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ABSTRACT17

18

Understanding the genomic basis of host-parasite adaptation is important for predicting19

the long-term viability of species and developing successful management practices. However,20

in wild populations, identifying specific signatures of parasite-driven selection often presents21

a challenge, as it is difficult to unravel the molecular signatures of selection driven by different,22

but correlated, environmental factors. Furthermore, separating parasite-mediated selection23

from similar signatures due to genetic drift and population history can also be difficult.24

Populations of Atlantic salmon (Salmo salar L.) from northern Europe have pronounced25

differences in their reactions to the parasitic flatworm Gyrodactylus salaris Malmberg 195726

and are therefore a good model to search for specific genomic regions underlying inter-27

population differences in pathogen response. We used a dense Atlantic salmon SNP array,28

along with extensive sampling of 43 salmon populations representing the two G. salaris29

response extremes (extreme susceptibility vs resistant), to screen the salmon genome for30

signatures of directional selection while attempting to separate the parasite effect from other31

factors. After combining the results from two independent genome scan analyses, 57 candidate32

genes potentially under positive selection were identified, out of which 50 were functionally33

annotated. This candidate gene set was shown to be functionally enriched for lymph node34

development, focal adhesion genes and anti-viral response, which suggests that the regulation35

of both innate and acquired immunity might be an important mechanism for salmon response36

to G. salaris. Overall, our results offer insights into the apparently complex genetic basis of37

pathogen susceptibility in salmon and highlight methodological challenges for separating the38

effects of various environmental factors.39

40

Keywords: Atlantic salmon, genomic adaptation, genome scan, parasite-driven selection,41

Gyrodactylus salaris42
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INTRODUCTION43

44

Parasites act as a strong selective force on natural populations, and given that many of45

them specialize on a single host species or a few host species, constant arms-races between the46

hosts and the parasite often occur (Carval and Ferriere, 2010; Kaltz and Shykoff, 1998). The47

mechanisms of host defence are very diverse and can focus on decreasing parasite fitness and48

increasing the host’s ability to cope with the negative effects of the presence of a parasite49

(Carval and Ferriere, 2010; Råberg et al., 2007). Several genetic mechanisms of adaptive50

immune response in vertebrate hosts have been proposed, with earlier studies often focusing51

on the major histocompatibility complex (MHC) genes and occasionally focusing on other52

immune-relevant loci (Acevedo-Whitehouse and Cunningham, 2006; Medzhitov, 2007;53

Sommer, 2005). Being an important link to early vertebrate evolution, teleost fishes have also54

been the subject of intense research on the mechanisms of both innate and acquired immunity55

(Zhu et al., 2013). Special interest in understanding the basis of pathogen response had been56

given to salmonid fish species due to their commercial and recreational importance. For57

example, in Atlantic salmon, studies of the genetic basis of resistance have been conducted for58

a number of parasites and pathogens, including salmon lice (Holm et al., 2017; Tadiso et al.,59

2011), infectious pancreatic necrosis virus (Cepeda et al., 2011; Moen et al., 2015; Reyes-60

Lopez et al., 2015), anaemia virus (Moen et al., 2009), and the furunculosis-causing bacterium61

Aeromonas salmonicida (Dionne et al., 2009).62

In this study, we concentrate on the genomic basis of Atlantic salmon adaptation to a63

particularly dangerous parasite, the monogenean flatworm Gyrodactylus salaris. Atlantic64

salmon from northern Europe exhibit striking differences in their susceptibility to the parasite.65

Salmon populations from rivers draining to the Atlantic Ocean and the Barents and White Seas66

are highly susceptible to G. salaris, with mortality rates following parasite exposure reaching67

95% (Johnsen and Jensen, 1991). Landlocked populations from freshwater lakes Onega and68

Ladoga, however, are almost completely resistant, with low-level infections being observed in69

just 1% of fish (Kuusela et al., 2009). These differences are thought to be due to the70

phylogeographic histories of the regions, with land-locked salmon having a longer co-71

evolutionary history with the parasite in the eastern freshwater refugium (at least 130,00072

years), whereas salmon from the Barents and White Seas were not exposed to G. salaris until73

recent decades (Kudersky et al., 2003; Kuusela et al., 2009, 2007; Lumme et al., 2016). Despite74

the potential threat to susceptible salmon populations following G. salaris introduction, the75

genetic basis of adaptation to G. salaris remains unclear, in spite of an increasing focus on this76
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topic (Gilbey et al., 2006; Kania et al., 2010; Matejusová et al., 2006; Tonteri et al., 2010;77

Zueva et al., 2014).78

Understanding range-wide patterns of adaptation is challenging with experimental79

approaches, but approaches using genome-wide scans to detect signals of strong natural80

selection can provide means, albeit less direct, for identifying loci underlying local adaptation81

(Haasl and Payseur, 2016; Oleksyk et al., 2010). A strong selective force, which pathogen82

presence is likely to be (Fumagalli et al., 2011), is expected to result in an increase in the83

frequency of advantageous alleles, with a simultaneous reduction in variability in neutral linked84

sites (Nielsen et al., 2005; Oleksyk et al., 2010). In teleosts, genome scans and candidate gene85

approaches have been used to test whether genomic regions containing immune-relevant genes86

exhibit stronger evidence for selection compared to other regions (Pankratz et al., 2010; Tonteri87

et al., 2008), and to identify the genetic basis of local adaptation linked to a variety of other88

natural conditions, including water temperature and salinity (Guo et al., 2016; Kusakabe et al.,89

