 

the field of portable microscopy was also significantly advanced by an initiative from the 

Wellcome Trust, which resulted in the development of the Newton NM1 microscope. This 

commercially available device uses LED technologies in a compact portable microscope to 

enable field microscopy with similar levels of magnifications as laboratory microscopes, and 

also allows capturing of digital images by the attachment of a camera phone to the device. 

This device remains one of the most studied POC microscopes and has been used to achieve 

high levels of sensitivity and specificity (> 90%) for field diagnostics of malaria and the soil-

transmitted helminths A. lumbricoides, T. trichiura and S. mansoni (Bogoch et al 2014; 

Coulibaly et al 2016). Apart from brightfield microscopy, fluorescence microscopy was 

recognized at an early stage to be usable to improve diagnostic performance e.g. for 

diagnostics of tuberculosis bacilli and malaria parasites, while still utilizing inexpensive 

components. Multiple field studies have reported results for this application that are 

comparable to laboratory-grade traditional microscopy (Albert et al., 2010). Field 

diagnostics of malaria with fluorescence POC microscopy has been studied with the battery-

powered field fluorescence microscope ‘Cyscope’; representing a portable, battery-powered 

fluorescent microscope. This device has been used to visualize malaria parasites in blood 

smears (Hassan et al., 2011) and for tuberculosis diagnostics (Chang, E., Page, A. & Bonnet, 

M. 2016), with similar levels of sensitivity and specificity (~90%) in multiple studies, 

although notably one study has reported high rates of false positives with this device for 

unclear reasons (Sousa-Figueiredo et al., 2010).  

In 2013, Bogoch et al. showed how a simplified field digital microscope could be 

constructed by simply attaching a ball lens directly to a smartphone camera, and used it to 

diagnose schistosomiasis and various STHs in field settings (Bogoch et al., 2013 and 2014). 

Although the achieved sensitivity was modest in these studies, likely due to the limited FOV 

and spatial image quality, the device was simple and inexpensive; suggesting the 
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technology could be suitable for wider-scaler implement for diagnostics in field settings. To 

improve the image quality and FOV of smartphone camera systems, Switz et al. constructed 

a field-microscopy device for diagnostics of the same parasites which instead of a ball-lens 

utilized a second, reversed camera lens attached to a smartphone camera (Switz, 

D'Ambrosio & Fletcher, 2014) to produce a larger FOV (~10mm2) and a higher spatial 

resolution. Another device which utilizes a similar setup is the reverse-lens CellScope, 

developed by Fletcher et al. This device is a 3D-printed external module which is attached to 

the back of a camera phone to allow imaging of microscopy samples, e.g. for the diagnosis of 

Schistosoma and intestinal protozoa with high specificity (but only moderate sensitivity) 

(Ephraim et al., 2015; Coulibaly et al., 2016). A modified version of this device, called the 

LoaScope, has shown promise in the analysis of peripheral blood samples for the detection 

of the Loa loa parasite with high levels of reported sensitivity and specificity (100% and 

94%) (D’ Ambrosio et al., 2015). Similarly, high specificity (100%) but moderate (72%) 

sensitivity was also reported for diagnostics of schistosomiasis in a field study in Ghana by 

Bogoch et al., using another 3D-printed optoelectronic microscopy assembly that was 

attached to a smartphone (Bogoch et al., 2017). Apart from devices that utilize smart phone 

camera systems and miniaturized traditional compound microscope assemblies, a number 

of innovative approaches to digitizing samples at the POC have been described during the 

last decade. In 2014, a prototype of an extremely low-cost microscope (the ‘Foldscope’), 

assembled from folded pieces of cardboard with a battery-powered LED light-source and a 

small-sized optical lens was presented (Cybulski, Clements & Prakash, 2014). Although this 

device can be manufactured extremely cost-efficiently (less than one USD), the usability is 

limited by the design (sample and device need to be examined in close proximity to the face 

of the user which presents a hygiene issue), and low degrees of sensitivity and specificity 

(Ephraim et al., 2015). Another approach to developing simple and compact POC optical 

imaging devices is lens-free holographic microscopy, described by Mudanyali et al. for 

detection of Giardia lamblia parasites (Mudanyali et al., 2010). After this, the technique has 

been applied to imaging of other sample types, such as cytological samples and blood 

smears (Greenbaum et al., 2012; Coskun, Ozcan, 2014). In addition to these imaging 

modalities, other original methods for medical imaging of microscopy samples have been 

described, relying on e.g. tomography, fluorescence, high-resolution wide-field lenses and 

movement analysis of schistosome miracidia (Zhu et al., 2013, Linder, Varjo & Thors, 2016). 

Although a number of these early-stage creative approaches have promising implications 
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for POC digital microscopy diagnostics, development is still needed before clinical 

evaluation is feasible.  
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2.2.3 Principal challenges with current point-of-care digital microscopy 

devices 

 
A number of different approaches and devices show potential as platforms suitable for 

digital POC medical imaging, but certain issues remain to be addressed to allow wider-scale 

clinical implementation. Firstly, the FOV currently achievable with most devices is limited 

and many systems support only imaging of a single microscopic FOV at a time, thus 

reducing sensitivity as often significantly larger areas (measuring multiple FOVs) need to be 

analysed to provide reliable results (Rajchgot et al., 2017). Secondly, practical issues need to 

be considered to allow usability in field settings. These include solving how the sample is 

navigated and oriented, hygiene issues (cleaning and exposure to contaminations) and 

requirement in terms of power and storage of images. Thirdly, even though certain devices 

can be manufactured extremely cost-efficiently (e.g. the Foldscope for less than one EUR), 

the devices which seem to be more usable tend to be more expensive (e.g. Newton NM1; 

costing approximately 650 EUR). Lens-free microscopy is a promising technology, as the 

construction does not require any lenses, while supporting relatively large FOVs, but 

challenges still limiting this technology include limitations in spatial resolution, difficulties 

with imaging of thick specimens (samples need to be placed in close proximity to the 

sensor) and requirements in terms of illumination and computational resources for the 

reconstruction of images (Greenbaum et al., 2012). One challenge for multiple systems is 

the scattering of objects of interest at different focal levels in samples, meaning that depth-

level focus adjustment is preferred in samples, and practically all solutions at the moment 

support imaging in single planes only with few exceptions (Sowerby et al., 2016). Moreover, 

although the utilization of built-in camera systems in smartphones has many advantages, 

e.g. by allowing immediate processing of images on the internal memory and utilization of 

the wireless connectivity of the device, it is limited by the lack of universal standards in 

hardware and software. The wide range of different built-in image processing algorithms in 

commercially available camera phones result in image feature variations, such as artificial 

digital sharpening, halos around high-contrast structures and other image post-processing 

modifications, calling for strategies to increase uniformity (Skandarajah et al., 2014).   
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In conclusion, during the last decades there has been a gradual shift from purely optical to 

digital systems in microscopy diagnostics, but the adaptation has been slow and mainly 

limited to larger laboratories. A number of solutions that enable digitization of microscopy 

samples with small-sized, inexpensive portable digital microscopy devices have been 

described during recent years. Smartphone camera optics have been used in many devices 

either directly or in combination with other optoelectronic components to enable the 

imaging of samples. To date, the majority of these devices have been studied for field 

diagnostics of infectious diseases; mainly NTDs, such as STHs and schistosomiasis, malaria 

and tuberculosis, by visual identification of pathogens in the digitized samples. Although 

the spatial resolution of these devices in general is lower than what is achievable with high-

end systems, multiple studies show that the imaging performance is sufficient for 

diagnostics of a range of diseases, thus suggesting potential as platforms for POC digital 

microscopy especially in low-resource settings.  

2.3 Computer-aided microscopy diagnostics 

 
The potential to facilitate and automatize image-based medical diagnostics, such as the 

analysis of microscopy samples, with digital methods has been studied for decades (Al-

Kofahi et al., 2010, Voulodimos et al., 2018). As a general term, computer vision (CV) is often 

used to refer to the field of computational methods used to process and analyse digital 

images and extract useful information from them. Digital image analysis is one type of 

computer-aided diagnostics (CAD), which has recently received an increased interest for 

medical applications. When applying digital image analysis methods for microscopy 

diagnostics, the aim is usually to mimic the tasks of the visual sample assessment, 

performed by a human observer. Historically, considerable efforts have been made to 

automatize the analysis of microscopy samples and extract useful data from digitized 

samples. Much work has been focused on analysing histological samples, scanned with 

laboratory-grade slide scanners, for assessment of e.g. overall tissue morphology (Al-Kofahi 

et al., 2010), quantification of histological stainings (Tuominen et al., 2010) and features of 

prognostic value (Veta et al., 2015, Xu et al., 2016). Digital image analysis methods have 

also been applied to facilitate diagnostics of infectious diseases by e.g. automatizing 

detection of malaria parasites (Linder, N. et al., 2014, Poostchi et al., 2018), also with high-

end equipment, but not in the same magnitude as analysis of histological samples. 
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2.3.1 Machine learning and artificial intelligence for image analysis 

applications 

 
During the last decade, the field of digital image analysis has significantly evolved with the 

rise of machine learning (ML) and so-called artificial intelligence (AI) based on deep neural 

networks (Lee, L. I. T., Kanthasamy, Ayyalaraju & Ganatra, 2019). ML refers to the process 

where computer algorithms learn to perform specific tasks without explicit instructions, by 

learning from patterns in training data. ML algorithms have been widely implemented for 

numerous applications, ranging from e-mail spam filters and speech recognition software to 

object detection and image classification. AI in general refers to the field of computer 

science where a machine attempts to emulate the decisions of an intelligent human, and ML 

represent one approach to developing AI systems, where the system ‘learns’ to make 

decisions based on patterns in training data. Numerous methods exist to developing AI 

algorithms for image analysis applications, with deep learning currently representing one 

widely used method for image-based medical diagnostics (Figure 3). Thus, in scientific 

literature, AI is a loosely defined term to describe automated systems that can perform tasks 

considered to require “intelligence”, and deep learning a more precise term for ML 

techniques that utilize multi-layered arithmetic operations (Liu et al., 2019). Currently, AI 

in medical image analysis is used to refer to the automatized analysis of medical images 

with various algorithms based mainly on artificial neural networks. 
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Figure 3. Relationships between artificial intelligence (AI) and machine learning (ML) with 

deep neural networks. Schematic image showing (a) context of AI, ML and deep learning 

with neural networks, and (b) overview of the structure of a simple artificial neural network. 

In (b), the synapse signal x (input) represents a number, and the output of each individual 

neuron is calculated by a non-linear function based on the sum of inputs, using weights (W) 

to increase or decrease the forwarded signal strength. The information is processed through 

layers, typically including multiple hidden layers, to the output layer which outputs the 

value of the network.  

 

During the last decade, the interest in deep-learning based AI for digital pathology has 

increased significantly, following research breakthroughs in the field and the increased 

computational power (particularly more powerful GPUs) of modern computers (Krizhevsky, 

Sutskever & Hinton, 2012, Bera et al., 2019). Deep-learning algorithms have been 

recognized as an efficient approach to extracting complex data from medical images, with 

the performance of modern algorithms even superseding the levels of human experts for 

certain applications (Cireşan, Meier & Schmidhuber, 2012, Gulshan et al., 2016, Esteva et 

al., 2017). 
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2.3.2 Architecture and principles of deep neural networks for image 

processing applications 

 
Deep-learning algorithms are biologically inspired, multi-layered arithmetic computational 

systems, which consist of so-called artificial neural networks (ANNs; named due to 

resembling the structure of neurons in the visual cortex). The interconnected nodes in 

ANNs process and modify input data and forward the modified information to higher layers 

to eventually yield an output value, based on the analysed data (Figure 3b). Simple ANNs 

have been studied since the 1950s, and certain fundamental principles of modern 

algorithms (such as backpropagation) were developed already during the 1980s (Goodfellow, 

Bengio & Courville, 2016). Compared to how information is processed in “traditional” 

computers, neural networks have certain advantages, such as being able to process 

significant amounts of information simultaneously (due to the large numbers of individual 

neurons), and being able to both store and process information without the need for 

external memory. Due to this, to achieve the maximum capacity of complex algorithms, 

hardware that supports efficient parallel processing (i.e. GPUs that can process multiple 

tasks simultaneously) is required (Lundervold, Lundervold, 2019). A basic (feedforward) 

neural network consists of layers of interconnected nodes with adaptive parameters, called 

weights (Figure 3b), which are summed up in the so-called linear combination of inputs to 

the neurons. The result of this calculation is consequently passed through an activation 

function, which determines the output of the neuron, which again is forwarded to the 

neuron in the next layer. The activation function is usually a non-linear function, such as 

the sigmoid function which outputs a range of values between 0 and 1, which are then 

forwarded to the following layer which further processes the information. This multi-

layered structure is the basic for deep learning, where the output of certain layers is 

forwarded as the input for the following to allow complex processing of information in large 

networks with (usually) large numbers of hidden layers. Convolutional neural networks 

(CNNs) are a sub-category of deep-learning networks that have proven to be especially 

suitable for image processing (Anwar et al., 2018). CNNs utilize so-called convolutional 

layers that detect certain features in the input image (such as edges, patterns or colour 

intensities), regardless of locations in the image (using so-called feature maps with shared 

weight matrices in the units of the layer). This is a fundamental principle that allow the 
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detection of higher-level image features which would otherwise require vast amounts of 

layers and combinations of weights to detect all possible orientations and locations of 

objects in the input data. Convolutional layers are typically placed in the bottom layers of 

the network to process raw input data (such as pixels) and can often be trained with 

unsupervised learning (i.e. without a pre-decided prediction task) to detect generic features 

that are applicable for multiple tasks (‘pre-trained’ networks and ‘transferred learning’). 

