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33 ABSTRACT

34

35 Detailed studies on fossil remains of plants or animals in glacial lake sediments are rare. As a result, 

36 environmental conditions right at the moment of deglaciation of the large N-Hemisphere ice-sheets 

37 remain largely unknown. Here we study three deglacial phases of the Fennoscandian Ice Sheet as a 

38 unique, repeated element in a long sediment record preserved at Sokli in northern Finland. We 

39 summarize extensive multi-proxy data (diatoms, phytoliths, chironomids, pollen, spores, non-pollen 

40 palynomorphs, macrofossils, lithology, loss-on-ignition, C/N) obtained on glacial lake sediments dated 

41 to the early Holocene (ca. 10 kyr BP), early MIS 3 (ca. 50 kyr BP) and early MIS 5a (ca. 80 kyr BP). In 

42 contrast to the common view of an unproductive ice-marginal environment, our study reconstructs rich 

43 ecosystems both in the glacial lake and along the shores with forest on recently deglaciated land. Higher 

44 than present-day summer temperatures are reconstructed based on a large variety of aquatic taxa. Rich 

45 biota developed due to the insolation-induced postglacial warming and high nutrient levels, the latter 

46 resulting from erosion of fresh bedrock and sediment, leaching of surface soils, decay of plant material 

47 under shallow water conditions, and sudden decreases in lake volume. Aquatic communities responded 

48 quickly to deglaciation and warm summers and reflect boreal conditions, in contrast to the terrestrial 

49 ecosystem which responded with some delay probably due to time required for slow soil formation 

50 processes. Birch forest is reconstructed upon deglaciation of the large LGM ice-sheet and shrub tundra 

51 following the probably faster melting smaller MIS 4 and MIS 5b ice-sheets. Our study shows that glacial 

52 lake sediments can provide valuable palaeo-environmental data, that aquatic biota and terrestrial 

53 vegetation rapidly accommodated to new environmental conditions during deglaciation, and that glacial 

54 lake ecosystems, and the carbon stored in their sediments, should be included in earth system modeling. 

55

56 Keywords: glacial lake sediment, ice-marginal environment, climate, ecosystem response, carbon 

57 storage, Fennoscandian Ice Sheet
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60 1 Introduction

61

62 Glacial lake sediments are a persistent element in the geological record (Carrivick and Tweed, 2013; 

63 Lunkka et al., 2015) and former extents of glacial lakes have been mapped in different regions globally 

64 (Lundqvist, 1972; Björck, 1995; Dyke, 2004; Glasser et al., 2016). Particularly the drainage of large 

65 glacial lakes has received significant attention as it has the potential of influencing ocean circulation and 

66 climate on a global scale (Broecker and Denton, 1990; Barber et al., 1999). 

67 Extensive ice-marginal retreat in the Fennoscandian and Laurentide Ice Sheets occurred at the last 

68 peak of high-latitude summer insolation around ca. 10 kyr cal BP (Dyke, 2004; Stroeven et al., 2016). 

69 The postglacial warming allowed for the production of large amounts of meltwater and, with the land-

70 surface inclined towards the retreating ice-fronts due to isostatic depression, glacial lakes were formed 

71 extensively (Fig. 1). Although the sediments deposited in these lakes and fossil remains stored in them 

72 form a potential natural archive for palaeo-environmental and -climatic studies, the biotic content of 

73 glacial lake sediments has been rarely analyzed in detail. The lack of fossil analysis on glacial lake 

74 sediments is probably due to the generally low fossil content and often broken/corroded nature of fossil 

75 remains (e.g. Lunkka et al., 2015), making the analysis particularly time-consuming. Also, fossil remains 

76 are often considered as redeposited from older deposits as the ice-marginal environment is classically 

77 interpreted as harsh and unproductive (e.g. Stroeven et al., 2016). The difficulty of recovering the 

78 minerogenic glacial lake sediment at the base of Holocene peat or gyttja sequences with the help of 

79 conventional hand-coring adds yet another reason for the lack of studies on these sediments. 

80 The north-eastern margin of the Fennoscandian Ice Sheet receded from the Sokli basin in northern 

81 Finland (Fig. 1) several times during Marine Isotope Stages (MIS) 5 to 1. Glacial lake deposits dated to 

82 early MIS 5e, 5a, and 3 and the early Holocene are found here in stratigraphic sequence with glacial till 

83 beds and non-glacial lacustrine and fluvial deposits. During each deglaciation episode there was a 

84 progression of lake stages associated with deglaciation (stage 1), maximum extent of the glacial lake 

85 (stage 2), and glacial lake drainage (stage 3). The Sokli sequence uniquely preserves lake sediments 

86 from four deglaciation episodes due to a non-typical bedrock setting combined with frozen-bed 

87 conditions at the base of the Fennoscandian Ice Sheet (Helmens et al., 2007a, and references therein). 
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88 The Sokli sedimentary sequence provides an exceptional opportunity to study the ice-marginal 

89 environment during the retreat of a continental ice-sheet as a repeating element in the Late Quaternary 

90 geological record at a single site. We here integrate multi-proxy data (diatoms, phytoliths, chironomids, 

91 pollen, spores, NPP’s (non-pollen palynomorphs), macrofossils, lithology, LOI (loss-on-ignition), C/N) 

92 that are available for the glacial lake sediments in the Sokli basin dated to the early Holocene (Shala et 

93 al., 2014a, 2014b, 2017) and early MIS 3 (Engels et al., 2008; Bos et al., 2009; Helmens et al., 2009), 

94 and further compare this extensive data-set with newly obtained data for multiple proxies from the 

95 glacial lake sediments of early MIS 5a age. The overall coarse-grained glacial lake sediment found at 

96 the base of the MIS 5e gyttja deposit contains very few fossil remains (Plikk et al., 2016) and is not 

97 included in this study. The aim of our study is to reconstruct in detail biota in the glacial lake, along its 

98 shores and on the surrounding land, as well as successive developments in these ecosystems upon 

99 deglaciation and glacial lake evolution, for a series of Late Quaternary deglaciation episodes at the same 

100 site. Furthermore, the multi-proxy data are used to make climate inferences. Our study provides valuable 

101 paleo-environmental data and new understanding on the aquatic and terrestrial productivity of the ice-

102 marginal environment during N-Hemisphere deglaciation.

103

104 2 Environmental and stratigraphic setting 

105

106 2.1 The study site

107

108 The Sokli site is situated in the northern boreal forest of north-eastern Finland (lat. 67°48' N, long. 29°18' 

109 E, elevation ca. 220 m a.s.l.) and on the main water divide that separates drainage into the Barents and 

110 White Seas to the east and the Baltic Sea to the southwest (Fig. 1). Bedrock in the region is Precambrian 

111 Shield with the exception of the immediate surroundings of the study site which is underlain by a 

112 Paleozoic magma-intrusion known as Sokli Carbonatite Massif (Fig. 2B). The Sokli wetland (Sokliaapa) 

113 is drained by the Sokli rivulet (Soklioja), the latter flowing south-westwards into the Yli-Nuortti river. 