2017; Limborg et al., 2012b; Nielsen et al., 2009; Vilas et al., 2015). However, identifying90

genomic signals of selection in response to a particular selective pressure in wild populations91

can be challenging. One reason for this is that wild populations are constantly exposed to a92

plethora of different, and often correlated, selective pressures, the relative strengths of which93

are not always clear and/or may vary. Consequently, it can be challenging to predict which of94

the selective pressures leaves the most pronounced footprint in the genome and is thus the one95

that is most likely to be detected by natural selection scans. In addition, genomic signals of the96

effects of genetic drift (increased divergence and decreased diversity) can be similar to those97

of natural selection, albeit at a genome-wide scale. In populations with a small effective98

population size, the identification of signals of selection is even more difficult, as the effect of99

genetic drift on reduction in allele diversity is more pronounced (Schlötterer, 2003). Population100

history may further complicate the interpretation of selective signals, as even when subjected101

to the same selective pressure, populations with different phylogeographic histories, and102

therefore from different genetic lineages, may follow diverse adaptation paths due to103

dissimilarity in standing genetic variation (Przeworski et al., 2005). Therefore, a good104

understanding of population history can help minimize the number of false positives in scans105

for signals of natural selection.106

The abovementioned challenges for identifying the genetic basis of adaptation are of107

relevance to contemporary Atlantic salmon from northern Europe.  Following the retreat of the108

Scandinavian ice sheet after the last glacial maximum (17,000-15,000 years ago (ya)), different109

water basins have been colonized at different times and by salmon from various phylogenetic110
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lineages, resulting in the prolonged isolation of freshwater lakes Ladoga and Onega from111

Atlantic Ocean salmon and the pronounced genetic divergence between salmon populations in112

the region at various geographic scales. Northwest Russian lakes Onega and Ladoga were113

formed first, approximately 13,000 ya (Björck, 1995; Saarnisto and Saarinen, 2001), and were114

colonized by salmon from an eastern freshwater refugium, which had been previously isolated115

from an Atlantic Ocean influence for at least 130,000 years (Funder et al., 2002). The Kola116

Peninsula and White Sea areas were free of ice later than the Russian lakes and were re-117

colonized by salmon from refugia in the eastern Barents Sea and the south Atlantic Ocean118

(Asplund et al., 2004; Bourret et al., 2013; Tonteri et al., 2005). As a result, Baltic lineage119

salmon, including Onega and Ladoga stocks, are genetically highly diverged from the eastern120

Atlantic Ocean lineage that includes the Barents Sea and the White Sea (Asplund et al., 2004;121

Bourret et al., 2013; Nilsson et al., 2001; Ozerov et al., 2010; Tonteri et al., 2005). Furthermore,122

lower effective population sizes, and therefore an increased influence of genetic drift, have123

resulted in high divergence between the salmon populations from lakes Onega and Ladoga124

(Ozerov et al., 2010; Tonteri et al., 2007).125

Given the prolonged isolation of freshwater salmon, it is likely that they have evolved a126

number of unique traits (in addition to G. salaris resistance) compared to populations in the127

rest of the range, including variation in the smoltification process (Kiiskinen et al., 2003; Nilsen128

et al., 2008, 2003) and other physiological functions (Peng et al., 2003) likely resulting from129

adaptation to a freshwater lifestyle. Water temperature profiles also differ between freshwater130

northwest Russian lakes and the northern Atlantic Ocean, with both the river water temperature131

during salmon development and the water temperature of salmon feeding grounds in lakes132

Ladoga and Onega being generally warmer (Naumenko et al., 1996; Tolstikov and Petrov,133

2006). While temperature is known to affect metabolic and developmental rates (Brown et al.,134

2004; Gillooly et al., 2001), it also greatly influences food availability and trophic networks135

(Winder and Schindler, 2004) as well as pathogen diversity (Adlard et al., 2015; Dionne et al.,136

2007) and thus is likely to be a strong selective force both in lakes and the ocean. In addition,137

salmon populations in lakes Ladoga and Onega are relatively small in population size and138

therefore are likely to be characterized by strong genetic drift (Ozerov et al., 2010; Tonteri et139

al., 2007). Given the abovementioned, and given the fact that G. salaris susceptibility co-varies140

with gradients of salinity and temperature in North European salmon populations, it may be141

challenging to disentangle signals of parasite-mediated selection from other selective forces.142

We have previously studied the genetic basis of Atlantic salmon adaptation to G. salaris143

using a genome scan based on 4,631 single nucleotide polymorphisms (SNPs) (Zueva et al.,144
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2014). To address the abovementioned challenges in identifying genetic footprints of selection,145

we developed and implemented an analysis approach based on multiple tests for selection that146

involves several combinations of populations varying in geographic location and susceptibility147

to the parasite. Three genomic regions potentially involved in parasite resistance were148

identified, as well as three regions possibly related to salinity adaptation. However, the limited149

number of polymorphic markers, combined with the small number of population samples150

available, maintains the possibility that some regions under selection may have been missed.151

In the current study, we address those limitations by genotyping DNA pools on a 220,000 SNP152

array, and increasing the number of surveyed populations from 12 to 43, allowing for a153

considerable increase in the resolution of the selection signals.154
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MATERIALS AND METHODS155

156

Ethics statement157

Samples used in this study were obtained according to relevant national legislations and158

were described previously (Ozerov et al., 2012, 2010; Zueva et al., 2014).159

160

Sampled populations161

Atlantic salmon from 44 north European populations were initially included in the study.162