Another essential feature of CNNs is pooling, which is a type of non-linear down-sampling 

to partition the input data (image) into smaller regions and reduce the number of 

parameters to decrease the required computation (and risk for overfitting). Other commonly 

utilized CNN features include rectified linear units (ReLUs), which are activation functions 

that increase the nonlinear properties the network, and ‘fully connected layers’ to perform 

higher-level classification or reasoning in the network (Goodfellow, Bengio & Courville, 

2016) (Figure 4). After processing of the information through the layers of the network, the 

final output is obtained from a subset of neurons in the so-called output layer.  

 

Figure 4. Schematic view of image classification task with a convolutional deep neural 

network. Images illustrating the input image being fed into the network, where the 

information is processed in the different layers before the output layer returns the class 

which mostly resembles the “learned” features on the network.  

 

The “learning” and “training” of the networks occur when the individual weights are 

adjusted with an optimization algorithm (the gradient descent) based on a function 

measuring the correctness of the output (i.e. minimizing the ‘loss’ by adjusting the weights 

in the network, based on the difference between the target value and predicted value). As 

the number of individual weights can be significant (even billions in complex networks), 

this task often requires significant computational power. In this way, deep learning 
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algorithms can be trained and applied for highly-efficient patter-recognition tasks in 

complex images, such as for image-based medical diagnostics (Lundervold, Lundervold, 

2019). These principles also explain why methods utilizing deep learning models are more 

suitable for certain types of tasks, such as analysing of large volumes of data and detection 

of patterns, and also associated with certain limitations, which is discussed in more detail in 

the separate section on this topic (2.3.5).  

 

2.3.3 Digital microscopy diagnostics with deep-learning based artificial 

intelligence  

 
The main goal with the current generation of automatized deep neural network algorithms 

for medical diagnostics, or commonly referred to as ‘medical AI’ algorithms, is to create 

clinically useful pattern recognition tools. To date, this type of algorithms (or ‘models’) has 

been applied and studies especially in image-based fields of medicine, such as pathology 

(Bera et al., 2019), dermatology (Esteva et al., 2017), ophthalmology (Ting et al., 2017), 

radiology (Lee et al., 2017) and cardiology (Zhang et al., 2018). In pathology, the technology 

has been studied extensively for the analysis of histological samples, such as the detection 

of breast cancer lymph node metastases (Ehteshami et al., 2017), tumor grading (Ertosun, 

Rubin, 2015) and classification of tissue types (Chen et al., 2017). Furthermore, the 

technology has also been applied for the detection of various infectious pathogens, e.g. 

malaria parasites in digitized thin blood smears in laboratory settings (Poostchi et al., 2018). 

Compared to visual microscopy which is prone to subjectivity (Stoler et al., 2001, Bigras et 

al., 2013), digital methods can provide more objective and reproducible results. Ideally, AI 

models yield completely reproducible results, and could therefore be usable to reduce 

subjectivity and intra-observer variability (Bera et al., 2019). For certain applications, 

studies have described how state-of-the-art deep learning algorithms can reach even 

superhuman levels of performance, e.g. in the detection of diabetic eye disease (Gulshan et 

al., 2016) and classification of skin lesions (Esteva et al., 2017). Furthermore, deep learning-

based analysis of samples seem to allow extraction of information from digital samples not 

previously accessible to human experts (as in the field of Computational Pathology), to e.g. 

predict survival for patients based on tissue morphology (Bychkov et al., 2018, Wang et al., 

2017, Fu et al., 2019) and extract data not previously considered to be quantifiable from 
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image-based data - such as age or blood pressure from retinal images (Poplin et al., 2018). 

From a clinical perspective, studies from recent years highlight how this type of medical 

deep-learning AI’s can augment the human expert to improve performance when used 

together with conventional protocols, thus suggesting usability as diagnostic support-tools 

for clinicians (Steiner et al., 2018). Notably, in 2018, the first ‘medical AI’ received approval 

for clinical use by the FDA for the detection of diabetic retinopathy (FDA, 2018). 

 

2.3.4 Digital image analysis applied to point-of-care microscopy diagnostics 

 
Although digital image analysis with conventional computer vision- and deep learning-

based methods have been applied for the analysis of a wide variety of samples in laboratory 

conditions, less work has been conducted on the analysis of samples digitized at the POC in 

more rural settings. To date, the majority of work on automatized POC digital microscopy 

has focused on facilitating the diagnostics of infectious diseases, such as neglected tropical 

diseases and malaria (Saeed, Jabbar, 2017; Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019). 

In an early stage, Breslauer et al. described as a proof-of-concept how tuberculosis bacilli 

could be visualized in digital images captured with a smartphone connected to a microscope 

and identified using a pattern recognition algorithm (Breslauer et al., 2009). Using a similar 

software solution, Linder et al. applied pattern-recognition algorithms for the detection of 

S. haematobium ova in digital images captured with the camera module from a web-camera, 

and achieved overall a high specificity and moderate sensitivity (Linder et al., 2013). Efforts 

have been made to facilitate malaria diagnostics by automatized detection parasites, such as 

in the work by Rosado et al. where the detection and classification of Plasmodium parasites 

in Giemsa-stained blood smears with a pattern-recognition algorithm, running on a 

smartphone was described with promising result (Rosado et al., 2017). Following this, newer 

generations of algorithms based on deep neural networks have been applied to detect 

malaria parasites in digital samples, such as in a smartphone-based system, where a 

reasonably high diagnostic accuracy of 91% was achieved (Oliveira et al., 2017). Notably, in 

2018 an “AI-laboratory” was announced at Makerere University in Uganda for research 

around digital smartphone-based diagnostics of malaria (Lewton T., McCool A, 2018); but 

apart from smaller-scale academic studies, the clinical adaptation of these techniques has 

been relatively slow. 
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2.3.5 Principal challenges and limitations with clinical adaptation of the 

current artificial intelligence algorithms  

 
Although modern deep-learning algorithms can be highly efficient for applications in 

image-based medical diagnostic, they are associated with certain challenges that need to be 

acknowledged before wider-scale clinical implementation (Kelly et al., 2019). To develop 

reliable algorithms, substantial amounts of high-quality and manually-labelled training 

data is required to accurately train the networks (Tizhoosh, Pantanowitz, 2018). The 

annotation of training data is a crucial step, and is therefore ideally performed by experts, 

but is often both labour-intense and time-consuming as the required number of samples is 

typically substantial. As the algorithms “learn” entirely based on training data, the 

performance of the system highly mimics that of the experts providing the training data; 

thus, potentially including pre-existing bias and noisy data (Gianfrancesco et al., 2018). So-

called unsupervised machine learning can partly circumvent this by classifying information 

and patterns in data without the need for human labelling, but on the other hand requires 

higher computational resources and generate results which are more difficult to interpret 

(as the detected patterns are not pre-defined) (Arevalo et al., 2015). Another problem in the 

development of algorithms is the limited availability of public data sets and standardized 

benchmarking procedures, which make external validation of algorithm performance 

challenging. This is important as overfitting (i.e. meaning that the model is trained to 

predict the training data ‘too’ accurately and does not generalize to new data) is a common 

problem with deep learning models. Notably, efforts have recently been made to create 

international evaluation procedures for medical AI’s (Wiegand et al., 2019). From a 

technical point of view, the analysis of medical image data, such as high-detailed WSIs, 

typically require processing of image files with extremely large dimensions (gigapixel 

images), meaning that storage and processing quickly become demanding in terms of 

computational resources (Campos et al., 2017). Lastly, even though encouraging results 

have been achieved with AI algorithms for medical applications, the clinical adaptation has 

been slow. Potential reasons for this include that automatized digital algorithms typically 

classify data in a simplified, categorical way, compared to manual analyses which often is 

more analytic and probabilistic (Pena, Andrade-Filho Jde, 2009; Harrel, 2018). As the 
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algorithms also generate results via relatively unobservable methods, this perceived “black 

box” nature may also impede the clinical adaptation (Maddox, Rumsfeld & Payne, 2019). 

 

In conclusion, digital methods have for decades been studied as potential tools to facilitate 

traditional microscopy diagnostics by e.g. detecting, classifying and measuring objects of 

interest, to reduce the workload for clinicians and improve reproducibility. Currently, ‘AI’ 

methods, based on deep learning with artificial neural networks, show potential as efficient 

tools for complex medical image analysis tasks, such as the analysis of microscopy samples, 

and are likely to highly impact fields of image-based medical diagnostics. Digital image 

analysis algorithms have been studied extensively for e.g. analysis of histological samples in 

laboratory settings, but have not yet been widely adopted in clinical practice, nor studied 

extensively for POC diagnostics in rural settings.  
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2.3 Breast cancer  

Breast cancer is the most common form of cancer in women and the second leading cause of 

cancer-related death among women globally (Siegel et al., 2019). The incidence of breast 

cancer has been rising for the last decades in most countries, and is estimated to increase 

especially in Africa, Asia and South America due to an increased proportion of the elderly 

population (Bray, F., Moller, 2006). When diagnosed at an early stage, breast cancer 

prognosis is significantly more favourable than that of more advanced cancers (Boyle, 

2003), with the five-year survival for patients with localized breast cancer being 97%, 

compared to 27% for advanced diseases (Siegel et al., 2019). In low-resource areas where the 

access to healthcare services is limited, initial diagnosis is often delayed, resulting in many 

cases still being discovered at late stages (Ngowa et al., 2015). The recommended treatment 

for most breast cancer patients involves surgery, with the type of surgery (e.g. breast-

conserving or mastectomy) determined individually by the extent of the disease while 

considering patient-specific factors (preference, cosmetic factors). The need for adjuvant 

radiation therapy, hormonal therapy and chemotherapy is decided based on tumor 

characteristics (histological features) and patient epidemiology (e.g. age and menopausal 

status). Although the incidence of breast cancer is increasing, overall mortality has 

decreased, likely due to more efficient treatment methods with the possible contribution 

from increased mammography screening being a subject of debate (Cronin et al., 2006, 

Jørgensen et al., 2017). Anatomically, the spread of breast cancer, and other cancers, is most 

commonly classified according to the international TNM classification system (currently the 

8th edition from 2016), originally developed by the Union for International Cancer Control 

(UICC) and American Joint Committee on Cancer (AJCC). The TNM classification system 

includes three main parameters; T for size and extension of primary tumor, N for degree of 

spread to regional lymph nodes and M for presence of distant metastases. In addition to 

this, other parameters can also be included, e.g. grade (G), elevation of serum markers (S), 

invasion into lymphatic vessels (L), and prefix modifiers to indicate based on what the 

classification is made (e.g. ‘c’ for staging determined prior to treatment, or ‘p’ for staging by 

pathological examination of surgical specimens). Based on the TNM system, the AJCC 

staging system is widely used clinically to classify cancers, and incorporates further 

information also about additional tumor features, such as histological grade and expression 

of hormone receptors (ER and PR) and oncogenes (HER2) (Amin et al., 2017).  
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2.3.1 Breast cancer histopathology 

 

Histological classification of breast cancers is usually performed according to the World 

Health Organization Classification criteria (Elston, Ellis, 2002), using the entities in situ 

carcinoma, invasive ductal carcinoma (the most common invasive form), invasive lobular 

and breast carcinoma of special types. Tumor differentiation is generally performed using 

the Bloom - Richardson grading method based on factors such as mitotic count, nuclear 

pleomorphism and tubule formation (Bloom, Richardson, 1957). To determine tumor 

characteristics, the expression of certain molecular biomarkers such as estrogen receptor 

(ER), progesterone receptor (PR), cell proliferation (Ki-67) and human epidermal growth 

factor receptor 2 (HER2) are routinely assessed in tumor samples. This type of molecular 

typing is essential in decision-making on targeted therapies, where for example tumors 

expressing hormone receptors ER and PR indicate that the patient may benefit from 

hormonal therapies (e.g. tamoxifen and aromatase inhibitors) (Harvey et al., 1999), and 

expression of the HER2 protein supports the usage of HER2-targeted therapies (antibodies). 

