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RESUMO 

 

Epilepsia é considerada a mais importante doença neurológica crónica a nível mundial. Esta 

afeta mais de 50 milhões de pessoas de todas as idades, e dessa população apenas 70% dos 

casos são controláveis com fármacos anti-epiléticos. Dos restantes 30%, 10% beneficiam da 

ressecação cirúrgica da região responsável pela atividade epilética e os restantes 20% não 

conseguem controlar adequadamente as suas crises. De entre as razões que justificam o baixo 

impacto da cirurgia encontra-se o facto de se desconhecer, na maioria dos casos, o foco desta 

atividade elétrica anormal. Por isso, a deteção deste foco é importante tanto para o diagnóstico 

como para o controlo das crises. 

O foco epiletogénico é um conceito teórico, consistindo na descreve a região cerebral que é 

necessário remover para deixar o doente livre de crises. Este é caracterizado por dois tipos de 

atividade epiléptica: a ictal e a interictal. A primeira diz respeito à atividade elétrica gerada 

durante as crises epiléticas e a segunda à atividade gerada entre as crises. A primeira é 

caracterizada uma intensa descarga elétrica que pode ter uma duração até alguns minutos. Já a 

segunda forma de atividade epiletogénica é, normalmente, mais breve no tempo e não 

associada a manifestações comportamentais detetáveis. 

Os métodos atualmente utilizados no diagnóstico da epilepsia baseiam-se quer na deteção da 

atividade ictal, quer deteção da atividade interictal. Estes incluem a tomografia por emissão de 

positrões (PET, do inglês Positron Emission Tomography), a tomografia computorizada de 

emissão de fotão único (SPECT, do inglês Single Photon Emission Computed Tomography), o 

magnetoencephalografia (MEG), o eletroencefalografia (EEG), tanto de escalpe como 

intracraniana, e, por fim, a combinação entre o EEG e a imagiologia por ressonância magnética 

funcional (fMRI, do inglês functional Magnetic Resonance Imaging). Todas estas técnicas 

possuem diversas limitações: em termos de baixa resolução temporal (PET, SPECT) e espacial 

(EEG, MEG), utilização de radiação ionizante (PET, SPECT), de carácter invasivo (EEG 

intracraniano), e, também, pelas dificuldade técnicas e financeiras que advêm da 

implementação de equipamento (MEG, EEG/fMRI). De forma a ultrapassar algumas destas 

dificuldades, novos métodos de processamento de dados de fMRI do estado de repouso têm 

sido desenvolvidos. Estes têm em vista a deteção de atividade epiletogénica interictal. 

A partir de estudos recentes em doentes com epilepsia do lobo temporal (TLE, do inglês 

Temporal Lobe Epilepsy) foi elaborada a hipótese de que o foco epiletogénico apresenta um 

comportamento distinto do restante parênquima cerebral quer em termos de perfil temporal, 
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quer em termos da complexidade dos seus sinais dependentes do nível de oxigenação do sangue 

BOLD (do inglês Blood Oxygen Level Dependent, designação dada aos sinais provenientes da 

técnica fMRI). Em particular, diversos estudos de EEG/fMRI sugerem que a atividade interictal 

está associada a picos transientes nos sinais BOLD, apresentando estes, por conseguinte, um 

perfil temporal BOLD distinto da restante atividade cerebral. Adicionalmente, estudos recentes 

com EEG indicam que o tecido epiletogénico apresenta uma menor complexidade, em termos 

de perfil temporal, que o parênquima saudável. 

Com base nestas hipóteses, é possível aplicar uma análise de agregação temporal bi-dimensional 

(2dTCA, do inglês bi-dimensional Temporal Clustering Analysis) para identificar regiões cerebrais 

que possuam um perfil temporal semelhante. Desta análise espera-se que sejam encontrados 

diversos conjuntos de regiões com perfis temporais distintos, eventualmente incluindo os 

potenciais focos epiletogénicos. No entanto, a aplicação desta técnica isoladamente não é 

suficiente para identificar com segurança o foco da atividade epiletogénica. 

Para tal, uma avaliação da complexidade dos sinais BOLD correspondentes a essas mesmas 

regiões pode ser feita utilizando duas abordagens: uma baseada no nível de entropia do sinal e 

outra baseada nas propriedades fractais do sinal. Relativamente à primeira abordagem, o 

método utilizado para avaliar a dinâmica da complexidade foi a análise da entropia à multiescala 

(MSE, do inglês, Multiscale Entropy) desenvolvendo uma variante modificada do algoritmo 

original. Este baseia-se no cálculo da entropia do sinal BOLD ao longo de múltiplas escalas 

temporais. Na análise de sinais BOLD de origem epiletogénica postula-se que o tecido possua 

uma complexidade menor que o restante tecido saudável, possuindo, no geral, uma entropia 

mais baixa. 

Na segunda abordagem, o método utilizado para avaliar as correlações temporais de longo-

alcance (LRTC, do inglês Long Range Temporal Correlations) ou as propriedades fractais dos 

sinais BOLD é a análise de flutuações com remoção de tendência (DFA, do inglês Detrended 

Fluctuation Analysis). Este método baseia-se na análise da auto-afinidade do próprio sinal, isto 

é, analisa as autocorrelações do sinal ao longo das diversas escalas temporais. No caso da análise 

de sinais BOLD com origem epiletogénica postula-se que as LRTCs sejam mais fortes do que as 

LRTCs para sinais BOLD de tecido saudável. Isto porque num sinal periódico, como é o caso da 

atividade interictal, é de esperar observar uma autocorrelação maior do que num sinal com uma 

periodicidade mais baixa. 



 

v 
 

Esta combinação metodológica tem como objetivo fornecer um biomarcador para a 

identificação de tecido epiletogénico a fim de ajudar no diagnóstico, na monitorização e no 

tratamento da epilepsia. 

A demonstração da aplicabilidade desta metodologia na identificação do foco epiletogénico 

baseou-se na análise de três doentes, cada um com um tipo diferente de epilepsia: epilepsia do 

lobo temporal unilateral e bilateral e displasia cortical focal (FCDE, do inglês Focal Cortical 

Dysplasia Epilepsy). Em todos os doentes, foi identificada uma região cerebral, cujo sinal BOLD 

possui um comportamento temporal distinto, concordantes com a informação clínica. 

A análise feita aos doentes com epilepsia do lobo temporal identificou a origem da atividade 

epilética baseada na hipótese que os sinais BOLD do tecido epiletogénico possuem uma entropia 

menor que o restante parênquima cerebral. A análise de conectividade funcional aos focos 

encontrados revelou correlações positivas e negativas com outras regiões cerebrais associadas 

quer a possíveis redes criadas pelo foco epiletogénico, quer a outras redes cerebrais que 

normalmente aparecem em estudos fMRI de estado de repouso. 

Por outro lado, a análise feita ao doente com displasia cortical focal indicou como provável foco 

epiletogénico uma região cerebral que não corresponde à informação clínica da lesão displásica. 

No entanto, uma análise da conectividade funcional da região encontrada pelo método indicou 

que esta possui correlações fortes com a região da lesão. De facto, as hipóteses postuladas neste 

trabalho baseiam-se em estudos elaborados para pacientes com TLE, pelo que ainda não existe 

uma assinatura de complexidade associada aos sinais BOLD de origem em FCDE. Por 

conseguinte, propõe-se como trabalho futuro, um estudo de uma amostra de doentes com FCDE 

de modo a classificar os sinais BOLD das regiões cerebrais displásicas em termos da entropia 

(MSE) e das LRTC (DFA). 

Os resultados preliminares obtidos neste estudo abrem novas perspetivas para a utilização de 

dados fMRI no auxílio ao diagnóstico, monitorização e tratamento da epilepsia, principalmente 

na avaliação pré-cirúrgica. No entanto, existem alguns limites associados à metodologia que 

precisam ser melhorados. O primeiro diz respeito ao facto dos sinais BOLD variarem consoante 

os indivíduos estudados, as zonas cerebrais e as condições dos tecidos cerebrais: se são 

saudáveis ou patológicos. Ou seja, é expectável haver variação da frequência, amplitude e forma 

destes sinais. Ainda, há estudos que demonstram que a atividade interictal pode produzir tanto 

um aumento como um decréscimo da magnitude do sinal BOLD, ou até não ter efeito na mesma. 

Resumindo, cada caso de epilepsia é único e condicionado pelos fatores descritos acima e, 

portanto, assumir uma resposta homogénea para todos eles torna restrita a aplicabilidade deste 
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método. Por conseguinte, o método deve ser otimizado para cada indivíduo ou grupo de 

indivíduos. 

Concluindo, tanto quanto me é dado a conhecer, este trabalho foi o primeiro a combinar uma 

análise de agregação temporal de regiões cerebrais com a análise da complexidade dessas 

mesmas regiões utilizando dados do estado de repouso de ressonância magnética funcional. 

Além da contribuição deste trabalho relativamente à sua aplicação à epilepsia, a metodologia 

desenvolvida é igualmente válida para ser aplicada ao estudo da dinâmica dos sinais BOLD no 

geral, estudando, por exemplo, redes neuronais de estado de repouso em indivíduos saudáveis 

em termos do seu comportamento temporal e a nível da sua complexidade. 
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ABSTRACT 

 

Epilepsy is one of the most important chronic neurological disorders worldwide affecting more 

than 50 million people of all ages. Among these almost 20% of epilepsy cases are uncontrollable 

and have an unknown source of this abnormal electrical activity. 

The present methods for detection of the epileptogenic foci comprises positron emission 

tomography, single photon emission computed tomography, magnetoencephalography, 

electroencephalography (EEG) alone and EEG/functional magnetic resonance imaging (fMRI), all 

with limitations in terms of temporal and spatial resolutions. In order to overcome some of those 

limitation a new method using fMRI alone was developed based on the hypotheses that the 

epileptogenic focus shows Blood Oxygen Level Dependent (BOLD) temporal profiles distinct 

from the remaining brain parenchyma during interictal activity and that the epileptogenic focus 

BOLD signals show lower complexity than healthy parenchyma. 

Therefore, bi-dimensional temporal clustering analysis (2dTCA), a data-driven technique, was 

used to identify brain regions with similar temporal profiles. Then, the BOLD signals of these 

regions were assessed regarding complexity using a modified multiscale entropy algorithm and 

also detrended fluctuation analysis in order to identify which of those regions corresponded to 

epileptogenic tissue. 

In order to demonstrate the applicability of the developed method a sample of three epileptic 

patients were analyzed comprising three types of epilepsy: unilateral and bilateral temporal lobe 

epilepsies, and focal cortical dysplasia. The results showed that this method is able to detect the 

brain regions associated with epileptogenic tissue. The results also showed that the 

epileptogenic focus influences the dynamics of related brain networks. This could be a key factor 

in the applicability of this method to other epilepsy cases. 

Finally, new perspectives are envisioned concerning the use of this method in the medical care 

of epilepsy and in the study of other brain networks. 

 

KEYWORDS 

Epilepsy; epileptogenic focus; functional magnetic resonance imaging; temporal clustering 

analysis; complexity analysis. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

 

Epilepsy is one of the most important chronic neurological disorders worldwide affecting more than 

50 million people of all ages. Although 70% of the cases are treatable with anti-epileptic drugs and 

less than 10% with surgical therapy, the remaining 20% can’t control their seizures. This neurological 

disorder brings an important impact on epileptic patients concerning discrimination, social stigma, 

and higher national healthcare costs. People with epilepsy can be targets of prejudice and the stigma 

of the disorder can discourage people from seeking treatment for symptoms and becoming 

identified with the disorder (WHO 2012). 

An epileptic seizure can be defined as a “transient occurrence of signs and/or symptoms due to 

abnormal excessive or synchronous neuronal activity in the brain” (Fisher et al. 2005). These brief 

electrical disturbances can have effects on sensory, motor, and autonomic functions, provoke 

changes in awareness or behavior, loss of consciousness, and convulsions. Uncontrolled epilepsy 

can also lead to depression, anxiety, and loss of cognitive function (Avanzini et al. 2013). 

The epileptogenic zone or focus is a theoretical concept corresponding to the brain volume that 

needs to be removed to render the patients seizure-free, i.e., it describes the abnormal cortex 

responsible for the generation of epileptic seizures. Thus, the cessation of seizures is accomplished 

with the complete resection of this area (Hamandi et al. 2005). This focus is characterized by two 

types of electrical activity, ictal which means during seizure, and interictal, which mean between 

seizures. The last one is normally more brief in time and is periodic (Ko et al. 2014). 

Hereupon, epileptogenic focus identification is important to epilepsy diagnostic and seizure control. 

The present methods for this purpose are based on Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT) (Mountz 2007; Kim & Mountz 2011), 

Magnetoencephalography (MEG) (Foley et al. 2014), Electroencephalography (EEG) alone 

(Hassanpour et al. 2004; Leal et al. 2007; Leal et al. 2008) and EEG/functional Magnetic Resonance 

Imaging (fMRI) analysis (Leal et al. 2006; Leite et al. 2013; Wang et al. 2012; Hamandi et al. 2005; 

Thornton et al. 2010). There’s a tradeoff in terms of time and spatial resolutions for all these 

techniques (Fig. 1). The first technique is a direct measure of the Fluorodeoxyglucose (FDG) uptake 

in the brain based on the hypotheses that the cortical blood flow increases in the area of seizure 
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discharge (Mountz 2007). The second 

one works is a similar way, but with a 

different radiotracer (Tc-99m) (Kim & 

Mountz 2011). The main limitation of 

using PET and SPECT to localize the 

epileptogenic zone relies on specificity 

of abnormalities due to its limited 

spatial resolution and poor temporal 

resolution (Morgan et al. 2004; Clare 

1997). Furthermore, the need for a 

radiotracer is also a drawback, making 

this technique more invasive. 

The third and fourth techniques used to localize ictal and interictal electrical activity are MEG and 

EEG. There are two main modes of using the latter modality, scalp EEG (sEEG) and intracranial EEG 

(iEEG). Both of these modalities have high temporal resolution, allowing the detection of brief spikes 

of electric activity, such as interictal activity. However, when regarding the needs of abnormalities’ 

specificity for presurgical assessment, the spatial resolution of sEEG and MEG is poor. In order to 

improve the resolution of sEEG a high-density of electrodes is needed (Leal et al. 2007; Leal et al. 

2008). This issue can be overcome by iEEG, as the electrical signal is recorded directly from cortical 

tissue. The major drawback of this last modality relies on the fact that it’s extremely invasive. 

Lastly, simultaneous EEG-fMRI is an emergent technique which combines the best of two modalities, 

high temporal resolution from EEG and high spatial resolution from fMRI. The strategy followed in 

this case is to continuously sample the interictal and ictal events while measuring the BOLD signal 

simultaneously with EEG. This is somewhat cumbersome as it requires a very specific and delicate 

setup, particularly for acceptable recording of the EEG. Otherwise it will bring several kinds of noise 

problems, including movements artifacts (Wang et al. 2012), compromising the feasibility of EEG-

fMRI studies. Another shortcoming associated with this technique, and with EEG alone, is that they 

aren’t sensitive to interictal epileptiform activity in deep structures making this technique useful 

only in patients with frequent interictal events recorded from the sEEG (Morgan et al. 2004; Lopes 

et al. 2012). To overcome some of the limitations described above and find a more suitable solution 

to localize a seizure onset, efforts are being taken to develop new processing methods using fMRI 

Fig. 1- Relative spatial and temporal sensitivities of different functional 

brain imaging methods. MEG: magnetoencephalography; sEEG: scalp 

electroencephalography; fMRI: functional magnetic resonance 

imaging; PET: positron emission tomography; SPECT: single photon 

emission computed tomography. Adapted from (Jezzard et al. 2001). 

SPECT 
MEG/ 
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technique only (Yee & Gao 2002; Morgan et al. 2004; Hamandi et al. 2005; Morgan et al. 2008; 

Morgan et al. 2010). 

Another approach to epilepsy diagnosis and characterization of epileptic signals behavior has been 

recently taken on the complexity field. Some authors have been hypothesized that epileptogenic 

brain tissue has a different complexity than healthy brain tissue (Parish et al. 2004; Monto et al. 

2007; Protzner et al. 2010). A complete characterization of this complexity could lead to a definition 

of a physiological biomarker applicable to epilepsy, namely for diagnostic and monitoring of its 

treatment. For that purpose two main approaches can be used: a disorder level based (Ouyang et 

al. 2009; Protzner et al. 2010) or a fractal properties based (Parish et al. 2004; Monto et al. 2007) 

methods. In both of them it is expected that in the epileptogenic focus the complexity is lower 

because of its intrinsic periodic interictal electric activity. 

This thesis project will focus on the epileptic focus localization through fMRI BOLD signals and then 

on the complexity analysis of its time series. Therefore, in the next section the concepts inherent to 

this work will be described. 

 

1.1.  BOLD signal origin and fMRI analysis 

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive tool that allows the study 

of the functional responses of the brain in a quantitative way. One advantage of using fMRI is the 

identification of brain activity due to a stimulus with a high spatial resolution (Jezzard et al. 2001).  

This technique is based on the 

hemodynamic response function 

(HRF) of the brain, which arises 

when a given stimulus is applied. 

The HRF is a transfer function of 

the neurovascular coupling 

characteristic of brain activation. 

When a stimulus acts on a 

particular region of the brain 

evokes, in that area, a change in 

blood flow. This facilitates 
Fig. 2- BOLD Signal Response to a brief stimulus. Adapted from (Jezzard 

1999). 

B  

C  

A 
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glucose oxidation by providing more oxygen molecules. If there is an increased consumption of 

oxygen, there’ll be an increased concentration of deoxyhemoglobin (dHb), a paramagnetic oxygen 

binding molecule. Oxyhemoglobin (oHb), on the other hand, is a diamagnetic molecule with a 

magnetic susceptibility smaller than that of dHB (Clare 1997). 

Therefore, a change in hemoglobin oxygenation leads to changes in the local distortions of a 

magnetic field applied, generating local field gradients and local changes of T2* in tissue the blood 

vessels. The measure of the T2* originate the BOLD signals (Jezzard et al. 2001), see Fig. 2. The brain 

hemodynamic response can be summarized in the following steps. When a brief stimulus acts, 

there’s an initial decrease of BOLD signal due to increase of oxygen consumption (Fig. 2A). Then, the 

increased blood flow decreases the dHb concentration increasing the BOLD signal (Fig. 2B). Finally, 

a delay of the return to the initial blood volume level provokes a decrease of oHb, and a 

consequently increase of dHb reducing temporally the BOLD signal intensity (Fig. 2C). 

The output of fMRI is a set of volumes comprising the scans of 

the brain at successive times, usually named raw data. Each 

volume is divided in resolution dependent number of small 

elements, named voxels, in which the information of the 

correspondent brain region is stored. One of the goals of 

acquiring fMRI data is to perform a robust, sensitive, and valid 

analysis to detect brain regions that show increased signal 

intensity at the stimulus time. In other words, the aim of fMRI 

analysis is to identify which voxels have their signal 

significantly greater than the noise level (Clare 1997; Jezzard 

et al. 2001). A typical pipeline analysis, schematically 

represented in Fig. 3, includes a first step of raw data pre-

processing that usually includes, correction to time effects and 

to subject movement during the experiment, and data spatial smoothing to improve the signal to 

noise ratio. Additional steps, such as, data detrending, filtering and regressing out of nuisance 

covariates are often taken. The aim of this pre-process is to improve the detection of activation 

events. Then, a statistical analysis is performed to detect which voxels shows a response to the 

assessed stimulus. This step usually involves a model estimation, through a general linear model 

(GLM) based on convolution between the HRF and the stimulus temporal profile. Finally, in order to 

display the activation images, statistical confidence must be given to the results by inferring about 

Raw Data

Pre-processing

Statistical analysis

Inference and 
Presentation

Fig. 3- Steps involved in the processing of 

fMRI data. Adapted from (Clare 1997). 
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probability values. See Appendix A for more information about statistical analysis, inference and 

statistical maps presentation in fMRI. 

The assessment of a stimulus via a pipeline analysis as described above can be one of two types. 

The first one comprises a stimulus that has typically few time points of duration, and its analysis is 

usually named a block-related one. The second one, a transient stimulus with a short duration is 

used, whereby its analysis is named an event-related one (Josephs et al. 1997). In epilepsy, once the 

stimulus is usually a transient spike corresponding to interictal electric activity, the analysis 

described in the above pipeline of event-related type. 

Since no technique is free of shortcomings this one has several limitations too. One of them 

concerns the temporal resolution, which is limited by the profile of the hemodynamic response, and 

low signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), leading to high variance in the 

results. One way to overcome this last limitation is to repeat the stimuli more than once, decreasing 

variance in results (Jezzard et al. 2001). However, this is difficult to apply in epilepsy since the timing 

of the stimulus, interictal or ictal seizure activity, is random and uncontrollable (Morgan et al. 2007). 