Sample sizes per location varied from 23 (Lizma river) to 326 (Tenojoki_1 river), totalling163

2,438 individuals (Table 1, Figure 1). Most samples represented juveniles collected between164

1997 and 2005 via electrofishing, where tissue was stored in 95% ethanol (see Ozerov et al.165

2010, 2012 for details) except for the Näätämö  River and two sub-populations from the Teno166

River that originated from air-dried scales collected from adults during their spawning167

migration (Aykanat et al., 2015; Pritchard et al., 2016). Earlier research has indicated that the168

vast majority of these population exhibit temporarily stable population structure (Ozerov et al.,169

2013).170

171

Sample preparation and population pooling172

Total genomic DNA was extracted using one of several methods including173

NucleoSpin® Tissue (Macherey Nagel) protocol, salt extraction protocol (Aljanabi and174

Martinez, 1997), vacuum extraction with glass beads (as in Elphinstone et al. 2003), or175

QIAamp DNA mini kit (Qiagen). DNA extraction and sample pooling for Tenojoki_1,176

Tenojoki_2 and Näätämö rivers were described in Aykanat et al. (2015) and Pritchard et al.177

(2016). Individual DNA samples from remaining 41 populations extracted for previous studies178

(e.g. Tonteri et al. 2007; Ozerov et al. 2010; Zueva et al. 2014), were subjectively assessed for179

degradation by electrophoretic separation on a 1% agarose gel. Samples showing excessive180

signs of degradation (low molecular weight DNA) were re-extracted with QIAamp DNA mini181

kit (Qiagen) (618 samples). The concentration of individual DNA samples was measured using182

a Qubit 2.0 fluorometer and Qubit dsDNA HS Assay kit (Life Technologies), and adjusted to183

a final concentration of 10 ng/ul. Equal amounts of DNA from all individuals from the same184

population were combined to make a population pool, with four technical replicates per185

population, i.e., 41 x 4 = 164 pools in total. The final concentration of each pool was measured186

with Qubit to verify that it was 10 ± 0.5 ng/ul.187

188
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SNP genotyping and data filtering189

For each pool, allele intensities were obtained for 220,000 SNPs genotyped on a custom190

Affymetrix Axiom array (Life Technologies) according to the manufacturer’s instructions (see191

Barson et al. 2015 for array details) at the Centre for Integrative Genetics (CIGENE, Norway).192

These data were subjected to a series of manipulations and quality checking steps. First, the193

relative intensities of the B allele were calculated and corrected for unequal allele194

representation using a polynomial specific probe correction algorithm, PPC (Brohede et al.,195

2005). Salmon (n=610) previously genotyped as individuals and allelotyped in pools were used196

for PPC correction (Supplementary material S_script1). SNP loci were removed from the data197

set if they, (i) did not include all 3 possible genotypes (AA, AB and BB) in the reference sample198

of 610 individuals, (ii) could be affected by a known off-target variant, (iii) deviated from HWE199

with P<0.00001, or (iv) had a minor allele frequency across all populations less than 0.05200

(Supplementary material S_script2). SNPs were tested for deviation from Hardy-Weinberg201

equilibrium using individual genotypes of samples from the mainstem Tenojoki population202

(data as in Pritchard et al., 2016). Strong deviation from HWE may indicate genotype calling203

errors (e.g. homozygotes and heterozygotes are both being called as homozygotes), and a204

significance level of 0.00001 was chosen in order to primarily exclude SNPs that deviate from205

HWE due to technical issues. Furthermore, for every SNP, we tested the variability of allele B206

frequencies over four pooling replicates by comparing sets of SNPs with the highest standard207

deviation (SD) over replicas between all populations (20% of most variable SNPs for each208

population). None of the SNPs had high SD over replicates in all the populations, and therefore,209

none of the SNPs were filtered out during this step (Supplementary material S_script 3).210

Population Chapoma, however, was excluded due to a high number of SNPs with high SD over211

genotyping replicas (3% of all SNPs had SD > 0.1 in Chapoma, whereas for the other212

populations, this number was approximately 0.4%; Supplementary material S_script 3). For213

the remaining populations, the arithmetic mean of allele B frequencies for each SNP was214

calculated using allele frequencies falling within 25% and 75% quantiles of the original215

frequency distribution between four genotyping replicates (Supplementary material S_script 4,216

5). After quality control, 197,431 SNPs and 43 populations were retained for further analyses.217

218

Salmon genome annotation219

Annotations for the Atlantic salmon genome were obtained via R package Ssa.RefSeq.db220

(https://github.com/FabianGrammes/Ssa.RefSeq.db). The package utilizes the latest publicly221
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available salmon genome build, ICSASG_v2222

(https://www.ncbi.nlm.nih.gov/genome/369?genome_assembly_id=248466), and Gene223

Ontology annotations are assigned to genes by blasting the predicted coding sequences against224

the Swiss-Prot protein DB using Blast2GO software (Conesa et al., 2005) with the default225

settings. In cases when a gene had more than one transcript and thus more than one predicted226

protein sequence, the longest protein sequence was used in blastp. Mapping between the SNPs227

and the respective genes of interest was done using bedtools software (Quinlan and Hall, 2010),228

with SNP positions verified using NCBI dbSNP database229

(https://www.ncbi.nlm.nih.gov/projects/SNP/) and gene information obtained from the NCBI230

webpages of the ICSASG_v2 salmon genome build reference sequence files231

(https://www.ncbi.nlm.nih.gov/genome?LinkName=nuccore_genome&from_uid=925216783232