Most breast cancers are positive for both hormonal receptors (ER and PR), and a minority 

(20%) are negative for both (Bauer, Parise & Caggiano, 2010). The expression of biomarkers, 

such as ER, are typically assessed by microscopy analysis (scoring) of 

immunohistochemically (IHC) stained tumor sections (Hammond et al., 2010). This method 

is prone to subjectivity with significant degrees of intra- and interobserver variability being 

reported, especially in the analysis of low-grade positive samples (Mann et al., 2005; Hede, 

2008). As the ER-scoring of a significant amount of samples (up to 20%) has been estimated 

to be possibly inaccurate, the threshold for classification of a sample as ER-positive was 

lowered from >10% to >1% (cells expressing ER) in guidelines from 2010 to more reliably 

identify patients likely to benefit from endocrine therapy (Hammond et al., 2010).  

 

2.3.2 Intraoperative breast cancer histopathology 

 

The assessment of histological samples during the surgery procedure plays an important 

role in a number of surgical procedures. One example is the detection of breast cancer 

axillary metastases during the surgery; a process which is essential in disease staging and 
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affects both treatment and prognosis (Fisher et al., 1983). Axillary nodal status correlates 

with tumor size and is considered an important prognostic factor of recurrence and survival. 

Presence of axillary metastases often indicates a need for more extensive surgery, 

traditionally in the form of axillary lymph node dissections (ALND) or more recently, lesser 

axillary surgery, such as targeted axillary sampling (i.e. limited or partial ALND) (Ditsch et 

al., 2019) and regional radiotherapy (Cardoso et al., 2019). The assessment of axillary lymph 

node status is therefore important both for disease staging and to avoid unnecessarily 

extensive treatment interventions with the associated morbidity and complication risks for 

node negative patients (Cardoso et al., 2019, Samphao et al., 2008). Microscopy evaluation 

of sentinel lymph nodes using the frozen section (FS) procedure is a common method to 

determine axillary lymph node status. The FS technique involves rapidly freezing the tissue 

samples during the operation, cutting the specimens into thin sections with a cryostat and 

staining the samples for microscopy analysis. The staining is usually performed with 

methods such as rapid haematoxylin and eosin (H&E) or toluidine blue for overall 

morphology, and rapid IHC-staining for cytokeratins. Toluidine blue is a metachromatic dye 

which is widely available and relatively inexpensive, and due to its acidophilic properties 

binds to proteins and areas rich in DNA and RNA, such as dividing cells (Sridharan et al., 

2012). Cytokeratins (CK) are the dominant intermediate filaments in epithelial cells, and 

IHC-staining for CKs is typically performed to visualize cells of epithelial cell lineage, such 

as carcinomas, by binding to multiple common CKs (“pancytokeratin” staining) (Painter et 

al., 2010). Although the tissue quality achievable with FS is inferior to traditional 

histological methods, samples can be prepared and analysed significantly faster than with 

conventional methods - typically in less than 20 minutes (Novis, Zarbo, 1997). The FS 

procedure is considered accurate for the detection of larger metastases (macrometastases 

over 2mm in size), but not as sensitive for smaller lesions (micrometastases and isolated 

tumor cells), and is also prone to a certain degree of subjectivity (Yeh et al., 2015). Notably 

however, the significance of occult isolated tumor cells and micrometastases in low axillary 

disease burden (in terms of surgical management and patient outcome) appears to be 

negligible (Cardoso et al., 2019). Furthermore, FS assessment requires the presence of a 

pathologist on-site (or close to the site) to analyse the samples. To solve this in areas 

without access to on-site pathologist services, virtual microscopy with remote assessment 

of samples by a pathologist has been tested and already clinically implemented at certain 

locations (Thorstenson, Molin & Lundstrom, 2014). Studies suggest the interpretation of FS 
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WSIs is comparable to conventional microscopy (Gifford et al., 2012), but currently requires 

access to high-end equipment for the digitization process. Of all methods for intraoperative 

assessment of tissue samples to prevent reoperation (e.g. touch preparation cytology, 

intraoperative ultrasonography and micro-computed tomography), FS is the most reliable 

(Ko et al., 2017). Thus, in locations where access to pathology services on-site is limited, 

post-surgery findings can warrant repeated surgical interventions, which could otherwise 

have been prevented (Aziz et al., 2006). Due to the high reoperation rate (38%) after breast 

conserving surgery, digital microscopy at the POC for cancer surgeries has been proposed as 

one potential solution to this (Morrow et al., 2009, Evans et al., 2009).  

  



 40 

2.4 Cervical cancer 

 

Cancer in the cervix is globally a common cancer in women. In 2018, it was the most 

commonly diagnosed cancer in women in 28 countries, and the deadliest in 42 (Bray, 

Freddie et al., 2018). The vast majority of cases of cervical cancer occur in low- and middle-

income countries (Parkin et al., 2008). According to current understanding of the aetiology, 

the disease is almost exclusively caused by persistent infections of high-risk human 

papillomavirus (HPV) strains which causes progressive dysplasia in the cervical epithelium 

(Bosch et al., 2002). In total, over 100 types of HPV are known, of which at least 14 are 

oncogenic, with HPV type 16 and 18 causing the majority (>60%) of cancers. HPV is the 

most common sexually transmitted disease and affects approximately 80% of the global 

population at some point in their life, with the initial infection usually occurring during 

adolescence or early adulthood. The majority of HPV infections regress spontaneously 

within 18-24 months but in a minority (3 - 5%) the infection persists, and causes cellular 

changes with the risk of progressing into invasive cancer. Cervical cancer is a highly 

preventable disease (World Health Organisation, 2014). The current standard screening 

method for cervical dysplasia is the visual microscopy examination of cervical cytology 

samples, stained using the Papanicolaou staining method (Pap smear analysis). Pap smear 

screening has drastically reduced the cervical cancer incidence and mortality in areas where 

routine screening is implemented (Saslow et al., 2002). This screening method involves 

visually examining the morphology of cervical cells in samples prepared either using the 

conventional Pap smear technique (cervical smears) or using so called liquid-based cytology 

(LBC). For LBC, the sample preparation is performed with automatized sample processors 

(e.g. ThinPrep processors), which disperse the cells into even monolayers on the microscope 

glass and remove excess debris in the process, whereas conventional Pap smears can be 

prepared by applying the unprocessed cervical sample directly on the glass. Regardless of 

method, the final analysis of sample is performed by a pathologist who evaluates the 

cellular morphology and report detected atypia. Findings are typically reported using the 

standardized Bethesda classification system (Solomon et al., 2002), where findings are 

graded from low (e.g. low grade squamous intraepithelial lesion; LSIL) to high grade (e.g. 

high grade squamous intraepithelial lesion; HSIL), depending on degree of dysplasia (Figure 

5) and cellular lineage (e.g. squamous or glandular). Lower-grade lesions have a high chance 
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of spontaneous regression, and can usually be controlled in 6-12 months, whereas higher 

grade changes indicate a need for more rapid intervention, initially often by referral to 

colposcopy (Wright et al., 2002). Pap smear screening is recommended at 3-5 years 

intervals, depending on individual risk factors for the patient (e.g. co-infection with HIV), 

and when adequately performed, reduces the risk for cervical cancer by up to 80% 

(Koliopoulos et al., 2017). Recently, HPV-DNA testing has been established as an alternative 

screening method with high sensitivity (Ogilvie et al., 2018) but lower specificity, compared 

to repeat cytology (Koliopoulos et al., 2017). Moreover, effective vaccines against HPV are 

now commercially available, but despite increased vaccination coverage, screening methods 

will remain necessary for the foreseeable future as vaccines are not effective against pre-

existing HPV infections. Thus, even though vaccinations have the potential to virtually 

eradicate the disease in the future, the benefits of even the most efficient vaccination 

programs will not be realized for decades (Randall, Ghebre, 2016). Due to the low specificity 

of the HPV DNA test (most infections do not progress to cancer), there is also a need for a 

triage test for positive women (Bray et al., 2018). During the next decade, the cervical cancer 

incidence is predicted to rise and the amount of yearly deaths expected to double, with the 

largest burden of disease in sub-Saharan Africa (Mboumba et al., 2017). As screening 

coverage here is severely lacking in many areas, cervical cancer remains the leading cause of 

cancer-related death among women (Bray, Freddie et al., 2018). A major challenge here is 

the limited access to laboratory infrastructure and pathologists, with often less than one 

practising pathologist per one million inhabitants (Nelson et al., 2016). Notably, 

considerable efforts have been made during the last decades to automatize the screening 

process of cervical smears, but the development of reliable, cost-efficient systems capable 

of fully-automatized analysis of whole slides (i.e. not individually segmented cells) has been 

challenging (William et al., 2018, Z. Lu et al., 2017), likely due in part to the complexity of 

this type of samples (Bengtsson, Malm, 2014). 
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Figure 5. Squamous cervical-cell atypia of various degrees. Image showing squamous-cell 

atypia, classified according to the Bethesda system; with normal epithelium (a), atypia of 

undetermined significance (ASC-US) (b), low-grade (LSIL) (c) and high-grade atypia (HSIL) 

(d).  

2.5 Neglected tropical diseases 

 

The neglected tropical diseases (NTDs) is a diverse group of major, disabling chronic 

infections that are especially common in tropical and subtropical low-resource areas with 

poor sanitation (Hotez et al., 2007). Compared to diseases such as HIV/AIDS, malaria and 

tuberculosis, significantly less resources are dedicated towards fighting these diseases 

(Payne, Fitchett, 2010). In 2017, the WHO recognised 17 diseases as NTDs, although there is 

some debate about specifically which diseases belong to the group (Payne, Fitchett, 2010). 

On a global scale, the NTDs affect over one billion people and represent significant 

socioeconomic burdens for developing economies (Molyneux, Hotez & Fenwick, 2005); 

https://www.who.int/neglected_diseases/diseases/en/). The most prevalent NTDs are caused 

by parasitic worms, of which the most common are the soil-transmitted helminths (STM) 

Ascaris lumbricoides, Trichuris trichiura and hookworms, and Schistosomes (Schistosoma 

mansoni and Schistosoma haematobium). These poverty-related diseases are more common 

in children, where they result in impaired development and growth, neurocognitive 

problems and diminished physical fitness (Crompton, Nesheim, 2002) and represent 

significant causes of maternal morbidity and pregnancy complications (Christian, Khatry & 

West, 2004, Brooker, Hotez & Bundy, 2008). Globally, more than 415,000 annual deaths are 

caused by NTDs (Hotez et al., 2006). An important method of disease control for a number 
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of NTDs has been the coordinated administration of preventive chemotherapy in mass-drug 

administration programs (MDAs). MDAs refer to the mass-treatment of individuals in 

communities at risk to reduce the pool of infection and proliferation of parasites. The 

implementation of MDAs has been boosted through WHO by partners in the pharmaceutical 

industry since 2012 (Uniting to Combat NTDs, 2012), and in 2015 over one billion people 

received preventive chemotherapy for NTDs with drugs such as praziquantel, albendazole 

and mebendazole, representing significant progress towards achieving the WHO Roadmap 

goals to overcoming the global impact of NTDs (World Health Organization, 2012). Apart 

from improving levels of hygiene and sanitation and organisation of MDAs, improved access 

to early diagnosis with better POC diagnostic solutions are vital component in disease 

control and monitoring of NTDs (World Health Organization, 2017). A requisition for 

programs addressing NTDs is cost-efficient, easy-to-use and robust diagnostic tests which 

are deployable in low-resource settings (PATH, 2015). When infection levels are reduced 

through successful disease-control programs, the importance of these tests is especially 

pronounced to enable fast and accurate diagnosis and monitor disease prevalence. While 

significant progress has been made in the availability of NTD treatments during recent 

years, little progress has been achieved in the development of improved diagnostic 

techniques; likely due to the perceived lack of viable commercial markets (Peeling, Rosanna 

W., Boeras & Nkengasong, 2017). The current golden standard for diagnostics of STH and 

schistosomiasis rely on light microscopy examination of microscopy samples to detect and 

count the number of parasite eggs that are excreted in stool or urine. For STH, samples are 

typically prepared using the Kato-Katz method to visualize parasite ova (Knopp et al., 2008). 

Strengths with the Kato-Katz methods include simplicity of sample preparation, low per-

sample preparation costs and few false positives. The tests can furthermore be used to 

detect multiple different parasite species at the same time (Lamberton, Jourdan, 2015). 