114 Within the Sokli basin, Lake Loitsana occupies a depression associated with a NW-SE trending esker 

115 chain.
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116 Present climate at Sokli is cold boreal with mean July and February temperatures at 13°C and -

117 14°C, respectively; mean annual precipitation amounts to 500-550 mm (Drebs et al., 2002). Lakes in 

118 the area are ice-covered between October and end of May. Birch (Betula pubescens and B. pendula), 

119 pine (Pinus sylvestris) and spruce (Picea abies) are the dominant tree species. Mires of the aapa-type 

120 (i.e. a patterned fen) with Sphagnum spp., Rubus chamaemorus, Ericales, Betula nana (dwarf birch), 

121 Salix spp. and Carex spp. are extensively present in the region. Spruce reaches its northern limit some 

122 100 km north of Sokli. Farther north, pine forest predominates, succeeded northwards and upwards by 

123 birch-pine forest and then sub-arctic birch forest. The forest limit, which is situated some 300 km north 

124 of Sokli, is formed by the polycormic mountain birch B. pubescens subsp. czerepanovii, syn. tortuosa. 

125 The vegetation of the tundra region beyond the forest limit is low-arctic dwarf-shrub tundra dominated 

126 by B. nana and Ericales. 

127

128 2.2 Late Quaternary stratigraphy in the Sokli basin

129

130 An unconsolidated sedimentary sequence up to ca. 30 m in thickness, including several organic units 

131 and till beds, is present in the central part of the Sokli Carbonatite Massif where two main fault zones 

132 cross (Fig. 2A, B). The unusually long Sokli sediment record, which spans the last ca. 140 kyr, has been 

133 protected from glacial erosion due to its sheltered position in a steep depression formed in the deeply-

134 weathered rocks of the Sokli Massif.  

135 The composite lithological log in Figure 2A is based on a series of boreholes collected between 

136 1996-2010 (Fig. 2B) and is an updated version from lithological columns earlier presented in Helmens 

137 et al. (2000, 2007a). The Sokli sediments have been dated by AMS 14C dating on macrofossils of 

138 terrestrial plants, TL and IRSL dating, and OSL dating on quartz using SAR dose protocol (Helmens et 

139 al., 2000, 2007a; Alexanderson et al., 2008).  OSL dates on quartz yielded large standard errors mainly 

140 due to small sample sizes, relatively poor luminescence characteristics, and uncertainties in dose-rate 

141 determinations. The OSL ages are, however, in sequence and (together with 14C ages) group according 

142 to stratigraphic units (Fig. 2A); furthermore, the absolute chronology is in agreement with earlier made 
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143 land-sea comparisons (Fig. 2C; Helmens et al., 2000, 2007a; Alexanderson et al., 2008). The 

144 stratigraphy in the Sokli basin (Fig. 2A, right side) is according to Helmens (2014).

145 A diatom gyttja deposit up to 9 m in thickness, and dated to the Eemian Interglacial (MIS 5e), 

146 stretches as a marker horizon near the base of the Sokli basin infill (Plikk et al., 2016; Fig. 2). The diatom 

147 gyttja overlays coarse-grained glacio-lacustrine sediment resting on till (MIS 6; Ilvonen, 1973). A sand 

148 and gravel deposit of fluvial origin (MIS 5d) separates the MIS 5e lake sediment from sandy gyttja that 

149 was deposited in an oxbow lake during MIS 5c (Helmens et al., 2012). The upper part of the Sokli 

150 sedimentary sequence consists of till interlayered with two additionally well-sorted, fine-grained 

151 lacustrine sequences (MIS 5a and MIS 3). The deposition of glacio-lacustrine silt and clay in early MIS 

152 5a was followed by the accumulation of gyttja (this study). The glacio-lacustrine sediment of early MIS 

153 3 age is capped by till (Helmens et al., 2009). Lake Loitsana holds a 7m-thick gyttja deposit underlain 

154 by a glacio-lacustrine deposit of early Holocene age (Shala et al., 2014a, 2014b). Glaciation of the Sokli 

155 basin is dated to MIS 5b, MIS 4 and late MIS 3-2 (Helmens et al., 2007a).

156

157 2.3 The Sokli Ice Lake

158

159 The Late Quaternary glacial lake sediments preserved in the Sokli basin were deposited in the Sokli Ice 

160 Lake (Fig. 1). Figure 3 gives a schematic representation of the evolution of the later stages of the Sokli 

161 Ice Lake, i.e. from the moment of deglaciation of the Sokli site (Lake Stage 1) until its final drainage 

162 through the Nuortti canyon (Lake Stage 3). Glacier meltwater was trapped between the hills of the Värriö 

163 tunturi and the retreating ice-margin during the early stages of the glacial lake (Johansson, 1995). 

164 The ice-marginal retreat pattern in Figure 3 is guided by NW-SE oriented eskers that are dated to 

165 the last deglaciation in the early Holocene (Johansson, 2007; Shala et al., 2014a). Importantly, a similar 

166 evolution of these final stages of the Sokli Ice Lake has been reconstructed for early MIS 3 (Helmens et 

167 al., 2009) based on N-S trending, till-covered eskers in the region dated by OSL at 65 ± 13 kyr BP 

168 (Johansson, 2007). The direction of ice-marginal retreat in early MIS 5a was to the northwest 

169 (Johansson, 1995) and, also during this deglaciation episode, the glacial lake evolution was probably 

170 similar as during the early Holocene. The reconstruction in Figure 3 is based on geomorphologic (e.g. 
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171 meltwater channels) and DEM (Digital Elevation Model) data and corresponds to the one originally 

172 presented in Johansson (1995). As the area invoked in the glacial lake reconstruction is relatively small 

173 (ca. 30 x 30 km), possible errors generated due to non-uniform isostasy are considered to be insignificant 

174 (cf. Jansson 2003). 

175 During each deglaciation episode, the Sokli Ice Lake varied in surface area and water depth 

176 depending on the position of the ice-front and the location of spillways/overflow sites (Fig. 3). During 

177 Lake Stages 1 and 2, the level of the glacial lake was controlled by the col at the head of the Törmäoja 

178 canyon which has a present elevation of 240 m. The glacial lake reached its maximum spatial extension 

179 during Lake Stage 2. Opening of the Nuortti canyon resulted in partial (Lake Stage 3; col at 220 m 

180 elevation) and final drainage of the Sokli Ice Lake. 