 

1.2.  Epileptogenic focus localization 

As explained before, the timing of ictal and interictal activity in epilepsy is unknown and 

unpredictable. Therefore, an analysis based on models isn’t suitable to localizing the epileptogenic 

focus, since no assumptions about temporal profile of the stimuli can be made. Data-driven 

techniques have been developed to deal with such cases as they are model-free. Some examples of 

such methods are the following: principal component analysis (Sugiura et al. 2004; You et al. 2011), 

independent component analysis (ICA) (Rodionov et al. 2007), hierarchical clustering (Cordes et al. 

2002; Keogh et al. 2005), and fuzzy clustering (Somorjai & Jarmasz 2003; Wahlberg & Lantz 2000). 

When applied to fMRI datasets these methods result in a large number of components, which are 

hard to classify without spatial and temporal information (De Martino et al. 2007; Rodionov et al. 

2007). 

Another data-driven method developed in the past years is temporal clustering analysis (TCA) (Yee 

& Gao 2002; Gao & Yee 2003; Morgan et al. 2004; Hamandi et al. 2005). This is a one-dimensional 

algorithm that groups together time series to one single cluster with the same temporal profile 

based on a given criteria. This criterial could be, for example, the same maximum signal magnitude 
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timing or the same first signal magnitude increase, to one single cluster. A modification of the 

original TCA to a bi-dimensional method, two-dimensional temporal clustering analysis (2dTCA) 

(Morgan et al. 2007; Morgan et al. 2008), detects different BOLD responses, assumed to be from 

different sources. It allows the detection of more than one single cluster. Once obtained the 

temporal profile of the cluster, it is possible to perform an event-related fMRI analysis. 

In Morgan’s work (Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2010) the 

application of 2dTCA to epileptogenic focus localization is based on the hypothesis that interictal 

epileptic activity provokes a transient BOLD spike with a rate slower than that of BOLD images 

acquisition. This hypothesis was based on preview results of EEG-fMRI studies applied to temporal 

lobe epilepsy (Salek-Haddadi et al. 2006; Kobayashi et al. 2005; Federico et al. 2005; Bagshaw et al. 

2004). The main results of these works showed that interictal activity detected by EEG is associated 

with a BOLD signal change. 

 

1.3.  Complexity analysis 

The human brain has an inherent high complexity arising from the interaction of thousands of 

neuronal networks that operates over a wide range of temporal and spatial scales (Hutchison et al. 

2013). This enables the brain to adapt to the constantly changing environment and to perform 

mental functions. In pathologic brains this capacity of adaptation is often impaired, leading to 

ordered or random patterns of behavior. In case of epilepsy, the study of such complexity could help 

to understand how an epileptic brain functions. 

To assess brain complexity we can only observe the macroscopic output of brain function, such as 

via EEG and fMRI, where a signal change represents a response from millions of neurons, thus 

creating the need for robust methods to evaluate the complexity of signal from such techniques. 

These methods are usually based on one of two approaches: disorder level based or a fractal 

properties based. 

The first one comprises methods that are entropy-based, by quantifying the regularity or orderliness 

of a time series (Pincus 1991; Kurths et al. 1996; Andino et al. 2000; Richman & Moorman 2000). 

Entropy can be conceptualized has a measure of the degree of disorder of a given system and 

increases with the degree of irregularity, reaching its maximum in completely random systems, such 

as uncorrelated or white noise, and its minimum in completely ordered systems, such as a single 
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frequency sinusoid. Physiologic outputs usually exhibits a higher degree of entropy under healthy 

conditions than in a pathological state, as they’re characterized by a sustained breakdown of long-

range correlations and loss of information (Goldberger et al. 2002). However, an increase in the 

entropy may not always be associated with an increase in dynamical complexity (Costa et al. 2002). 

One method that has been developed and improved in the past years and has been shown to 

effectively quantify the complex dynamics of biological signals is the multiscale entropy (MSE) (Costa 

et al. 2002). It is based on measuring the entropy over multiple time scales inherent in a time series. 

The second approach on brain complexity assessment relies on the evaluation of long-range 

temporal correlations (LRTC), which reflect the self-affinity of a given signal. The majority of 

quantifications methods such as spectral analysis and Hurst analysis (Peng et al. 1995) for the LRTC 

study are invalid to evaluate biological signals because, as they are complex and show fractal 

properties, their stationarity are not guarantee. Thus, a method capable of detecting the LRTC was 

developed in the past years to overcame the nonstationary problem of biological signals, named 

detrended fluctuation analysis (DFA) (Peng et al. 1994). 

 

1.4.  Thesis hypotheses and goals 

This master thesis project is based on the hypotheses that the epileptogenic focus shows a BOLD 

signal with a distinct temporal profile from the remaining brain parenchyma, either during ictal and 

interictal activity (Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2010). Particularly, 

it is known that the interictal epileptic activity provokes a transient BOLD spike with a rate slower 

than that of BOLD images acquisition (Salek-Haddadi et al. 2006; Kobayashi et al. 2005; Federico et 

al. 2005; Bagshaw et al. 2004). This makes possible the application of a method for the localization 

of the epileptogenic focus, the 2dTCA. 

Furthermore, it is well-known, from epileptic EEG signal studies, the periodic behavior of epileptic 

activity of epileptogenic brain regions (Parish et al. 2004; Monto et al. 2007; Protzner et al. 2010). 

Indeed, in these EEG studies it was shown that the epileptogenic focus EEG signal shows lower 

complexity than healthy parenchyma. However, there are no studies showing the same results with 

epileptic BOLD signals. Therefore, for the purpose of this thesis project it is hypothesized that the 

epileptogenic focus BOLD signals shows lower complexity than healthy parenchyma. Also, this 

complexity can be assessed by methods like MSE and DFA. 
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Summarizing, the innovation of this work is to explore the complexity properties of epileptic BOLD 

signals through the application of an algorithm that localizes the epileptogenic focus and extracts 

its BOLD signal. The main aim is to provide a definition of a biomarker for epileptic tissue 

identification in order to help on the diagnostic, monitoring and treatment of epilepsy. 

Hereupon, this thesis project have three main goals. First, the algorithms referred above, the 2dTCA, 

the MSE, and the DFA, will be implemented in Matlab®1 language using the commercial software 

package Matlab® R2014a. All of these methods will be optimized for BOLD signals analysis using 

simulated data. Second, a study with a sample of epileptic patients will be carried out by first 

localizing potential epileptogenic foci with 2dTCA and analyzing complexity of its BOLD signal in 

order to compare with those of healthy brain parenchyma. Third, based on the hypotheses stated 

above, the most likely epileptogenic focus will be chosen.  

                                                           
1 The MathWorks Inc., Natick, MA, 2000 (http://www.mathworks.com/) 
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CHAPTER 2. BI-DIMENSIONAL TEMPORAL CLUSTERING ANALYSIS 

 

2.1.  Introduction 

TCA was firstly introduced by Liu and colleagues with a pioneer work where this method was used 

to study the temporal response of the brain after eating (Liu et al. 2000). The problem addressed by 

this approach was the fact that there’s no model assumption that can be taken to estimate which 

brain regions will be activated after eating, once the activation timing is unknown. This algorithm 

searches for the maximal response in each voxel’s time series converting a four-dimensional data, 

characterized in terms of space and time, into a simple relationship between the number of voxels 

reaching maximum signals and the time, named histogram. A concept of brain parcellation that 

accounts for timing and connectivity was accomplished for the first time with the results of this 

work. 

In order to improve the brain 

activations timing detection Yee 

and Gao modified the sensitivity 

of TCA algorithm basing the 

method on the integrated signal 

intensity of a temporal cluster at 

each time point (Yee & Gao 2002; 

Gao & Yee 2003) rather than only 

on the size of a temporal cluster 

(Liu et al. 2000). In other words, 

in the modified algorithm a 

condition is superimposed 

limiting the maximum signal 

change allowed to be clustered. 

The results of Yee and Gao work 

show that, despite the fact that 

the modified TCA is more 

sensitive than the original one, 

neither of them could detect 

Fig. 4- Results from an epileptic patient with unknown focus localization. a: 

activation map of peaks determined with TCA; b: histogram output from TCA; 

c: response of the voxel indicated by the arrow (dotted line) with modeled 

BOLD response time course (solid line). Adapted from (Morgan et al. 2004). 
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peaks smaller than the noise level. This opened a window to novel problems, like time shift and 

movement artifacts, that needed to be addressed before the TCA application. 

The application of TCA to epileptogenic focus localization was first addressed by Morgan and 

colleagues in (Morgan et al. 2004) under the hypothesis that the timing of interictal activity could 

be determined using TCA on resting fMRI data. Then, activation maps created by event-related fMRI 

analysis using the discovered discharges timings could be determined to show which brain regions 

are presumably part of the epileptogenic focus. The result from an epileptic patient with unknown 

focus localization is shown in Fig. 4. It shows the histogram output from the TCA (Fig. 4b), the results 

of statistical analysis (Fig. 4a), and fitted and adjusted responses of one voxel pertaining to the found 

cluster (Fig. 4c). The fact that the TCA defines one single histogram, i.e., one single cluster, implies 

that voxels spatially distant may be grouped together (as seen in Fig. 4). Whether this detected 

cluster temporal profile is a representation of the epileptogenic focus or instead a mixture of 

sources can’t be assessed and, therefore, the effectiveness of TCA can’t be assessed as well. 

 

Fig. 5- Statistical maps from a subject with epilepsy obtained with models derived from TCA and from EEG. Adapted from 

(Hamandi et al. 2005). 

Hamandi and colleagues assessed the TCA performance by implementing and evaluating it, as 

described in (Morgan et al. 2004), using fMRI data acquired with simultaneous EEG in patients with 

clearly defined focal epilepsy and frequent interictal discharges (Hamandi et al. 2005). They 

demonstrated that the temporal clusters found were closely correlated with motion events, and not 

interictal epileptic activity, refuting the validity of using these as onsets in statistical analysis. In 

order to illustrate this issue, there’s a resultant statistical map from an epileptic patient is present 
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in Fig. 5. It represents the activated brain region found with models in which the onsets were derived 

either from TCA and EEG. As it can be seen those regions does not match with each other, contrary 

as expected, suggesting that there may be a confounding with motion events when performing TCA. 

Hamandi et al. work brought new insights about the limitations of using TCA applied to epilepsy, 

suggesting that in order to improve this methodology there is the need to primarily separate the 

noise from the stimuli source and then compare the performance of TCA with other method such 

as ICA, for example. 

Morgan and colleagues posterior work (Morgan et al. 2007; Morgan et al. 2008) brought a new 

approach to this area by modifying the TCA methodology and overcoming some of the shortcomings 

described above. They developed a two-dimensional TCA technique addressing the problem of 

motion and physiological noise by detecting and sorting out separate BOLD responses assumed to 

be from different sources. This was based on the assumption that BOLD signal changes due to 

spontaneous interictal activity may be relatively small compared to those of noise, motion, and 

other activity and are expected to be only slightly slower than the rate of image acquisition (Morgan 

et al. 2008). Furthermore, as the shape of this BOLD signal response is well known it allows the 

application of the 2dTCA. 

Briefly, in Fig. 6 is depicted a graphical representation of how 2dTCA works and a comparison with 

TCA. The 2dTCA algorithm will construct a bi-dimensional histogram where columns represent 

temporal clusters with different temporal profiles. The criterion of grouping time series to different 

clusters is based on the first time point at which the first signal increase occur, instead of grouping 

with maximum signal criteria (Liu et al. 2000; Yee & Gao 2002; Gao & Yee 2003; Morgan et al. 2004; 

Hamandi et al. 2005). This assumes that different sources of activation will not have overlapping 

timing of BOLD response at the beginning of the time series, which is not proven to be in that way. 

Supposing that in a functional dataset there are four voxels’ time series with different temporal 

profiles (Vox 1 to 4 in Fig. 6), using 2dTCA Vox 1 and 2 were grouped together in the same histogram 

column, representing a reference time course of one cluster. On the other hand Vox 3 and 4 will be 

are grouped together in another column, representing another and independent reference time 

course of a different cluster. If, for example, one group of voxels represent an epileptogenic focus 

and another a noising source, such as movement, this algorithm could rule out the latter by sorting 

different sources in different clusters. If a TCA approach were taken, all the voxel’s time courses 

would be grouped together leading to the identification of brain regions that aren’t related to 

epileptogenic tissue, similar to what was described in (Hamandi et al. 2005), see Fig. 5. 
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Fig. 6- Graphical depiction of the TCA and 2dTCA algorithms showing how multiple reference time courses are created by 

the 2dTCA algorithm when multiple different voxel time courses are present in the data (Morgan et al. 2008). x represents 

the time point at which the voxel’s time series is maximum. y represents the time point at which occurs a significant signal 

increase on the time series. 

In Morgan and colleagues’ work (Victoria L Morgan et al. 2008), the performance of 2dTCA was 

assessed, in terms of specificity and sensitivity, by comparing it with the performance of TCA and 

ICA applied to the same simulated data, where a well-known activations were defined (Morgan et 

al. 2008). The results showed that 2dTCA algorithm can detect more than one independent 

reference time course, or equivalently more than one temporal cluster, more effectively than TCA, 

but slightly less effectively than ICA. However, they argued that as the 2dTCA algorithm will cluster 

only transient spikes, while decreasing sensitivity to signals of other temporal characteristics, the 

large number of components determined with ICA would make it difficult to determine the 

components of interest in vivo when the activation regions are not known. This confirms the 

advantage of using the 2dTCA as a data-driven for identifying the epileptogenic focus. 

x 

y 



 

13 
 

As a final remark about the application of 2dTCA on healthy subjects and epileptic patients, more 

recent work have demonstrated that this algorithm can also be used to detects clusters associated 

with the default-mode network (DMN) (Morgan et al. 2007; Morgan et al. 2008; Morgan et al. 2010; 

Pizarro et al. 2012) in healthy (Cauda et al. 2010; Fox et al. 2005)and epileptic subjects and with 

specific regions, such as the visual, auditory, and motor cortices, through external stimuli with 

known timing (Morgan & Gore 2009). 

 

2.2. Materials and Methods 

2.2.1. Simulated Dataset Characterization 

 

Fig. 7- Depiction of the two regions in which the epileptic activity was simulated. A) 216 voxels cubic regions located at 

the left temporal lobe. B) 216 voxels cubic regions located at right frontal lobe. In each frame, A) and B), the top left, top 

right, and bottom left images represent a sagittal, coronal and transverse view, respectively. 

A simulated dataset was created, according to the pipeline presented in (Khatamian et al. 2011), 

from a preprocessed rest fMRI healthy subject scan (see Appendix B for more details of this subject 

data acquisition) by adding simulated BOLD signals in order to create simulated epileptic activity. 

For this purpose two regions of interest (ROI) were defined (see Fig. 7), one in the left temporal lobe 

(LTL) and the other in the right frontal lobe (RFL), to which simulated epileptic activity was added. 

BOLD signals representing this type of activity were created by convolving the HRF with a spike train 

containing the timing of each event (see Fig. 8) and added to the BOLD signal already presented in 

each ROI. The final goal was to obtain simulated data with all combinations of the following 

characteristics: 5 and 10 spikes randomly distributed in time, correspondent to LTL and RFL ROIs, 

respectively; simulated activation amplitudes of 0.5 to 2% in increments of 0.25%; and ROI’s size of 

27, 64, 125, and 216 voxels. Within a ROI the activation frequency and amplitude is homogenous. 

Each simulation was repeated two times resulting in a total of 56 simulated datasets.  
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Fig. 8- BOLD signal created by the convolution of the HRF with a spike train containing the timing of each event (Top) and 

its addition to the BOLD signal already presented in the real data (Bottom). 

2.2.2. Algorithm implementation 

The 2dTCA algorithm implemented in this thesis project is based mainly on (Morgan et al., 2008) 

work with some modified steps based on (Khatamian et al. 2011) and another additional original 

steps. 

fMRI Data pre-processing 

Concerning fMRI data, some pre-processing steps are expected before the beginning of the 2dTCA 

algorithm itself. Namely, slice timing correction for effects due to interleaved acquisition, 

realignment for correction of motion effects, spatial smoothing, detrending (an additional step not 

performed in (Morgan et al. 2008; Khatamian et al. 2011)), and temporal filtering. The type of filter 

used in this last step was a bandpass filter containing the frequencies expected in BOLD response 

(Glover 1999), instead of a 3-point averaging filter used in (Morgan et al. 2008).  

Data transformation 

Each functional data series was formatted into M one-dimensional arrays corresponding to the M 

analyzed voxels of the dataset. In other words, each array contained the voxel’s time series with N 

time points, given by the number of volumes of each raw data. The next steps were performed on 

this data. 
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Baseline definition and percent change computation 

A definition of the baseline value as the average of the first 5 time points of the voxel’s time course 

as in (Morgan et al. 2008), implies an assumption that the subject is at baseline during that time, 

which may not be true. Therefore, a k-means technique was used such that each voxel’s time series 

was separated into three clusters: one with high values, another with low values, and the last one 

with the remaining middle values, see Fig. 9 .  This differs from the two clusters used in (Khatamian 

et al. 2011) whereas it was assumed that the BOLD response can represent an activation, an increase 

in amplitude, or a deactivation, a decrease in amplitude (Pittau et al. 2013). Thus, once we want the 

baseline of the signal without activation, the mean of the middle cluster was used to estimate the 

baseline. 

 

Fig. 9- Example of the three baselines (one corresponding to the mean of each cluster) estimated from k-means technique. 

The scale at the right represents the percentage signal change computed with the baseline corresponding to the mean of 

the middle cluster. 

The percent signal change was then determined according to Eq.  1. 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝒄𝒉𝒂𝒏𝒈𝒆 (%) =
𝒅𝒂𝒕𝒂−𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆

𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆
× 𝟏𝟎𝟎 (%) Eq.  1 

The remaining analysis was performed on this percent change data. 

Candidate voxels selection 

All voxels expected to contain BOLD responses to spikes were identified. For this purpose, two types 

of limits were defined: one related to the range within which the maximum BOLD signal is allowed 

to change and another corresponding do the classification of a spike as a transient spike. 
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For the first one, lower boundaries of maximum signal change from 0 to 2 % in increments of 0.5 % 

and upper boundaries of minimum signal change from 3 to 11 % in increments of 1 % were tested 

on the simulated dataset. The goal of this test is to find the best combination of boundaries that 

allows the selection of a maximum BOLD signal change of interest, but rejects the maximum signal 

changes due to other sources, such as noise artefacts. 

For the second one, the test were run for thresholds in the range of 0 to 2 standard deviations above 

the baseline in increments of 0.5. The most suitable set of parameters were chosen as that which 

gives the minimum average false positive rate (FPR), i.e., the best average specificity, across all 

simulated data with an average true positive rate (TPR), i.e., average sensitivity, greater than 0.9, a 

method similar to that used in (Khatamian et al. 2011). This limits were found to be 0.5 and 3 % as 

lower and upper boundaries, respectively, and 2 standard deviations above the baseline as the 

threshold for transient spike classification, see Fig. 10, with a TPR equal to 0.98 and a correspondent 

FPR equal to 0.59 and an area under the curve equal to 0.62. 

 

Fig. 10- Average sensitivity/specificity analysis for thresholds definition of candidate voxels selection step. Keeping the 

average sensitivity above 90 %, the best average specificity (red circle) was found for up and low boundaries of 3 and 0.5%, 

respectively, and a threshold of 2 standard deviations above the baseline with a TPR equal to 0.98 and a correspondent 

FPR equal to 0.59. The area under the curve is equal to 0.62. 

Hereupon, if a voxel maximum signal change value was within that limits, the voxel was considered 

for cluster analysis. Otherwise the voxel was considered as a global one if its maximum signal change 

was under the lower signal change boundary or excluded of the analysis if its maximum signal 
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change was above the upper signal change boundary. Next, a global time course was determined as 

the average of all global voxels and regressed out of data. 

Event detection and 2D histogram mapping 

A two-dimensional map, hist2d, was created in an N by N matrix by incrementing the values in the 

following manner for all M voxels. For each time point: 

𝒉𝒊𝒔𝒕𝟐𝒅(𝒙, 𝒚) = {
𝒉𝒊𝒔𝒕𝟐𝒅(𝒙, 𝒚) + 𝟏, 𝒊𝒇 𝑴𝒊(𝒚) ≥ 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝒉𝒊𝒔𝒕𝟐𝒅(𝒙, 𝒚) + 𝟎, 𝒊𝒇 𝑴𝒊(𝒚) < 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅
 Eq.  2 

where threshold corresponds to the limit at which an event is considered to occur in that Mi voxel’s 

time course and is equal to 2 standard deviations above the baseline of that voxel; and x is equal to 

the time point y at which the voxel’s time series is maximum. Therefore, the x-axis of hist2d is the 

time of the maximum signal increase and the y-axis is the time at each significant signal increase of 

the time series. 

The result of this 2D histogram consisted of columns that represents individual histograms of 

significant increases for those voxels whose maximum signal increase occurred at time point x (see 

Fig. 6). These histograms were named reference time courses (RTCs). 

RTCs number reduction and its normalization 

After the 2D histogram filling a very important step was to analyze which RTCs are truly unique, i.e., 

which ones describe activity temporally distinct from each other. Voxels can have temporal 

behaviors closely similar, but with slight variations in their time courses that could lead to different 

peak timings. Therefore, the number of RTCs were reduced in two steps. 