Conventional diagnosis of Schistosoma haematobium relies on microscopy examination of 

sedimented or filtrated urine samples to detect parasite eggs (Knopp et al., 2013). These 

techniques have been extensively used and validated worldwide and are generally regarded 

as having a high specificity, but limitation of the techniques include the need for trained 

microscopists on-site and reduced sensitivity especially in low-burden infections (Nikolay, 

Brooker & Pullan, 2014). Visual microscopy sample analysis to detect and quantify parasites 

is furthermore both a time-consuming and laborious procedure; requiring up to 10 minutes 

for a skilled microscopist to reliably analyse a single glass slide (Speich et al., 2010). As by 
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far the largest burden of disease of NTDs is in low-resource areas with limited access to 

laboratory services, these diseases are still severely underdiagnosed due to lack of resources 

for diagnostics (Bethony et al., 2006).  
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3 AIMS OF THE RESEARCH 

 

The aims of this doctoral thesis were to study areas of applications for point-of-care digital 

microscopy diagnostics, supported by computer-aided diagnostics and deep-learning based 

artificial intelligence, with emphasis on potential applications in low-resource 

environments. 

 

Specifically, the aims were to: 

 

1. Study the digital assessment of hormone receptor (ER) expression in breast cancer 

samples, digitized with a low-cost digital microscope, and compare the results to 

visual assessment and analysis of samples from a high-end slide scanner.  

2. Evaluate if low-cost, point-of-care digital microscopy can be used to digitize sentinel 

lymph node frozen sections for remote detection of breast cancer metastases, 

compared to digitization with a traditional high-end system. 

3. Develop, implement and evaluate a digital diagnostics system for cytological 

screening for cervical cancer, where slides are scanned at the point-of-care and 

analysed with a deep-learning system to detect squamous-cell atypia.  

4. Develop and evaluate a deep-learning based, point-of-care digital microscopy 

system for diagnosis of the most common neglected tropical diseases. 
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4 MATERIALS AND METHODS 

4.1 Study specimens 

4.1.1 Breast cancer tissue microarrays (I) 

 

For Study I, we acquired a total of 193 archived human breast cancer tissue samples. The 

samples were arranged into tissue microarray slides (TMAs), and individual samples were 

verified as representative breast cancer tissue by a certified pathologist by light microscopy 

examination. Of these samples, 135 were selected from the FinProg Breast Cancer Database. 

The Finprog nationwide patient cohort includes tissue samples and follow-up information 

on women diagnosed with breast cancer in 1991-1992 in Finland, and is publicly accessible 

online (www.finprog.org). The remaining 58 samples originated from the Predect series of 

breast cancer samples (www.predect.eu; predect.webmicroscope.net). Predect is an 

Innovative Medicine Initiative (IMI) collaboration of the European Union which includes 

academic and biotech laboratories and partners in the pharmaceutical industry. The tissue 

samples analysed were prepared from formalin-fixed paraffin embedded (FFPE) samples, 

which were acquired from the archives of the diagnostic pathology laboratory. The FFPE 

samples were punched with a 0.6mm needle and transferred into TMA-blocks which were 

cut into 5µm sections and IHC-stained for ER using mouse monoclonal anti-ER primary 

antibodies. Visualization of staining was performed with the 3–3’-diaminobenzidine (DAB) 

chromogen and tissue counterstaining performed using haematoxylin.  

Ethical approval for this study was issued by the Central Laboratory for the Hospital 

District of Helsinki and Uusimaa, HUSLAB, the Ethical Committee of Surgery of the Hospital 

District of Helsinki and Uusimaa (No. 94/13/03/02/2012) and The Ministry of Social Affairs 

and Health (No.123/08/97). According to the Ministry of Social Affairs and Health, Finland 

Act on the Medical Use of Human Organs, Tissues and Cells (Amendments up to 277/2013 

included), written informed consent was not required as no clinical records were retrieved 

and the study contained no personal identifiers. 
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4.1.2 Breast cancer sentinel lymph node frozen sections (II) 

 

For the samples in Study II, we acquired routinely collected sentinel lymph node frozen 

sections from breast cancer surgeries at hospitals within the Hospital District of Helsinki 

and Uusimaa in southern Finland. The samples had been prepared according to local 

standard operating procedures during the year 2016, and archived in the files of the 

pathology laboratory of the hospital district (HUSLAB, Helsinki, Finland). Samples were 

collected during breast cancer surgeries in the hospital region, rapidly frozen and cut into 5 

µm thick sections and consequently stained according to routine protocols. Frozen sections 

were stained with toluidine blue for overall tissue morphology and rapid pancytokeratin 

IHC-stained. In total we identified and acquired samples from 80 breast cancer patients for 

this study. Of these, 28 patients were node positive (i.e. histologically verified visible tumor 

cells in the samples), and correspondingly 52 patients were node negative (i.e. had no 

detectable tumor cells in the samples). The majority of patients had sections stained using 

both staining techniques available, but for a minority only one staining was used (i.e. 

toluidine blue or IHC staining). We included one slide for each staining type available per 

patient for the analysis, and an area of representative tissue from each slide was selected by 

conventional light microscopy assessment by an experienced pathologist. 

This study used archived, routinely collected tissue samples, obtained during breast 

cancer surgeries during a period of one year. The study was approved by the scientific and 

ethical committee of the Helsinki Biobank (HUS/359/2017, September 18, 2017). Written 

consent was not required as the study material and images contained no personal 

identifiers, and since the study was retrospective, in accordance with the Ministry of Social 

Affairs and Health, Finland Act on the Medical Use of Human Organs, Tissues and Cells 

(Amendments up to 277/2013 included). 
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4.1.3 Cervical cytology samples (III) 

 

The samples in Study III were routinely collected cytological smears (Pap smears), collected 

from women attending the HIV control program at a rural clinic in Kenya (Kinondo Kwetu 

Health Services, Kinondo, Kwale County, Kenya) (Figure 6). The patients were volunteering, 

non-pregnant women, aged between 18 and 64 (mean age: 42.0) who had previously been 

confirmed positive for HIV, and provided signed informed consent. In total, 740 samples 

were collected for this study. Samples were acquired by nurses who had previously received 

training for Pap smear acquisition. The sample were collected using a conventional cervical 

broom sampling kit after which fixation and staining was performed at the site according to 

Papanicolaou-staining protocols (Gill, 2013).  

 

 

Figure 6. Study site and point-of-care digital laboratory at research site in Kinondo Kwetu 

Health Services clinic. Images showing nurses with sample acquisition equipment (a), slide 

staining equipment (b) with fume hood at slide staining bench and digitization and 

uploading of Pap smear with the point-of-care slide scanner (c).  

 

Cytological samples were applied to clean frosted glass slides, which was fixated 

with the provided fixative solution. Following air drying, the slides were then further fixed 

in 95% ethanol, and transferred through an alcohol series (70% and 50%) and rinsed with 

distilled water. Next, staining was performed with Meyer’s haematoxylin, after which the 

slides were washed with distilled water and again submerged in 95% ethanol. 

Counterstaining was performed with the OG-6 and EA-65 staining solutions and slides were 

submerged between the steps in 95% ethanol. Dehydrating was carried out with absolute 

ethanol, and sample clearance using Rectified Xylene, after which slides were covered with 
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coverslips with the diethyl propene xylene (DPX) mounting medium. Stained slides were 

places in a level position and allowed to air-dry at room temperature overnight before 

analysis. Stained samples were stored in slide boxes before digitization, after which they 

were transported to the pathologist at the pathology laboratory in Mombasa (Coast 

Provincial General Hospital, Mombasa, Kenya) for visual assessment. 

Ethical approval was issued for the study by the Ethical Review Committee at the 

National Commission for Science, Technology and Innovation (Pwani University, Nacosti, 

Kenya) (No. ERC/PU-STAFF/005/2018). Research work for the study was also approved by 

the Helsinki Biobank (No. 359/2017). Eligible patients who fulfilled the inclusion criteria 

were provided with information both orally and in written form about the study purpose and 

Pap smear procedure. Information was provided in English and Swahili, and signed consent 

acquired from participants prior to study participation. Patients were reimbursed for travel 

expenses by the study organizes, but not offered other monetary compensation for 

participation in the study. In case of abnormal test results, the patients were referred to a 

gynaecologist for adequate further medical interventions and all treatment expenses were 

covered by the study organizers. We used the secured, password-protected web-based data 

collection platform REDCap (Research Electronic Data Capture, Vanderbilt University, 

Nashville, TN, USA) to collect and store patient information. The software was running on 

an encrypted and password-protected local server, stored in a locked room, which was 

accessible only to study personnel. Paper forms containing patient information were stored 

in locked cabinets in a locked room, separated from the rest of the clinic for the duration of 

the study. All samples (digital samples and glass slides) were pseudonymized using study 

numbers and no personal identifiers or patient information were uploaded to the cloud-

server.  

4.1.4 Parasitological samples (IV) 

 

The microscopy samples used in Study IV were prepared in laboratory conditions using 

previously acquired, anonymized stool and urine samples. The stool samples had been 

concentrated with ethyl acetate and formalin-fixed prior to storage. In total, three separate 

stool samples, microscopically confirmed positive for parasites were acquired. Of these, one 

sample contained hookworm eggs, one A. lumbricoides and one containing both T. trichiura 
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and A. lumbricoides. Furthermore, we acquired an unfiltered urine sample containing S. 

haematobium. These samples originated from sample series collected for educational and 

quality assurance purposes, and were not been specifically collected for this study. Faecal 

samples were obtained from the Department of Microbiology and Immunology, University 

of Helsinki, Finland and the urine sample from the diagnostic parasitology laboratory of the 

Swedish Institute for Communicable Diseases Control (‘Panel för Cystor & Maskägg’, SMI, 

Solna, Sweden). Using the stool samples, microscopy glass slides were prepared using 

routine iodine staining (equal part sample and staining solution). Fixation on the glass 

slides was performed using a solution containing 40% acrylamine, phosphate buffer 

solution (PBS), tetraacetylethylenediamine (TEMED) and ammonium persulfate. The 

corresponding mixture of fixation solution and faecal sample was placed on glass slides and 

covered with cover slips. For the urine samples, equal parts urine sample and acrylamide 

solution were correspondingly measured and placed on microscopy glasses and covered 

with cover slips. To prevent drying, edges of the cover glasses were treated with a mounting 

media solution. Using this method, 30 fixated stool samples and 10 urine samples were 

prepared and microscopically examined for presence of parasites. Slides negative for 

parasites were excluded, after which a total of nine glass slides showing A. lumbricoides, two 

showing T. trichiura, five showing hookworm eggs and four urine samples showing S. 

haematobium remained for further analysis.  

As this article reported a study performed on samples archived for educational 

purposes, and thus containing no personal identifiers or clinical records, written informed 

consent was not required according to the Ministry of Social Affairs and Health, Finland Act 

on the Medical Use of Human Organs, Tissues and Cells (Amendments up to 277/2013 

included). Ethical approval for this study was approved by the study was approved by the 

Coordinating Ethical Committee of Surgery of the Hospital District of Helsinki and Uusimaa 

(DNo. HUS/1655/2016). 

4.2 Digitization of samples 

 

For the digitization, i.e. scanning, of microscopy samples in the studies we used in total 

three separate slide scanning methods. In study I, II and IV the samples were digitized using 

two separate devices; a prototype POC miniature digital microscope and a laboratory-grade 
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high-end whole slide scanner (for benchmarking and reference purposes). In study III, the 

samples were digitized using a commercially available portable digital slide scanning 

platform. The technical specifications of the devices are described in more detail below.  