). Gene margins were defined as the region from the start of the 5´untranslated region (UTR)233

to the end of the 3’ UTR, including the coding sequence for the longest predicted protein, and234

a SNP was assigned to a gene if its position in the genome fell within a gene margin.235

236

Population genetics and outlier locus detection237

Principal component analysis (PCA) was performed to assess the basic population genetic238

structure using the prcomp algorithm within the built-in ‘stats’ package within the R-3.4.0239

environment (R Core Team, 2016) (Supplementary material S_script 6). To identify the240

genome regions potentially affected by signals of selection, we used two independent methods241

that are suitable for implementation with pooled SNP data, and primarily concentrated on SNPs242

found to be outliers by both approaches.243

Bayenv, implemented in the Bayenv2.0 software, is a Bayesian method that can be used244

to identify SNPs with unusually large allele frequency differentiation after accounting for245

population history and gene flow (Günther and Coop, 2013). As we were interested in selection246

signals that were common across populations within each geographical region, we treated the247

three geographic regions (Barents & White Seas, Lake Ladoga, and Lake Onega) as248

populations, while original populations within a region were treated as individuals. Allele249

frequencies per SNP per region were then calculated as the arithmetic mean of the population250

allele frequencies. Allele frequencies were converted to allele counts, required for Bayenv2.0251

input files, based on the total number of individuals across all populations in a region252

(Supplementary material S_script7.1). Three pair-wise comparisons were performed: Barents253

& White Seas vs. Ladoga lake, Barents & White Seas vs. Onega lake, and Ladoga lake vs.254
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Onega lake. Using PLINK software (Purcell et al., 2007) we first identified SNPs with no255

linkage disequilibrium between them, and a random subset of these SNPs was used to compute256

a covariance matrix between the populations. We checked the convergence of matrices built257

using different numbers of random SNPs and the influence of the iteration number. As a result,258

covariance matrices were built using 50,000 SNPs and 100,000 iterations, which proved to be259

both sufficient and computationally effective. During the next step, Bayenv2.0 calculates a260

population differentiation statistic called XTX, analogous to the well-known FST, but based on261

standardized allele frequencies that were derived to account for population structure. XTX was262

calculated using 10,000 iterations and was used to identify loci that are more differentiated than263

expected under pure drift between populations (Günther and Coop, 2013). The software does264

not provide significance estimations for deviation from the null distribution. Therefore, a265

custom cut-off at the upper 0.005% quantile of the statistical distribution was applied to266

determine possible SNP outliers (Supplementary material S_script7.2). Next, we compared the267

results from the three pair-wise comparisons, focusing on genomic regions harbouring peaks268

of SNPs with elevated XTX statistics in both the Barents & White Seas vs. Ladoga lake and the269

Barents & White Seas vs. Onega lake comparisons, but absent from the Ladoga lake vs. Onega270

lake comparison. Populations in landlocked lakes have been isolated from each other for a long271

period of time, and this approach allows us to exclude genomic regions that are likely to exhibit272

elevated levels of differentiation due to genetic drift rather than directional selection. Further,273

we identified genes that contained outlier SNPs within their margine using bedtools software274

and the procedure described above. Only genes that had outliers in both Barents & White Seas275

vs. Ladoga lake and Barents & White Seas vs. Onega lake tests were considered to be276

candidates (see Results).277

A second method used to detect outlier loci was the Bayesian approach implemented in278

the BayeScan2.1 software (Foll and Gaggiotti, 2008). This approach allows direct estimation279

of the posterior probability of a given locus to be under the effect of selection by defining two280

alternative models, one that includes the effect of selection and another that excludes it, and281

testing their respective posterior probabilities using a MCMC approach. The method uses282

population-specific and locus-specific components of FST coefficients and has been suggested283

to be robust when dealing with complex demographic scenarios for neutral genetic284

differentiation (Foll and Gaggiotti, 2008). The same logic as for Bayenv2 was applied: we285

performed three pair-wise comparisons, where geographic regions were treated as populations286

and original populations were treated as individuals. Calculations were performed under the287

default parameters. Outlier SNPs were identified with a false discovery rate of 0.05, and288
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respective genes were assigned to each outlier SNP using bedtools. The final set of candidate289

genes under selection was obtained by identifying genes that were detected by both Barents &290

White Seas vs. Ladoga lake and Barents & White Seas vs. Onega lake comparisons, but were291

not present among outliers in the Ladoga lake vs. Onega lake test. Genes present both in292

Bayenv2.0 and BayeScan2.1-based candidate gene sets were further considered as candidate293

genes potentially affected by selection (Supplementary material S_script8).294

We also considered single SNPs with the most pronounced levels of genetic differentiation295

based on both Bayenv2.0 and BayeScan2.1 approaches as candidates, initially regardless of the296

overlap between the tests or population comparisons. For each of the tests, the 50 SNPs with297

the most extreme statistics (the highest XTX for Bayenv2.0, and the lowest q-values for298

BayeScan2.1) were selected, and associated genes harbouring the SNPs were retrieved using299

the bedtools. These gene sets were then compared between the Bayenv2.0 and BayeScan2.1300

approaches and between the Barents & White Seas vs. Ladoga lake, Barents & White Seas vs.301