First, a correlation coefficient was computed between each pair of RTCs in order to compare the 

time course of all RTCs to one another and those with a value above a given threshold are summed. 

The second step of grouping RTCs was performed by comparing their activity and by grouping those 

that share activity in time at a given percentage. As shown in Fig. 11, first, the mean of each RTC’s 

time course was defined as a threshold above which the RTC is considered to have a spike of 

activation (see corresponding whitelists in Fig. 11B). Second the amount of shared activity between 

the two RTCs was computed and if this value were equal or above a given percentage, the RTCs 

were summed. 
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To test which threshold value (of the first step) 

and percentage (for the second step) are the best, 

a range from 0.1 to 0.9 in increments of 0.2 and 

10 to 90 % in increments of 20 % were tested on 

the simulated data, respectively. The 

performance of each threshold was evaluated by 

analyzing each RTC’s t-map, thresholded at t>3.1, 

(see t-maps creation) individually, choosing the 

two ones which best describe the two ROIs (the 

regions where simulated epileptic activity was 

created), and computing the correspondent TPR 

as the ratio between the number of voxels 

activated in the ROIs and the size, in voxels, of 

those. The best set of parameters was chosen as 

that which gives the lower number of resulting 

RTCs, i.e., groups together more RTCs, with a 

reasonable average TPR, a criterion similar to that 

used in (Khatamian et al. 2011). This average is 

simply the mean of the TPR of all simulated data.  

Hereupon, as the first step was independent from the second one, the correlation coefficient 

threshold was firstly defined. The analysis, shown in Fig. 12, demonstrate that the sensitivity reaches 

its maximum for a threshold of 0.7 with an average TPR and a corresponding FPR of 0.52 and 0.06, 

respectively, and an average of RTCs number of 19, then it starts to decline. Regarding the second 

step threshold, it was defined by fixing the first parameter equal to the best value found, i.e., 0.7, 

as this steps follows the first in the algorithm. The results showed that after performing the 

correlation coefficient grouping step, the influence of the second step in the results is negligible, 

i.e., the number of resultant RTCs as well as the TPR remains similar to that values corresponding to 

a correlation coefficient threshold of 0.7. Therefore, the limit chosen for the second grouping step 

was 0.7 with an average TPR and a corresponding FPR 0.06, respectively, of 0.52 and an average of 

RTCs number of 19, as it performs the highest grouping of RTCs with a similar sensitivity as that for 

the first step. 

A 

B 

RTC 1 

RTC 2 

Fig. 11- Illustration of the second step of grouping RTCs. It 

is based on the percentage of shared activity between two 

RTCs. A: Temporal profile of two hypothetic RTCs. B: binary 

representation of each RTC spike above the mean, where 

the white color represents activations. 

RTC 1 share 90% of its 
activation with RTC 2 
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Once the final RTCs are defined, they were normalized by subtracting their mean and dividing by 

their standard deviation. 

 

Fig. 12- Average sensitivity/#RTCs analysis for correlation coefficient (Top) and shared activity (Bottom) threshold 

definition of RTC grouping step. Optimal parameters for correlation coefficient and shared activity threshold were both 

defined as 0.7 with a correspondent average TPR  and FPR and an average of RTCs number of 0.52, 0.0632 and 18.8 for 

the first threshold and 0.518, 0.0628 and 18.9 for the second threshold, respectively. 

t-maps creation 

The RTCs were finally passed, along with the nuisance variables (the global time course and motion 

correction parameters), as regressors to the GLM. In order to obtain the correspondent t-maps all 

regressors were incorporated as contrasts and tested for individual effect (see Appendix A for more 

details). This processing step was performed with the software package SPM2. 

2.2.3. Performance analysis of simulated dataset: sensitivity analysis 

Once all thresholds were defined it was important to assess the performance of each simulated 

dataset in order to determine the most suitable epileptogenic BOLD activity characteristics for 

2dTCA input. This evaluation was accomplished by running the 2dTCA algorithm to each simulated 

data (see 2.2.1 Simulated Dataset Characterization) using the parameters defined above and 

computing the average TPR and FPR for each case in a similar way as in 2.2.2 Algorithm 

implementation - RTCs number reduction and its normalization. 

                                                           
2 Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm/) 
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2.3. Results 

The Fig. 13 shows the results of the TPR/FPR analysis to assess the performance of the 2dTCA 

algorithm in detecting the several forms of simulated epileptic activity. The top and bottom rows of 

the figure show the following TPR and FPR values for simulated epileptic activity with 5 and 10 

spikes, respectively, information of the size of the ROIs and the HRF amplitude above the baseline. 

By inspection of the TPR images, it is observed that the TPR values have a tendency to increase 

towards the increase of both the ROIs sizes and HRF amplitude. Although there are some cases with 

low TPR value at high ROI size and HRF amplitude (5 spikes: 64 voxels /1.5 % and 125 voxels/1.25 %; 

10 spikes: 27 voxels/2 %, 64 voxels/1.25 %, and 216 voxels/2 %). On the other hand, the FPR images 

show values lower than 0.12 for all cases. 
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Fig. 13- TPR (left column)/FPR (right column) analysis on simulated data among ROIs size and HRF amplitude above the 
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2.4. Discussion 

This chapter describes a data-driven method that allows the detection of different temporal 

patterns of transient BOLD activation in a single dataset. It has the advantage of being able to detect 

this type of activity even in deep brain structures with a high spatial resolution. 

The results shown in Fig. 13 demonstrate that there is a higher probability of detecting epileptic 

activity if the HRF amplitude above the baseline is higher than 1.25%, i.e., there are more cases with 

high TPR when their epileptic activity have an HRF amplitude greater than 1.25%. The same line of 

reasoning is valid for the ROIs size. The lack of consistency observed for the cases that have a TPR 

close to zero can be justified by the following facts. 

First, the simulated epileptic activity was added to BOLD activity already presented in the healthy 

subject data. As analyzed in 2.2.2 Algorithm implementation - Candidate voxels selection the 

thresholds for the selection of potential candidate voxels were defined for an average sensitivity, or 

TPR, greater than 0.9, meaning that almost all of voxels with the simulated activity of interest were 

selected. After the selection of the voxels of interest, those that do not have activity of interest are 

used to calculate the global time course that is, then, regressed out from all the time course’s voxels. 

This step is a critical one since it can induce a negative bias on the time course’s voxels reducing the 

simulated HRF amplitude initially added to the data. Also, the spikes of epileptic activity are added 

with randomly chosen timing. This can justify the fact that some cases have their simulated epileptic 

activity masked by this global activity decreasing the overall TPR value. It is also important to note 

that independently of the TPR value the average FPR is lower than 0.12 for all cases, indicating that 

the t-maps chosen for each case do not describe substantial activation out of the ROIs boundaries. 

Finally, this inconsistency in the results does not allows to infer about the best frequency of stimuli 

in order to have a higher TPR. 

Second, an issue related to 2dTCA algorithm concerns the assumption that RTCs represent different 

sources of activation that do not have overlapping temporal profiles of activation. This means that 

it is assumed that two time series whose maximum signal change occurs at the same time, have the 

remaining temporal profile with similar shape. Therefore, concerning the results on Fig. 13, as the 

simulated spikes are attributed to BOLD activity at random, if the maximum signal change of this 

simulated data has the same timing as other sources of activation then the simulated data will be 

masked. 
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Nevertheless, it can be state that in order to have an increased likelihood of detecting BOLD epileptic 

activity it is desirable that the correspondent HRF has an amplitude greater than 1.25%. 

One issue concerning real data studies is related to epileptogenic HRFs when the noise level on the 

time series is high. In that cases if that response has a low amplitude, the noise will mask it because 

the algorithm will only map to the bi-dimensional histogram signal increases which are 2 standard 

deviations above the baseline. Also, in these circumstances the noise amplitude may precede the 

HRF amplitude. This issue is even more critical with MRI scanners with low magnetic field strengths 

due to smaller SNRs (Yang et al. 2012). 

Another disadvantage of the 2dTCA is that usually a large number of RTCs are obtained and some 

may result in t-maps with significant brain activations not related to epileptic activity. Hence, in real 

data studies, without some a priori knowledge about the localization of the epileptogenic focus it is 

difficult to select the right t-maps. It is therefore important to follow strategies to classify, even in a 

qualitatively way, the obtained maps with significant activation. An example of an exclusion criterion 

it’s based on common known networks that usually appear on resting-state data, as the Default 

Mode Network and Visual Network on healthy (Fox et al. 2005; Cauda et al. 2010) and epileptic 

patients (Victoria L Morgan et al. 2008; Morgan et al. 2010; Morgan et al. 2007). Another way to 

exclude non-interesting maps is to delimit the statistical analysis to brain regions which are 

suspected to allocate the epileptogenic focus (clinical information). 
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CHAPTER 3. MULTISCALE ENTROPY 

 

3.1. Introduction 

The early work on complexity analysis of physiological time series were based on entropy algorithms 

(Andino et al. 2000; Richman & Moorman 2000), which quantifies the regularity of a time series. 

However, the relationship between the increase or decrease of entropy and low or high regularity 

of a given time series is not always straightforward. For example, if a certain pathology is associated 

with erratic fluctuations with statistical properties similar to uncorrelated noise, the assigned value 

of entropy to that system is high compared to a healthy system with correlated noise (Costa et al. 

2002). This is contra intuitive once it is expected that a healthy system has a higher entropy than a 

pathologic system (Goldberger et al. 2002). The justification for this inconsistency could be in the 

fact that these entropy algorithms are based on single-scale analysis and do not take into account 

the complex temporal fluctuations inherent in healthy and pathologic physiologic systems (Costa et 

al. 2002). 

Therefore, in order to respond to this shortcoming, a new method was developed taking into 

account multiple time scales of analyzed time series, named multiscale entropy (MSE) analysis 

(Costa et al. 2002; Costa et al. 2005). This method is based on the hypothesis that the ability of a 

biological system to adapt and function on constantly changing environment is a reflection of its 

own multiscale complexity. Hence, a reduction of this adaptive capacity, caused by disease states, 

would be associated with a loss of complexity.  

The procedures involved in calculating MSE 

can be summarized in the following steps 

(Costa et al. 2005). First, a coarse-grained time 

series is constructed according to a scale 

factor, as represented in Fig. 14. The length of 

each coarse-grained time series is equal to the 

length of the original time series divided by the 

scale factor. Second, for each coarse-grained 

time series a measure of sample entropy is done. The sample entropy is a regularity statistic which 

searches for patterns in a time series and quantifies its degree of predictability. Thus, it can be 

defined by the negative natural logarithm of the conditional probability that a dataset of length N, 

Fig. 14- Schematic illustration of the coarse-graining procedure 

(Costa et al. 2005). 
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having repeated itself within a tolerance r (similarity factor) for m points (pattern length), also 

repeats itself for m+1 points, without allowing self-matches (Richman & Moorman 2000). Finally, 

the sample entropy profile is examined over a range of scales (Costa et al. 2005). 

In Fig. 15 is represented a MSE analysis (Bottom) 

to simulated white and colored (1/f) noises (Top). 

As shown the entropy value for the coarse-

grained 1/f series remains almost constant for all 

scales, while for the coarse-grained white noise 

time series monotonically decreases. This is 

consistent with the fact that 1/f noise contains 

complex structures across multiple scales (Zhang 

1991). Therefore, the statistical properties of 

fluctuations are different in each scale since new 

information is revealed in all of them (Costa et al. 

2005). 

Despite all the advantages described above, this 

technique has several limitations that need to be 

taken into account. To provide reliable statistics 

for the entropy measure on each scale the length 

of the original time-series must be large enough, 

about 10m to 20m (Richman & Moorman 2000). 

This length definition is dependent on the level of accepted uncertainty. When dealing with EEG 

time series this limitation is not so restricted once typical length data reaches thousands of time 

points. However, with BOLD time series, which typically have between 100 and 300 time points, this 

issue could be an aggravating factor, limiting the factor scale to a low value. For example, if the 

length of a time series is 100 time points than at a scale factor of 20 we have a coarse-grained time 

series with only 5 points, restricting the possible choices for m (pattern length) and r (similarity 

factor) parameters and, therefore, making the sample entropy estimation unreliable. Thus, a 

carefully examination on these parameters values are of extreme importance. 

Studies on EEG signals have examined the use of several parameter values, such as m=1 and r=0.25 

(Escudero et al. 2006), m=2 and r=0.15 (Catarino et al. 2011), m=2 and r=0.20 (Mizuno et al. 2010; 

Fig. 15- Top: Simulated white and 1/f noises. Bottom: MSE 

analysis of simulated white and 1/f noise time series. 

Adapted from (Costa et al. 2005). 
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Takahashi et al. 2009; Takahashi et al. 2010), and m=2 and r=0.50 (McIntosh et al. 2013), while 

studies on BOLD signals have found their optimal parameters values as m=1,2 or 3 and r=0.15 

(Ferreira, Rocha, et al. 2012; Ferreira et al. 2013) and m=1 and r=0.35 (Yang, Huang, et al. 2013). The 

present methods used to evaluate this optimization are based on empirical approaches (Yang et al. 

2013; Yang et al. 2013b), demonstrating that there’s no guidelines for optimizing these parameters 

values. Hereupon, the interpretation of the MSE analysis output from BOLD signals must be careful 

by taking into account the following aspects: the low time series length, which limits the choice of 

scale factors; and the sampling rate for multislice acquisitions, since the influence from respiration 

and cardiovascular hemodynamics can’t be totally excluded with the typically used sampling rates 

(TR ≈ 2s) in fMRI (Lowe et al. 1998). 

Concerning the application of MSE analysis specifically to epilepsy, Ouyang and colleagues showed 

that EEG signals of rats are more complex in seizure-free state than in seizure state by performing a 

MSE analysis in epileptic rats (Ouyang et al. 2009). They demonstrated that the MSE method is able 

to classify epileptic EEG signals. Another study on human brain’s MSE analysis was conducted by 

Protzner and colleagues in (Protzner et al. 2010). They compared the epileptic and healthy 

hippocampi’s signal complexity through MSE analysis on iEEG signals based on the hypothesis that 

patients with epilepsy have reduced variability on epileptogenic tissue. Consequently, it was 

expected that the epileptogenic hippocampus showed lower MSE values than the healthy 

hippocampus. The results suggested that the brain signal variability could be a robust biomarker of 

neuronal system integrity in patients with epilepsy. Finally, to the best of my knowledge there are 

no studies that applied MSE analysis to epileptic BOLD signals. 

 

3.2. Materials and Methods 

The MSE method implemented in this project is a modified version of the original approach of (Costa 

et al. 2002). Throughout this section, the steps of the former, as well as, of the main differences 

between the two approaches are explained in detail. The algorithm of the original approach can be 

found at PhysioNet3 (Goldberger et al. 2000). 

                                                           
3 PhysioNet: MSE original approach algorithm (http://www.physionet.org/physiotools/mse/tutorial/) 
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3.2.1. Modified MSE: Algorithm implementation 

Time-series coarse-graining 

 

Fig. 16- Schematic illustration of the modified coarse-graining procedure where a moving average is applied to the original 

time-series for each scale factor. Adapted from (Costa et al. 2005). 

This algorithm bases its analysis on one-dimensional time-series and the first step is to perform a 

coarse-graining of the original data. The original approach, see 2.1 Introduction, of (Costa et al. 

2002) is limited for short time-series, such as the case of typical BOLD time series, since the reliability 

of statistics required for the sample entropy computation (see Sample entropy computation) is 

severely compromised as the time series are further coarse-grained and consequently shorter. In 

order to overcome this shortcoming a new approach was developed (Tavares, Santos-Ribeiro, and 

Ferreira, unpublished results). Like in the original method, a set of coarse-grained time series were 

created using a moving average of scale factor  time points, as represented in Fig. 16. Each point yj 

in the new time series was obtained through Eq. 3. 

𝒚𝒋
(𝝉)

=
∑ 𝒙𝒊

𝒋+𝝉−𝟏
𝒊=𝒋

𝝉
,     𝟏 ≤ 𝒋 ≤ 𝑵 − 𝝉 + 𝟏 Eq. 3 

where xi represents the point i of the original time series, of length N, and  the scale factor. The 

total length of each coarse-grained time series is given by 𝑵 − 𝝉 + 𝟏. With this approach it was 

guaranteed a larger number of scales in which the sample entropy computation was provided by 

reliable statistics. 

Sample entropy computation 

Once the coarse-graining process was completed the next step was to compute the sample entropy 

for each coarse-grained time series. An illustration of how this was accomplished is represented in 
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Fig. 17. Considering a time series, u, the algorithm first defines a pattern of length m, defined by the 

user, and another of length m+1. Then, it searches for forward repetitions of each pattern in the 

time series and retain their number into two variables, A and B, for m+1 and m pattern length, 

respectively. A pattern is considered to match the template if the absolute difference between all 

its elements is within a tolerance r. Thus, for the example depicted in Fig. 17, considering the pattern 

of length m=2 (green u[1] – red u[2]) and the correspondent pattern of length m+1=3 (green u[1] – 

red u[2] – blue u[3]), the number of repetitions for each case is 3 and 2, respectively. This matching 

analysis must be repeated for all possible templates of length m and m+1 and in order to calculate 

A and B, the number of repetitions for each case are summed up. Finally, the sample entropy 

(SampEn) it is given by the conditional probability that two sequences that match each other for the 

first m data points also match for the next point (Richman & Moorman 2000) and is computed 

through Eq. 4. 

𝑺𝒂𝒎𝒑𝑬𝒏(𝒎, 𝒓) = −𝐥𝐧 (
𝑨𝒎(𝒓)

𝑩𝒎(𝒓)
) Eq. 4 

Complexity Index Computation  

The final step of this algorithm was to compute the complexity index (CI), given by the sum of the 

sample entropy over all scales, an approach similar to that presented in (Yang, Huang, et al. 2013) 

and (Ferreira et al. 2013). Hereupon, a quantitative comparison between two different time series 

could be made in terms of its complexity behavior. 

r 

r 

r 

Fig. 17- Illustration of sample entropy computation. In this example, the pattern length m and the tolerance r are 2 and 

20, respectively. Dotted horizontal lines around data points u[1], u[2] and u[3] represent u[1] ± r, u[2] ± r, and u[3] ± r, 

respectively. All green, red, and blue, points represent data points that match the data point u[1], u[2], and u[3], 

respectively. Adapted from (Costa et al. 2005). 
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Optimal parameters choice 

In the modified MSE algorithm there are two parameters that must be chosen by the user, the 

pattern length m, and the similarity factor or tolerance r. In order to determine which pair of 

parameters (m,r) were the most suitable for shorter time series (with length around 100-250 time 

points), a set of surrogate signals were created and compared in terms of their CI. Those surrogate 

signals consisted of white and 1/f noises, signals known to behave differently in terms of its 

regularity (see Fig. 15). The comparison made between these two signals aimed to find the 

parameters values that give the highest difference, which is given by the anisotropy index (AI),          

Eq. 5. 

𝑨𝑰 =

|𝑪𝑰𝒘𝒉𝒊𝒕𝒆 𝒏𝒐𝒊𝒔𝒆−𝑪𝑰𝟏
𝒇

 𝒏𝒐𝒊𝒔𝒆
|

𝑪𝑰𝒘𝒉𝒊𝒕𝒆 𝒏𝒐𝒊𝒔𝒆+𝑪𝑰𝟏
𝒇

 𝒏𝒐𝒊𝒔𝒆

× 𝟏𝟎𝟎 Eq. 5 

Hereupon, the choice process consisted of the following steps. First, 20 000 white Gaussian and 1/f 

noises time series (10 000 of each) were created using an intrinsic function of Matlab® and a function 

created by (Little et al. 2007), respectively. Second, the sample entropy profile over scales 1 to 20 

was computed for each time 

series, and the mean and 

standard deviation of the sample 

entropy for each scale and each 

noise type was calculated. Third, 

the CI corresponding to white and 

1/f noises were computed in 

order to obtain the AI. This 

process was repeated for m 

values of 2 and 3 and r values of 

0.1 to 0.5 times the standard 

deviation of the coarse-grained 

time series being analyzed for 

entropy computation, in 

increments of 0.05. Forth, a score 

is attributed to each pair of 

parameters (m,r) according to the 

Fig. 18- Scoring classification for each possible pair of parameters (pattern 

length - m, tolerance - r) with a tested m = 2 (light blue) and 3 (dark blue) and 

r = 0.1 to 0.5 in steps of 0.05. Each bar represents the total score attributed to 

that case. The results showed that the optimal values for m and r are 3 and 0.4 

times the standard deviation, respectively, with a total score of 67. 
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following criteria: (i) the highest score value is defined has the total number of cases, i.e., 2 m values 

times 9 r values that equals 18 total cases; (ii) the one corresponding to the highest AI is assigned 

with the highest score; (iii) the next case with the highest AI is assigned with the second highest 

score (e.g. 17), and so on, until no more cases remain. These four steps are repeated for original 

time series lengths from 100 to 250 time points in increments of 50 time points, and the score of 

each case (m,r) is accumulated. Finally, the best case is selected as the one with the overall highest 

score. The results (see Fig. 18) showed that the optimal values for m and r are 3 and 0.4 time the 

standard deviation, respectively, with a total score of 67. These values were used in the remaining 

MSE analysis. 