The prototype POC miniature digital microscope scanner used for sample 

digitization in Studies I, II and IV is a portable, lightweight and cloud-connected digital 

microscope scanner prototype (“MoMic”), developed by the Institute for Molecular 

Medicine Finland (FIMM) at University of Helsinki (Figure 7) in collaboration with 

University of Oulu and Karolinska Institutet. The device is built using inexpensive, mass-

produced plastic optoelectronic components, typically used in consumer electronic 

products, such as smartphone camera systems. By using this type of components, the total 

material costs are reduced by multiple orders of magnitude (approximately 500 - 1.000 

EUR), compared to conventional slide scanners retail prices (approximately 30.000 - 200.000 

EUR). The system utilizes a white light-emitting diode (LED) as the illumination source for 

brightfield imaging and supports transmitted light fluorescence imaging using a retractable 

ultraviolet (UV) LED source with adjacent filters. For the imaging sensor, a 13-megapixel 

complementary metal oxide semiconductor (CMOS) sensor is used with a total image 

resolution of 4208 x 3120 pixels. The reversed, plastic 1/3.2” lens has a field of view (FOV) of 

approximately 0.84 x 0.62 mm2, resulting in a pixel size of approximately 0.22 µm x 0.22 µm 

with a spatial resolution of 0.9 µm as measured using a standardized USAF resolution test 

chart (Figure 8), and a magnification of approximately 5.5X. An external motor unit is used 

for sample adjustment when digitizing samples measuring multiple FOVs. The device is 

connected to a laptop computer through a universal serial bus (USB) connector, and 

controlled using a custom software. The software features a live-view from the device 

camera and controls to adjust sample position and scanning settings. Acquired images are 

saved on the local storage of the computer or uploaded to an image processing and 

management platform (WebMicroscope, Fimmic Oy, Helsinki, Finland), running on a cloud 

server at the university campus. When scanning multiple FOVs, corresponding whole slide 

images (WSIs) are constructed from the individually captured images using the 

commercially available software suite Image Composite Editor (Microsoft Computational 

Photography Research Group, Microsoft Inc., Redmond, WA). Generated WSIs are saved in 

the Tagged Image File Format (TIFF) and compressed to a wavelet file format prior to 

uploading (Enhanced Compressed Wavelet, Hexagon Geospatial, Madison, AL, USA) with a 

target compression ratio of 1:9. This amount of compression preserves sufficient spatial 
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image quality to not alter image analysis results significantly, as shown in previous work 

(Konsti et al., 2012). Remote access to samples at the cloud server can be established using a 

web browser secured with the secure sockets layer (SSL) encryption technology.  

 

 

Figure 7. FIMM ‘MoMic’ mobile microscope prototype. Image (a) showing the point-of-care 

microscope prototype with sample holder (1), glass slide (2), focus adjustment lever (3) and 

main microscope unit (4). Image (b) showing schematic view of device internals, with size 

of main printed circuit board, and disassembled camera module (c) with the miniaturized 

lens and imaging sensor used to capture digital images. Partly modified from from PLOS 

(Holmström et al., 2015). 



 53 

 

Figure 8. USAF Chart, captured with early Momic prototype. (a) US Air Force 1951 

standardized three-bar resolution test chart, with pixel intensity profiles (b), as measured 

over smallest set of resolvable bars (group 8; element 5) and group 8; element 6 

(unresolvable). Adapted with permission from PLOS (Holmström et al., 2015). 

 

The reference high-end slide scanner used in Studies I, II and IV is a conventional 

laboratory-grade, high-end whole slide scanner (Pannoramic 250 FLASH, 3DHistech Ltd., 

Budapest, Hungary). Scanning was performed using a 20x objective with a numerical 

aperture (NA) of 0.8, using a three-CCD (chard-coupled device) digital camera with a 1.0 

adapter, rendering a spatial resolution of 0.22 µm/pixel. Captured digital slides were saved 

locally or compressed to ECW format and uploaded to the WSI management server using the 

configurations described above. 

In Study III, samples were digitized using a small-sized, commercially available 

portable digital microscope scanner (Grundium Ocus, Grundium Oy, Tampere, Finland) 

(Figure 9). The device uses an 18-megapixel image sensor with a 20x objective (NA 0.40) and 

a pixel size of 0.48 µm. The scanner is connected to a computer over a WLAN connection 

and controlled through a browser interface. Coarse focus for the scanner can be manually 

adjusted and fine focus adjusted using the built-in autofocus routine. Images were saved in 

the Tagged Image File Format (TIFF) on a local hard drive, and converted to ECW format 
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with a 1:16 compression ratio, before uploading to an image management platform (Aiforia 

Cloud, Aiforia Technologies, Helsinki, Finland).  

 

 

Figure 9. Point of care digital laboratory in Kenya. Image showing computer with cloud-

based slide management platform (1), POC digital slide scanner (2), mobile network router 

(3) and glass slides (Pap smears) (4).  

 

4.3 Digital image analysis methods 

 

For the digital image analysis, we used in total three separate computer digital image 

analysis algorithms. Two of these utilized machine learning with deep convolutional neural 

networks (CNNs), and one method was based on a more conventional computer vision 

approach with colour deconvolution and thresholding to separate stains and objects from 

the background.  

In Study I, the quantitative image analysis of the digital samples was performed 

using the image-analysis library ImmunoRatio2 (Jilab Inc., Tampere, Finland). The software 

uses colour deconvolution to separate individual stains and nuclear thresholding, particle 

segmentation and filtering techniques to distinguish cellular nuclei in the images 
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(Tuominen et al., 2010, Ruifrok, Johnston, 2001). In this way the total amount of positive 

and negative nuclei in the images can be calculated to yield an overall value for percentage 

of IHC positive cells (ER positive cells in this application). For the calibration of the 

software, a training series consisting of 10 digital samples was selected and used to 

configure the software (i.e. adjusting parameters such as colour thresholds, pixel size and 

nuclei size). By adjusting threshold values for the algorithms (colour thresholds for 

separation of DAB and haematoxylin stains and average nuclei sizes in proportion to pixel 

size of images, based on analysis performance in the training set) the algorithm was 

calibrated to quantify individual nuclei in the digitized samples and classify them as ER 

positive or negative. When the best-performing configuration was achieved on the training 

series, analysis of the test series (170 samples) was performed without human supervision.  

In Study III, we trained a deep CNN model, running on a cloud server, to detect 

squamous cervical-cell atypia in digitized Pap smears. For this, we utilized a commercially 

available machine learning and image analysis platform (Aiforia Cloud, Aiforia 

Technologies, Helsinki, Finland). Training of the algorithm was performed using a subset of 

the samples from the study, representing 50 % of the target number of samples in the study 

plan (n = 350). The deep learning system (DLS) was trained to detect regions of low- and 

high-grade squamous cell atypia (defined as LSIL, or higher) in the digitized samples (Figure 

10). The area of the digital Pap smear whole slides measured approximately 100,000 x 

50,000 pixels. For the training of the DLS, representative, separate regions (n = 16,899) with 

cross-sections of ~25-100 µm were selected visually from the training slides. The regions 

represented areas of both normal cervical morphology and cervical-cell atypia of different 

degrees. The DLS was trained using 28 000 training epochs (iterations), using a pre-

determined feature size (field-of-view) of 30 µm. To maximize the generalizability of the 

model, the training data was augmented using various image perturbations; variation in 

scale (± 10%), aspect ratio (± 10%), shear distortion (± 10%), luminance (± 10%), contrast (± 

10%), white balance (± 10%) and variation in image compression quality (40–60%).  
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Figure 10. Schematic view of training and analysis using the deep-learning system (DLS). 

Image showing manual annotation of regions of normal and atypical cells (a), which are 

used to train the DLS to detect and classify atypical findings and DLS-analysis of digital 

sample (b) with results in numerical and visualized with heatmap colour overlays for 

manual verification.   

 

In Study IV, we also trained a supervised deep CNN-based algorithm to analyse the samples. 

For the training of the algorithm, a subset of the digitized images with visible parasites were 

used as training data. From the total number of images captures with the scanner (n = 7385), 

we used 218 (3 %) images for this purpose. The development and training of the deep 

learning model was performed using a commercially available image management and 

analysis platform (WebMicroscope, Fimmic, Helsinki, Finland) based on the manual 

labelling of digital samples in the training series. The pipeline for image analysis, i.e. 

detection and classification of parasites, involved two sequential algorithms. The first 

algorithm was trained using labelled training data were all visible parasites in the images 

had been manually annotated on an object-level, regardless of species. Based on these 

predefined objects of interest (location in image and size), the algorithm was trained to 
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detect all visible parasites in the samples, but not yet classify them according to species. 

The detected objects of interest by the first algorithm were fed forward to a second 

classifier, trained to perform the classification of detected parasites into likely species. The 

second classifier layer analysed exclusively the objects detected by the first algorithm (200 x 

200 pixels) to determine the most likely species. If no suitable match was detected, the 

finding was classified as “other” (e.g. artefact). Training of this classifier was also performed 

using manually labelled data for the different parasites. Using this two-phase method, the 

findings in the analysed samples were exported as a report for manual confirmation, 

arranged with the findings most likely to represent parasites first (Figure 11).  

 

 

Figure 11. Workflow of digital analysis of sample with deep learning system (DLS) to detect 

and classify Neglected Tropical Parasites. Image showing sample analysis pipeline (a), 

analysis of whole slide-image and grouping of all potential parasites into one image panel 

(b), classification of parasites with second layer of DLS (c) and exported results for visual 

verification (d).  
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4.4 Statistical analysis 

 

Statistical analyses for the studies were performed using the general-purpose statistical 

software packages SPSS 22.0.0 for Windows (SPSS Inc., Chicago, USA), and Stata 15.1 for 

Mac (Stata Corp., College Station, TX, USA). Kappa statistics were used to assess inter-rater 

agreements with values 0.01–0.20 considered as slight, 0.21–0.40 fair, 0.41–0.60 moderate, 

0.61–0.80 significant and 0.81–1.00 as almost perfect agreement (Landis, Koch, 1977), using 

linear weights when applicable. Correlation coefficients were calculated with the Pearson 

product-moment correlation method and Bland-Altman plots were used to visualize inter-

rater agreements between observers. Diagnostic sensitivity was calculated as the percentage 

of true positives (TP) divided by TP and false negatives (FN). Positive predictive value (PPV) 

on an object level was calculated as the percentage of true positives divided by true 

positives and false positives (FP). Statistical-power calculations were performed with a 

sample-size formula (Buderer, 1996), in Study III assuming a disease prevalence (Pr) of 8% 

(± 2%) in the study population (based on previous literature), and α = 0.05 (and 

correspondingly Z1−α/2 = 1.96), and a precision parameter (ε) of 0.10, to determine whether 

sensitivity (SN) and specificity (SP) were comparable to the ground truth. 

!"#$%&'&(&') = 	
,-.//11 23(1 − 23)

81 × :;
	 

!"<#=&>&=&') = 	
,-.//11 	2<(1 − 2<)
81 × (1 − :;)

 

All statistical tests were two-sided unless otherwise stated. Unless otherwise mentioned, 

the level of statistical significance was 0.05 for all values displayed. Assessment of the 

diagnostic performance of the DLS was performed by calculating the area under the curve 

(AUC) of the receiver operating characteristics (ROC) curves, as plotted with the true-

positive rate (TPR; sensitivity) versus the false-positive rate (FPR; 1 − specificity) for 

different thresholds of slide-level positivity for the algorithms. Statistical estimates of 

diagnostic accuracy were reported with 95% confidence intervals (95% CIs). 
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5 RESULTS 

5.1 Breast cancer histopathology with low-cost, point-of-care digital 

microscopy (Study I & II) 

In Studies I and II we evaluated the histopathological assessment of breast cancer ER-

receptor status and detection of metastases in sentinel lymph node frozen sections, using 

samples digitized with a POC prototype miniature microscope. The samples were analysed 

both manually and digitally, and results were compared to the visual analysis of samples 

and to digital analysis of samples scanned with a high-end laboratory-grade whole-slide 

scanner as the reference (Table 2).  

First, a computer vision software was configured and applied to analyse the digital 

samples, scanned with both devices. The samples were analysed to determine overall ER 

positivity by quantifying the percentage of cells expressing ER. The ground truth to which 

image analysis results were compared was the conventional, visual assessment of ER 

positivity in the digital samples, as classified according to cut-off values from clinical 

guidelines (Hammond et al., 2010); i.e. strongly ER-positive (> 10% ER-positive cells), 

weakly ER-positive (≥ 1% ER-positive cells) or ER-negative (< 1% ER positive cells). In total, 

after exclusion of 10 samples used for the calibration of the algorithm, 170 samples were 

analysed. In Study II, the same devices were used to digitize intraoperative samples from 

breast cancer surgeries, and the digital samples from both the high-end and low-cost 

devices reviewed remotely by two independent pathologists to detect metastases. After two 

inadequate samples were excluded, 152 slides remained for analysis. Results were compared 

between the devices, with the conventional pathologist light-microscopy diagnosis of the 

glass slides as the reference. 
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5.1.1 Digital image analysis compared to conventional sample analysis for 

analysis of breast cancer samples 

 

In total, 170 breast cancer tissue samples were analysed for ER-positivity. We compared the 

detected ER-positivity, measured by digital image analysis, to the visual analysis of the 

samples. The reference visual results of the samples yielded 33 (19%) samples as ER-

negative, 18 (11%) as weakly ER-positive and 119 (70%) as strongly ER-positive (Table 2). 