181

182 3 Methods

183  

184 A total of 2 m of glacial lake silts and clays, below 7 m of gyttja, was retrieved with the Russian peat 

185 corer from ice-covered Lake Loitsana. The 1-2 m thick early MIS 3 and MIS 5a glacial lake deposits, 

186 which underlie the LGM (Last Glacial Maximum) till, were recovered using heavy-equipment 

187 percussion drilling from the frozen surface of the Sokli wetland. Methods used for multi-proxy analysis 

188 on the sediments of early MIS 5a age follow those applied to the glacial lake sediments of early MIS 3 

189 and early Holocene age. The latter are presented in Helmens et al. (2009) and Shala et al. (2014a, 2014b) 

190 (siliceous microfossils and LOI); Engels et al. (2008) and Shala et al. (2014b) (chironomids); Bos et al. 

191 (2009) and Shala et al. (2014b, 2017) (pollen/spores/NPP’s and macrofossils); and Shala et al. (2014b) 

192 (C/N). For all three time-slices (early Holocene, MIS 3 and 5a), diatom and chironomid diversities are 

193 calculated using Hill’s N2 (effective number of occurrences; Hill, 1973).

194 A minimum of 500 diatom valves, 50 chironomid head capsules and ca. 400 terrestrial pollen 

195 grains were identified in each sample from the early MIS 5a glacial lake deposit. The sample size for 

196 the macrofossil analysis was mainly 10-15 cm3. Furthermore, we submitted two samples from gyttja 

197 found overlying the early MIS 5a deglacial sediment for AMS 14C dating.
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198 4 Results and Discussion

199

200 4.1 Timing and duration of the Sokli Ice Lake 

201

202 14C dating on seeds of tree birch encountered in the youngest glacial lake deposit has provided an age 

203 of ca. 10.5 kyr cal BP for the last deglaciation of the Sokli basin (Shala et al., 2014a, 2014b). This date 

204 is in accordance with the early Holocene deglaciation chronology for north-eastern Fennoscandia as 

205 presented in Johansson (2007) and Stroeven et al. (2016). It also shows that the Betula seeds occur in-

206 situ, i.e. they are not reworked from older deposits. The in-situ preservation of fossil remains in the 

207 glacial lake sediment is further demonstrated by 14C ages on wood from the early MIS 3 sediment 

208 sequence (Helmens et al., 2000, 2007b) which are in line with OSL dating results (Alexanderson et al., 

209 2008; Figs. 2 and 4B). The latter deglaciation episode probably occurred at ca. 53 kyr BP during 

210 prominent Greenland Interstadial (GI) 14 (Helmens et al., 2007b; Helmens and Engels, 2010). New 14C 

211 datings of macrofossils from gyttja that overlies the oldest glacial lake deposit gave, as expected, infinite 

212 ages (Table 1). This episode of deglaciation has been earlier dated to early MIS 5a based on OSL dating 

213 of glacio-fluvial sand and gravel, that occur beneath the glacial lake sediment, at ca. 80 kyr BP and of 

214 minerogenic sediment at the top of the overlying gyttja at ca. 74 kyr BP (Alexanderson et al., 2008; Figs. 

215 2 and 4C).

216 The duration of the Sokli Ice Lake following the last deglaciation of the Sokli site is estimated at 

217 less than 100 yr (Johansson, 2007; Stroeven et al., 2016; Fig. 3). A duration of some 400 kyr is inferred 

218 based on 14C dating evidence from the early Holocene glacial lake deposit in the Sokli basin (Shala et 

219 al., 2014a, 2014b) and counting of the distinct, possibly annual laminae in the glacial lake sediment of 

220 early MIS 3 age (Helmens et al., 2009). However, the 50 to 100-year error margins on the 4C dates (Fig. 

221 4A), and the large spread in calendar ages for the earliest Holocene, hamper a detailed age determination 

222 for glacial lake duration.

223

224
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225 4.2 Aquatic and telmatic ecosystem changes in the ice-marginal environment during deglaciation

226

227 The evolution of the Sokli Ice Lake as depicted in Figure 3 can be clearly traced in the sediment sequence 

228 of each deglaciation episode (early Holocene, MIS 3 and 5a; Fig. 4). The ice-marginal retreat during 

229 Lake Stages 1 and 2 is recorded by an upward-fining sequence of sandy and silty sediment grading into 

230 rhythmically laminated silts and clays at the base of each glacial lake sequence. Following the decrease 

231 in level and size of the glacial lake associated with the opening of the Nuortti canyon (Lake Stage 3), 

232 silts (early Holocene) and silts grading into sandy sediment (early MIS 3 and 5a) were deposited at the 

233 coring-sites. Lacustrine sedimentation is recorded to continue with the accumulation of organic silts 

234 followed by gyttja in the Sokli basin during early MIS 5a, and gyttja in Lake Loitsana in the early 

235 Holocene. The early MIS 3 glacial lake sediments were found to be covered by till. Furthermore, the 

236 Sokli Ice Lake evolution has been traced in XRF-based geochemical data available for the early 

237 Holocene glacial lake sediment (Shala et al., 2014a). The latter shows a decrease in sediment input 

238 enriched in elements (Ca, S and Nb) typical for the local bedrock (Sokli Carbonatite Massif) during 

239 Lake Stage 2, i.e. when the Sokli Massif became entirely submerged in the expanding glacial lake (Fig. 

240 3).

241 The biotic proxy diagrams obtained from the early Holocene (Fig. 4A), early MIS 3 (Fig. 4B) and 

242 early MIS 5a glacial lake sediments (Fig. 4C) reveal marked compositional shifts in biotic assemblages 

243 in concordance with the changes in size and depth of the Sokli Ice Lake. This shows that biota responded 

244 quickly to environmental changes during deglaciation. It also provides further support for the in-situ 

245 preservation of fossil remains. Although the biotic data obtained for the different deglaciation episodes 

246 share many similarities, fossil assemblages and successive developments appear to be influenced by 

247 actual lake depth. Overall deepest lake conditions are reconstructed for early MIS 5a, and shallowest 

248 waters during the early Holocene. This can be expected due to continuing infilling of the Sokli basin 

249 and progressive lowering of the glacial lake outlet channels resulting from erosion. Below, the biotic 

250 records will be used to reconstruct in detail the aquatic and telmatic ecosystem composition in and along 

251 the shore of the Sokli Ice Lake during its evolution. 

252
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253 4.2.1 Glacial Lake Stages 1 and 2 

254

255 The fossil content and diversity of fossil remains (expressed by e.g. Hill’s N2 values for diatoms and 

256 chironomids) increase, both during the early Holocene (Fig. 4A) and early MIS 3 deglaciation episodes 

257 (Fig. 4B), with increasing distance of the ice-margin from the coring-site (Lake Stages 1-2 in Fig. 3). 