3.2.2. Illustrative examples 

The following examples were reproduced for illustrative purposes. 

Comparison between sample entropy profiles of white and 1/f noise obtained using original and 

modified approaches. For this example, 200 white Gaussian and 1/f noises time series (100 of each) 

with 1 000 time points were created, in a similar way as described above (see 3.2.1 Modified MSE: 

Algorithm implementation). Second, the sample entropy profile over scales 1 to 20 was computed 

for each time series, and the mean of the sample entropy (computed with m=3 and r=0.4) for each 

scale and each noise type was calculated. This process was repeated using the original and the 

modified approaches and the sample entropy for each case was plotted on the same figure. The 

main goal of this example was to compare the sample entropy profiles originated from these two 

approaches. 

Comparison between sample entropy profiles of short white and 1/f noise time series obtained 

using original and modified approaches. For this example, 200 white Gaussian and 1/f noises time 

series (100 of each) with 100, 150, 200, and 250 time points were created, in a similar way as 

described above (see 3.2.1 Modified MSE: Algorithm implementation). Second, the sample entropy 

profile (computed with m=3 and r=0.4) over scales 1 to 20 was computed for each time series, and 

the mean of the sample entropy for each scale and each noise type was calculated. Third, the CI 

corresponding to white and 1/f noises were computed. This process was repeated using the original 

and the modified approaches. The main goal of this example was to compare the sample entropy 

behavior over scales and its influence on CI computation when used either of these two approaches 

for short time series. 
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Comparison between sample entropy profiles and respective CI of white, 1/f and 1/f2 noise, and 

sinusoidal time series obtained using modified approach. For this example, 300 white Gaussian, 

1/f  and 1/f2 (another type of noise also known as Brownian or red noise that corresponds to the 

integration of the white noise, see Fig. 19) noises time series (100 of each) with 250 time points 

were created, in a similar way as described above (see 3.2.1 Modified MSE: Algorithm 

implementation). In addition to these signals two sinusoidal time series, created from a Matlab® 

intrinsic function with frequencies of 0.01 Hz and 0.1 Hz, a sample frequency of 0.5 Hz and a length 

of 250 time points (see Fig. 19), was also created in order to represent a periodic signal. The choice 

of this length is justified by the maximum length of short time series simulated in the above example.  

 

Fig. 19- Top: Sinusoidal time series with a frequency and sample frequency of 0.01 Hz and 0.5 Hz, respectively, and a length 

of 250 time points. Bottom: 1/f2 noise time series with a length of 250 time points. 

The sample entropy profile (computed with m=3 and r=0.4) over scales 1 to 20 was computed for 

each time series, and the mean of the sample entropy for each scale and each noise type was 

calculated. Then, the CI corresponding to each signal type was computed. The main goal of this 

example was to compare the sample entropy behavior over scales and corresponding CI values 

when using a noise-like or periodic signal. 
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3.3. Results 

Comparison between sample entropy profiles of white and 1/f noises obtained using original and 

modified approaches. 

 

Fig. 20- Sample entropy profile (computed with m=3 and r=0.4) over scale for original time series of white (asterisk) and 

1/f (circle) noises of length 1000 time points using the original (blue) and the modified (red) MSE algorithm. 

Fig. 20 shows the sample entropy profile for white and 1/f noises using the original approach (in 

blue) and the modified approach (in red). The results demonstrate that sample entropy profile for 

the original method is different for the two types of noise: a 1/f noise time series have an 

approximately flat shape over scales, while a white noise time series decreases in a monotonic way. 

Also, for scales 1 and 2 the values of entropy for the white noise time series are greater than those 

for 1/f noise. However, as scale increases, those values become smaller than those for the 1/f noise.  

On the other hand, when using the modified version of the MSE algorithm both sample entropy 

profiles monotonically decrease and the entropy values for white noise time series are greater than 

those for 1/f time series for all scales. 

Lastly, for scale 1 the entropy value for both noises types are the same irrespectively of the MSE 

approach used. 
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Comparison between sample entropy profiles of short white and 1/f noise time series obtained 

using original and modified approaches. 

 

Fig. 21- Left: Sample entropy profile (computed with m=3 and r=0.4) over scale for original time series of white (asterisk) 

and 1/f (circle) noises with lengths in the range of 100 to 250 time points, in increments of 50, using the original (Top) and 

the modified (Bottom) MSE algorithm. Right: CI distribution in function of time series length correspondent to the sample 

entropy analysis presented at left. 
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Fig. 21 shows, on the left side, the sample entropy profile for white and 1/f noises using the original 

approach, on top, and the modified approach, on bottom, for time series of length 100, 150, 200, 

and 250 time points, in blue, red, green, and black, respectively. The results demonstrate that 

sample entropy profile for the original method have an instable behavior when compared to that 

originated from the modified approach as the length of the noise time series becomes shorter. 

Particularly, for time series of 100 data points’ length the original MSE method compute sample 

entropy values with similar amplitude for white and 1/f noise time series over scales 3 to 20. This 

phenomena is, also, observable on the right side of Fig. 21 where the difference between the CI 

values, one for each type of noise time series, is consecutively greater as the length of the times 

series increases. 

On the other hand, the sample entropy profiles and the corresponding CI values remain stable over 

scales independently of data length when it’s used the modified version of the MSE algorithm. 

Comparison between sample entropy profiles and respective CI of white, 1/f and 1/f2 noise, and 

sinusoidal time series obtained using modified approach. 

 

Fig. 22- Left: Sample entropy profile (computed with m=3 and r=0.4) over scale for time series of white (in blue), 1/f (in 

red) and 1/f2 (in green) noises, and sinusoidal signals of 0.01 Hz (in cyan) and 0.1 Hz (in black) with a length of 250 time 

points using the modified MSE algorithm. Right: Corresponding CI values for each signal type presented at left. CIWhite noise 

= 17.2; CI1/f noise = 8.1; CI1/f
2

 noise = 3.8; CIsinusoid 0.01 Hz = 3.2; CIsinusoid 0.1 Hz = 0 
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Fig. 22 shows the sample entropy profile for white, 1/f and 1/f2 noises, and sinusoidal signal using 

the modified approach. The results demonstrate that sample entropy profile, computed using the 

modified approach, for the three types of noise has a similar shape, monotonically decreasing, but 

with lower overall sample entropy values from white to 1/f and 1/f2 noises, respectively. The 

sinusoidal signal of 0.01 Hz have an almost flat sample entropy profile with lower values in the range 

0.155 to 0.166. Relatively to the 0.1 Hz sinusoidal signal the sample entropy is zero for all scales.  

The corresponding CI values are 17.2, 8.1, 3.8, 3.2, and 0 for white, 1/f, and 1/f2 noises and 

sinusoidal signals of 0.01 Hz and 0.1 Hz, respectively. 

 

3.4. Discussion 

This chapter describes a complexity analysis method based on the sample entropy property of the 

signal being analyzed over several scales, allowing the assessment and classification of the signal 

structure. The main advantage of this algorithm is its ability of distinguish two signals with different 

frequency dependency behaviors, a feature with high relevance when dealing with physiological 

signals. 

The results shown in Fig. 20 for the original approach are consistent with those presented in (Costa 

et al. 2002; Costa et al. 2005). Since the white noise does not have complex structures, as the scale 

factor increase the coarse-grained time series tends to a fixed value, decreasing the sample entropy. 

On the other hand, 1/f noise is characterized by having equal energy in all octaves of frequency 

(Ward & Greenwood 2007) which mean that new information is given in each scale and. Therefore, 

when analyzing the sample entropy profile over scale of 1/f noise it is nearly flat with a constant 

value of entropy over scale. 

For modified version of the MSE method the results in Fig. 20 show a different behavior of the 

sample entropy over scale for the two types of noise. This can be justified by a combination of the 

following factors. Back to the original definition of the sample entropy, this algorithm does not count 

for self matches, reducing possible biasing. From this point of view, lower values of sample entropy 

indicates more self-similarity in a time series (Richman & Moorman 2000). However, in this version 

of the MSE method, each coarse-grained time series is created using a moving average, implying an 

overlapping of information used in each average. Therefore, when the sample entropy is computed 
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for that coarse-grained data counting for self matches is implicit and a bias toward to low values of 

entropy may occur. Hereupon, it is, in fact, expected that the sample entropy profile monotonically 

decrease with scale. 

Lastly, as expected, in Fig. 20, for scale 1 the entropy value for both noises time series are the same 

since the coarse-grained time series of scale factor 1 results in the original time series. For that case, 

the original and the modified MSE method are equivalent. 

Fig. 21 shows results that demonstrate the advantage of the modified procedure of coarse-graining 

by comparing the sample entropy profile of noised time series with different lengths computed 

using both MSE methods. First of all, it is evident that when using the original approach the profile 

is extremely unstable for higher scales when the original time series are short. This statement is also 

confirmed by analyzing the CI distribution over the length: as the length decreases, the CI value from 

the two types of noise become closer, i.e., their difference becomes smaller. 

On the other hand, the results show that the modified version of the coarse-graining procedure 

gives a sample entropy measure relatively independent of the original time series length. This fact 

demonstrates the utility and advantage of using this new approach when applying this complexity 

analysis to BOLD time series, since it is desirable to guarantee the most stability and reliability in all 

algorithm steps as possible. 

Finally, the results shown in Fig. 22 demonstrate that, when using the modified approach of the MSE 

algorithm, the CI is higher for white noise-type time series than for colored noise-type signals. 

Periodic signals have the lowest CI value, as expected. 
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CHAPTER 4. DETRENDED FLUCTUATION ANALYSIS 

 

4.1. Introduction 

The fractal properties of a biological signal can be assessed using detrended fluctuation analysis 

(DFA) as it provides a measurement of statistical self-affinity (expressed by the scaling exponent, ) 

and can be applied to non-stationary signals. This method was first introduced by Peng and 

colleagues in (Peng et al. 1994) to study LRTC on DNA sequences. Since then this technique has been 

widely used in typical nonstationary biological signals (Peng et al. 1995; Parish et al. 2004; Monto et 

al. 2007; Ferreira et al. 2012a). 

The DFA algorithm is illustrated in Fig. 23 and can be summarized in the following steps. First, it 

divides the entire time series of a given length into a selected number of windows, depending on 

the scale factor (Fig. 23 B). Second, within each window, the signal is integrated (Fig. 23 C) and 

linearly detrended (Fig. 23 D). Third, from the resulting time series, the root-mean-square (RMS) 

variation (Fig. 23 E) in each window is calculated, followed by determination of the characteristic 

size of fluctuation F in the given timescale, which is given by the mean of RMS variation (some 

authors perform the median of RMS variation to exclude the possible effects of large-amplitude 

artifacts that may bias the mean considerably (Monto et al. 2007)) of all windows of that scale. 

Fourth, a double logarithmic plot of these fluctuations against scales is done in order to evaluate 

whether this relationship is linear, indicating the presence of power-law (fractal) scaling (F~(scale)). 

Lastly, the slope of this relationship, which corresponds to the scaling exponent,, is determined 

using least squares fit (see Fig. 23 F) (Peng et al. 1995). 

The quantitative measure of LRTC existent in the time series is provided by the scaling exponent. A 

value of =0.5 corresponds to a signal that is completely uncorrelated, like white noise. On the other 

hand, when =1 we’re dealing with 1/f type signal meaning that the LRTC becomes independent of 

time with infinite range. If the analyzed signal have LRTC and power-law scaling, then it is expected 

that the scaling exponent lies within 0<<0.5 or 0.5<<1. The former represents an inverse 

relationship and indicates short-range correlations, such that large and small energy fluctuations 

are likely to be followed by small and large energy fluctuations, respectively, in other words, it 

represents anti-correlations. The latter means that the data are correlated in a direct way and 

indicates long-range correlations, such that large and small energy fluctuations are likely to be 



 

37 
 

followed by large and small energy fluctuations, respectively. As the scaling exponent increases from 

=0.5 toward =1, the temporal correlations in the time series are more persistent, i.e., decay more 

slowly with time. In contrast, when >1 the correlations no longer exhibit power-law scaling and 

decay more rapidly. These cases are classified as fractional Brownian motion and, in particular, 

=1.5 corresponds to Brownian or red noise  (Peng et al. 1995; Parish et al. 2004; Monto et al. 2007; 

Eke et al. 2002). 

Concerning the application of DFA specifically to epilepsy, Parish and colleagues studied the LRTC in 

EEG signals of healthy and pathologic human hippocampus by hypothesizing that the energy 

fluctuations in human hippocampus show LRTC with power-law scaling, and that these correlations 

differ between epileptogenic and non-epileptogenic hippocampi (Parish et al. 2004). Their results 

showed that the epileptogenic hippocampus have more persistent LRTC than the non-epileptogenic 

one and this may be due to the fact that the pathologic condition, epilepsy, increases the synchrony 

in the neuronal network. 

Monto and colleagues performed another study on human brain DFA analysis basing their 

assumptions on the fact that in epileptic brain areas, the presence of intermittent abnormalities, 

interictal events and seizures, suggest a defect in stability of ongoing neuronal activity (Monto et al. 

2007). Therefore, they hypothesized that epileptogenic cortical areas can be identified by 

quantifying the LRTC of the interictal iEEG activity. Thus an enhanced scaling exponent for epileptic 

regions was expected similarly to Parish work. Their results showed that the LRTC are abnormally 

strong near the seizure onset area suggesting, they argued, an association between the epileptic 

focus and the significant changes in network behavior. The justification of the authors for that 

observation relies on the following aspects: it could be due to a compensatory mechanism around 

the epileptogenic focus or it could be a persistent abnormality in this network due to exposure of 

neuronal networks to epileptic activity. Indeed, clustering of periods of oscillatory activity may result 

in strong LRTC, leading to a more probable period of high level activity when another such period 

first arises. This reflects the capacity of a network to be stable. In epilepsy, this phenomena of 

imminent instability could be a sign related to the susceptibility to seizure initiation. The studies 

presented above are focused on EEG signals. To the best of my knowledge there are no studies that 

applied DFA to epileptic BOLD signals. 
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4.2. Materials and Methods 

The DFA algorithm implemented in this project is based on the approach presented in (Peng et al. 

1995). 

4.2.1. Algorithm implementation 

Time series division into windows 

As in MSE analysis, the DFA algorithm bases its analysis on one-dimensional time series, y, which 

were, as a first step, divided into windows, yw, of length NW and which can be overlapped (see Fig. 

23 B). 

Computations within in each window 

After the time series division, the second step was to perform three operations within each window. 

The first and second ones correspond to the integration and to the linear detrending of the time 

series yw, which result was here denoted by dyw (see Fig. 23 C and D). This detrending process was 

accomplished by performing least squares fit and subtracting it from yw. The last operation was to 

compute the RMS variation (see Fig. 23 E) according to Eq. 6. 

𝑹𝑴𝑺 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 = √
𝟏

𝑵𝒘
∑ (𝒅𝒚𝒘𝒊)

𝟐
𝒊  Eq. 6 

Fluctuations profile over window length 

Once the RMS variation of each dyw was computed, the forth step was to calculate the characteristic 

size of fluctuation F for that specific window length NW according to Eq. 7. 

𝑭 = √
𝟏

#𝒘𝒊𝒏𝒅𝒐𝒘𝒔
∑ (𝑹𝑴𝑺 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏𝒊)𝟐

𝒊  Eq. 7 

These four steps were repeated for each NW in order to construct a double logarithmic plot of F 

against NW and determine the scaling exponent () as the slope of the least squares fit between the 

log(F) and log(NW) (see Fig. 23 F). 

Optimal parameters choice 

Similarly to the modified MSE method, in DFA algorithm there are two parameters that needed to 

be defined. The first one was with respect to the window length and the second one to the 

overlapping between the windows. Concerning the former, the number of NW is dependent on the 

following factors: its minimum, which here is defined as 4 data points in order to guarantee a good 

performance of the linear detrending step; its maximum NW; and the fact that both minimum and 
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maximum Nw’s must be logarithmically separated in order to guarantee an equal weight to all time-

scales when performing the linear fit on the double logarithmic scale. 

A maximum NW greater than 10 % of the total length of the original time series can decrease the 

accuracy of the estimation of fluctuations since the number of corresponding windows are low. This 

is an important limitation concerning the analysis of BOLD signals which have typically a length of 

100-250 time points. Nonetheless, this imitation can be overcome with the introduction of an 

overlap between the windows, increasing the number of windows into which the original time series 

is divided. 

Therefore, in order to find the 

best combination of the 

maximum percentage, pmax, of 

the original time series length and 

the overlap percentage between 

the windows, a similar scoring 

strategy as that for modified MSE 

(see 3.2. Materials and Methods 

- Optimal parameters choice) 

was followed using the same 

surrogate signals (white and 1/f 

noises). The test was run for pmax 

values from 10 to 50 % in 

increments of 10 % and for 

overlap percentages values from 

0 to 50 % in increments of 10 %. 

The AI in this case is computed using the mean of  (scaling exponent) across each noise time series 

where  replaces the CI on the discussion of the modified MSE approach. As for the modified MSE, 

the best case is selected as the one with the highest overall score and used in the remaining DFA 

analysis. 

The results (see Fig. 24) showed that the optimal values for pmax and overlap are both 40 % with a 

total score of 117. These values are used in the remaining DFA analysis. 

Fig. 24- Scoring classification for each possible pair of parameters (maximum 

percentage - pmax, overlap) with a tested range 50 % (dark blue), 40 % (light 

blue), 30 % (white), 20 % (gray), and 10 % (black) for pmax and 0  to 50 % in 

steps of 10 % for the overlap. Each bar represents the total score attributed 

to that case. The results showed that the optimal values for pmax and overlap 

are both 40 % with a total score of 117. 
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4.2.2. Illustrative examples 

The following examples were reproduced for illustrative purposes. 

Comparison between  values of white and 1/f noises. For this example, the same noise time series 

as those of the first example of MSE illustration, with 1000 time points each, were used (see 3.2.2 

Illustrative examples). The DFA algorithm was applied to each dataset and the mean fluctuations 

profiles across each type of noise was computed (using pmax and overlap equal to 40 %). The main 

goal of this example was to compare the fluctuations profile of the two types of noise and to observe 

the typical  values for each noise type. 

Comparison between  values of short white and 1/f noises time series. For this example, the 

same noise time series as those of the second example of MSE illustration, with 100, 150, 200, and 

250 time points, were used (see 3.2.2 Illustrative examples). The DFA algorithm was applied to each 

dataset and the mean  across each type of noise was computed (using pmax and overlap equal to 

40 %). Then, the AI corresponding to white and 1/f noises were computed. The main goal of this 

example was to assess the influence of short time series length on the AI between the two types of 

noise. 

Comparison between  values of white, 1/f and 1/f2 noise, and sinusoidal time series. For this 

example, the same time series as those for the third example of MSE algorithm, with 250 time points 

each, were used (see 3.2.2 Illustrative examples). The DFA algorithm was, then, applied to each 

dataset and the mean fluctuations profile across each type of signal (using pmax and overlap equal 

to 40 %) and the corresponding  values were computed. The main goal of this example is to 

compare the fluctuations profile and corresponding  values when using a noise-like or periodic 

signal. 

 

4.3. Results 

Comparison between  values of white and 1/f noises. 

Fig. 25 shows the fluctuations profiles over window length in a double logarithmic plot for both 

white and 1/f noise time series. Also in the figure are shown the  values, which correspond to the 

slope of the fitting line, for the white (red, = 0.51) and 1/f (blue,= 0.96) noises and the 

corresponding AI with the value of 30.5 %. 
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Comparison between  values of short white and 1/f noises time series. 

Fig. 26 shows the  values for short time series lengths (100 (blue), 150 (red), 200 (green), and 250 

(black) time points) for both white (asterisk) and 1/f (circle) noises. Also in the figure are shown the 

corresponding AI values. The results show a nearly constant value for the scaling exponent of the 

two types of noise (white noise = 0.54 ± 0.01; 1/f noise = 0.93 ± 0.01). Concerning the AI results, it is 

observed that AI values decrease with the decrease of the time series length. 

Comparison between  values of white, 1/f and 1/f2 noise, and sinusoidal time series. 

Fig. 27 shows the fluctuations profiles over window length in a double logarithmic plot for white, 

1/f and 1/f2 noises, and sinusoidal signal. Also in the figure are shown the , which correspond to 

the slope of the fitting line, for the white (in blue, = 0.52), 1/f (in red,= 0.94), and 1/f2 (in green, 

= 1.3) noise, and for the sinusoidal signal of 0.01 Hz and 0.1 Hz (in cyan, = 1.6, and in black,= 

0.093, respectively). 

In Fig. 28 the influence of sample frequency and sinusoidal frequency on the  value is shown. It is 

demonstrated that the value for the DFA parameters decreases as the sample and sinusoidal 

frequencies also decrease. 