When comparing these results to the image analysis results (Figure 11) of the digital 

samples from the miniature scanner, a strong correlation was observed (r = 0.94, p < 0.001) 

with a substantial level of agreement (κ = 0.71; 95% CI 0.61 - 0.80). Similarly, when 

comparing results from the visual sample analysis to the digital image analysis of samples 

from the high-end scanner, comparable levels of correlation (r = 0.93, < 0.001) and 

agreement (κ = 0.69; 95% CI 0.60 - 0.78) were observed (Table 2). Overall, 16 (9%) discrepant 

samples, compared to the ground truth, were observed in the digital image analysis of 

samples from the miniature scanner, and 14 (8%) in the reference slide scanner samples. All 

of these represented false-positive (FP) samples, i.e. classified as positive by the image 

Level of ER-positivity Visual sample 
analysis, n  (%)

Analysis of high-end scanner 
samples, n  (%)

Analysis of point-of-care 
microscope samples, n  (%)

Negative (< 1%) 33 (19.4) 19 (11.2) 17 (10.0)
Weakly ER-positive (< 10%) 18 (10.6) 21 (12.4) 25 (14.7)
Strongly ER-positive (> 10%) 119 (70.0) 130 (76.5) 128 (75.3)

Frozen section metastasis status Visual sample 
analysis, n  (%)

Analysis of high-end scanner 
samples, n  (%)*

Analysis of point-of-care 
microscope samples, n  (%)*

No metastasis present 103 (67.8) 106 (69.7) 107.5 (70.7)
Metastasis present 49 (32.2) 46 (30.3) 44.5 (29.3)

*Mean values from pathologists reviewing the samples 

Table 2. Samples used in breast cancer studies (Study I and II) with results from analysis with the different 
methods (visual analysis and digital analysis of samples scanned with the reference high-end scanner 
and the low-cost point-of-care device). 

Number of samples shown with corresponding percentage of total number of samples in studies 
(n = 170 in Study I and n = 152 in Study II) 

Breast cancer surgery frozen sections (Study II)

Breast cancer core biopsies (Study I)
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analysis and negative by manual analysis. Notably, no false-negative (FN) samples were 

observed in the results from either device.  

 

Figure 11. ER-positive and ER-negative breast cancer samples. Image showing ER-positive 

(a), and ER-negative (b) breast cancer samples, digitized with the low-cost microscope, 

analysed with the ImmunoRatio algorithm with detected ER-positive (blue dots) and ER-

negative (yellow dots) cells and numerical results from image analysis. 

 

5.1.2 Analysis of breast cancer tissue samples with a high-end, laboratory-

grade scanner and a miniaturized, low-cost scanner 

 
Next, we compared the results from the digital image analysis of samples scanned with the 

high-end and the low-cost devices. Overall, the digital image analysis results correlated 

strongly when comparing numerical results from both devices in terms of detected ER-

positivity (r = 0.98, p < 0.001) (Figure 12). We calculated a substantial level of inter-rater 



!'#!

agreement between the results from both devices, as measured using unweighted kappa 

statistics (/ = 0.84) and no statistically significant differences were observed in inter-rater 

agreement with both devices when compared to the ground truth. The principal challenge 

for the image analysis was the analysis of weakly ER-positive samples, but the overall rate 

of discrepancies was generally low and similar for both devices. Notably, no false-negative 

(FN) samples were observed with either device (Table 3). 

 

 

 

Figure 12. Comparison of results between digital image analysis and visual sample 

assessment. Image showing scatter plots of detected estrogen receptor (ER) -positivity by 

visual and digital analysis of samples (a), and Bland-Altman plots illustrating the inter-

rater agreement of the different methods as difference compared to mean of the results of 

detected ER-positivity (b).  
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Similarly, when comparing results between devices for the detection of metastases 

in the digital samples scanned with both devices, we observed a high level of agreement in 

results from both the same devices. Overall, 152 samples were reviewed by two independent 

pathologists for the detection of breast cancer metastases. Here, overall sensitivity (89.9% 

and 93.9%, respectively) and specificity (99.0% and 99.0%) were similar for interpretation of 

slides from both devices. When calculating inter-rater agreement in results from the 

pathologists, the remote interpretation of slides yielded very similar results for both the 

miniature microscope (κ = 0.91) and the reference high-end scanner (κ = 0.95), compared to 

the conventional light microscopy diagnosis and no statistically significant differences were 

observed between the devices (Figure 13). The overall number of discrepant slides was low 

for both devices. The percentage of FN slides in the analysis of the miniature scanner slides 

were 2% and 4%; compared to 0% and 2% with the reference slide scanner. The percentage 

of FP samples were 0% and 1 % with the miniature microscope slides, and 0% and 1 % with 

the reference slide scanner (Table 3). A majority of the incorrectly classified slides on a slide 

level were toluidine blue slides with micrometastases, which were correctly diagnosed in 

corresponding IHC-stained sections when available.  

 

Figure 13. Digitized lymph node frozen sections (FS). Stained sample (toluidine blue and 

anti-CK) with visible breast cancer metastasis. Row (a) showing samples scanned with the 

miniature microscope scanner, and row (b) showing corresponding samples scanned with 

the high-end reference slide scanner.  
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In conclusion, Studies I and II demonstrate that the image quality achievable with a 

portable, miniaturized and inexpensive digital microscope scanner is sufficient for certain 

routine histopathological applications in breast cancer diagnostics. Specifically, the results 

demonstrate that analysis of the digitized samples for detection of breast cancer metastases 

in lymph node frozen sections is feasible and that determination of tumor characteristics 

(expression of hormone receptors in immunostained samples) is possible both visually and 

using digital image analysis algorithms, with results similar to conventional methods.  

 

5.2 Cloud-based deep learning for detection of cervical-cell atypia in digitized 

Pap smears (Study III) 

A POC digital slide scanner was deployed at a rural clinic in Kenya and used to digitize a 

total of 720 Pap smears on-site. Using the local data networks, the samples were uploaded 

to a cloud server and analysed with a deep learning system (DLS), trained to detect atypical 

lesions (low- and high-grade squamous intraepithelial lesions). Results were compared to 

the expert visual assessment of the digital slides and to the assessment of the physical glass 

slides by the local pathologist.  

5.2.1 Detection of cervical-cell atypia with the DLS compared to the expert 

visual assessment of digital samples  

 
After exclusion of 29 (7%) ineligible samples, 361 samples remained in the validation series. 

The expert visual assessment of the digital samples was performed remotely by a 

cytotechnologist and pathologist, both experienced in cervical cytology microscopy. The 

cytotechnologist initially screened all digital samples, and all slides with significant cervical 

cellular atypia (LSIL, or higher) were confirmed by the pathologist. Furthermore, according 

to generally accepted guidelines, 10% of slides classified as normal by the cytotechnologist 

were randomly selected and submitted for re-analysis by the pathologist. In this visual 

assessment of samples, 19 (5%) of slides presented with low-grade and 28 (8%) with high-

grade atypia and 314 (87%) were classified as negative for significant squamous cell atypia. 

With these results as a reference, the DLS achieved an area under the receiver operating 
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characteristic curve (AUC) of 0.94 with a sensitivity of 95.7% (95% CI 85.5–99.5%) and a 

specificity of 84.7% (95% CI 80.2–88.5%) (Figure 20). For the detection of slides with high-

grade lesions, the AUC was 0.93, the sensitivity 85.7% (95% CI 67.3–96.0%) and specificity 

86.0% (95% CI 81.8–89.5%). The AUC for the detection of low-grade slides was 0.86, with a 

sensitivity of 84.2% (95% CI 60.4–96.6%) and a specificity of 86.0% (95% CI 81.8–89.5%) 

(Table 3). Compared to the expert assessments of the digital slides, two slides with low-

grade atypia were classified as negative by the DLS (<1%), but no high-grade slides were 

falsely classified as negative by the DLS, although four high-grade slides (1%) were 

classified as low-grade by the DLS (Table 3). In these results, the negative predictive value 

(NPV) for the DLS was high for general atypia (266/268 = 99.3%; 95% CI 97.3–99.9%), low-

grade atypia (294/297 = 99.0%; 95% CI 97.1–99.8%) and high-grade atypia (328/332 = 98.5%; 

95% CI 96.9–99.7%). 

5.2.2 Detection of cervical-cell atypia with the DLS compared to expert visual 

assessment of physical samples  

 
We compared the performance of the DLS for detection of cervical-cell atypia to the 

assessment of the physical slides, performed by a local pathologist. For this, we obtained 

the cytological reports from the glass slides from the local pathology laboratory. Of the 

slides in the validation series, the local pathologist classified 342 (95%) as negative for 

significant squamous-cell atypia, 14 (4%) as positive for low-grade atypia and five (1%) as 

positive for high-grade atypia. With these results as the reference, the DLS achieved a 

sensitivity for general atypia of 100% (95% CI 82.4–100%) and for high-grade atypia of 100% 

(95% CI 47.8–100%); with corresponding levels of specificity of 78.4% (95% CI 73.6–82.4%) 

and 93.3% (95% CI 90.1–95.6%), respectively (Table 4). We calculated a lower sensitivity for 

low-grade atypia (21.4%; 95% CI 4.7–50.8), as 11 of 14 slides classified as low-grade atypia 

in the report from the local pathologist were classified as high-grade by the DLS. We 

observed a high NPV for general atypia (266/266 = 100%; 95% CI 98.6–100.0%), for high-

grade atypia (332/332 = 100%; 95% CI 98.9–100.0%) and low-grade atypia (286/297 = 96.3 %; 

95% CI 93.5–98.1%). Overall, the DLS achieved high AUCs for detection of general atypia 

(0.96), high-grade atypia (0.94) and low-grade atypia (0.94) (Figure 14). Compared to the 

physical-slide cytodiagnosis, no atypical slides were falsely classified as negative by the 

DLS.  



!'(!

 

In conclusion, Study III demonstrates how a miniaturized POC digital microscopy scanner 

can be implemented at a rural clinic in a region with high cervical cancer prevalence and 

low screening coverage, and used to digitize samples for automatized deep learning-based 

analysis to detect atypical lesions. The results showed high agreement to visual assessment 

of samples by pathologists and high negative predictive values, suggesting that this 

technology could be utilized for screening purposes.   

 

 

Figure 14. Results from analysis of Pap smears with the deep learning system (DLS). Results 

from the DLS-based analysis, compared to the expert sample assessment of digital samples 

(a), and physical glass slides (b). Image (c) showing regions marked by expert sample 

assessment and corresponding areas as detected by the DLS.  
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Atypia in general

Table 4. Results from
 analysis of digitized Pap sm

ears with the deep learning-system
 with the expert assessm

ent of sam
ples as reference.

True negative, n (%
)

True positive, n (%
)

Expert assessm
ent of digital slides 

Expert assessm
ent of glass slides 

High-grade atypia

Diagnostic com
parison

Sensitivity, %
 (95%

 CI)
Specificity, %

 (95%
 CI)

False negative, n (%
)

False positive, n (%
)

Low-grade atypia

95.7 (85.5-99.5)
85.7 (67.3-96.0)*
84.2 (60.4-96.6)

2 (0.6)

21.4 (4.7-50.8)**

78.4 (73.6-82.6)
93.3 (90.1-95.6)
69.2 (78.0-86.3)

100 (47.8-100)

84.7 (80.2-88.5)
45 (12.5)
24 (6.6)
16 (4.4)

100 (82.4-100)

48 (13.3)
5 (1.4)
48 (13.3)

266 (73.7)
328 (90.9)
294 (81.4)

4 (1.1)*
3 (0.8)

98.5 (96.5-99.5)
86.0 (81.8-89.5)

Calculated sensitivity and specificity of the deep-larning system
 (DLS) are shown with the associated 95%

 confidence intervals. 
Num

bers of false-negative, false-positive, true-negative and true-positive assessm
ents are shown with the corresponding percentage 

of the total num
ber validation slides (n = 361).

*Findings in sides classified by experts as high-grade atypia were classified as low-grade atypia by the DLS.
**Findings in slides classified by experts as low-grade atypia were classified as high-grade atypia by the DLS.

Low-grade atypia
High-grade atypia
Atypia in general

61 (16.9)
286 (79.2)

3 (0.8)

0 (0)
0 (0)

11 (3.0)**

74 (20.5)
268 (74.2)

19 (5.3)
24 (6.6)

332 (92.0)
5 (1.4)
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5.3 Diagnostics of Neglected Tropical Diseases with deep learning-based 

image analysis and point-of-care digital microscopy 

A model based on deep convolutional neural networks was trained to analyse digital 

samples and both detect and classify tropical parasites. Samples were digitized using a low-

cost, slide-scanning platform, and results compared to visual assessment of samples.  

5.3.1 Visual assessment of samples and establishment of study ground truth 

 

The parasitological samples were digitized using both the POC and high-end scanners and 

corresponding digital slides (whole slide images) visually examined on a computer monitor 

to confirm that parasites could be visualized in the scanned images. By visual assessment 

spatial resolution was determined to be sufficient for both devices to clearly identify 

parasites and reliably determine species for the parasites studied in the digital images 

(Figure 15). To establish the study ground truth, the digital samples were reviewed by two 

independent researchers and location and species of all parasites detected recorded. The 

corresponding annotations were both observers agreed on parasites were used as the ground 

truth for the analysis.  