Onega lake and Ladoga lake vs. Onega lake pair-wise comparisons.302

Functional annotation and functional enrichment test303

Annotations of all SNPs to specific gene ontology (GO) terms (Ashburner et al., 2000)304

were obtained via the Ssa.RefSeq.db package. To determine whether the set of identified305

candidate genes (see Results) was significantly enriched or depleted for particular GO terms,306

we performed an enrichment test, implemented in the topGO package in R, using the weight01307

algorithm and the list of all Atlantic salmon genes that contained SNPs from the SNP array as308

a reference (Supplementary material S_script9).309
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RESULTS310

Population genetic structure311

Populations from different geographic regions clustered in distinct groups based on312

principal component analysis. The first PC explained 42% of the variance and separated the313

Barents & White Seas salmon populations from the freshwater lakes. The second component,314

explaining 9% of variance, separated the Ladoga and Onega lakes (Figure 2).315

Detecting signals of selection316

XTX statistics for each SNP for each of the Barents & White Seas vs. Ladoga lake, Barents317

& White Seas vs. Onega lake and Ladoga lake vs. Onega lake pair-wise tests and 0.005% upper318

quantile outliers were estimated using Bayenv2 and are presented in Table_S1. Altogether, 118319

candidate outlier genes were detected in both Barents & White Seas vs. Ladoga lake and320

Barents & White Seas vs. Onega lake comparisons, but not from the Ladoga lake vs. Onega321

lake test after mapping outlier SNPs to specific genes (Figure 3, Table_S2).322

Outlier SNPs detected using BayeScan2.1 for each of the Barents & White Seas vs. Ladoga323

lake, Barents & White Seas vs. Onega lake and Ladoga lake vs. Onega lake pair-wise tests with324

a q-value false discovery threshold of 0.05 are presented in Table_S3. Once SNPs were mapped325

to the genes, 167 candidate genes harbouring SNPs exhibiting signals consistent with positive326

selection were shared between the Barents & White Seas vs. Ladoga lake and Barents & White327

Seas vs. Onega lake tests (Figure 3, Table_S4).328

Fifty seven genes with outlier SNPs on 24 chromosomes were common for both the329

Bayenv2 and BayeScan2.1 analysis approaches and were therefore considered as the most330

promising candidates to be affected by positive selection that distinguishes salmon originating331

from the Atlantic Ocean from those originating from freshwater lakes (Table 2, Table_S5).332

When the most highly genetically differentiated SNPs from both Bayenv2.0 and333

BayeScan2.1 tests were considered, approximately half of the yielded genes were similar334

between both approaches (Table_S6). However, the overlap between the Barents & White Seas335

vs. Ladoga lake and Barents & White Seas vs. Onega lake comparisons was less pronounced.336

Only one gene, serine/threonine-protein phosphatase regulatory subunit, was among the most337

differentiated based on both Bayenv2.0 and BayeScan2.1 and for both the Barents & White338

Seas vs. Ladoga lake and Barents & White Seas vs. Onega lake comparisons (Table 2).339

340

Functional annotation341
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Using the Ssa.RefSeq.db package and the annotation procedure described above, out of342

the 48,785 protein-coding genes reported for Atlantic salmon, 30,560 genes had a SNP within343

their margin, and 23,850 of these genes were annotated with GO terms (Table_S7). From a344

candidate set of 57 genes, 50 genes were annotated (Table_S7). Enrichment analysis retrieved345

several GO terms that were significantly overrepresented in the set of 50 annotated candidate346

genes. These included three biological processes with significance levels less than 0.01:347

response to arsenic containing substance (GO: 0046685), lymph node development (GO:00348

48535), and response to virus (GO: 0009615). The only enriched cellular components was349

microtubule organizing center (GO:0005815). Finally, the most highly enriched molecular350

function GO terms were phospholipase activator activity (GO: 0016004), vinculin activity351

(GO: 0017166), and phosphatidylinositol phospholipase C activity (GO: 0004435) (Table_S5,352

S8).353
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DISCUSSION354

355

In this study, we utilized an extensive sample of 43 anadromous and landlocked salmon356

populations and almost 200,000 SNPs to investigate the genomic basis of differences in357

susceptibility to the parasite Gyrodactylus salaris observed in north European Atlantic salmon358

populations. By combining results from different outlier tests, we established a set of 57359

candidate genes potentially associated with parasite tolerance/susceptibility.360

361

Evidence of immune related functions of candidate genes362

Several GO terms related to both innate and acquired immunity were enriched amongst363

the 57 candidate genes.364

The most significantly enriched biological process term was response to arsenic-containing365

substance, GO:0046685, and along with another significant term, response to virus366

(GO:0009615), it was associated with the interferon-induced GTP-binding protein Mx-like367

gene. There are several copies of the mx (myxovirus)-like gene on chromosome 25, and three368

of them are included in the set of 57 candidate genes in our analysis (Table 2). Mx genes are369

induced during virus infection as a part of interferon-mediated innate immune response, and370

are active against a wide range of DNA and RNA viruses (Mitchell et al., 2013). The same set371

of genes was recently found to be highly diverged between salmon lineages from the Atlantic372

Ocean and the Finnmark region, which includes the Barents Sea clade (Kjærner-Semb et al.,373

2016). Our results suggest this genome region is under selection in Atlantic salmon more374

broadly as our study included populations from regions not studied previously, e.g. land-locked375

populations.376

The third significantly enriched biological process term was lymph node development,377