 

Fig. 25- Double logarithmic plot of fluctuations (computed with pmax and overlap equal to 40 %)  over window length for 

white (asterisk) and 1/f (circle) noise time series of length 1000 time points using the DFA algorithm. The fitting line for 

each fluctuations profile is represented at red for white and at blue for 1/f noises. 

 

1 1.5 2 2.5

-3

-2

-1

0

1

log
10

(N
w
)

lo
g

1
0
F

(N
w
)

Logarithmic Fluctuations profile

 

 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

log
10

(N
w
)

lo
g 10

F(
N

w
)

Logarithmic Fluctuations profile

 

 

White noise: log
10

(F)

White noise: Fitting Line

1/f noise: log
10

(F)

1/F noise: Fitting Line

white noise = 0.51 ± 0.04 

1/f noise = 0.96 ± 0.02 
AI = 30.5 % 



 

43 
 

 

Fig. 26- Left:  value (computed with pmax and overlap equal to 40 %) for time series of white (asterisk) and 1/f (circle) 

noise with lengths of the time series in the range of 100 to 250 time points, in increments of 50, using the DFA algorithm. 

Right: AI distribution in function of time series length correspondent to the  values presented at the left. 

 

Fig. 27- Left: Double logarithmic plot of fluctuations (computed with pmax and overlap equal to 40 %) over window length 

for time series of white (in blue), 1/f (in red) and 1/f2 (in green) noises, and sinusoidal signal of 0.01 Hz (in cyan) and 0.1 

Hz (in black) with a length of 250 time points using DFA algorithm. Right: Corresponding  values for each signal type 

presented at left. White noise = 0.52; 1/f noise = 0.94; 1/f
2

 noise = 1.3; sinusoid 0.01 Hz = 1.6; sinusoid 0.1 Hz = 0.093. 
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Fig. 28- Influence of sample frequency and sinusoidal frequency (in Hz) on  value.  

 

4.4. Discussion 

This chapter describes another complexity analysis method based on the fractal properties of the 

signal being analyzed, allowing the assessment and classification of the signal structure in terms of 

its self-similarity. The main advantage of this algorithm is based on its ability to analyze non-

stationary time series, as those that translate physiologic information, and, as in the MSE method, 

its capacity to distinguish two signals with different fractal properties, a feature with high relevance 

when dealing with physiological signals. 

Concerning what is shown in Fig. 25, the results are consistent with what it is expected for these 

two type of noise (Peng et al. 1995): a  close to 1 for time series with 1/f noise behavior and close 

to 0.5 for uncorrelated time series, like white noise. For both cases the fluctuations increase with 

the increase of the window length, a result consistence with previous studies (Peng et al. 1994; Peng 

et al. 1995; Monto et al. 2007; Parish et al. 2004). 
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The influence of short time series on the final output of the DFA algorithm was assessed by 

comparing the  of white and 1/f noise time series with a number of time points that are typical of 

BOLD time series. The results, shown on Fig. 26, demonstrate that the AI between the two types of 

noises tends to decrease with shorter time series, meaning that the distinction is greater for longer 

time series. Nonetheless, the difference between the AI for 1000 time points (AI=30.5 %) and 100 

time points (AI=26.1 %) is smaller than 7.8 %. 

The typical values for the  of white, 1/f, and 1/f2 noises, and periodic signal are shown in Fig. 27 

and Fig. 28. Values of  are lower for white noise-type time series than for colored noise-type 

signals. Although a monotonic relation cannot be state for periodic signals, since the  value 

depends on the sampling frequency (equivalent to the repetition time on fMRI acquisitions) and of 

the signal itself. This is due to the fact that the RMS fluctuations of sinusoidal signals have a 

crossover at window lengths that depend on the signal period, dividing the fluctuations profile in 

two main lines: one representing a scaling behavior of ≈2 and another flat region with ≈0 (more 

details about this phenomena can be found in (Hu et al. 2001)). Fig. 27 shows the two extreme 

examples of this effect on  value. A sinusoid with frequency of 0.01 Hz and with a sampling 

frequency of 0.5 Hz has a crossover at logarithmic window length of 1.8. On the other hand a 

sinusoid with a frequency of 0.1 Hz and with the same sample frequency has a crossover at 

logarithmic window length 0.8. Therefore, it expected that a periodic signal has an  value 

influenced by its period or frequency. 

Regarding the interpretation of the DFA algorithm output there are some pitfalls that need to be 

taken into account. In order to use the scaling exponent as a signal classifier it is required a linear 

relationship on the double logarithmic plot between the fluctuations and the windows length (Peng 

et al. 1994; Eke et al. 2012), once only in that case it can be said that there is a presence of self-

similarity in the signal (remember that the a linear relationship means a power law scaling of the 

fractal properties of the signal, see 4.1 Introduction). Finding a value for the scaling exponent is 

always possible, the acceptance of it depends on the uncertainty degree that is accepted in this type 

of analysis.  
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CHAPTER 5. EPILEPTIC PATIENTS STUDY 

 

5.1. Introduction 

5.1.1. Types of epilepsy 

Epilepsy is actually a generalist word to designate a set of neurological diseases whose root 

denomination is epilepsy (Fisher et al. 2005). There is a set of epilepsies characterized by different 

origins, behaviors and developments that influences the method used in its analysis. In this study 

two kinds of epilepsy disorders will be study as an example of the application of the developed 

analysis method: temporal lobe epilepsy (TLE) and focal cortical dysplasia epilepsy (FCDE). 

The TLE is a type of epilepsy with origins in the temporal lobe structures and characterized by 

peculiar sensory symptoms like smelling an inexistent odor or a disturbance of memory. This 

disorder is by far the most studied type of epilepsy in the scientific community due to its large 

number of cases in both children and adults. The most common cause of this disorder is the mesial 

temporal sclerosis which affects usually structures located in the medial and lateral temporal cortex, 

in particular the hippocampus, parahippocampus gyrus and the amygdala (Holmes et al. 2013). In 

this kind of epilepsy the source of epileptogenic activity is usually a heterogeneous zone surrounded 

by an ‘irritative zone’. This zone is characterized by its capacity to modulate the activity from the 

source and spread it like a interplay core between extended neuronal networks (Curtis et al. 2012; 

Monto et al. 2007). 

The FCDE is characterized by a malformation in the brain cortex that is usually focal and may vary in 

size and location. This type of epilepsy have its origin in tissue intrinsically epileptogenic, namely the 

dysplasia. Almost half of intractable epilepsy cases are due to these cortex malformations and 

normally the only feasible treatable is the surgical resection. The main symptom associated with this 

disease is epilepsy (Kabat & Król 2012). 

5.1.2. Epileptic activity and its influence on functional brain connectivity 

For either of the cases discussed above the functional relations between the epileptogenic focus 

and the remaining regions of the brain are an important topic of discussion. It is not expected that 

a delimited brain region has an inherent electric activity if this does not have an outcome, i.e., 

spread or influence another brain regions activity. In other words, brain regions are functionally 

interconnected and in a dynamic way creating networks (Hutchison et al. 2013). 
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Thus, it is expected that an epileptogenic focus has repercussions on the electric activity behavior 

of all the brain regions that are related to the source either by creating new networks (epileptic 

networks) or influencing existing ones (Morgan et al. 2010; Morgan et al. 2012; Holmes et al. 2012; 

Bernhardt et al. 2013). 

5.1.3. Revisiting methodological hypotheses 

The two main hypotheses (see Chapter 1: Introduction and Objectives) of this methodological work 

are the following: the epileptogenic focus has a distinct behavior from the remaining brain 

parenchyma (Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2010; Federico et al. 

2005; Bagshaw et al. 2004; Salek-Haddadi et al. 2006; Kobayashi et al. 2005) and the complexity of 

that focus is lower than that of healthy parenchyma (Monto et al. 2007; Parish et al. 2004; Protzner 

et al. 2010). In the first one, the 2dTCA algorithm was used to find brain regions whose temporal 

behavior is distinct from others. In the second one, the BOLD signal of these potential foci were 

analyzed with MSE and DFA algorithms in order to study their complexity characteristics, namely its 

entropy and LRTC. 

Therefore, in terms of the complexity parameters (CI for MSE and  for DFA), it is expected that an 

epileptogenic BOLD signal has a lower CI than a non-epileptogenic signal, more specifically a CI value 

near the typical values for sinusoidal signals than those of noise (see Fig. 22). Regarding the  its 

value may vary with the frequency of the stimulus (see Chapter 4: 4.4 Discussion and Fig. 27 and 

Fig. 28). Thus, in a plane of AI of CI against AI of  (with anisotropy computed between epileptogenic 

and non-epileptogenic signals) it is expected to find anisotropy values in the 3rd and 4th quadrants 

(see bottom right chart in Fig. 29). 

Since studies supporting these hypotheses were based on data from patients with TLE, this method 

will be tested first on two patients with TLE. Then, a patient with FCDE will be tested in order to 

verify if the assumptions made for TLE patients stand also for FCDE patients. 
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5.2. Materials and Methods 

5.2.1. Sample characterization 

Patient 
Gender/Age 

(years) 
Type of 
epilepsy 

Focus localization 

1 M/60 Unilateral TLE Left temporal lobe 

2 M/19 Bilateral TLE 
Bilateral with right temporal-parietal 

predominance 

3 F/33 FCDE Right precentral gyrus 
Table 1- Epileptic patients sample characterization: gender, age, type of epilepsy, and localization of its epileptogenic 

focus. F: female; M: male; TLE: temporal lobe epilepsy; FCDE: focal cortical dysplasia epilepsy. 

In this study 3 epileptic patients were studied, including 1 with unilateral TLE, 1 with bilateral TLE, 

and 1 with FCDE. A summary of patients characteristics is presented in Table 1, including gender, 

age, type of epilepsy, and localization of the epileptogenic focus. 

For patients 1 and 2: MRI imaging of was performed using a Magneton Avanto 1.5T MRI scanner 

(Siemens, Erlanger, Germany) prior to surgery. Functional scanning was performed using T2* 

weighted single-shot spin echo sequence with echo planar images readout (SS-SE-EPI) (matrix = 64 

x 64, voxel size =3.44 mm x 3.44 mm x 5.5 mm, 21 interleaved slices, TE = 50 ms, TR = 2 s, 150 

volumes). These data was kindly made available by Hospital São José, Centro Hospitalar de Lisboa 

Central, E.P. E. 

For patient 3: MRI imaging of was performed using a GE Genesis Signa 1.5T MSRI scanner (General 

Electrical, Waukesha, WI, U.S.A.) prior to surgery. Functional scanning was performed using T2* 

weighted single-shot spin echo sequence with echo planar images readout (SS-SE-EPI) (matrix = 64 

x 64, voxel size = 3.75 x 3.75 mm x 5 mm, 26 ascending slices, TE = 50 ms, TR = 2.5 s, 140 volumes). 

These data was kindly made available by Hospital Júlio de Matos, Centro Hospitalar de Lisboa 

Central, E.P. E. 

5.2.2. Pipeline Analysis 

This section describes the steps of the analysis of the epileptic patients’ dataset. In this study the 

three methods presented on the previous Chapters (2dTCA, MSE and DFA) are combined in order 

to produce an output able to define a brain region as a likely epileptogenic focus. A flowchart that 

summarizes the pipeline is presented on Fig. 29.   
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Fig. 29- Flowchart illustrating the pipeline analysis of real subject data, namely, epileptic patients’ dataset. : scaling 

exponent; AI: Anisotropy index; CI: Complex Index; DFA: Detrended Fluctuation Analysis; GLM: General Linear Model; 

FEWR: Family-Wise Error Rate; k: extended threshold; MSE: Multiscale Entropy; RTC: Reference Time Course; SPM: 

Statistical Parametric Map. Circles on CI/ distribution: blue: white noise; red: 1/f noise; green: 1/f2 noise; cyan: sinusoid 

of 0.01 Hz; black: sinusoid of 0.1 Hz. 

Data pre-processing 

The first important step on real data study was to perform a careful pre-processing of the fMRI 

volumes or scans. This was accomplish using DPARSF4 toolbox (Chao-Gan & Yu-Feng 2010) and 

                                                           
4 Data Processing Assistant for Resting-State fMRI (http://rfmri.org/DPARSF) 
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included slice timing correction for interleaved or ascending slice acquisition, realignment due to 

movement effects (from which 6 motion parameters were obtained), normalization to MNI5 space 

(Tzourio-Mazoyer et al. 2002) using the echo planar imaging (EPI) template provided by DPARSF 

(and from which a picture showing the brain regions covered by this normalization was obtained), 

data spatial smoothing with a Gaussian 4 mm FWHM kernel, detrending, and filtering using a 

bandpass filter with lower and upper cutoff frequencies of 0.01 and 0.1 Hz, respectively. 

Additionally, a brain mask of gray matter (more specifically an AAL6 mask (Tzourio-Mazoyer et al. 

2002)) was used in order to mask out voxels that do not correspond to gray matter. 

Localization of candidate epileptogenic foci 

After the pre-processing, RTCs were obtained using the 2dTCA algorithm and, together with the six 

motion parameters and the global time course, were statistically analyzed (see Chapter 2: 2.2.2 

Algorithm implementation – t-maps creation). The obtained SPMs (one for each RTC) were 

individually analyzed and thresholded using a Family-Wise Error Rate (FWER) with a p-value<0.05.  

Then, an extended threshold k of 27 voxels was applied in order to define clusters of voxels with 

activation (derived from each RTC). More details about SPM thresholding can be found on Appendix 

A. 

The next step was to analyze each thresholded SPM and classify each cluster as a potential 

epileptogenic focus or a dubious one, which was accomplished in the following way: potential 

clusters were defined as those who cover a delimited brain region (typically with less than 200 voxels 

of extend, depending on the voxel real size). Dubious clusters were those which covered brain 

regions unlikely to belong to delimited epileptogenic tissue: being too large (with more than 

200/300 voxels in size) and localized on questionable regions (like those whose scan volumes does 

not cover, which can be defined by visual inspection of the pictures for normalization checking). 

Before the complexity analysis was performed, the SPMs with more than one potential cluster 

underwent a visual inspection in order to verify if those clusters belong to a known brain network 

(like the DMN and the Visual Network (VN)) or if they represent contralateral regions. If so, the SPM 

was classified as potential confound in the remaining analysis. 

                                                           
5 Montreal Neurological Institute 
6 Automated Anatomical Labeling 
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The localization of all the brain regions covered by each cluster was accomplished using xjView 

toolbox7. 

Complexity analysis: cluster’s mean time series classification 

The next step was to extract the mean time series of each cluster and that of its contralateral cluster, 

which was defined as the sagittal mirror region of the ipsilateral cluster. This average was taken 

across all the voxels contained in each cluster. In cases where the ipsilateral cluster position covered 

also the medial or sagittal brain line, and therefore, part of the two brain hemispheres, the voxels 

that were superimposed by the two clusters (ipsi and contralateral) were excluded from the 

analysis. This avoided comparison between results that were from the same region. 

In order to determine if each cluster was likely an epileptogenic focus or not, its mean time series 

was analyzed in terms of its complexity and compared to that of the contralateral cluster. Hereupon, 

the MSE and DFA algorithms were applied to each mean time series (from each ispi and contralateral 

cluster) and the CI and , respectively, were extracted. Then, the AI was computed for each 

complexity output between the ipsi and contralateral cluster complexity result using Eq. 8, where 

cp means complexity parameter. This equation differs from Eq. 5 as it accounts not only for the 

magnitude of the difference, but also for the sign of the difference. 

𝐀𝐈𝐜𝐩 =
𝐜𝐩𝐢𝐩𝐬𝐢𝐥𝐚𝐭𝐞𝐫𝐚𝐥 𝐜𝐥𝐮𝐬𝐭𝐞𝐫−𝐜𝐩𝐜𝐨𝐧𝐭𝐫𝐚𝐥𝐚𝐭𝐞𝐫𝐚𝐥 𝐜𝐥𝐮𝐬𝐭𝐞𝐫

𝐜𝐩𝐢𝐩𝐬𝐢𝐥𝐚𝐭𝐞𝐫𝐚𝐥 𝐜𝐥𝐮𝐬𝐭𝐞𝐫+𝐜𝐩𝐜𝐨𝐧𝐭𝐫𝐚𝐥𝐚𝐭𝐞𝐫𝐚𝐥 𝐜𝐥𝐮𝐬𝐭𝐞𝐫
× 𝟏𝟎𝟎 Eq. 8 

This process was repeated for each cluster and the AI values for all cases were plotted on the same 

figure: the AI for CI on the Y-axis and the AI for  on the X-axis (see bottom right chart in Fig. 29). 

The goal of this plot was to discriminate which cluster had an AI in the quadrant of interest (the 3rd 

and 4th quadrants, see green shadow on bottom right chart of Fig. 29). 

Additionally, the mean of CI and  of each cluster of a given RTC was computed for all analyzed 

RTC’s SPM and the distributions of CI against  for all analyzed RTC’s SPM were plotted (see bottom 

left chart on Fig. 29). The goal of this plot was to locate as a whole each SPM in the complexity plane. 

Finally, the cluster was classified as a target if its AI values were on the 3rd or 4th quadrants, i.e., if 

AICI has negative values. Within these quadrants the cluster which have the smallest AICI was the 

first likely to belong to epileptogenic tissue. The second cluster with the smallest AICI is the second 

likely to belong to epileptogenic tissue and so on. 

                                                           
7 http://www.alivelearn.net/xjview 
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Additional analysis 

In addition to the complexity assessment, a correlation analysis was also performed to each cluster 

in two ways. The first one was to compute the Pearson's linear correlation matrix between each ispi 

and contralateral cluster’s mean time series using an intrinsic Matlab® function. The goal of this step 

was to assess the main temporal relations between each cluster. 

The second one was to perform a voxel-wise functional connectivity analysis between the cluster’s 

mean time series and the time series of each other voxel of the brain. This functional connectivity 

was assessed simply by the same correlation coefficient used to the first additional analysis step and 

was performed using REST8 toolbox (Song et al. 2011). This toolbox performs a variable 

transformation of the computed correlation coefficient to the normal distribution, a z-score, using 

a Fisher’s z transform (more details about this transformation can be found in (Press et al. 1988)). 

This is accomplished using Eq. 9. 

𝒛 = 𝟎. 𝟓 × 𝐥𝐨𝐠
𝟏+𝒓

𝟏−𝒓
 Eq. 9 

In order to determine which voxels were statistically significant in this analysis a significance level 

of 5% (corresponding to two standard deviations of all voxels’ z-score) was used to threshold the z-

score brain map. The goal of this step is to assess the main temporal relations between each cluster 

and the remaining brain regions (or voxels). 

Validation of found epileptogenic focus 

The final step of the real data study on epileptic patients was the validation of the epileptogenic 

focus found through the described approach. In order to do that clinical information available for 

each patient is confronted to the obtained results and the focus is validated if both information 

match. 

 

 

 

                                                           
8 Resting-State fMRI Data Analysis Toolkit (http://restfmri.net/forum/index.php) 
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5.3. Results 

The results of the real data analysis for those patients described in 5.2.1 Sample characterization 

are presented in this section. 

5.3.1. Patient 1 – Unilateral Temporal Lobe Epilepsy (TLE): left TLE 

Fig. 30 shows the histogram of the distribution of the number of voxels across the values of the 

transient spike selection limit. The results show that 4.1% of the voxels are above the 3% of signal 

change and 74.4% of the voxels are between the lower and upper boundaries (0.5 and 3% of signal 

change, respectively; see red dashed lines on Fig. 30). 

 

Fig. 30- Histogram showing the distribution of the number of voxels with a given value of the transient spike selection 

limit [2 standard deviations (std) above the baseline] for patient 1. Red dashed lines represents the lower and upper 

boundaries of allowed signal change (see Chapter 2: 2.2.2 Algorithm implementation – Candidate voxels selection). 

The result of the bi-dimensional histogram mapping and its diagonal profile are shown on Fig. 31. 

Each column of this histogram represents a RTC, and a total of 140 RTCs were found on this patient. 
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After performing the RTCs number reduction and its normalization, 16 RTCs remained for statistical 

analysis. From those 16 RTCs only 4 (RTC_1, RTC_5, RTC_7, and RTC_15) resulted in a SPM (using a 

FWER correction with p-value<0.05 and k-threshold of 27 voxels). Fig. 32 shows each map with the 

corresponding RTC. Each label on the left of the matrix has the form of ‘Idx: RTC#_size’ or ‘Idx: 

RTC#_size_c’, where Idx represents the index of the label, # the number of the RTC that produced 

the SPM, size stands for the size of the cluster being analyzed, and c means contralateral cluster. 

This labeling stands for all patients. The temporal profile of the remaining RTCs are presented in 

Appendix C. The maps from RTC 1 and RTC 15 show extensive and diffuse activation on anterior and 

posterior brain areas, respectively, thus, these maps were excluded from further analysis. RTC_5’s 

map shows four well defined activated regions, comprising the following brain regions: left temporal 

cortex, left superior occipital cortex, left lingual gyrus and right parahippocampal gyrus. Finally, the 

map corresponding to RTC_7 show one activation spot on the calcarine fissure. The content, 

regarding the number and size of clusters, of each SPM are presented in Table 2 . Each cluster are 

reported individually in Appendix C. 