 

Figure 15. Digitized image, captured with the point-of-care microscope prototype, showing 

visible parasites. Enlarged areas showing visible parasites; A. lumbricoides (a), T. trichiura 

(b), hookworm (c), S. haematobium (d). Image adapted with permission from Taylor & Francis 

Group (2017). 

!"#
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5.3.2 Deep learning-based detection of parasites in digital samples  

For analysis by the deep learning system (DLS) all digital images captured with the 

miniature microscope were pooled, resulting in a total of 7385 images. By visual analysis, 

410 of these images were classified as positive (i.e. containing observable parasites) with a 

total of 434 manually labelled helminth eggs. Of these, 390 were labelled as A. lumbricoides, 

12 as T. trichiura and 32 as hookworm eggs. In total, 50% of samples were used to train the 

DLS, and 50% for verification of results. On an object level, the sensitivity for detection of 

A. lumbricoides in the test series was 100%, i.e. all visual parasites in the scanned samples 

were correctly detected by the software. The algorithm detected 13 false positive (FP) A. 

lumbricoides parasites, and correspondingly no false negative (FN) samples for an overall 

positive predictive value (PPV) of 93.7% on an object level. For T. trichiura, diagnostic 

sensitivity was 83.3% on an object level, no FP cases were observed and one FN case was 

detected, resulting in a PPV of 100% on an object level. Sensitivity for detection of 

hookworms in the digital samples was 93.8%, with 7 FP cases and one FN, yielding a PPV of 

96.9% on an object level. Following sample analysis, results (detected objects of interest) 

were automatically exported and presented as a single panel, in order from most likely 

detected parasites to least likely (Figure 16).  

 

Figure 16. Panel showing detected objects of interest from image analysis of fixated stool 

sample, showing detected A. lumbricoides parasite ova; arranged in descending order 

according to likelihood of representing parasite. Tiles with black boxes are objects detected 

at edges of the sample. Image adapted with permission from Taylor & Francis Group (2017). 

More likely to 
represent parasite

Less likely to 
represent parasite
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In conclusion, the findings from Study IV demonstrates that the imaging performance of 

an inexpensive, portable microscopy scanner, suitable for rural POC usage, is sufficient to 

detect the most common neglected tropical diseases. Furthermore, by applying an 

automatized deep-learning based algorithm, the sample analysis process can be facilitated 

by automatically identifying parasites with relatively high levels of sensitivity (83 – 100%, 

depending on species), classifying the findings according to species and presenting the most 

significant findings arranged into an image panel for rapid manual verification.   



 72 

6 DISCUSSION 

 

Light microscopy has remained a relatively unchanged diagnostic technique for over a 

century. Driven by technological advancements, the fundamentals of this common 

diagnostic procedure are undergoing a paradigm shift towards digital methods (Djuric et al., 

2017). Technologies such as digitization of samples for automatized digital image analysis 

with machine learning-based models present opportunities to facilitate the diagnostic 

process by providing rapid, accurate and reproducible results for a variety of diagnostic 

applications. As access to diagnostics for many common and treatable conditions is severely 

limited in many areas, there is a well-recognized need for improved diagnostic techniques 

(World Health Organisation, 2017). A barrier to implementing digital technologies has long 

been the requirement for expensive and large-sized equipment, which is not suitable for 

usage in rural areas. By utilizing advancements in components from consumer electronics, 

inexpensive and portable optical imaging devices (digital microscopes) have since been 

developed and shown to have potential as platforms for digital diagnostics at the front line. 

Similarly to the rapid expansion of mobile phone networks which has completely 

leapfrogged conventional land lines, novel diagnostic technologies here have the potential 

to be implemented more efficiently and rapidly (Sinha, Barry, 2011). While adaption of 

novel technologies in high-resource settings is often associated with increased costs (MIT 

Technology Review, 2013), in lower-resource settings there is an opportunity to define 

standards of diagnostics that can be implemented efficiently and inexpensively (Richards-

Kortum, Oden, 2013). Improved access to diagnostics has significant possible health 

impacts by e.g. directly saving lives (Girosi et al., 2006) and reducing overtreatment, and 

even minute improvements (by e.g. 1%) in diagnostic accuracy can translate into sizeable 

positive effects (Lim et al., 2006). Moreover, it is likely that the implementation of these 

technologies is feasible without large economical investments (Fleming et al., 2017). 

The aim of this thesis was to study how POC digital microscopy, supported by digital 

image analysis techniques can be used for diagnostics of various diseases, with a focus on 

potential applications in low-resource areas. Previous studies have suggested a number of 

devices, mainly utilizing smart phone components, as potentially usable systems for 

digitization of microscopy samples in field settings (Saeed, Jabbar, 2017). To date, these 

have been evaluated mainly for diagnostics of infectious diseases (e.g. Schistosoma, STHs, 
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malaria and tuberculosis), with studies generally reporting reasonably high levels of 

sensitivity and specificity (>90%) for visual detection of pathogens in the digitized samples. 

Although digital image-analysis algorithms have been extensively studied in e.g. digital 

pathology with samples digitized with high-end slide scanners (Bera et al., 2019, Esteva et 

al., 2017), they have not been widely applied for POC diagnostics. The potential to 

automatize the sample analysis process also in areas lacking trained experts on-site has 

been recognized, and a few studies have applied image-analysis methods to samples 

digitized in POC field settings. To date however, the work on this field is limited, with only a 

few studies evaluating these techniques for a limited number of applications - mainly 

identification of infectious pathogens, such as tropical parasites and tuberculosis (Vasiman, 

A., Stothard, J.R. & Bogoch, I.I. 2019).  

A major field where improved diagnostics is urgently needed and early diagnosis is 

crucial is oncology (Bender, 2014). During the coming decade, the cancer incidence is 

predicted to double in sub-Saharan Africa. In most low-resource settings, patients 

diagnosed with cancer typically have advanced diseases (Morhason-Bello et al., 2013). 

Confirmed histological diagnosis is the initial step and cornerstone in cancer treatment, but 

in most areas here, laboratory services are severely limited and the number of practising 

pathologists very low - even under one per 1,000,000 people (Adesina et al., 2013). Breast 

cancer is the most common cancer in women (Bray et al., 2018), and a leading cause of 

cancer-related mortality in low-resource countries where access to diagnosis is limited. In 

Study I, we described a diagnostic pipeline for automatized breast cancer histopathology, 

and applied it for the assessment of breast cancer hormonal receptor (ER) status in IHC-

stained tissue samples, scanned with a small-sized POC digital microscope. Our findings 

suggest that automatic digital assessment of ER-expression in breast cancer samples, 

scanned with this type of device yields results that are comparable to both visual analysis of 

samples and to image analysis of samples, scanned with high-end laboratory equipment. 

Here, the incorrect classification of negative samples as weakly positive represented the 

principal challenge for the system; a task which has previously been recognized as a source 

of variability also with conventional methods (Hammond et al., 2010). Notably, we observed 

no false-negative samples with the system described, suggesting feasibility as a diagnostic 

support tool in the determination of tumour characteristics, which for this application is a 

vital step when identifying patients likely to benefit from hormonal therapies.  
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The results from Study I are in line with the findings from Study II, where we 

described how the remote assessment of samples (FS) from breast cancer surgeries yielded 

similar results regardless of whether a laboratory-grade slide scanner or the low-cost 

microscope prototype was used for digitization of slides. The assessment of sentinel lymph 

node status during breast cancer surgeries is a routine procedure, as the presence of axillary 

metastases is a strong prognostic factor and a sign of advanced disease, which might 

therefore indicate a need for more extensive treatment interventions (Cardoso et al., 2019, 

Ditsch et al., 2019). FS represents the most common method of detecting axillary lymph 

node metastases during the surgery, but requires access to pathologist services on-site. 

Certain locations utilize digital microscopy with whole-slide scanners to overcome this by 

enabling sample analysis by remotely located experts (Thorstenson, Molin & Lundstrom, 

2014), and in Study II, we describe how the same is possible with a device which can be 

manufactured orders of magnitude cheaper. In the Study, we achieved levels of sensitivity 

and specificity which are comparable to analysis of samples from with a traditional high-

end slide scanner. The principal challenge here was the detection of small metastases in 

samples where only the morphological staining was available (toluidine blue), which is 

known to be challenging also with conventional microscopy (Chao, 2004), but overall few 

major discrepancies were observed. Notably, digital algorithms based on deep learning have 

been applied for the detection of metastases in conventional high-end WSIs (Ehteshami 

Bejnordi et al., 2017), and based on the results from Study II, similar methods are likely to 

be applicable also to samples digitized with lower-cost equipment.  

Cervical cancer represents another major global health burden. Although being 

highly preventable, the disease remains one of the most common and deadliest cancers in 

many countries (Bray et al., 2018). Pap smear-screening has drastically reduced the 

incidence and mortality of cervical cancer in high-resource areas (Saslow et al., 2002), but as 

screening coverage is still severely limited in many countries, cervical cancer remains one of 

the most common cancers in women here. As the analysis of Pap smears is a time-

consuming and labour-intense process with relatively low sensitivity and reproducibility 

(Sørbye et al., 2017), the development of automatized systems has been studies for decades 

(Bengtsson, Malm, 2014). The development of completely automatized systems has been 

challenging due to the complexity of samples, and the current systems allow mainly pre-

screening of slides with high-end equipment and/or LBC-processors. Deep learning-based 

algorithms have been applied also for detection of cervical-cell atypia in images from digital 
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pap smears with promising results (L. Zhang et al., 2017), but mainly using small-sized, 

cropped images from digital samples, meaning that the results are not directly applicable 

clinically in situations where the whole slide needs to be analysed (William et al., 2018). In 

Study III, we describe a digital diagnostic system where Pap smear whole slides are digitized 

with a small-sized slide scanner, uploaded to a cloud server and analysed with a deep-

learning model, trained to detect atypical, potentially precancerous lesions. We implement 

this technology at a peripheral clinic in Kenya in a region with high cervical cancer 

prevalence and low screening coverage for the analysis of routine Pap smears. Our findings 

suggest that detection of atypical slides with the technology is feasible with high sensitivity 

and specificity for lesions that are likely to warrant treatment interventions (e.g. low-grade 

or higher squamous-cellular atypia). As the overall NPV was high (~99 %), this technology 

shows potential especially for screening purposes. Notably, however, in this study we did 

not evaluate the system for detection of atypical cells of undetermined significance (ASC-

US and ASC-H) or glandular atypia. As these types of cells have distinct morphological 

features which are likely to be resolvable by visual evaluation of the digital samples in this 

study, it seems reasonable to assume that this technology is applicable also for the 

detection of these types of atypia, although further investigation is warranted to confirm 

this.  

Diagnostics of infectious diseases is a major application where digital microscopy 

has a significant potential to improve POC diagnostics, as current standards of diagnostics 

rely heavily on light microscopy (Knopp et al., 2012). Rapid and accurate diagnosis is 

essential in treatment and clinical management of parasitic diseases, but the lack of access 

to trained personnel and laboratory infrastructure compromises access to adequate 

diagnosis in the most affected areas. The need for improved testing for diseases such as 

neglected tropical diseases and malaria is enormous; annually hundreds of millions of blood 

smears (for malaria), stool samples (for helminth infections) and urine samples (e.g. 

schistosomiasis), are examined for parasites, but the need for more is significant (O'Meara 

et al., 2010). Accurate parasite count is essential not only for diagnosis and disease staging, 

such as when assessing level of parasitaemia in e.g. malaria, but also for disease 

management and control (such as in the monitoring of MDAs). During the last decades, 

studies have demonstrated how inexpensive, handheld digital microscopes can be utilized 

to diagnose various parasitic diseases, such as schistosomiasis, STHs, malaria and 

tuberculosis in field settings (Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019), suggesting a 
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significant potential for this technology to provide novel tools for diagnostics of these 

conditions. Out results from Study IV complement the findings from earlier studies, and 

demonstrate how a deep-learning algorithm can be applied to accurately detect the most 

common tropical parasites in digital samples, scanned with a low-cost POC device. We 

achieved generally high levels of sensitivity (83 - 100 %) with the system described, which is 

similar to what has been achieved with manual assessment of digital samples for the same 

diseases (Saeed, Jabbar, 2017). Furthermore, we demonstrate how results can be 

innovatively presented in a single panel to allow rapid manual verification of results (Figure 

19), compared to visually reviewing thousands of microscopic FOVs. NTDs remain a 

significant global health burden, with a recognized need for improved POC diagnostic tools 

(PATH, 2015) and our results support the conclusions from earlier work in suggesting that 

this technology is usable for this purpose. 