GO:0048535. Earlier research on a number of genes with this GO term provides support for378

this process potentially being important in Gyrodactylus resistance in Atlantic salmon. Lymph379

nodes are essential part of the mammalian adaptive immune system as they are involved in380

lymph filtering and circulation, and are a place of residence for leukocytes including B and T381

lymphocytes. The lymphoid system of teleosts lacks lymph nodes, but include organs with382

similar functions such as lymphatic vessels, thymus, head kidney (considered an ortholog of383

mammalian bone marrow) and spleen (Hedrick et al., 2013; Sunyer, 2013). T-lymphocytes,384

developing and maturing in the thymus, as well as interleukin signalling pathways in fishes385

also resemble those of mammals (Nakanishi et al., 2015; Zapata et al., 2006). One of the genes386

associated with the lymph node GO term is the T-cell leukemia homeobox protein 1 (TLX1) -387
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like gene, involved in mammalian spleen development (Yamamoto et al., 1995). TLX1 is also388

expressed during fish spleen development and presumably contributes to a supportive389

microenvironment for the maturation of lymphocytes, which appear in fish spleen after they390

become present in thymus and kidney (Boehm et al., 2012; Li et al., 2017). Another associated391

gene, nuclear receptor ROR-alpha-like gene (RORα), has diverse biological functions392

including regulation of glucose and free fatty acid metabolism (Kadiri et al., 2015) and is also393

an important pro-inflammatory agent participating in regulation of inflammation cytokines394

(Sadeghi et al., 2015; Sun et al., 2015) and modulation essential for inflammation T-helper395

lymphocytes (Th-17) (Yang et al., 2008). In teleosts, RORα, along with another transcription396

factor RORγ, regulate expression of pro-inflammatory interleukins-17 (IL-17).  IL-17 members397

have been identified in several fish species including Atlantic salmon, and are reported to play398

crucial roles in host defense against microbial organisms (Chi et al., 2016; Kumari et al., 2009).399

Involvement of the candidate gene set in immune response was further emphasized by the400

enriched cellular component and molecular function GO terms: microtubule organizing center,401

vinculin binding, and phospholipase activity; united by their association to cytoskeleton,402

formation of focal and cell-cell adhesions and cell signaling. Reorganization of leukocytes’403

membrane, required for generating and maintaining immune response, depends on drastic404

changes of microtubule organizing center and involves the segregation of membrane and405

intracellular signaling proteins (Sancho et al., 2002). Talin, one of the proteins associated with406

the microtubule organizing center (MOC) GO term (Table_S5), binds trans-membrane407

receptors to actin cell cytoskeleton and is crucial during phagocytosis in amoeba and mammals408

(Freeman and Grinstein, 2014; Lim et al., 2007), as well as during adhesion of natural killer409

cells and T-lymphocytes to the extra-cellular matrix and target cells (Mace et al., 2009; Stanton410

et al., 2014). Talin-integrin complex is stabilized with the help of vinculin, and is dependent411

on activating of tyrosine phosporylation, as well as activity of phosphatidylinositol 3-kinase412

(PI3K) and phospholipase C. Altogether two genes from the candidate gene set have413

phospholipase A and phospholipase C- activity. Phospholipases, while involved in a number414

of signalling pathways, are known to have an important role in signal transduction in415

leukocytes, e.g., natural killer cells (Caraux et al., 2017), and have a pronounced role in416

inflammation processes (Boilard et al., 2010). Most of the abovementioned studies were417

conducted using mammalian models, but teleosts express a variety of similar interleukins,418

integrin complexes, and signalling pathways involved in immune regulation, for example IL-419

21,22 and PI3K-signalling (Costa et al., 2013; Wang et al., 2011), immunoreceptors that420

contain tyrosine-based activation motifs (ITAMs) (Blank et al., 2009), as well as CR3 integrins421
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that require actin-activation (Lillico et al., 2017; Mikrou et al., 2009). Toll-signaling, another422

vital part of immune signaling, is also present in teleost fishes (Hanington et al., 2009; Rebl et423

al., 2010). One of the candidate genes, sphingomyelin phosphodiesterase 3, is involved in lipid424

metabolism and was shown to regulate Toll-like receptors signalling in mice macrophages425

(Heinz et al., 2015). Granulin, one of the co-factors for Toll-like receptors (Park et al., 2011),426

promotes host cell proliferation when excreted by  liver flukes (Bansal et al., 2017; Smout et427

al., 2009), and it is known that an extensive skin and mucus proliferation is one of the428

consequences of G. salaris infection in susceptible Atlantic salmon (see below).429

Three of the candidate genes harbour non-synonymous (missense) outlier SNPs, which430

implies that they may result in a change of protein structure and therefore possibly protein431

function (Table2, Table S5). Linking these genes to immune response processes is not432

straightforward, as they are involved in a number of cellular processes. However, NAGPA,433

playing part in lysosomal activity, is known to be important in maturation of dendritic cells434

required for T-cells stimulation (Trombetta et al., 2003). RNA helicases from the DEAD/H435

family, to which another gene, DNA helicase ddx11, belongs to, have been associated with436

innate immunity and response to viruses in humans (Oshiumi et al., 2010; Schröder, 2011) and437

salmonids (Castro et al., 2013; Krasnov et al., 2011). A link with pathogen-induced signalling438

in innate immune system was also identifiable for the third gene, TBC1D5, which is involved439

in induction and regulation of autophagy (Faure and Lafont, 2013). Taken together, these440

results suggest involvement of the candidate gene set in cell-signalling during both innate and441

adaptive immune response, and the mentioned genes are thus promising candidates for future442

research.443

The candidate gene set described above was formed based on criteria of overlap between444

the Bayenv2.0 and BayeScan2.1 results and overlap between the Barents & White Seas vs.445