RTC # clusters Size of clusters 

5 4 30 (2 clusters), 31, 36 

7 1 38 
Table 2- Number and size of the clusters presented in each SPM of patient 1. 

Fig. 31- Results for patient 1. Left: bi-dimensional histogram with the counting of transient spikes over the time. Each 

column represents a preliminary RTC. Right diagonal profile representing the number of voxels which maximum occurs in 

each time point. 
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The correlation between each ipsi and contralateral clusters of RTC_5 and RTC_7 are shown in Fig. 

33. Regarding the RTC_5, the results show positive correlations between the ipsilateral, between 

ipsi and contralateral, and, also, between contralateral (although weaker) clusters’ mean time 

courses. The ipsilateral cluster obtained from RTC_7’s map has a strong positive correlation with the 

corresponding contralateral cluster mean time course. 

The distribution of the mean CI and  across each cluster of RTC_5 and the CI and for the ipsi and 

contralateral cluster of RTC_7 is shown in Fig. 34. RTC_5 has a higher mean CI and a lower mean  

than RTC_7. Comparing the ipsi and contralateral clusters’ mean complexity parameters, it is shown 

that the major difference is assigned to the RTC_5 (contralateral CI > ipsilateral CI) and the minor 

difference is assigned to the RTC_7 (contralateral CI ≈ ipsilateral CI). 
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Fig. 32- Activation maps from RTC_1, RTC_5, RTC_7 and RTC_15 obtained using 2dTCA (FEWR correction, p-value<0.05, k-

threshold=27 voxels) and corresponding RTCs’ temporal profiles. Results for patient 1. S: superior; I: inferior; A: anterior; 

P: posterior; R: right; L: left. 
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Fig. 33- Correlation matrix between ipsi and contralteral clusters of all RTCs that produced SPMs with significant activation. 

Results for patient 1. Each label on the left of the matrix as the form of ‘Idx: RTC#_size’ or ‘Idx: RTC#_size_c’, where Idx 

represents the index of the label, # the number of the RTC that produced the SPM, size stands for the size of the cluster 

being analyzed, and c means contralateral cluster. On the bottom of the matrix are the labels with the same indexes as 

those presented on the left. 
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of RTC 7. At blue are the mean parameters for ipsilateral clusters and at red are the mean parameters for contralateral 

clusters. Results for patient 1. 
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The cluster RTC7_38 was excluded from further analysis (reason: localization on brain midline). The 

mean time course of the cluster considered for further analysis and the corresponding RTC temporal 

profile are presented in Appendix C. 

Anisotropy analysis of each cluster considered for further analysis is shown in Fig. 35. The ones 

whose anisotropy fall on target regions (see bottom right chart on Fig. 29) are RTC5_30, RTC5_30b, 

and RTC5_36. Analyzing the CI/ distribution in Fig. 36, it is shown that contralateral clusters of 

RTC5_30, RTC5_30b, and RTC5_36 have higher  value than those of ipsilateral ones. Once  

anisotropy analysis of the three clusters show a similar value (around -3), the potential epileptogenic 

focus was chosen according to the larger absolute CI anisotropy. Then chosen cluster is RTC5_30. 

Lastly, Fig. 37 shows the functional connectivity analysis results of RTC5_30 (the potential 

epileptogenic focus chosen by complexity analysis) in z-score and thresholded at ±0.51. The results 

demonstrate that there are positive correlations between the RTC5_30 region (left middle and 

superior temporal gyrus), and right and left temporal poles, regions of the limbic system (right 

thalamus, right caudate nucleus, left and right parahippocampal gyrus, left and right hippocampus), 

right and left insula, right anterior cingulate and paracingulate gyri, left calcarine, right Heschl gyrus, 

left and right Rolandic operculum. Also negative correlations were observed between RTC5_30 and 

right lingual gyrus, right precuneus, right precentral gyrus, and left and right supplementary motor 

areas. 

 

Fig. 35- Anisotropy analysis of each cluster considered for further analysis. At green is the target region. Each red point is 

labeled in the following way: ‘Number of the RTC’-‘Size of the RTC’. Results for patient 1. 
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Fig. 36- CI/ distribution of each cluster considered for further analysis. Each red point is labeled in the following way: 

‘Number of the RTC’-‘Size of the RTC’. Results for patient 1. 

 

Fig. 37- Functional connectivity maps of RTC5_30 (the potential epileptogenic focus chosen by complexity analysis) in z-

score and thresholded at ±0.51. Results for patient 1. L: left; R: right. 

5.3.2. Patient 2 – Bilateral TLE: with right temporo-parietal predominance 

Fig. 38 shows the histogram of the distribution of the number of voxels across the values of the 

transient spike selection limit. The results show that 2.8% of the voxels are above the 3% of signal 

change and 71.6% of the voxels are between the lower and upper boundaries (0.5 and 3% of signal 

change, respectively; see red dashed lines on Fig. 38). 
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Fig. 38- Histogram showing the distribution of the number of voxels with a given value of the transient spike selection 

limit [2 standard deviations (std) above the baseline] for patient 2. Red dashed lines represents the lower and upper 

boundaries of allowed signal change (see Chapter 2: 2.2.2 Algorithm implementation – Candidate voxels selection). 

The result of the bi-dimensional histogram mapping and its diagonal profile are shown on Fig. 39. 

Each column of this histogram represents a RTC, a total of 140 RTCs. 

 

Fig. 39- Results for patient 2. Left: bi-dimensional histogram with the counting of transient spikes over the time. Each 

column represents a preliminary RTC. Right diagonal profile representing the number of voxels which maximum occurs in 

each time point. 
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After performing the RTCs number reduction and its normalization 15 RTCs remained for statistical 

analysis. From those 15 RTCs only 6 (RTC_1, RTC_2, RTC_3, RTC_5, RTC_10, and RTC_14) resulted in 

a SPM (using a FWER correction with p-value<0.05 and k-threshold of 27 voxels). Fig. 40 shows each 

map with the corresponding RTC. The temporal profile of the remaining RTCs are presented in 

Appendix C. The map from RTC_1 shows extensive activation comprising bilateral sensoriomotor 

areas, superior frontal lobe, median cingulate and paracingulate gyri, and precuneus. Due to the 

extent of activation this map, it was excluded from further analysis. RTC_2’s map shows one single 

brain region with significant activation on the right superior temporal gyrus. The map corresponding 

to RTC_3 shows activation in three defined regions comprising the right inferior frontal gyrus, left 

middle occipital gyrus, and right inferior temporal gyrus. RTC_5’s map activation covers left middle 

and superior temporal gyri, left inferior and superior frontal gyri, left precental region, and left 

cuneus and precuneus regions. RTC_10’s map shows activation in right inferior frontal, in right 

inferior parietal gyri, and in right supramarginal gyrus. Finally, the map corresponding to RTC_14 

shows activation mainly in the right temporal lobe. The content, regarding the number and size of 

clusters, of each SPM are presented in Table 3 . Each cluster are reported individually in Appendix 

C. 

RTC # clusters Size of clusters 

2 1 58 

3 3 50, 93, 100 

5 8 28, 28b, 35, 44, 76, 113, 125, 140 

10 2 33, 92 

14 3 27, 48, 115 
Table 3- Number and size of the clusters presented in each SPM of patient23. 

The correlation between each ipsi and contralateral clusters of RTC_2, RTC_3, RTC_5, RTC_10 and 

RTC_14 are shown in Fig. 41. In general, ipsilateral clusters of the same RTC’s map show strong 

positive correlations between them and with corresponding contralateral clusters. The ipsilateral 

cluster of RTC_2 shows positive correlations with the ipsilateral clusters of RTC_5 that, in turn, show 

positive correlations with contralateral clusters of RTC_14. 
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Fig. 40- Activation maps from RTC_1, RTC_2, RTC_3, RTC_5, RTC_10, and RTC_14 obtained using 2dTCA (FEWR 

correction, p-value<0.05, k-threshold=27 voxels) and corresponding RTCs’ temporal profiles. Results for patient 2. S: 

superior; I: inferior; A: anterior; P: posterior; R: right; L: left. 
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Fig. 41- Correlation matrix between ipsi and contralteral clusters of all RTCs that produced SPM with significant activation. 

Results for patient 2. Each label on the left of the matrix as the form of ‘Idx: RTC#_size’ or ‘Idx: RTC#_size_c’, where Idx 

represents the index of the label, # the number of the RTC that produced the SPM, size stands for the size of the cluster 

being analyzed, and c means contralateral cluster. On the bottom of the matrix are the labels with the same indexes as 

those presented on the left. 

The distribution of the mean CI and  across each cluster of RTC_3, RTC_5, RTC_10, and RTC_14 and 

the CI and for the ipsi and contralateral clusters of RTC_2 is shown in Fig. 42. RTC_2, RTC_5, and 

RTC_10 show both contralateral CI higher and  lower than ispsilateral one. The opposite result is 

shown for RTC_14. Regarding he RTC_3’s CI is higher for ipsilateral cluster than for that of 

contralateral one, with a constant .  Also, the major difference between ispi and contralateral 

clusters’ mean complexity parameters is assigned to RTC_10. 

The following clusters were excluded from further analysis: RTC2_58 (reason: it is contralateral to 

RTC5_125), RTC3_50 (reason: it is contralateral to RTC5_113), and RTC3_100 (reason: it is 

contralateral to RTC5_125). Also, all clusters of RTC 14 were excluded since the single spike of the 

corresponding RTC and clusters’ mean time course corresponds to a motion artefact (see movement  

Correlation between clusters' mean time courses

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1: RTC10_33

2: RTC10_92

3: RTC14_115

4: RTC14_27

5: RTC14_48

6: RTC2_58

7: RTC3_100

8: RTC3_50

9: RTC3_93

10: RTC5_113

11: RTC5_125

12: RTC5_140

13: RTC5_28
14: RTC5_28b

15: RTC5_35
16: RTC5_44

17: RTC5_76

18: RTC10_33_c

19: RTC10_92_c

20: RTC14_115_c

21: RTC14_27_c

22: RTC14_48_c

23: RTC2_58_c

24: RTC3_100_c

25: RTC3_50_c

26: RTC3_93_c

27: RTC5_113_c

28: RTC5_125_c

29: RTC5_140_c

30: RTC5_28_c

31: RTC5_28b_c

32: RTC5_35_c

33: RTC5_44_c

34: RTC5_76_c
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



 

63 
 

 

Fig. 42- Distribution of the mean CI and  across each cluster of RTC_3, RTC_5, RTC_10, and RTC_14 and the CI and for 

the ipsi and contralateral cluster of RTC_2. At blue are the mean parameters for ipsilateral clusters and at red are the 

mean parameters for contralateral clusters. Results for patient 2. 

 

Fig. 43- Anisotropy analysis of each cluster considered for further analysis. At green is the target region. Each red point is 

labeled in the following way: ‘Number of the RTC’-‘Size of the RTC’. Results for patient 2. 

parameters and mean time course of the RTC_14’s clusters plot in Appendix C). The mean time 

courses of the clusters considered for further analysis and the corresponding RTC temporal profiles 

are presented in Appendix C. 
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Anisotropy analysis of each cluster considered for further analysis is shown in Fig. 43. The clusters 

whose anisotropy fall on target regions (see bottom right chart on Fig. 29) are RTC5_35, RTC5_125, 

RTC5_76, RTC5_28b, RTC5_28, and RTC10_92. Analyzing the CI/ distribution in Fig. 44, it is shown 

that the contralateral cluster of RTC10_92 has higher CI and lower  values than those of the 

remaining RTCs which AI fall on target regions. Therefore, the potential epileptogenic focus was 

chosen as the one which has lower CI anisotropy and, at the same time, higher anisotropy, i.e., 

RTC10_92. 

 

Fig. 44- CI/ distribution of each cluster considered for further analysis. Each red point is labeled in the following way: 

‘Number of the RTC’-‘Size of the RTC’. Results for patient 2. 

Lastly, Fig. 45 shows the functional connectivity analysis results of RTC10_92 (the potential 

epileptogenic focus chosen by complexity analysis) in z-score and thresholded at ±0.4. The results 

demonstrate that there are some positive correlations between RTC10_92 cluster and its 

contralateral region and also correlation with opercular and orbital parts of right inferior frontal 

gyrus, left and right median and anterior cingulates and paracingulates gyri, left and right inferior 

temporal gyri and right superior temporal gyrus. 
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Fig. 45- Functional connectivity maps of RTC10_92 (the potential epileptogenic focus chosen by complexity analysis) in z-

score and thresholded at ±0.4. Results for patient 2. L: left; R: right. 

5.3.3. Patient 3 – Focal Cortical Dysplasia Epilepsy (FCDE): right precentral gyrus 

 

Fig. 46- Histogram showing the distribution of the number of voxels with a given value of the transient spike selection 

limit [2 standard deviations (std) above the baseline] for patient 3. Red dashed lines represents the lower and upper 

boundaries of allowed signal change (see Chapter 2: 2.2.2 Algorithm implementation – Candidate voxels selection). 

Fig. 46 shows the histogram of the distribution of the number of voxels across the values of the 

transient spike selection limit. The results show that 2.1% of the voxels are above the 3% of signal 

change and 96.1% of the voxels are between the lower and upper boundaries (0.5 and 3% of signal 

change, respectively; see red dashed lines on Fig. 46). 
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The result of the bi-dimensional histogram mapping and its diagonal profile are shown on Fig. 47. 

Each column of this histogram represents a RTC, a total of 140 RTCs. 

 

Fig. 47- Results for patient 3. Left: bi-dimensional histogram with the counting of transient spikes over the time. Each 

column represents a preliminary RTC. Right diagonal profile representing the number of voxels which maximum occurs in 

each time point. 

After performing the RTCs number reduction and its normalization 11 RTCs remained for statistical 

analysis. From those 11 RTCs only 4 (RTC_1, RTC_3, RTC_4, and RTC_11) resulted in a SPM (using a 

FWER correction with p-value<0.05 and k-threshold of 27 voxels). Fig. 48 shows each map with the 

corresponding RTC. The temporal profiles of the remaining RTCs are presented in Appendix C. 

Particularly, for RTC_1 the map shows activation in posterior-inferior brain regions, including the 

cerebellum. The RTC_3’s map shows an extensive activation comprising bilateral sensoriomotor 

areas. The map of RTC_4 shows three activated regions, comprising left and right inferior and 

superior parietal gyri, right angular gyrus, and right precentral gyrus. The map of RTC_11 shows two 

clusters on the left cerebrum, namely on the left middle frontal gyrus, left angular gyrus, left inferior 

parietal gyrus, and precuneus. The content, regarding the number and size of clusters, of each SPM 

are presented in Table 4 . Each cluster is reported individually in Appendix C. 

RTC # clusters Size of clusters 

1 6 28, 34, 42, 80, 81, 132 

3 5 64, 136, 170, 275, 354 

4 3 55, 87, 123 

11 2 39, 166 
Table 4- Number and size of the clusters presented in each SPM of patient 3. 
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The correlation between each ipsi and contralateral clusters are shown in Fig. 49. Regarding the RTC 

1, the results show positive correlations between the ipsilateral clusters’ mean time courses and, 

also, between those of ipsi and some contralateral clusters (RTC1_132_c, RTC1_28_c and 

RTC1_81_c). It is also shown negative correlations between ipsilateral clusters’ mean time course 

and that of a contralateral cluster (RTC_1_80). Concerning the RTC_3, the results show strong 

positive correlations between the ipsi and contralateral clusters’ mean time courses. Lastly, the ipsi 

and contralateral clusters’ mean time courses of RTC_4 and RTC_11 show positive correlations 

between them. 

 

Fig. 48- Activation maps from RTC_1, RTC_3, RTC_4 and RTC_11 obtained using 2dTCA (FEWR correction, p-

value<0.05, k-threshold=27 voxels) and corresponding RTCs’ temporal profiles. Results for patient 3. S: superior; I: 

inferior; A: anterior; P: posterior; R: right; L: left. 
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Fig. 49- Correlation matrix between ipsi and contralteral clusters of all RTCs that produced SPM with significant activation. 

Results for patient 3. Each label on the left of the matrix as the form of ‘Idx: RTC#_size’ or ‘Idx: RTC#_size_c’, where Idx 

represents the index of the label, # the number of the RTC that produced the SPM, size stands for the size of the cluster 

being analyzed, and c means contralateral cluster. On the bottom of the matrix are the labels with the same indexes as 

those presented on the left. 

In Fig. 50 the distribution of the mean CI and  across each cluster of RTC_1, RTC_3, RTC_4, and 

RTC_11 is shown. RTC_1 has a higher mean CI and a lower mean  than RTC_3 that, in turn, have a 

higher CI and lower  than RTC_4 and RTC_11. These last two have a similar complexity parameters 

values. Comparing the ipsi and contralateral clusters’ mean complexity parameters, it is shown that 

the major difference is assigned to the RTC_1 (contralateral CI < ipsilateral CI) and the minor 

difference is assigned to the RTC_3 (contralateral CI ≈ ipsilateral CI). 

The following clusters were excluded from further analysis: RTC1_80 (reason: localization on 

cerebellum), RTC1_81 (reason: it is contralateral to RTC1_132), all clusters from RTC 3 (reason: these 

clusters represents contralateral regions), and RTC4_87 (reason: it is contralateral to RTC4_123). 

The mean time course of the clusters considered for further analysis and the corresponding RTC 

temporal profiles are presented in Appendix C. 

Correlation between clusters' mean time courses

 

 

1 2 3 4 5 6 7 8 9 10

1: RTC5_30

2: RTC5_30b

3: RTC5_31

4: RTC5_36

5: RTC7_38

6: RTC5_30_c

7: RTC5_30b_c

8: RTC5_31_c

9: RTC5_36_c

10: RTC7_38_c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



 

69 
 

 

Fig. 50- Distribution of the mean CI and  across each cluster of RTCs 1, 3, 4, and 11. At blue are the mean parameters for 

ipsilateral clusters and at red are the mean parameters for contralateral clusters. Results for patient 3. 

Anisotropy analysis of each cluster considered for further analysis is shown in Fig. 51. The ones 

whose anisotropy fall on target regions (see bottom right chart on Fig. 29) are RTC1_28 and 

RTC11_39. Analyzing the CI/ distribution in Fig. 52, it is shown that RTC11_39 have lower CI values 

(either for ispi and contralateral clusters) than those of RTC1_28. Thus, from this two clusters, the 

chosen potential epileptogenic focus is RTC11_39. 

 

Fig. 51- Anisotropy analysis of each cluster considered for further analysis. At green is the target region. Each red point is 

labeled in the following way: ‘Number of the RTC’-‘Size of the RTC’. Results for patient 3. 
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Fig. 52- CI/ distribution of each cluster considered for further analysis. Each red point is labeled in the following way: 

‘Number of the RTC’-‘Size of the RTC’. Result for patient 3. 

Lastly, Fig. 53 shows the functional connectivity analysis results of RTC11_39 (the potential 

epileptogenic focus chosen by complexity analysis) and RTC4_55 (the cluster that best described the 

anatomical brain region with lesion) in z-score and thresholded at ±0.36 and ±0.46, respectively. The 

results demonstrate positive correlations between the same brain regions in the two maps, 

including left and right angular gyri, left and right precuneus, left and right precentral gyri, and left 

and right middle and superior frontal gyri. 

 

Fig. 53- Functional connectivity maps of RTC11_39 (the potential epileptogenic focus chosen by complexity analysis) and 

RTC4_55 (the cluster that best described the anatomical brain region with lesion) in z-score and thresholded at ±0.36 and 

±0.46, respectively. Results for patient 3. L: left; R: right. 
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5.4. Discussion 

In this section, a discussion about each patient results individually will take place followed by a 

general discussion about the methodological outcome of the present work. 

5.4.1. Patient 1 – Unilateral TLE: left TLE 

The analysis of the transient spike selection limits distribution (Fig. 30) showed that only 4.1 % of 

the 54837 of the voxels have a maximum signal change with a magnitude higher than 3 %. This 

indicates that, overall, data have a low amount of signal artefacts. 

Concerning the maps of activation corresponding to the RTCs that showed significant activation, 

two of them showed extensive activation: RTC 1 and RTC 15. These results might be explained either 

by artefacts or by a synchronization of a network or networks. In fact, RTC 1 temporal profile have 

some spikes that are coincident with the ones present in the motion parameters plot (see Appendix 

C). Also, the distribution of activated brain regions of this RTC does not resemble any known 

network. Thus, this map might be derived from movement artefacts. On the other hand, the 

activation map corresponding to RTC 15 shows contiguous activation on brain regions assigned to 

visual areas (Shirer et al. 2012). As this map covers part of the temporal lobe, where epileptogenic 

activity is present, it could be associated to a synchrony of the visual network with the source of the 

epileptic activity. 