258 The overall meagre fossil content of the Lake Stage 1-2 sediments of early MIS 5a age (Fig. 4C) most 

259 probably result from deep water conditions (suggested by relatively high planktonic diatom percentages) 

260 and long distance to shore. Furthermore, C/N values (only measured for the Holocene (Fig. 4A)) 

261 gradually drop during Lake Stages 1-2 suggesting an increased in-lake productivity. It is less-likely that 

262 the low C/N values in the latter part of Lake Stage 2 result from a decreased contribution of higher plants 

263 since seeds of Carex and high pollen percentages of Cyperaceae and Salix indicate an expansion in the 

264 wetland zone close to the coring-sites. In general, high C/N ratios (> 10) indicate input of organic matter 

265 from higher plants (littoral/wetland/terrestrial), and low ratios (< 10) reflect input from phytoplankton 

266 (Wetzel, 2001). 

267 Turbulent waters and turbid water conditions occur close to ice-margins and significantly decrease 

268 primary productivity (Henley et al., 2000). Also, the fossil record in the coarse-grained ice-marginal 

269 sediment at the base of the studied sequences (Lake Stage 1) can be expected to be diluted due to high 

270 sedimentation rates (Risberg et al., 1999) and plant/animal remains to be more easily destroyed in this 

271 high-energy environment.

272 Chironomids that are recorded among the first colonizers of the Sokli Ice Lake during all three 

273 time-slices (early Holocene, MIS 3 and 5a) are the deep-water taxa Heterotrissocladius maeaeri-type, 

274 Tanytarsus lugens-type and Procladius. H. maeaeri-type is reported to have dominated the deep waters 

275 of the late-glacial Baltic Ice Lake in southern Finland (Fig. 1; Luoto et al., 2010). Diatoms were mostly 

276 Fragilariaceae and Aulacoseira. Fragilariaceae is a group of taxa that is characterized as pioneering and 

277 opportunistic, since they colonize quickly, have high reproduction rates and are more adaptive to a 

278 changing environment (Risberg et al., 1996; Lotter et al., 1999). The encountered planktonic 

279 Aulacoseira species (A. ambigua, A. subarctica, A. alpigena) are all heavily silicified and most probably 

280 reflect a large influx of Si into the glacial lake and enhanced levels of turbulence. A high Si-level is 
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281 further suggested by findings of Tetracyclus glans (Michel et al., 2006). Statoblasts of the bryozoan 

282 Fredericella indica (Økland and Økland, 2001) and high abundances of pooid phytoliths and Tertiary 

283 diatoms in the sediment indicate wave action and significant shore erosion. Tertiary diatoms are 

284 exemplified by species like Pliocaenicus costatus, a relict freshwater taxon from the Pliocene, and 

285 Paralia sulcata of marine-origin, their robust structure allowing for multiple phases of re-working 

286 (Helmens et al., 20009, and references therein). The pioneering algal Botrycoccus braunii, algal type 

287 T.225 (van Geel et al., 1989) and the cladoceran Daphnia (water-flea; recorded by ephippia) are 

288 additionally well-represented among the first lake colonizers. 

289 Occurrences of the diatom taxa Epithemia adnata and Rhopalodia gibba in the upper part of the 

290 Lake Stage 2 sediment of early Holocene age suggest pH values exclusively above 7 (van Dam et al., 

291 1994). High abundances of ostracod remains indicate enhanced Ca-concentrations. This lake water 

292 chemistry mostly probably resulted from rapid leaching of carbonates and other soluble minerals from 

293 surface soils shortly after deglaciation (Engstrom et al., 2000). An enhanced level of nutrients in the 

294 glacial lake during the latter part of Lake Stage 2 in early MIS 3, and particularly during early MIS 5a, 

295 is further suggested by relatively high percentage values of Stephanodiscus species (S. medius, S. 

296 minutulus, S. neoastraea, S. alpinus).

297 Although the recording of the bryozoan F. indica suggests stony shores with sparse aquatic 

298 vegetation (Økland and Økland, 2005), macrofossils, pooid phytoliths and pollen indicate the presence 

299 of the herbs Rorippa palustris, Filipendula and grasses (e.g. Glyceria lithuanica) as well as Empetrum 

300 nigrum, Carex, Juncus Equisetum and Sphagnum in local shore or wetland habitats (i.e. telmatic habitat) 

301 along the glacial lake shoreline. 

302

303 4.2.2 Glacial Lake Stage 3

304

305 The local establishment of diverse aquatic and telmatic communities is recorded in the silty glacial lake 

306 sediments of Lake Stage 3. This stage followed the opening of a new spillway which resulted in a drastic 

307 decrease in water depth and size of the Sokli Ice Lake (Fig. 3). The margin of the Fennoscandian Ice 

308 Sheet during Stage 3 was situated at a distance of less than 10 km from the coring-site (i.e. before 
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309 deglaciation of the Nuortti canyon in Fig. 3). The amount of macrofossils in lake sediments is strongly 

310 influenced by taphonomic factors, e.g. with a close location of the shoreline sharply increasing 

311 macrofossil abundances at the coring-site (Hannon and Gaillard, 1997; Väliranta, 2006), and 

312 macrofossils are distinctly more abundant in the Lake Stage 3 sediment, particularly in the early 

313 Holocene. Below, the Lake Stage 3 aquatic and telmatic ecosystems will be discussed separately for the 

314 three deglaciation episodes.

315 Fossil remains in the early Holocene deposit (Fig. 4A) reflect a shallow lake and even further 

316 shallowing, accompanied by an extension in the wetland zone (macrofossils of Carex, B. nana, 

317 Vaccinium, Typha and Ranunculus sect. Batrachium), higher up in the Stage 3 silts. Characteristic is the 

318 high representation in the macrofossil record of the shallow-water plant Callitriche 

319 cophocarpa/hermaphroditica, the bryozoan Plumatella repens and Daphnia. Also, various littoral 

320 chironomid taxa (Polypedilum nubeculosum-, Microtendipes pedellus-, Dicrotendipes nervosus-type) 

321 are recorded. A large variety of Potamogeton species (P. berchtoldii, P. filiformis, P. friesii, P. 

322 obtusifolius, P. pectinatus), aquatic Nymphaeaceae (Nymphaea, Nuphar), and the bryozoan Cristatella 

323 mucedo are additionally well-represented in the upper part of the silt deposit. The pioneering, narrow-

324 leaved Potamogeton species thrive in shallow (0.1-1.5 m) water depths. C. mucedo (if produced locally) 

325 suggest more coloured water with less wave action than F. indica (Økland and Økland, 2005). 