Overall, the field of computer vision and AI for medical image-based diagnostics has 

evolved rapidly during recent years, mainly with the rise of medical AI’s with deep neural 

networks, which enable highly-efficient analysis of medical images for a variety of 

applications, ranging from automatized image segmentation and classification to detection 

and quantification of features of interest. In this work, we have evaluated this type of digital 

image-analysis only for a limited number of applications, but as discussed in previous 

sections, by disseminating platforms to enable general-purpose digital microscopy at the 

POC, these methods are likely to be applicable also for various other diagnostic 

applications. Notably, apart from facilitation the traditional sample analysis process, recent 

research findings demonstrate how deep learning-based analysis of samples can extract 

information from digital samples in completely novel ways – e.g. by allowing predictive 

decision-making based on tissue morphology, 3D tissue modelling and news ways of 

interpreting high volumes of multimodal data (Bera et al., 2019). Assuming that the image 

quality achievable with POC imaging devices, such as the ones studied here, is comparable 

to laboratory-grade equipment for certain applications, it is reasonable to assume that these 

methods could be applicable also for POC diagnostics outside high-end laboratories.  

Although the findings here suggest multiple opportunities to improve access to 

diagnostics on a global level, certain challenges exist that need to be addressed before 

wider-scale clinical implementation is possible. One important aspect is the practical 

challenges related to preparation, handling and staining of samples; all of which are vital 

steps for efficient POC diagnostics (Vasiman, A., Stothard, J.R. & Bogoch, I.I. 2019). 
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Interestingly, studies have demonstrated how deep-learning models can perform “virtual” 

tissue stainings on native samples (Rivenson et al., 2019), thus potentially reducing the 

need for e.g. extensive staining protocols. To allow clinical usage, certain technical issues 

are crucial to address. Examples of these for current systems include ensuring support for 

imaging of sufficiently large sample areas (multiple FOVs), ease-of-use with minimal 

training and sturdy construction to withstand rugged field conditions. In clinical situations, 

the number of samples needed to be analysed can be large, which puts increased demand on 

the slide processing workflow in terms of digitization (turnaround time for slide scanning), 

storage and uploading (local storage capabilities, network performance and price) and 

computational resources for digital image analysis software. Importantly, in terms of per-

sample costs, even though the device manufacturing costs can be significantly reduced by 

choosing more cost-efficient components, more expensive alternatives with increased 

longevity could provide more viable alternatives over a longer time period, e.g. in settings 

where very large numbers (e.g. hundreds of thousands) of slides need to be digitized over 

longer periods of time. One issue with both novel hardware solutions (e.g. the current 

generation of POC digital microscopy devices) and software methods (e.g. medical AI’s) is 

the lack of standardizations, external validation data and regulatory approval methods. 

Notably, efforts are being made to overcome this, with the UN currently working on 

developing international standardized evaluation processes for health AI models (Wiegand 

et al., 2019). Currently, as a majority of studies on these technologies are relatively limited 

and have been conducted in controlled conditions, there is a critical need for translating the 

technologies from research to clinical applications. For this, larger studies that reach 

beyond demonstrating feasibility to expanded population studies with validated clinical 

trials are required. Following this, coordinated efforts and industry support are crucial to 

actually implement the technologies into clinical practise, by e.g. developing strategies for 

manufacturing and business commercialisation to finally reach the intended populations. 

This so-called ‘last mile problem’ is a well-recognized, extremely challenging problem for a 

number of emerging technologies for global health applications (Chao et al., 2014). 
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In conclusion, this work demonstrates how modern technological advancements can 

be utilized to facilitate microscopy diagnostics at the POC. The methods studied here could 

provide novel digital diagnostic tools, which are not only feasible to use for diagnostics of 

various common diseases (e.g. applications in cancer histopathology, infectious diseases 

and analysis of cytological samples), but also implementable outside high-end digital 

laboratories, where the actual need for improved diagnostics is highest. Modern image-

analysis algorithms are well-suited to facilitate the analysis of digital samples, and can 

improve the sample analysis process in a number of ways, which could be of particular value 

when access to trained medical experts is limited. These findings are encouraging steps in 

the effort to develop novel solutions for fast, accurate and reliable digital diagnostics at the 

POC. As this field is rapidly developing, further technological advancements are likely to 

translate into improved diagnostic performance, but this does not seem to be the 

breakthrough needed for success. Instead, to bridge the gap between academia and clinical 

work, coordinated efforts between different stakeholders are required to properly develop, 

scale production and implement these technologies. In this way, these already existing 

technologies could more efficiently be translated from research laboratories to improving 

access to diagnostics on a global level.    
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7 CONCLUSIONS 

 

In this doctoral thesis, we have described, developed, implemented and evaluated novel 

diagnostic solutions to digitize microscopy samples at the point of care for analysis either 

visually or with automatized digital algorithms. Based on the findings in the original 

research articles, the main conclusions are: 

 

1. The image quality achievable with a low-cost, point-of-care digital microscopy 

platform is sufficient for manual or digital assessment of breast cancer hormone 

receptor (ER) status. 

2. A low-cost, point-of-care digital microscope can provide a platform to allow remote 

assessment of intraoperative lymph node frozen sections for detection of breast 

cancer metastases.  

3. A system based on point-of-care digital microscopy with deep-learning based 

artificial intelligence can be implementable in peripheral settings and used to detect 

cervical-cellular atypia in digitized Pap smears.  

4. Detection and classification of the globally most common neglected tropical diseases 

is feasible by utilizing low-cost, digital microscopy and deep learning-based artificial 

intelligence.  
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TIIVISTELMÄ (Summary in Finnish) 

 

Riittämätön diagnostiikka ja diagnostisten testien heikko saatavuus on globaalinen 

ongelma, joka johtaa monen yleisen sairauden alidiagnosointiin. Monilla alueilla 

laboratoriopalveluiden ja lääketieteellisten asiantuntijoiden saatavuus on hyvin rajallista, 

kuten esimerkiksi Saharan etelänpuolisessa Afrikassa, jossa patologeja on usein vähemmän 

kuin yksi per miljoona asukasta. Viime vuosien teknologinen kehitys on mahdollistanut 

edullisten, pienikokoisten digitaalisten mikroskooppien rakentamisen, jotka soveltuvat 

käytettäviksi myös kenttäolosuhteissa (’Point of care’). Koska mikroskooppinäytteiden 

digitalisoiminen on perinteisesti vaatinut isokokoisia ja kalliita laitteita, menetelmä on 

pääasiassa ollut rajoittunut isoihin laboratorioihin. Digitaalisen mikroskopoinnin tuominen 

laboratorioiden ulkopuolelle mahdollistaa näytteiden analysoinnin digitaalisilla 

(esimerkiksi ns. ”keinoälyyn” perustuvilla) menetelmillä myös kenttäolosuhteissa, jossa 

nopea ja luotettava diagnostiikka on useimmiten erityisen tärkeä.  

Väitöskirjan tavoitteena on tutkia miten potilasläheistä digitaalista mikroskopointia, 

yhdistettynä keinoälyyn ja konenäköön perustuvaan digitaaliseen analysointiin, voidaan 

soveltaa tehostamaan diagnostiikkaa erityisesti potentiaalisissa käyttötarkoituksissa 

alueilla, joissa lääkäri- ja laboratoriopalveluita ei ole riittävästi saatavilla.   

Työssä tutkitaan erilaisia menetelmiä digitalisoida ja analysoida 

mikroskooppinäytteitä potilasläheisesti ja analysoida niitä sekä visuaalisesti, että käyttäen 

digitaalisia menetelmiä. Työ on jaettu neljään alaosaan, joissa tutkitaan erilaisia 

mahdollisia teknologian käyttöaiheita. Nämä ovat: 1) syöpäkudospatologia (kudoksen 

hormonireseptoripositiivisuuden määrittäminen), leikkauksen aikana tapahtuva patologia 

(jääleikkeiden analysointi etäpesäkkeiden löytämiseksi), sytologisten näytteiden analysointi 

(Papa-näytteiden analysointi) sekä yleisimpien troppisten parasiittitautien diagnostiikka 

(’Neglected tropical diseases’). 

Tuloksemme osoittavat, kuinka erilaisia mikroskooppinäytteitä 

(syöpäkudosnäytteitä, sytologisia näytteitä sekä parasitologisia näytteitä) voidaan 

digitalisoida diagnostisiin tarkoituksiin käyttäen pienikokoisia, edullisia laitteita, jotka 

soveltuvat käytettäviksi kenttäolosuhteissa. Lisäksi tuloksemme osoittavat kuinka käyttäen 

digitaalisia algoritmeja voidaan tehostaa näytteiden analysointia ja mm. määrittää 
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kudosvärjäyksiä, tunnistaa syövän esiasteita ja identifioida patogeenejä näytteistä 

tarkkuudella, joka vastaa perinteisiä diagnostisia menetelmiä.  

Yhteenvetona tuloksemme osoittavat miten teknologista kehitystä voidaan 

hyödyntää mahdollistamaan mikroskooppinäytteiden digitalisoimisen potilasläheisesti 

myös kenttäolosuhteissa. Tämä mahdollistaa digitaalisten algoritmien ja keinoälyn 

käyttämisen tehostamaan ja automatisoimaan näytteiden analysointia. Löydöksillä on 

merkitystä erityisesti uusien diagnostisten menetelmien kehittämisessä, jotka soveltuvat 

käytettäviksi myös perinteisten laboratorioiden ulkopuolella. Lisäksi täällä esitetyt 

menetelmät soveltuvat todennäköisesti käytettäviksi myös muiden sairauksien 

diagnostiikkaan, joka tällä hetkellä perustuu valomikroskopointiin.  
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SAMMANFATTNING (Summary in Swedish) 

 

Bristande åtkomst till medicinsk diagnostik är ett signifikant globalt problem som resulterar 

i att många vanliga, behandlingsbara sjukdomar förblir underdiagnostiserade. I vissa 

områden är tillgängligheten av laboratorietjänster och medicinisk personal kraftigt 

begränsad, liksom exempelvis i subsahariska Afrika där det totala antalet patologer ofta är 

lägre än en per miljoner invånare. Under det senaste decenniet har den tekniska 

utvecklingen möjliggjort utvecklingen av portabla, förmånliga instrument för att 

digitalisera biologiska prov även i fältmiljö; något som traditionellt begränsats till 

högklassiga laboratorier på grund av kravet på avancerad och dyr teknik. Genom att 

möjliggöra patientnära (’point of care’) digitalisering av prov kan avancerade digitala 

metoder, som provanalys med ’artificiell intelligens’, tillämpas även i fältmiljö – dvs. där 

behovet av förbättrad diagnostik är störst.  

Målet med avhandlingen är att undersöka hur förmånlig, patientnära 

digitalmikroskopi, kombinerat med digital bildanalys och artificiell intelligens, kan 

tillämpas för att effektivera rutinmässig mikroskopidiagnostik med tyngdpunkt på 

eventuella användningsområden i lågresursmiljöer.  

I arbetet beskriver, implementerar och utvärderar vi olika metoder för patientnära 

digitalisering av mikroskopiprov och analys av proven både visuellt och med 

automatiserade, digitala metoder. Arbetet är uppdelat i olika områden som undersöker 

teknologin för olika användningsområden. Dessa är: 1) onkologisk vävnadspatologi 

(bestämning av hormonreceptorstatus), 2) analys av intraoperativa vävnadsprov (fryssnitt 

för detektion av metastaser), 3) analys av cytologiska cellprov (Papa-prov) samt 4) 

diagnostik av de vanligaste tropiska parasitsjukdomarna (’neglected tropical diseases’).  

Resultaten visar hur digitaliseringen av mikroskopiprov är möjlig med 

miniatyriserade digitalmikroskop som lämpar sig för användning i fältmiljö, med en 

tillräcklig bildkvalitet för medicinsk diagnostik. Utöver detta kan provanalysen effektiveras 

med hjälp av automatiserad digital bildanalys, för att ex. mäta nivåer av vävnadsfärger samt 

identifiera premaligna cellförändringar samt parasiter i proven. 

Sammanfattningsvis tyder resultaten på att metoderna här är lämpliga för 

patientnära mikroskopidiagnostik av ett flertal olika sjukdomar. Genom att tillämpa 

moderna digitala bildanalysmetoder kan provanalysen automatiseras och effektiveras. 
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Resultaten är betydande steg i utvecklingen av digitaldiagnostiska metoder som är 

användbara även i områden utan tillgång till högklassig laboratorieinfrastruktur. Utöver 

detta är metoderna beskrivna här sannolikt även möjliga att tillämpa för diagnostik av ett 

flertal övriga sjukdomar vars diagnostik för tillfället baserar sig på ljusmikroskopi.   
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