The complexity analysis of the RTC 5 showed that RTC5_30 was the most likely epileptogenic focus 

having an ipsilateral CI value lower than the contralateral one and a CI anisotropy lower than the 

remaining clusters in the analysis (Fig. 35 and Fig. 36). This analysis showed also that ipsilateral 

RTC5_30 have  lower than the contralateral one, a result similar to that found for RTC4_55 of 

patient 3 with FCDE. In addition, the region covered by the cluster RTC5_30 overlapped the clinical 

information about the origin of the epileptic activity, the left temporal lobe, and anatomical imaging 

findings. 

The analysis of the functional connectivity of this cluster showed negative correlations between 

RTC5_30 and sensoriomotor areas (right precentral gyrus and left and right supplementary motor 

areas). It also showed positive correlations with regions that might be associated with an epileptic 

network conducted by the epileptogenic focus. These results support the idea that the epileptogenic 

focus may spread its activity to regions functionally connected to it influencing them either in a 

positive or in a negative way. 
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5.4.2. Patient 2 – Bilateral TLE: with right temporo-parietal predominance 

The distribution of the limits for transient spike selection of each voxel (Fig. 38) showed that only 

2.8 % of the 54837 of the voxels have a maximum signal change with a magnitude higher than 3 %. 

As for patients 1, this indicates that, overall, data have a low amount of signal artefacts. 

The number of RTC’s maps with significant activation was higher for this patient than for the others 

(6 RTCs comparatively to 4 RTCs). The map corresponding to RTC 1 showed extensive activation 

among regions that resembles the sensoriomotor network (Shirer et al. 2012). RTC 14 represents an 

example showing the ability of 2dTCA algorithm to sort out temporal profiles derived from artefacts 

events. Even when these events have characteristics within the limits imposed (a transient spike 

that have a magnitude 2 standard deviations above the baseline and with a percentage change 

between 0.5 and 3 %), this algorithm is able to separate them from another type of activity, allowing 

the user to exclude them from further analysis. 

The complexity analysis of RTCs’ clusters for this patient showed that RTC10_92 is the most likely 

epileptogenic focus having an ipsilateral CI value lower than the contralateral one and a CI 

anisotropy higher, in magnitude, than the remaining clusters in the analysis (Fig. 43 and Fig. 44). 

This was in agreement with clinical information which says that there is a prevalence of the epilepsy 

on the right temporal-parietal region (RTC10_92 comprises the right inferior parietal and 

supramarginal gyri). The functional connectivity analysis (Fig. 45) showed what might be the 

epileptic network generated by the epileptogenic focus, which comprises bilateral parietal and 

temporal regions, being consistent with the fact that this patient has bilateral TLE. 

5.4.3. Patient 3 – FCDE: right precentral gyrus 

Fig. 47 showed only 2.1 % of the 54837 voxels have a maximum signal change with a magnitude 

higher than 3 %. As for patient 1 and 2, this is a good indicator that data have a low amount of signal 

artefacts. 

Regarding the RTCs that showed significant activation in the corresponding map, there is one, RTC 

3, that showed activation in the sensorimotor areas, resembling the sensorimotor network (Shirer 

et al. 2012). The reason that this network is extensively activated even with the patient in resting 

state condition could be the fact that the epileptogenic focus of this patient is located on the right 

precentral gyrus, a primary motor area, which is covered by the network discussed above. The 

activity from this focus could influence all the other brain regions associated with this network. The 
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same line of reasoning could be used to interpret the results of the clusters’ mean time courses 

complexity analysis. 

Fig. 50 showed that in average the clusters from RTC4 and 11 have a lower CI and higher  than 

those of RTC1 and 3. On the other hand, anisotropy analysis (Fig. 51) showed that differences 

between ipsi and contralateral cluster complexity located in the region of interest (green shadow in 

the plot) occurs for RTC1_28 and RTC11_39. Further, a careful analysis of the complexity parameters 

(Fig. 52) demonstrated that RTC11_39 have lower CI and higher  than those of RTC1_28. This is in 

agreement with the results shown in Fig. 50. The most likely epileptogenic focus was chosen 

according to the hypothesis that epileptogenic BOLD signal have a lower entropy than the remaining 

BOLD signals. However, clinical information says that the brain lesion responsible for this 

epileptogenic activity lies on right precentral gyrus and not on left parietal cortex, respectively, 

RTC4_55 and RTC11_39. 

The analysis of functional connectivity of RTC11_39 (the likely epileptogenic focus found by the 

method) and RTC4_55 (the one containing the brain region known to have a lesion) shows 

correlations between the same brain regions. This might mean that these two clusters belong to the 

same network possibly conducted by the epileptogenic activity generated from the focus. Also, the 

complexity analysis of RTC4_55 shows that the contralateral cluster, in the left hemisphere as 

RTC11_39, has lower CI and higher  than those of ipsilateral cluster.  

Furthermore, the complexity values of ipsilateral RTC4_55 are similar to those of contralateral 

RTC11_39. On the other hand, the complexity values of contralateral RTC4_55 are similar to those 

of ipsilateral RTC11_39. This could further indicate that RTC4_55 and RTC11_39 belong to the same 

epileptic network which encompasses the right precentral gyrus known as the epileptogenic focus. 

5.4.4. General Discussion 

In this thesis project a biomarker for epileptic tissue identification was developed. This was 

accomplished by implementing and testing a method able to localize an epileptogenic focus using a 

non-invasive technique: BOLD signals from fMRI. It detects and aggregates brain regions with similar 

transient activity and characterize them in terms of its complexity using a combination of three 

distinct algorithms: 2dTCA, MSE and DFA. To the best of my knowledge this was the first work 

combining such techniques applied to epileptogenic fMRI data. 
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The methodology was tested using data from three epileptic patients with three types of epilepsy: 

unilateral temporal lobe epilepsy, bilateral temporal lobe epilepsy, and focal cortical dysplasia 

epilepsy. This study was an example of the interpretation process that could be done using the 

developed methodology. 2dTCA was used to find brain regions with different temporal behavior 

(with characteristics of interest) and then MSE and DFA were able to classify the same brain regions 

in terms of its complexity sorting them as a likely epileptogenic or non-epileptogenic focus.  

Overall, the results showed that epileptogenic tissue has a temporal behavior different from non-

epileptogenic one. The results obtained for TLE patients showed that the epileptogenic focus have 

lower entropy of BOLD signals than the corresponding contralateral regions, thus supporting the 

main findings in (Protzner et al. 2010). The EEG study on TLE patients of Protzner and colleagues 

showed that epileptogenic tissue has a lower complexity (lower entropy) than non-epileptogenic 

tissue. They also showed that in some patients the interictal activity passed from the ipsi to the 

contralateral brain hemisphere, which could justify the functional connectivity results. 

The hypothesis of LRTC applied to epileptic BOLD signals could not be verified with the study 

conducted in this work due to the inconsistency of the results. The main findings of Parish et al 

(2004) and Monto et al. (2007) EEG studies, which says that LRTC are stronger in the epileptogenic 

focus, were only found in the patient with bilateral TLE. 

Furthermore, in this study it was even possible to associate brain regions likely either to belong to 

epileptic networks or to influence other brain networks related to the epileptic activity onset. This 

could explain the LRTC results. 

On the other hand, the complexity hypothesis was not verified for the FCDE patient. Although it was 

found a cluster covering the brain region with dysplasia, the complexity analysis showed that the 

entropy was higher for regions contralateral to the epileptogenic focus than for the epileptogenic 

focus itself. Indeed, the hypotheses on which this project is based are related to TLE and there is no 

signature assigned to FCDE concerning the MSE and DFA methods. Hereupon, a study with a sample 

of FCDE patients is suggested in order to classify the BOLD signals of brain regions with dysplasia in 

terms of entropy (MSE) and LRTC (DFA). 

The fact that the cluster that covers the brain region with dysplasia correlates with other brain 

regions, including the contralateral to that cluster, could, also, explain these results. The dynamics 

of that network may influence the complexity properties of the BOLD signals of all the regions 

involved. 
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An issue concerning the suitability of this method is related to shape and amplitude of HRF. Here it 

is assumed that this function have the same profile across subjects and brain areas. However, the 

opposite has been already proven (Handwerker et al. 2004) and this assumption may be a 

confounding effect mainly when dealing with pathologic signals, such as epileptogenic ones. Indeed, 

different types of epilepsy are usually characterized by different shapes of interictal spikes (Curtis 

et al. 2012) that would give origin to different shapes, frequencies, and amplitudes of the 

corresponding BOLD signal changes. Furthermore, some studies demonstrated that interictal events 

can induce either an enhance or decrease of the corresponding BOLD signal (Cunningham et al. 

2012; Pittau et al. 2013) or even would not produce any BOLD response (Leal et al. 2006). Therefore, 

a rigorous approach namely in the detection of transient spikes related to epileptic activity would 

take into account these different criteria. 

Another limitation regarding the methodology respects the analysis of clusters, found from 

statistical analysis, which covers brain regions in the midline of the brain. In these cases the 

comparison between complexity parameters of ipsi and contralateral clusters is not possible, 

leading to the exclusion of such regions from further analysis. 

Moreover it should be remembered that this method deals with the problem of the epileptogenic 

focus localization which have a different behavior depending on the lesion location, the dynamics 

of the ‘irritative zone’ (in the cases of TLE), and the type of the epilepsy. Therefore, it is expected 

that this type of analysis is not suitable for all epilepsy cases or otherwise it has to be optimized for 

each epilepsy type or patient. 

Regarding future work, there are many issues that could be improved in this methodology. The first 

one concerns the data pre-processing. Ideally, fMRI data should be corrected for physiologically 

effects (respiratory and cardiac noises). Then, the effects of pre-processing steps should be 

investigated: the influence of removing the nuisance covariables (such as head motion, white matter 

signal, global mean signal, and cerebrospinal fluid signal) and the influence to normalize the data to 

MNI space or remain in the subject-specific space. Concerning the detection of activity of interest 

in the BOLD signal, criteria comprising the issues discussed above should be included in order to 

improve the specificity and sensitivity of selections of voxels. A method that automatically merges 

the information in the statistical parametric maps, the correlations matrices of ispi and contralateral 

clusters, the anisotropy analysis, the complexity parameters distributions, and, finally, in the 

functional connectivity analysis would be defined in order to reduce the analysis time.  
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CLOSING REMARKS 

 

In this report it was introduced a new approach for the localization of the epileptogenic focus. The 

present methods to do this assessment are based on techniques that have low spatial resolution, 

such as sEEG, PET, and SPECT, or techniques with improved spatial resolution but extremely 

invasive, such as iEEG. An alternative, purposed in this work, is based on BOLD signals analysis, using 

fMRI, a noninvasive technique with high spatial resolution. 

This approach was based on the hypotheses that the epileptogenic focus shows a BOLD temporal 

profile distinct from the remaining brain parenchyma, either during ictal and interictal activity, and 

that the epileptogenic focus BOLD signals show lower complexity than healthy parenchyma. 

Therefore, 2dTCA, a data-driven technique was used to identify brain regions that have similar BOLD 

profiles. Then a complexity analysis, using MSE analysis and DFA, was taken to identify which of 

those brain regions correspond to an epileptogenic focus. This methodological combination aimed 

to provide a definition of a biomarker for epileptogenic tissue identification in order to assist on the 

diagnostic, monitoring and treatment of epilepsy. 

The developed method was tested a study of three patients with epilepsy (with three types of 

epilepsy: and unilateral and bilateral temporal lobe epilepsies, and focal cortical dysplasia epilepsy). 

In all of them the epileptogenic focus found by the method match the clinical information or at least 

belongs to a network that encompasses the lesion that onsets the epileptic activity. 

The preliminary results shown in this work open a new perspective on the possible approaches to 

fMRI data processing concerning epilepsy. Improving this method in order to extended its 

application to all possible cases of focal, or at least, multifocal epilepsies would be a big step for 

assisting the diagnostic, monitoring and treatment of epilepsy. 

Furthermore, despite this work focused on the epilepsy application, this methodology could also be 

used to study the BOLD signal dynamics of healthy subjects in order to investigate, for instance 

resting-state networks, and characterize them in terms of its complexity. 
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APPENDIX A 

 

The information summarized in this section can be found with more details in (Friston et al. 1995; 

Smith 2004). 

Statistical Analysis of fMRI data: General Linear Model 

In the GLM approach the data is treated as a linear combination of model functions (predictors or 

regressors) plus noise (error). These model functions are assumed to have known shapes, but 

unknown amplitudes which need to be estimated. In order to estimate that amplitude, i.e. the 

coefficients of the general linear model, a voxel-wise analysis is performed through Eq. 10. 
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] ⇔ 𝒀𝑵×𝟏 = 𝑿𝑵×𝒑𝜷
𝒑×𝟏

+ 𝝐𝑵×𝟏 Eq. 10 

Where Y represents the voxel’s time series with a length of N time points; X is the matrix design in 

which there are p model functions or regressors with N time points in length and that reflect the 

stimuli profiles for statistical testing; the  matrix represent each regressor’s amplitude present in 

that voxel; finally,  represents the error in the model fitting. 

Inference on fMRI data: Statistical Parametric Maps 

From the analysis described above an estimation for each  parameter, 𝛽̂, is obtained and in order 

to make inference about the significance of the results this 𝛽̂ is converted into a useful statistic , 

namely a t-value through Eq. 11, where  stands for standard deviation. 

𝒕 =
𝜷̂

𝝈(𝜷̂)
 Eq. 11 

With this statistic it’s possible to measure how significantly different is the estimated parameter 

from zero. Therefore, a binary contrast vector c can be used to infer which brain regions best fit a 

particular model function or regressor. For example, in a case with 3 regressors, to make inference 

about the first one the contrast vector must be c=[1 0 0], for the second one c=[0 1 0], and for the 

third one c=[0 0 1]. Thus, Eq. 11 can be written as Eq. 12. 

𝒕 =
𝒄𝑻𝜷̂

𝝈(𝒄𝑻𝜷̂)
 Eq. 12 
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This t-value information can then be transformed into p-values using a table of t statistic and two 

additional parameters: the degrees of freedom of the map and the p-value of thresholding. 

Hence, as a final result a statistical parametric map (SPM) of all brain volume voxels is constructed 

with t-values information. 

Presentation of Statistical Parametric Maps: Thresholding 

Thresholding the SPMs is the final step before the results presentation and this can be performed 

through several ways. The basic one simply defines a fixed value for the threshold, for example a p-

value of 0.01 or a significant level of 1%. However, with this approach a problem of multiple 

comparisons are implicit, i.e., for the example above, considering a 1% of significance there are a 

chance that in 100 000 voxels, 1000 will activate even if not associated with the stimulus. This 

phenomena is named Type I error (false positive).  

To overcome this shortcoming the p-value can be corrected by the Family-Wise Error Rate (FWER), 

which is the probability of making one or more Type I errors. The most used method in the FWER is 

the Bonferroni correction. This method defines the p-value threshold as a division between the 

significant level required and the total number of comparisons made for that given statistical test. 

In this way, the level of significance considered for the thresholding is considerably more restricted.  

Additionally, k-extended threshold can be used in order to limit the minimum extend of a given 

cluster. This means that a brain region is considered to be activated if the extend of that activations 

covers k or more voxels. This prevents a unique and isolated voxel to be considered activated. 
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APPENDIX B 

 

The healthy subject scan used to create the simulated dataset on Chapter 2: 2.2.1 Simulated 

Dataset Characterization is part of a real data study of 2013, acquired at the University of Graz, 

Austria, which is a result from an experimental paradigm designed to study rest and movement 

associated brain connectivity. For the purpose of this study only the rest fMRI acquisitions were 

used. Images were acquired with a 3T Siemens Magneton Skyra syngo MR D13 Scanner. A T2*-

weighted single-shot spin echo sequence with echo planar images readout (SS-SE-EPI) was used to 

acquire BOLD-EPI images over a 5 min run with the following parameters: TR=1.83 s, TE=30 ms, 

matrix=68 x 68, FOV=240, voxel size = 3.5 x 3.5 x 3.5 mm3, and 32 interleaved slices. 

Pre-processing of the healthy subject scan was performed using DPARSF toolbox (Chao-Gan & Yu-

Feng 2010). It consisted of removing the first 10 time points for signal stabilization (steady-state), 

slice timing to correct for interleaved acquisition, realignment for correction of motion effects, 

normalization to the MNI space using the EPI template provided by DPARSF, and spatial smoothing 

using a Guassian 4 mm FWHM kernel. Data was, then, detrended and filtered with a bandpass filter 

at 0.01~0.08 Hz in order to remove frequencies not expected in BOLD response. 
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APPENDIX C 

Complementary results from patients presented in Chapter 5: Epileptic Patients Study. 

Pictures for normalization pre-processing step and movement correction plot checking 
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Patient 1 – Unilateral TLE: left TLE 

RTCs temporal profile obtained with the 2dTCA. 
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Spatial location of each RTC’s clusters and corresponding temporal profiles 
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   25 Right Cerebrum 
   21 Limbic Lobe 
   19 Parahippocampa Gyrus 
   16 ParaHippocampal_R (aal) 
   12 Gray Matter 
    8 White Matter 
    8 Lingual_R (aal) 
    5 brodmann area 35 
    4 Sub-lobar 
    4 Thalamus 
    4 Thalamus_R (aal) 
    3 Pulvinar 
    3 Right Brainstem 
    3 Midbrain 
    2 brodmann area 30 
    1 Fusiform_R (aal) 
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RTC7_38 
# voxels structure 
 
   38 --TOTAL # VOXELS-- 
   32 Occipital Lobe 
   31 Calcarine_L (aal) 
   24 Cuneus 
   18 Right Cerebrum 
   17 Gray Matter 
   13 brodmann area 18 
   13 Left Cerebrum 
    9 White Matter 
    7 Lingual Gyrus 
    7 Inter-Hemispheric 
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    4 brodmann area 17 
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Patient 2 – Bilateral TLE: with right temporo-parietal predominance 

RTCs temporal profile obtained with the 2dTCA. 
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Spatial location of each RTC’s clusters and corresponding temporal profiles 
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RTC2_58 
# voxels structure 
 
   58 --TOTAL # VOXELS-- 
   58 Right Cerebrum 
   37 Supramarginal Gyrus 
   35 Temporal Lobe 
   31 Gray Matter 
   28 brodmann area 40 
   25 White Matter 
   24 Temporal_Sup_R (aal) 
   23 Parietal Lobe 
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# voxels structure 
 
   50 --TOTAL # VOXELS-- 
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   50 Right Cerebrum 
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RTC3_93 
# voxels structure 
 
   93 --TOTAL # VOXELS-- 
   92 Left Cerebrum 
   69 Occipital_Mid_L (aal) 
   58 Occipital Lobe 
   51 White Matter 
   46 Middle Temporal Gyrus 
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   32 Middle Occipital Gyrus 
   17 brodmann area 19 
   16 brodmann area 39 
   14 Superior Occipital Gyrus 
   14 Temporal_Mid_L (aal) 

S
P

M
m

ip

[-
4
5
.0

2
4
9
, 

-8
1
.0

2
9
, 

6
.2

9
3
5
3
]

<

< <

0

0.2

0.4

0.6

0.8

1

0 50 100 150
895

900

905

910

Time points

a
.u

.

Mean time series of RTC3__93

0 50 100 150
-5

0

5

10

RTC3_100 
# voxels structure 
 
  100 --TOTAL # VOXELS-- 
   79 Right Cerebrum 
   65 Temporal_Inf_R (aal) 
   49 Temporal Lobe 
   46 Gray Matter 
   30 Fusiform Gyrus 
   30 brodmann area 37 
   30 Occipital Lobe 
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RTC5_28 
# voxels structure 
 
   28 --TOTAL # VOXELS-- 
   28 Left Cerebrum 
   28 Temporal Lobe 
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   17 White Matter 
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# voxels structure 
 
   28 --TOTAL # VOXELS-- 
   26 Frontal Lobe 
   26 Left Cerebrum 
   25 Superior Frontal Gyrus 
   20 Gray Matter 
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RTC5_35 
# voxels structure 
 
   35 --TOTAL # VOXELS-- 
   35 Frontal Lobe 
   35 Left Cerebrum 
   25 Gray Matter 
   22 Middle Frontal Gyrus 
   21 Precentral_L (aal) 
   19 brodmann area 9 
   13 Inferior Frontal Gyrus 
   10 White Matter 
    6 Frontal_Inf_Oper_L (aal) 
    6 brodmann area 8 
    5 Frontal_Mid_L (aal) 
    3 Frontal_Inf_Tri_L (aal) 
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# voxels structure 
 
   44 --TOTAL # VOXELS-- 
   44 Left Cerebrum 
   44 Temporal Lobe 
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   38 White Matter 
    6 Gray Matter 
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RTC5_76 
# voxels structure 
 
   76 --TOTAL # VOXELS-- 
   71 Left Cerebrum 
   71 Frontal Lobe 
   56 Superior Frontal Gyrus 
   51 White Matter 
   47 Frontal_Sup_L (aal) 
   28 Frontal_Sup_Medial_L (aal) 
   19 Gray Matter 
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  113 --TOTAL # VOXELS-- 
  113 Frontal Lobe 
  113 Left Cerebrum 
  110 Inferior Frontal Gyrus 
   85 White Matter 
   59 Frontal_Inf_Orb_L (aal) 
   54 Frontal_Inf_Tri_L (aal) 
   28 Gray Matter 
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RTC5_125 
# voxels structure 
 
  125 --TOTAL # VOXELS-- 
  125 Left Cerebrum 
   96 Parietal Lobe 
   83 Supramarginal Gyrus 
   78 White Matter 
   76 SupraMarginal_L (aal) 
   44 Gray Matter 
   43 brodmann area 40 
   34 Inferior Parietal Lobule 
   29 Temporal Lobe 
   18 Temporal_Sup_L (aal) 
   16 Angular_L (aal) 
    8 Superior Temporal Gyrus 
    8 Temporal_Mid_L (aal) 
    5 Parietal_Inf_L (aal) 
    1 brodmann area 39 

S
P

M
m

ip

[-
5
1
, 

-5
1
.3

1
5
4
, 

3
0
.6

0
7
]

<

< <

0

0.2

0.4

0.6

0.8

1

0 50 100 150
870

880

890

900

Time points

a
.u

.