326 Simultaneously to the trend in lake shallowing, rising nutrient levels are suggested by increasing 

327 abundances of the chironomid taxon Endochironomus albipennis-type (Moller Pillot, 2009). The 

328 occurrences of C. mucedo, Nymphaeceae and Typha indicate boreal conditions. In contrast to these rich 

329 biotic communities, diatom assemblages in the early Holocene Stage 3 sediment are largely dominated 

330 by Staurosira construens var. venter, showing peak values reaching > 85%. This might reflect the littoral 

331 and periphytic (growing on plants) habitat preferences of this diatom species and/or tolerance to poor 

332 light conditions (Bigler et al., 2003), the latter possibly resulting from erosion of the adjacent esker.

333 Shallowing of the glacial lake and accompanying rising nutrient levels are recorded in detail in 

334 the thick early MIS 3 silty deposit. Initially, F. indica (Økland and Økland, 2005) and the chironomid 

335 taxon Ablabesmyia (Vallenduuk et al., 2007) suggest moderate nutrient availability. Subsequently, 

336 nutrient levels increase as indicated by high percentage values for E. albipennis-type combined with 
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337 occurrences of P. friessi and the macro-algae Nitella. The appearance of the cladoceran Simocephalus 

338 in the upper sandy part of the deposit suggests shallow, open water, eutrophic conditions and dense 

339 stands of vegetation (van Geel et al., 1983). Strongly reduced water depths during deposition of the 

340 upper sandy silts of Stage 3 are further indicated by enhanced values for the shallow-water algae 

341 Spirogyra and the littoral diatom taxon Staurosirella pinnata, as well as a distinct extension in the 

342 wetland zone. The latter is recorded by high abundances of bryophyte leaves, seeds of Carex, Juncus, 

343 B. nana and E. nigrum, increased percentage values for Cyperaceae pollen and a near continuous 

344 registration of hyphopodia of Clasterosporium caricinum, i.e. a fungus that parasitizes on Carex (van 

345 Geel et al., 1983). 

346 Fossils in the silty Glacial Lake Stage 3 sediment of early MIS 5a age include macro-remains of 

347 P. repens, Callitriche (C. cophocarpa, C. hermaphroditica C. hamulata), narrow-leaved Potamogeton 

348 (including P. compressus) and the shallow-water plant Ceratophyllum. Characteristic is the combined 

349 appearance of Tanytarsus pallidicornis- and Psectrocladius sordidellus-type, i.e. chironomid taxa 

350 presently common in the sublittoral and littoral zones of boreal lakes mostly found living among 

351 Phragmites stands (Luoto, 2010). Nutrient availability was overall high as indicated by occurrences of 

352 E. albipennis-type, Chironomus plumosus-type (Brooks et al., 2001) and a high representation of 

353 Stephanodiscus among the diatoms. The enhanced nutrient level, and high chironomid species diversity 

354 (high Hill’s N2 values), might be related to inflow of running water close to the coring-site as also has 

355 been recorded in the MIS 5d-c deposit in the Sokli basin (Engels et al, 2010). Inflow of water is indicated 

356 by relatively high abundances of stream-inhabiting chironomid taxa (e.g. Eukiefferiella and 

357 Rheocricotopus) as well as the type of lamination of the silty deposit, i.e. laminae of varying grain-sizes 

358 (clay to fine sand) and thicknesses. Similar as during the early Holocene and MIS 3, a strong reduction 

359 in water depth during deposition of the uppermost sandy part of the MIS 5a silt deposit is reflected in 

360 the fossil record (littoral M. pedellus-type and S. pinnata; macrofossils of Carex, Salix, B. nana).

361 Interestingly, the diatom Aulacoseira granulata var. angustissima appears with peak values in the 

362 upper sandy sediment of Lake Stage 3 both during early MIS 5a and MIS 3 and, together with increased 

363 representations of the diatom taxa Staurosirella leptostauron, Diploneis elliptica and Amphora libyca, 

364 reflect alkaline waters with high Ca-concentrations (Gómez et al., 1995; Jones et al., 2004). This lake 
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365 water chemistry was recorded in the early Holocene glacial lake sequence already during the relatively 

366 shallow-water Lake Stage 2. It is possible that the glacial lake volume during early MIS 3 and 5a became 

367 only reduced enough during Lake Stage 3 in order for alkaline water conditions to be established.

368

369 4.2.3 Early Loitsana and Sokli lakes

370

371 The early Holocene sandy gyttja deposited in Lake Loitsana contains relatively high fossil abundances 

372 of the chironomid taxa Cricotopus intersectus- and Cricotopus cylindraceus-type. These are typical 

373 littoral taxa with an affinity for plants (Brooks et al., 2007; Luoto, 2010) and their occurrences might be 

374 related to an influx of insect and plant remains (e.g. Equisetum tissue) by running water. Particularly 

375 stream-inhabiting chironomids (e.g. Rheotanytarsus, Eukiefferiella, Rheocricotopus), but also 

376 rheophilic diatom taxa (e.g. Meridion circulare, Amphora pediculus), indicate inflow of running water 

377 nearby the coring-site. Corynocera ambigua, which has a complex ecology (Brodersen and Lindegaard, 

378 1999), dominates the chironomid assemblage in the MIS 5a lake deposit in the Sokli basin. Nutrient 

379 levels were high both in the early Loitsana and Sokli lakes (E. albipennis-type, C. plumosus-type, 

380 Stephanodiscus parvus). This might have resulted from morphometric eutrophication (Hofmann 1998), 

381 i.e. a condition created by a reduction in lake volume. In our study, the latter occurred when the Sokli 

382 Ice Lake fully drained and lacustrine sedimentation continued in small depressions within the Sokli 

383 basin.

384

385 4.3 MIS 3 ice-sheet dynamics 

386

387 The glacial lake sequences of early Holocene, MIS 3 and MIS 5a age reveal remarkably similar 

388 assemblages and successions in aquatic and telmatic biota, however, some additional, special features 

389 are shown by the early MIS 3 glacial lake deposit. This most probably relates to different levels of ice-

390 sheet dynamics upon deglaciation. First, the glacial lake sediment of early MIS 3 age is interlayered 

391 throughout the sequence with distinct clay laminae suggesting a continuing influence of the ice-sheet on 

392 lake deposition, even in the case of a distal position. Secondly, the sediment and fossil record seems to 
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393 register a glacier re-advance phase which intersected the shallow Glacial Lake Stage 3. The latter is 

394 demonstrated by the re-occurrence of deep water (increases in tycho-planktonic diatom taxa and the 

395 deep-water chironomid taxon T. lugens-type), a large lake-size (Aulacoseira islandica; Serieyssol et al., 

396 2009), oligotrophic lake water conditions (Cymbella aspera; Krammer and Lange-Bertalot, 1986) and 