Ladoga lake and Barents & White Seas vs. Onega lake pair-wise comparisons. However, we446

also looked for the genes harbouring the most significant SNPs regardless of the overlaps447

between the analysis approaches and pair-wise comparisons. The Bayenv2.0 and BayeScan2.1448

tests independently resulted in comparable sets of SNPs with high differentiation, with449

approximately 50% of the related genes being similar between the tests. Within the results of450

both Bayenv2.0 and BayeScan2.1 tests, there were obvious differences between the pair-wise451

comparisons, as almost none of the genes overlapped between the Barents & White Seas vs.452

Ladoga lake, Barents & White Seas vs. Onega lake, or Ladoga lake vs. Onega lake pair-wise453

comparisons. Only one gene from the candidate gene set described above, the serine/threonine-454

protein phosphatase 2A (pp2A) 56 kDa regulatory subunit gamma -like gene, emerged in both455
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the Barents & White Seas vs. Ladoga lake and Barents & White Seas vs. Onega lake456

comparisons (but not in the Ladoga lake vs. Onega lake comparison). PP2A is the major457

phosphatase for microtubule-associated proteins (Abraham et al., 2000; Watkins et al., 2012)458

and is abundant in mammalian lymphocytes (Chuang et al., 2000). It was suggested as an459

immune relevant gene in common carp (Abdelkhalek et al., 2014), and is thus a promising gene460

for future research on immune regulation in fishes.461

Overall, these findings are consistent with the idea of G. salaris tolerance/susceptibility462

differences observed between landlocked and Atlantic Ocean salmon populations being linked463

to natural selection acting on the regulatory mechanisms of both innate and adaptive immune464

systems. To further test this hypothesis and to strengthen the candidacy of reported genes465

several directions for future research could be suggested. First, the expression profiles for the466

candidate genes can be compared by parasite challenge experiments using individuals from467

susceptible and resistant populations in a controlled laboratory environment, e.g. using qPCR.468

This approach was fruitful in gene expression experiments featuring Atlantic salmon and469

G. salaris, when up-regulation of potentially immune relevant myeloid leukemia470

differentiation protein was detected in susceptible salmon (Matejusová et al., 2006); as well as471

in number of other studies challenging salmonids with various pathogens (Haarder et al., 2013;472

Krasnov et al., 2012). Furthermore, for candidate genes with presumed regulatory function,473

expression of downstream regulatory targets could also be quantified, and for candidate genes474

with presumed enzymatic activity (effectors) biochemical assays could be used to quantify475

corresponding protein activity. Another possibility for follow-up research is to concentrate on476

G. salaris susceptible salmon populations that due to continuous re-stocking survive the477

infection: Keret' river in the White Sea (Kuusela et al., 2009), and Drammen system in Norway478

(Bakke et al., 1990). Notably, genetic composition of Keret’ river salmon was suggested to479

have changed over the years in response to parasite load (Artamonova et al., 2008). Utilizing a480

dense SNP array and a knowledge of candidate genes, it is possible to test hypotheses of the481

precise targets of this temporal change.482

483

Comparison with previous studies484

One of the genes from the candidate genes set, coding for an adhesion G protein-coupled485

receptor L2 (adgrl2), is located within the G. salaris - related region on chromosome 10486

detected in our previous study (Zueva et al., 2014). G protein-coupled receptors are involved487

in a plethora of signal-transduction pathways, including T-cell signaling (Goetzl et al., 2004;488

Smit et al., 2007), and are common among various taxa (Schiöth and Fredriksson, 2005).489
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ADGRL-type receptors, at least in mammals, are crucial for functioning of nervous and490

cardiovascular systems, but their possible involvement in teleost immune system is not yet491

clear.492

Taken together, genomic regions associated with G. salaris presence based on Zueva et al.493

(2014) were clustered into two functional groups; one of the groups included genes involved494

in T cell activation and the other included genes involved in the synthesis and elongation of495

fatty acids, which are known to moderate inflammation and act as anti-pathogen agents (Calder,496

2001; Carballeira, 2008; Harbige, 2003). Regulation of T-lymphocytes is part of adaptive497

immunity, whereas lipid metabolism and macrophage activation are part of innate immunity.498

Experimental studies on Atlantic salmon response to G. salaris are limited, and it is hard to499

predict the exact mechanisms that form the foundation of resistance and/or tolerance to the500

parasite. It was demonstrated, however, that highly susceptible salmon from the east Atlantic501

responded to G. salaris exposure by an elevated production of interleukin-1b and interferon-502

gamma cytokines, which enhance the proliferation of the epithelial and mucous cells that the503

parasite feeds on. Less susceptible Baltic salmon responded to the parasite with delay and by504

the activation of genes that did not result in mucus proliferation. It was suggested that by505

regulating the initial stages of inflammation, and consequently, mucus production, Baltic506

salmon are able to control parasite abundance by starving it (Kania et al., 2010; Lindenstrom507

et al., 2006). An acquired immune response generally takes more time to develop and initiate,508

and given that G. salaris presence can result in the rapid decline of infected fish (Bakke et al.,509

1990, 2004), it is feasible that the defence mechanisms against this parasite species are focused,510

at least partly, around the innate immune system.511

The overall functional patterns of the detected gene sets are similar between the previous512

and current studies, and the limited overlap between the candidate genes and genomic regions513

is not unexpected. Most obviously, the current study is based on a qualitatively greater number514

of SNPs, with the average SNP density being one SNP per 0.018 mega bases (Mb) as opposed515

to one SNP per 0.5 Mb in the previous study. Consequently, previous regions of elevated FST516

are masked by much more narrow and abundant regions of both elevated and reduced genetic517

differentiation that have been detected in current study. The low SNP coverage in Zueva et al.518