Mean time series of RTC5__125

0 50 100 150
-5

0

5

10

RTC5_140 
# voxels structure 
 
  140 --TOTAL # VOXELS-- 
  119 Left Cerebrum 
   84 Precuneus_L (aal) 
   75 Precuneus 
   63 Parietal Lobe 
   50 Gray Matter 
   48 White Matter 
   47 Limbic Lobe 
   31 Posterior Cingulate 
   30 Cuneus_L (aal) 
   29 brodmann area 31 
   18 Occipital Lobe 
   17 brodmann area 7 
   17 Cingulum_Post_L (aal) 
   15 Cingulate Gyrus 
   12 Inter-Hemispheric 
    9 Precuneus_R (aal) 
    9 Right Cerebrum 
    6 Cuneus 
    3 brodmann area 23 
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RTC10_33 
# voxels structure 
 
   33 --TOTAL # VOXELS-- 
   33 Frontal Lobe 
   33 Right Cerebrum 
   31 White Matter 
   24 Frontal_Inf_Oper_R (aal) 
   17 Sub-Gyral 
   13 Inferior Frontal Gyrus 
    5 Frontal_Inf_Tri_R (aal) 
    4 Precentral_R (aal) 
    3 Middle Frontal Gyrus 
    2 brodmann area 9 
    2 Gray Matter 
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RTC10_92 
# voxels structure 
 
   92 --TOTAL # VOXELS-- 
   89 Parietal Lobe 
   89 Right Cerebrum 
   57 Inferior Parietal Lobule 
   51 Gray Matter 
   45 brodmann area 40 
   42 Parietal_Inf_R (aal) 
   40 SupraMarginal_R (aal) 
   30 Postcentral Gyrus 
   27 White Matter 
    6 brodmann area 2 
    5 Parietal_Sup_R (aal) 
    3 Postcentral_R (aal) 
    2 Supramarginal Gyrus 
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RTC14_27 
# voxels structure 
 
   27 --TOTAL # VOXELS-- 
   25 Right Cerebrum 
   25 Temporal Lobe 
   19 Superior Temporal Gyrus 
   17 Temporal_Pole_Mid_R (aal) 
   15 Gray Matter 
   12 brodmann area 38 
    8 Temporal_Pole_Sup_R (aal) 
    6 Middle Temporal Gyrus 
    6 White Matter 
    3 brodmann area 21 
    2 Temporal_Inf_R (aal) 
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RTC14_48 
# voxels structure 
 
   48 --TOTAL # VOXELS-- 
   45 Temporal_Mid_R (aal) 
   31 Right Cerebrum 
   31 Temporal Lobe 
   26 Middle Temporal Gyrus 
   20 Gray Matter 
   19 brodmann area 21 
    5 Inferior Temporal Gyrus 
    5 White Matter 
    3 Temporal_Sup_R (aal) 
    1 brodmann area 20 
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RTC14_115 
# voxels structure 
 
  115 --TOTAL # VOXELS-- 
  108 Right Cerebrum 
  108 Temporal Lobe 
   75 Middle Temporal Gyrus 
   59 Temporal_Mid_R (aal) 
   58 Gray Matter 
   42 brodmann area 21 
   41 Temporal_Pole_Mid_R (aal) 
   30 White Matter 
   21 Superior Temporal Gyrus 
   14 brodmann area 38 
   14 Temporal_Pole_Sup_R (aal) 
   11 Inferior Temporal Gyrus 
    2 brodmann area 20 
    1 Fusiform Gyrus 
    1 Temporal_Inf_R (aal) 
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Patient 3 – FCDE: right precentral gyrus 

RTCs temporal profile obtained with the 2dTCA.  
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Spatial location of each RTC’s clusters and corresponding temporal profiles 
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RTC1_34 
# voxels structure 
 
   34 --TOTAL # VOXELS-- 
   27 Cerebelum_9_L (aal) 
   13 Left Cerebellum 
   13 Cerebellum Posterior Lobe 
   11 Cerebellar Tonsil 
    7 Cerebelum_8_L (aal) 
    2 Inferior Semi-Lunar Lobule 

RTC1_28 
# voxels structure 
 
   28 --TOTAL # VOXELS-- 
   28 Left Cerebrum 
   23 Calcarine_L (aal) 
   19 White Matter 
   18 Limbic Lobe 
   18 Posterior Cingulate 
    8 Occipital Lobe 
    7 brodmann area 30 
    7 Gray Matter 
    4 Cuneus 
    3 Lingual Gyrus 
    2 Sub-lobar 
    1 Lateral Ventricle 
    1 Middle Occipital Gyrus 
    1 Extra-Nuclear 
    1 Cerebro-Spinal Fluid 
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RTC1_42 
# voxels structure 
 
   42 --TOTAL # VOXELS-- 
   42 Left Cerebrum 
   42 Temporal Lobe 
   28 White Matter 
   26 Temporal_Inf_L (aal) 
   18 Fusiform Gyrus 
   17 Sub-Gyral 
   14 Temporal_Mid_L (aal) 
   12 Gray Matter 
   10 brodmann area 20 
    5 Middle Temporal Gyrus 
    2 brodmann area 21 
    2 Inferior Temporal Gyrus 
    1 Fusiform_L (aal) 
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RTC1_80 
# voxels structure 
 
   80 --TOTAL # VOXELS-- 
   80 Right Cerebrum 
   60 White Matter 
   48 Temporal Lobe 
   32 Limbic Lobe 
   28 Temporal_Pole_Mid_R (aal) 
   22 Uncus 
   19 Gray Matter 
   18 ParaHippocampal_R (aal) 
   18 Temporal_Inf_R (aal) 
   18 Middle Temporal Gyrus 
   16 Sub-Gyral 
   12 Fusiform_R (aal) 
    9 Parahippocampa Gyrus 
    8 brodmann area 21 
    7 Superior Temporal Gyrus 
    7 Inferior Temporal Gyrus 
    4 brodmann area 20 
    3 brodmann area 38 
    2 brodmann area 28 
    2 brodmann area 35 
    1 Fusiform Gyrus 
    1 Temporal_Pole_Sup_R (aal) 
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RTC1_81 
# voxels structure 
 
   81 --TOTAL # VOXELS-- 
   46 Lingual_L (aal) 
   40 Left Cerebrum 
   36 Cerebellum Anterior Lobe 
   36 Culmen 
   36 Left Cerebellum 
   25 Limbic Lobe 
   23 Cerebelum_4_5_L (aal) 
   22 Parahippocampa Gyrus 
   19 Gray Matter 
   15 White Matter 
   15 Occipital Lobe 
   13 Lingual Gyrus 
   11 brodmann area 19 
    8 Fusiform_L (aal) 
    7 brodmann area 30 
    5 Sub-Gyral 
    3 Cerebelum_3_L (aal) 
    2 Midbrain 
    2 Left Brainstem 
    1 brodmann area 37 
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RTC1_132 
# voxels structure 
  132 --TOTAL # VOXELS-- 
   94 Right Cerebrum 
   62 Limbic Lobe 
   61 Fusiform_R (aal) 
   57 Parahippocampa Gyrus 
   43 White Matter 
   39 Gray Matter 
   30 ParaHippocampal_R (aal) 
   29 Culmen 
   29 Cerebellum Anterior Lobe 
   29 Right Cerebellum 
   28 Fusiform Gyrus 
   27 Temporal Lobe 
   21 Lingual_R (aal) 
   16 brodmann area 36 
   13 Cerebelum_4_5_R (aal) 
   12 brodmann area 37 
    7 brodmann area 30 
    6 Sub-Gyral 
    5 Occipital Lobe 
    3 Cerebelum_3_R (aal) 
    2 brodmann area 20 
    1 Right Brainstem 
    1 brodmann area 35 
    1 Temporal_Inf_R (aal) 
    1 Hippocampus_R (aal) 
    1 brodmann area 19 
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RTC3_136 
# voxels structure 
 
  136 --TOTAL # VOXELS-- 
  124 Frontal Lobe 
  116 Right Cerebrum 
  110 Medial Frontal Gyrus 
  104 Supp_Motor_Area_R (aal) 
   76 brodmann area 6 
   76 Gray Matter 
   44 White Matter 
   12 Paracentral_Lobule_L (aal) 
   12 Inter-Hemispheric 
   10 Paracentral Lobule 
    9 Paracentral_Lobule_R (aal) 
    8 Left Cerebrum 
    4 Cingulum_Mid_R (aal) 
    4 Sub-Gyral 
    2 Supp_Motor_Area_L (aal) 
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RTC3_64 
# voxels structure 
 
   64 --TOTAL # VOXELS-- 
   64 Left Cerebrum 
   36 White Matter 
   35 Parietal Lobe 
   32 Postcentral Gyrus 
   32 Postcentral_L (aal) 
   25 Gray Matter 
   16 Sub-lobar 
   15 Insula 
   12 Rolandic_Oper_L (aal) 
    9 Temporal Lobe 
    8 brodmann area 43 
    8 Temporal_Sup_L (aal) 
    7 Insula_L (aal) 
    6 Transverse Temporal Gyrus 
    6 brodmann area 42 
    5 brodmann area 13 
    4 Frontal Lobe 
    4 Precentral Gyrus 
    3 Superior Temporal Gyrus 
    3 Sub-Gyral 
    3 brodmann area 4 
    2 SupraMarginal_L (aal) 
    1 brodmann area 40 
    1 Extra-Nuclear 
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RTC3_170 
# voxels structure 
 
  170 --TOTAL # VOXELS-- 
  166 Right Cerebrum 
  119 Frontal Lobe 
  118 Precentral Gyrus 
   95 Precentral_R (aal) 
   76 Gray Matter 
   70 White Matter 
   66 Postcentral_R (aal) 
   47 Parietal Lobe 
   42 Postcentral Gyrus 
   27 brodmann area 4 
   25 brodmann area 3 
   17 brodmann area 6 
    7 Paracentral_Lobule_R (aal) 
    5 brodmann area 2 
    4 Superior Frontal Gyrus 
    1 brodmann area 40 
    1 brodmann area 5 
    1 Inferior Parietal Lobule 
    1 Paracentral Lobule 
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RTC3_275 
# voxels structure 
 
  275 --TOTAL # VOXELS-- 
  265 Right Cerebrum 
  145 White Matter 
  129 Frontal Lobe 
  118 Precentral Gyrus 
  107 Postcentral_R (aal) 
  103 Gray Matter 
   71 Parietal Lobe 
   70 Rolandic_Oper_R (aal) 
   66 Postcentral Gyrus 
   36 Precentral_R (aal) 
   34 brodmann area 6 
   33 Sub-lobar 
   32 Temporal Lobe 
   29 Insula 
   22 Temporal_Sup_R (aal) 
   19 Transverse Temporal Gyrus 
   19 brodmann area 4 
   13 Frontal_Mid_R (aal) 
   13 Superior Temporal Gyrus 
   13 brodmann area 3 
   11 brodmann area 41 
    9 Sub-Gyral 
    9 brodmann area 42 
    8 SupraMarginal_R (aal) 
    8 brodmann area 13 
    6 brodmann area 43 
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RTC3_354 
# voxels structure 
 
  354 --TOTAL # VOXELS-- 
  325 Left Cerebrum 
  236 Postcentral_L (aal) 
  167 Parietal Lobe 
  167 Postcentral Gyrus 
  162 Gray Matter 
  158 Frontal Lobe 
  153 Precentral Gyrus 
  122 White Matter 
   80 Precentral_L (aal) 
   66 brodmann area 3 
   54 brodmann area 4 
   30 Paracentral_Lobule_L (aal) 
   15 brodmann area 2 
   15 brodmann area 1 
   12 brodmann area 6 
    4 Sub-Gyral 
    4 Parietal_Inf_L (aal) 
    1 Superior Frontal Gyrus 
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RTC4_55 
# voxels structure 
 
   55 --TOTAL # VOXELS-- 
   55 Frontal Lobe 
   55 Right Cerebrum 
   40 Precentral_R (aal) 
   32 Gray Matter 
   29 Middle Frontal Gyrus 
   23 Inferior Frontal Gyrus 
   15 brodmann area 9 
   15 White Matter 
   14 Frontal_Mid_R (aal) 
   13 brodmann area 8 
    4 brodmann area 6 
    3 Precentral Gyrus 
    1 Frontal_Inf_Oper_R (aal) 
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RTC4_87 
# voxels structure 
 
   87 --TOTAL # VOXELS-- 
   70 Parietal Lobe 
   70 Left Cerebrum 
   38 White Matter 
   37 Parietal_Sup_L (aal) 
   32 Superior Parietal Lobule 
   31 Gray Matter 
   25 brodmann area 7 
   25 Parietal_Inf_L (aal) 
   23 Inferior Parietal Lobule 
   18 Angular_L (aal) 
   15 Precuneus 
    6 brodmann area 40 
    3 Occipital_Sup_L (aal) 
    2 Occipital_Mid_L (aal) 
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RTC4_123 
# voxels structure 
 
  123 --TOTAL # VOXELS-- 
   98 Angular_R (aal) 
   95 Right Cerebrum 
   95 Parietal Lobe 
   57 Inferior Parietal Lobule 
   48 White Matter 
   46 Gray Matter 
   21 brodmann area 7 
   18 Superior Parietal Lobule 
   13 brodmann area 40 
   12 Parietal_Sup_R (aal) 
   10 Occipital_Sup_R (aal) 
    9 Angular Gyrus 
    9 Precuneus 
    7 brodmann area 19 
    5 brodmann area 39 
    2 Sub-Gyral 
    2 Parietal_Inf_R (aal) 
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RTC11_39 
# voxels structure 
 
   39 --TOTAL # VOXELS-- 
   29 Parietal Lobe 
   29 Left Cerebrum 
   22 Gray Matter 
   21 Angular_L (aal) 
   12 Precuneus 
   11 Inferior Parietal Lobule 
   10 Parietal_Inf_L (aal) 
    9 brodmann area 39 
    8 brodmann area 19 
    5 brodmann area 7 
    5 White Matter 
    4 Superior Parietal Lobule 
    2 Occipital_Mid_L (aal) 
    2 Angular Gyrus 
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RTC11_166 
# voxels structure 
 
  166 --TOTAL # VOXELS-- 
  159 Left Cerebrum 
  159 Frontal Lobe 
  130 Middle Frontal Gyrus 
   89 White Matter 
   81 Frontal_Mid_L (aal) 
   64 Frontal_Mid_Orb_L (aal) 
   59 Gray Matter 
   46 brodmann area 10 
   17 Superior Frontal Gyrus 
    9 Inferior Frontal Gyrus 
    7 brodmann area 11 
    3 Sub-Gyral 
    3 Frontal_Sup_L (aal) 
    2 brodmann area 47 
    1 Frontal_Sup_Orb_L (aal) 
    1 brodmann area 46 
    1 Frontal_Inf_Tri_L (aal) 
    1 Frontal_Inf_Orb_L (aal) 
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Information of 90 AAL Regions used in cluster report with xjView 

Labels Regions Regions 

1 Precentral_L Precental gyrus 

2 Precentral_R Precental gyrus 

3 Frontal_Sup_L Superior frontal gyrus, dorsolateral 

4 Frontal_Sup_R Superior frontal gyrus, dorsolateral 

5 Frontal_Sup_Orb_L Superior frontal gyrus, orbital part 

6 Frontal_Sup_Orb_R Superior frontal gyrus, orbital part 

7 Frontal_Mid_L Middle frontal gyrus 

8 Frontal_Mid_R Middle frontal gyrus 

9 Frontal_Mid_Orb_L Middle frontal gyrus, orbital part 

10 Frontal_Mid_Orb_R Middle frontal gyrus, orbital part 

11 Frontal_Inf_Oper_L Inferior frontal gyrus, opercular part 

12 Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part 

13 Frontal_Inf_Tri_L Inferior frontal gyrus, triangular part 

14 Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part 

15 Frontal_Inf_Orb_L Inferior frontal gyrus, orbital part 

16 Frontal_Inf_Orb_R Inferior frontal gyrus, orbital part 

17 Rolandic_Oper_L Rolandic operculum 

18 Rolandic_Oper_R Rolandic operculum 

19 Supp_Motor_Area_L Supplementary motor area 

20 Supp_Motor_Area_R Supplementary motor area 

21 Olfactory_L Olfactory cortex 

22 Olfactory_R Olfactory cortex 

23 Frontal_Sup_Medial_L Superior frontal gyrus, medial 

24 Frontal_Sup_Medial_R Superior frontal gyrus, medial 

25 Frontal_Mid_Orb_L Superior frontal gyrus, medial orbital 

26 Frontal_Mid_Orb_R Superior frontal gyrus, medial orbital 

27 Rectus_L Gyrus rectus 

28 Rectus_R Gyrus rectus 

29 Insula_L Insula 

30 Insula_R Insula 

31 Cingulum_Ant_L Anterior cingulate and paracingulate gyri 

32 Cingulum_Ant_R Anterior cingulate and paracingulate gyri 

33 Cingulum_Mid_L Median cingulate and paracingulate gyri 

34 Cingulum_Mid_R Median cingulate and paracingulate gyri 

35 Cingulum_Post_L Posterior cingulate gyrus 

36 Cingulum_Post_R Posterior cingulate gyrus 

37 Hippocampus_L Hippocampus 

38 Hippocampus_R Hippocampus 

39 ParaHippocampal_L Parahippocampal gyrus 

40 ParaHippocampal_R Parahippocampal gyrus 

41 Amygdala_L Amygdala 

42 Amygdala_R Amygdala 

43 Calcarine_L Calcarine fissure and surrounding cortex 

44 Calcarine_R Calcarine fissure and surrounding cortex 

45 Cuneus_L Cuneus 
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46 Cuneus_R Cuneus 

47 Lingual_L Lingual gyrus 

48 Lingual_R Lingual gyrus 

49 Occipital_Sup_L Superior occipital gyrus 

50 Occipital_Sup_R Superior occipital gyrus 

51 Occipital_Mid_L Middle occipital gyrus 

52 Occipital_Mid_R Middle occipital gyrus 

53 Occipital_Inf_L Inferior occipital gyrus 

54 Occipital_Inf_R Inferior occipital gyrus 

55 Fusiform_L Fusiform gyrus 

56 Fusiform_R Fusiform gyrus 

57 Postcentral_L Postcentral gyrus 

58 Postcentral_R Postcentral gyrus 

59 Parietal_Sup_L Superior parietal gyrus 

60 Parietal_Sup_R Superior parietal gyrus 

61 Parietal_Inf_L Inferior parietal, but supramarginal and angular gyri 

62 Parietal_Inf_R Inferior parietal, but supramarginal and angular gyri 

63 SupraMarginal_L Supramarginal gyrus 

64 SupraMarginal_R Supramarginal gyrus 

65 Angular_L Angular gyrus 

66 Angular_R Angular gyrus 

67 Precuneus_L Precuneus 

68 Precuneus_R Precuneus 

69 Paracentral_Lobule_L Paracentral lobule 

70 Paracentral_Lobule_R Paracentral lobule 

71 Caudate_L Caudate nucleus 

72 Caudate_R Caudate nucleus 

73 Putamen_L Lenticular nucleus, putamen 

74 Putamen_R Lenticular nucleus, putamen 

75 Pallidum_L Lenticular nucleus, pallidum 

76 Pallidum_R Lenticular nucleus, pallidum 

77 Thalamus_L Thalamus 

78 Thalamus_R Thalamus 

79 Heschl_L Heschl gyrus 

80 Heschl_R Heschl gyrus 

81 Temporal_Sup_L Superior temporal gyrus 

82 Temporal_Sup_R Superior temporal gyrus 

83 Temporal_Pole_Sup_L Temporal pole: superior temporal gyrus 

84 Temporal_Pole_Sup_R Temporal pole: superior temporal gyrus 

85 Temporal_Mid_L Middle temporal gyrus 

86 Temporal_Mid_R Middle temporal gyrus 

87 Temporal_Pole_Mid_L Temporal pole: middle temporal gyrus 

88 Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus 

89 Temporal_Inf_L Inferior temporal gyrus 

90 Temporal_Inf_R Inferior temporal gyrus 

 