397 significant shore erosion (> 50 % of phytoliths) (Fig. 4B). Re-advances of the ice-margin are commonly 

398 recorded in glacial lake sediment sequences and are not necessarily climate-driven (Carrivick and 

399 Tweed, 2013). Striking also is the co-occurrence of peak abundances of Procladius with a large variety 

400 of algae (B. braunii, Pediastrum, Tetraedon cf. minimum, Zygnema, Spirogyra, T.225; high diatom-

401 inferred Hill’s N2) in the finely laminated clayey sediment at the end of Stage 2. This might reflect 

402 density stratification, a process typical for glacial lakes (Carrivick and Tweed, 2013, and references 

403 therein) in which sediment-loaded cold meltwater extends below warmer and more transparent river-fed 

404 water. The river-fed water probably favoured a diverse algal community. Procladius, which is abundant 

405 during this phase, is a ubiquitous chironomid taxon with a wide environmental tolerance including turbid 

406 water inflows (Greffard et al., 2012) and is found in lakes with a large variability in limnological 

407 conditions, such as hypolimnetic oxygen availability and water temperature (Brodersen et al., 2004). In 

408 addition to these features, the till bed, and overlying glacio-fluvial gravels and sands, at the base of the 

409 early MIS 3 deglacial sediment sequence shows large chucks of organic debris reworked from the 

410 Eemian Interglacial (MIS 5e) gyttja in the Sokli basin (Helmens et al., 2000). All these features together 

411 suggest active, warm-based ice in the course of early MIS 3 deglaciation.

412

413 4.4 Terrestrial vegetation in the ice-marginal environment during deglaciation

414

415 Pollen and macrofossil remains found in the glacial lake sediments further allow a detailed 

416 reconstruction of terrestrial vegetation during the different episodes of deglaciation. Numerous seeds of 

417 birch trees and pollen percentage values for Betula pubescens/pendula of up to 80 % in the shallow 

418 Glacial Lake Stage 3 silts of early Holocene age (Fig. 4A) indicate the presence of birch forest on the 

419 land adjacent to the Sokli Ice Lake (Shala et al., 2017). Birch trees already bordered the glacial lake 

420 during Stage 2 (macrofossils present) and possibly Stage 1, i.e. in close proximity to the ice-margin. 
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421 Macrofossils are overall scarce in the latter sediments, probably due to the large lake size and long 

422 distance to shore. Moreover, the large contribution of grasses to the pollen sum, which for a major part 

423 might be derived from local shore habitats (high abundances of phytoliths), inhibits a precise pollen-

424 based reconstruction of the terrestrial vegetation during Lake Stages 1 and 2.

425 B. pubescens/pendula and Pinus are represented by pollen values of 30-50 % and 20 %, 

426 respectively, in the glacial lake sediments of early MIS 3 and MIS 5a age (Fig. 4B-C). Whereas B. 

427 pubescens/pendula dominates the pollen assemblages in modern calibration samples from the sub-arctic 

428 birch forest in northern Fennoscandia, birch pollen percentages drop at the expense of pine pollen north 

429 of the birch tree-line (Aario, 1940; Prentice, 1978). The increase in representation of pine relative to 

430 birch occurs as the forest thins out, and Pinus pollen with its greater dispersal capability is being blown 

431 in from the south. Therefore, the modern calibration data suggests the presence of tundra vegetation on 

432 recently deglaciated terrain during early MIS 3 and 5a. According to Bos et al. (2009), the tundra 

433 vegetation during early MIS 3 appears to have been remarkably similar to the present-day tundra in 

434 northern Fennoscandia. Seeds of tree birch in the early MIS 5a glacial lake sediment indicate the 

435 presence of birch trees in the tundra vegetation, and B. pubescens/pendula pollen percentage values 

436 rising to 80 % in the overlying gyttja deposit registers the local establishment of birch forest. Pine forest 

437 with larch is recorded in the younger part of the MIS 5a gyttja deposit (N. Kuosmanen, unpublished 

438 data). Pollen and macrofossil data from interstadial organic-bearing sediment in northern Finland, dated 

439 to MIS 3, register birch forest and the local presence of pine trees (Sarala et al., 2016).

440 Betula spp. are fast immigrants due to the advantage of an abundant production of wind-dispersed 

441 fruits, rapid reproductive rates, fast growth rates and a young reproductive-maturity age (Birks, 1986). 

442 Furthermore, rapid migration of trees over the deglaciated land was probably facilitated by the northern 

443 location of glacial plant refugia (Väliranta et al., 2011; Tsuda et al., 2016). The existence of boreal tree 

444 populations in northerly small pockets of environmentally favorable conditions, in some cases close to 

445 the edge of the LGM ice-sheet, is being suggested by evidence from e.g. macrofossil charcoal 

446 assemblages and ancient DNA (Willis and van Andel, 2004; Parducci et al., 2012). However, while 

447 aquatic biota in the glacial lake show a mostly boreal character (see section 4.2), vegetation on land was 

448 sub-arctic in nature probably due to time needed for soil forming processes (Väliranta et al., 2015). 
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449 Interestingly also, our study shows that forested conditions were achieved in the ice-marginal 

450 environment during the early Holocene, whereas more open tundra vegetation seems to have 

451 characterized this environment during early MIS 3 and 5a. This might be the result of the relatively slow 

452 melting of the large LGM ice-sheet, allowing tree birch to migrate in congruent pace with the retreating 

453 ice-margin.  

454

455 4.5 Climate during deglaciation

456

457 There is overwhelming evidence in the fossil record from the early Holocene, MIS 3 and MIS 5a glacial 

458 lake sediments at Sokli for warm summers during deglaciation. This result is in accordance with high 

459 Milankovitch-forced summer insolation at high latitudes during all three time intervals (Berger and 

460 Loutre, 1991; Fig. 2).

461 Table 2 summarizes estimates of mean July air temperature (Tjul) for the three deglaciation 

462 episodes based on macrofossil and chironomid remains. Aquatic and telmatic plant indicator taxa 

463 identified in the macrofossil records are given in the table together with (in parenthesis) lowest required 

464 Tjul for current species presence in Finland (following Väliranta et al., 2015; Shala et al., 2017). 

465 Additionally, chironomid taxa with warm temperature optima (i.e. warmer-than-today) are indicated; 

466 the optima are based on the distribution patterns of chironomid taxa in the Finnish chironomid-

467 temperature calibration data-set (Luoto et al., 2014a, 2014b). The presence of these warm-indicating 

468 plant and chironomid taxa (Table 2), as well as the quantitative chironomid-inferred Tjul records for early 

469 MIS 3 (Engels et al., 2008),  the early Holocene (Shala et al., 2017), and  early MIS 5a (T. Luoto, 

470 unpublished data), indicate mean July air temperatures similar (13 °C) or higher-than-today during all 

471 three deglaciation episodes. Highest Tjul (ca. 15-15.5 °C) are inferred for the early Holocene deglacial 

472 episode (Table 2; Shala et al., 2017). Furthermore, the aquatic and littoral plant macrofossil assemblages 

473 encountered in the glacial lake sediments consistently suggest boreal conditions in the ice-marginal 

474 environment (Bos et al., 2009; Väliranta et al., 2015; Shala et al., 2017; this study).

475 Warm summers in Fennoscandia during the early Holocene are also reported in e.g. Kullman 

476 (1998), Luoto et al. (2014b) and Paus and Haugland (2017), and during early MIS 3 in Sarala et al. 
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477 (2016). The latter is inferred from findings of fossil remains of the aquatic taxa Sagittaria sagitifolia 

478 (14.4 °C), Nymphaea and Callitriche in sediment dated to MIS 3. Quantitatively inferred climate 

479 parameters based on fossil remains predating the LGM are scarce, not only in Fennsocandia but also on 

480 the European mainland. Warm summers as well as warm winters are recorded by plant macrofossils and 

481 insect remains at Oerel (northern Germany) during early MIS 5a (Behre et al., 2005).

482

483 4.6 Comparisons with studies in North America

484

485 One of the few detailed fossil analyses, including pollen, NPP’s and macrofossils, on glacial lake 

486 sediments in North America is presented in Boyd et al. (2003). This study focuses on the terminal stages 

487 of Glacial Lake Hind, i.e. one of several interconnected proglacial lakes that formed across the Canadian 

488 prairies in front of the retreating margin of the Laurentide Ice Sheet in the early Holocene. Glacial Lake 

489 Hind discharged eastwards into Glacial Lake Agassiz (Fig. 1). Boyd et al. (2003) report a diverse 

490 macrofossil assemblage in glacial lake clays and silts, representing a high diversity of emergent and 

491 aquatic plants (e.g. various Potamogeton species such as narrow-leaved P. filiformis), and including 

492 abundant needles of Picea and a bud scale of Populus. Peak values for pollen of the wetland plant Typha 

493 in gyttja directly overlying the Glacial Lake Hind sediment indicates substantial postglacial warming 

494 (Boyd et al., 2003).

495 Early Holocene warm summers in response to Milankovitch-forced insolation have earlier been 

496 reported by Ritchie et al. (1983) based on pollen and macrofossil remains of Typha from 12 high-latitude 

497 sites in northern Canada dated to ca. 6-12 kyr BP and clustering at 10.5 kyr BP. The results from Canada 

498 are very similar to those obtained in the present study at Sokli indicating diverse aquatic biota, local 

499 presence of trees and warm summers along the retreating margin of the large N Hemisphere ice-sheets 

500 during deglaciation.

501

502

503

504
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505 4.7 Glacial lake sediments and carbon storage 

506

507 Although glacial lakes covered large parts of northern Europe and North America, contemporaneous 

508 glacial lakes generally were relatively small, confined to the deeper parts in the landscape. The glacial 

509 lakes went through complex evolutions as the topography changed and spill-ways opened-up along the 

510 retreating ice-margins (e.g. Dyke, 2004; Boyd et al., 2007; Johansson, 2007; Carrivick and Tweed, 

511 2013). This is exemplified by the study of Jansson (2003) which mapped a total of 26 glacial lakes (65 

512 sub-stages) in Labrador/Ungava, eastern Canada, during the early Holocene retreat of the Laurentide Ice 

513 Sheet.

514 Within the glacial lakes, protected bays were common features and, in combination with inflow 

515 of rivers draining unglaciated terrain, allowed for aquatic and telmatic biota to flourish in the lakes and 

516 along their shores (Boyd et al., 2003; Boyd, 2007; Bos et al., 2009; Helmens et al., 2009; Shala et al., 

517 2014b; this study). Diverse biota was promoted by enhanced nutrient levels in the recently deglaciated 

518 terrain combined with insolation-induced warm summers. A close proximity to glacial plant refugia (e.g. 

519 Willis and van Andel, 2004) further facilitated the establishment of trees or open forest in the ice-

520 marginal environment. Abundant macrofossils in the shallow glacial lake sediment of early Holocene 

521 age at Sokli, combined with the presence of birch forest in the catchment, led to an organic carbon 

522 content (LOI) in the sediment rising to 20 % (Fig. 4A; Shala et al., 2014a, 2014b). The sediment was 

523 found interlayered with thin organic laminae at a site close to the former glacial lake shore (Saunavuotso 

524 in Fig. 2B). This shows that postglacial carbon storage started within the glacial lake sediment, i.e. prior 

525 to the accumulation of peat that was initiated over large parts of central and eastern Canada (Dredge and 

526 Cowan, 1989) and northern Europe (e.g. Oksanen et al., 2001) due to the presence of the relatively 

527 impermeable glacial lake silts and clays. Although more regional studies are needed, the present study 

528 at Sokli reveals that aquatic biota and terrestrial vegetation quickly adapted to new environmental 

529 conditions during N-Hemisphere deglaciation and that glacial lake ecosystems, and the carbon stored in 

530 their sediments, should not be neglected in earth system modeling. 

531

532
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533 5 Conclusions

534

535 Our study shows that glacial lake sediments at the base of interglacial and interstadial deposits can 

536 provide important information on past environmental and climate conditions. These sediments have 

537 rarely been included in proxy-based palaeo-environmental studies, with the consequence that 

538 environmental and climate conditions during deglaciation of the large N-Hemisphere ice-sheets have 

539 largely remained unknown. Deglacial stages such as the LGM-Holocene transition are important 

540 testbeds in assessing climate sensitivity and the role of individual forcings and feedbacks in climate 

541 change (Shakun et al., 2012). In large parts of the N Hemisphere, the earliest evidence of the postglacial 

542 terrestrial and aquatic environments and climate are stored in glacial lake sediments. Our finding of 

543 distinct indicators of warm and productive conditions in the ice-marginal environment, immediately 

544 following deglaciation, is thus relevant for assessing the climate response and rates of ecosystem change 

545 during the critical glacial-interglacial transitions. Furthermore, the spatial extent and depth of glacial 

546 lake sediments, and their geochemistry, should be carefully assessed to quantify the carbon storage in 

547 glacial lake systems. Finally, paleo-environmental studies based on glacial lake sediments will benefit 

548 from studies in present-day ice-marginal environments, which, however, are currently scarce (Carrivick 

549 and Tweed, 2013).
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804 Table 1. AMS radiocarbon ages for the MIS 5a lake (gyttja) deposit at Sokli.

805

806

807

808 Table 2. Mean July air temperature (Tjul) estimates based on macrofossils of aquatic/telmatic plants 

809 (minimum Tjul values) and chironomids (optimum Tjul values) for the different deglaciation episodes at 

810 Sokli. Present-day Tjul at Sokli is 13 °C.

811

Deglaciation
episode

Minimum Tjul (macrofossils) Optimum Tjul (chironomids)

Early Holocene Typha (15.7 °C)
Glyceria lithuanica (15.7 °C)
Callitriche cophocarpa/ hermaphroditica 
(13.7-14.0 °C)
narrow-leaved Potamogeton spp.
such as P. friesii (13.6 °C)
Nymphaea (13.5 °C)

Cricotopus cylindraceus-type (15.4 °C)
Cricotopus intersectus-type (15.1 °C)
Chironomus anthracinus-type (14.7 °C)
Polypedilum nubeculosum-type (14.5 °C)
Microtendipes pedellus-type (13.4 °C)
Psectrocladius sordidellus-type (13.1 °C)

Early MIS 3 Callitriche hermaphroditica (14.0 °C)
narrow-leaved Potamogeton spp.
(P. friesii; 13.6 °C)

Chironomus anthracinus-type (14.7 °C)
Cladotanytarsus mancus-type (14.4 °C)
Polypedilum nubeculosum-type (14.5 °C)
Microtendipes pedellus-type (13.4 °C)

Early MIS 5a Ceratophyllum (14.1 °C)
Callitriche hermaphroditica (14.0 °C)
Callitriche cophocarpa (13.7 °C)
narrow-leaved Potamogeton spp. 
(P. compressus, P. berchtoldii; 13.6 °C)

Chironomus anthracinus-type (14.7 °C)
Cladotanytarsus mancus-type (14.4 °C)
Polypedilum nubeculosum-type (14.5 °C)
Microtendipes pedellus-type (13.4 °C)
Psectrocladius sordidellus-type (13.1 °C)

Borehole Depth (m) Material Age (yr BP) Laboratory No.

Sokli 2/2010 9.4 Macrofossils of terrestrial 
plants(mostly seeds of 

birch)

 
>47000 Poz-56337

Sokli 2/2010 9 Macrofossils of terrestrial 
plants (mostly wood)

>51000 Poz-56338
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812 Figure captions

813

814 Fig. 1. The extent of glacial lakes in northern Europe (A) and North America (B) during the last 

815 deglaciation around 10 kyr cal BP. A shows the maximum extent of the Ancylus Lake in the Baltic Sea 

816 basin at 10 kyr cal BP (Björck, 1995). The other lakes are time-transgressive. The extent of Ice Lakes 

817 along the western margin of the Fennoscandian Ice Sheet, and the glacial retreat chronology, are 

818 according to Stroeven et al. (2016, and references therein), whereas Ice Lakes along the northern and 

819 eastern margin of the ice-sheet follow Johansson (2007) and Ojala et al. (2013, and references therein), 

820 respectively. The Sokli Ice Lake which is the subject of this study is highlighted. B shows the total 

821 cumulative area covered by Glacial Lake Agassiz in North America in the time interval 13-8 kyr cal BP 

822 (Teller and Leverington, 2004). 

823

824 Fig. 2. A New composite lithological column for the Late Quaternary sedimentary sequence in the Sokli 

825 basin with to the right the local stratigraphy according to Helmens (2014). The location within the Sokli 

826 basin of boreholes which are indicated along the left side of the lithological log is given in B. The 

827 correlation of the Sokli record with the marine global oxygen-isotope stack (Lisiecki and Raymo, 2005) 

828 and high-latitude July insolation (Berger and Loutre, 1991) (C) is based on stratigraphy and absolute 

829 dating evidence (14C, OSL, TL and IRSL dates); absolute dates are indicated to the left of the lithological 

830 column in A (see text). Deglacial sediment intervals that are the subject of the present study, dated to 

831 the early Holocene, early MIS 3 and early MIS 5a, are highlighted by pink boxes.

832

833 Fig. 3. Evolution of the later stages of the Sokli Ice Lake in the early Holocene; cross-sections show 

834 maximum water depths in Lake Loitsana (Shala et al., 2014a). Note that elevations are modern values. 

835 A similar glacial lake evolution occurred during the early MIS 3 and 5a deglaciation episodes. Lake 

836 Stage 1: deglaciation of the study site. Lake Stage 2: maximum spatial extent of the glacial lake. Lake 

837 Stage 3: partial drainage resulting in a smaller and more shallow glacial lake. 

838
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839 Fig. 4. Selection of proxy data for deglacial sediments in the Sokli basin dated to the early Holocene 

840 (A), early MIS 3 (B) and early MIS 5a (C). For legends see C. Phytoliths and Tertiary diatoms are 

841 calculated as percentages of the total sum of siliceous microfossils. Percentage values of pollen, spores 

842 and NPP’s are based on the total sum of pollen of terrestrial plants. Based on A Shala et al. (2014a, 

843 2014b, 2017); B Engels et al. (2008), Bos et al. (2009), and Helmens et al. (2009); C this study.
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Other aqua!c taxa (bryozoa, cladocera, ostracods, algae, aqua!c plants)           / Wetland plants Terrestrial plants

Diatoms 

..
.

.
.

.
.

.. ... .

.
. .

. . .

. .

.
. .

.

.

.. .
.. .

.
.

.

.

.

.

.

.

.

.
.

.. .
. .

.

S
o

k
li

 B
-s

e
ri

e
s

6.5

7.5

8.5

7.0

8.0

9.0

.

.

.

8
6

3
0

 ±
 1

3
0

9
3

7
0

 ±
 1

1
0

9
4

1
0

 ±
 5

0

. .

.

10
%

10
%

10
%

10
%

10
%

10
%

10
%

10
%

10
%

10
%

020
%

10
%

20
%

20
%

20
%

20
%

5
%

5
%

5
%

5
%

5
%

5
%

10010
%

20
%

20
%

15 2010

Fossil analysts:

Shyhrete Shala (siliceous
micro-, macrofossils);
Tomi Luoto (chironomids);
Sakari Salonen (pollen,
spores, NPP’s)
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Fossil analysts:

Jan Risberg et al.
(siliceous microfossils);
Stefan Engels (chironomids);
Karin Helmens (pollen,
spores, NPP’s);
Hanneke Bos (macrofossils)1
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Macrofossils:

 

ba: bark

 

bd: bud scale
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lv: leavy stem
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Christos Katrantsio!s
(siliceous microfossils);
Tomi Luoto (chironomids);
Niina Kuosmanen (pollen,
spores, NPP’s);
Minna Väliranta (macrofossils)
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from other borehole(in-between brackest):  
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