2014 also complicates the result comparison itself, as whether we find overlap or not depends519

on the distance used to assign SNPs to genes. In addition, the annotation of the salmon genome520

has improved rapidly in recent years following publication of the Atlantic salmon genome521

sequence (Lien et al., 2016). Indeed, a number of significant SNPs were excluded from522

enrichment analyses in the previous study due to a lack of functional annotation. Furthermore,523
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the two studies differ in the methods used for identifying genomic regions of selection and in524

the analysis design used to select the final candidate gene sets. In addition, while there was525

only one overlap between the current results and the genomic regions identified based on a526

combination of all four tests in the previous study, there were common genes when considering527

the tests used in Zueva et al. (2014) one at a time. For example, Design 4 (single loci outlier528

test) from Zueva et al. (2014) detected one gene that was also present in the current candidate529

gene set: wwc1, participating in phosphorylation; Design 1 (reduced diversity in freshwater530

lakes) detected a RORα-like gene described previously, and a chromobox protein homolog 7531

that among other functions modulated CD4+ T cell apoptosis in mammals (Li et al., 2014).532

Overall, it is encouraging that regardless of the chosen strategy, both the current and previous533

studies resulted in identifying candidate regions that share functional characteristics.534

The genomic basis of tolerance to G. salaris has also been studied using a QTL approach535

by back-crossing the parasite susceptible Scottish salmon with parasite-tolerant Baltic salmon,536

and several microsatellites associated with G. salaris tolerance have been identified (Gilbey et537

al., 2006). These associations represented entire linkage groups, and a direct comparison of the538

results should be done with caution since there can be inconsistencies in linkage group names539

between the SALMAP project, used by Gilbey and co-authors, and the current Atlantic salmon540

genome build. Nevertheless, linkage groups 1, 4, 5, 6, 9, 13, 18 and 25 were suggested by both541

results, and altogether, our findings are consistent with the idea of polygenic control for both542

innate and acquired G. salaris resistance as suggested by Gilbey and co-authors.543

544

2. Interpreting the results: challenges and perspectives545

546

Biological perspective: the challenge of correlated environmental traits.547

The results of this study highlight several of the challenges of using a genome-scan548

approach to identify loci associated with a specific phenotypic trait, even when dramatic549

differences in the trait exist between replicated populations. These challenges can be both550

environmental and genetic in nature. As noted earlier, separating signals of selection on551

correlated environmental and phenotypic traits can be challenging when working at the552

between-population level. In the case of Atlantic salmon from northern Europe, these traits553

include parasite presence/absence, salinity of the water basin that the fish migrates to, water554

temperature in both the home rivers and on the feeding grounds, as well as hypothetical555

differences in fish diet in marine and freshwater environments. Given the potential drastic556

effect G. salaris has on fish survival, our assumption was that parasite presence should leave a557



20

very pronounced footprint of selection in the salmon genome, and our analyses were designed558

to focus on this assumption. However, we cannot exclude the possibility that the observed559

signals of selection are partly due to other selective forces in addition to the effects of the560

parasite. For example, apart from immune function, actin-based cytoskeleton was shown to561

play a role in osmotic regulation of K+/Na+/2Cl cotransporters (Flatman, 2002; Lionetto and562

Schettino, 2006). Cation-chloride cotransporters, such as the K+/Na+/2Cl cotransporter, are563

known to be associated with salinity adaptation in a number of fish species, including the564

brackish medaka (Oryzias dancena) (Kang et al., 2010), Mozambique tilapia, Oreochromis565

mossambicus, (Hiroi et al., 2008) and mummichog, Fundulus heteroclitus (Hoffmann et al.,566

2002). Interleukins, immune signal molecules associated with a number of genes desribed567

above, have also shown signals of divergent selection between anadromous and landlocked568

brown trout (Limborg et al., 2012a; Narum et al., 2011). On the other hand, a number of studies569

have documented an increase of phagosystosis, alterations in antimicrobial enzyme lysozyme570

levels, as well as change in IgM levels in response to salinity alteration, indicating strong effect571

of salinity on innate and adaptive immune systems of teleosts (Bowden, 2008; Makrinos and572

Bowden, 2016). A genetic issue that may disguise the target of selection is gene pleiotropy:573

when a particular gene has multiple functions, it may not be clear which specific function has574

resulted in a gene or a genomic region exhibiting signatures of selection. Furthermore,575

pleiotropic effects may constrain selection on a particular trait, when the genetic response to576

selection on one trait is limited by selection on other correlated traits controlled by the gene577

(Orr, 2000; Wagner and Zhang, 2011). The level of gene pleiotropy has been shown to be578

negatively correlated with variability in gene expression in response to environmental change579

and is thus an evolutionary constraint (Papakostas et al., 2014). Many candidate genes from580

our study are involved in a number of other processes apart from immunity. For example,581

serine/threonine-protein phosphatase 2A and 2B are also involved in osmoregulation582

(Nakamura et al., 1993; Shiozaki and Russell, 1995), while nuclear receptor ror-alpha is583

associated with circadian clock (Yang et al., 2006). If the basis of salmon response to G. salaris584

is controlled by several genes with multiple additional functions, the genomic signals of585

selection on these genes may be less pronounced and thus more difficult to identify and/or586

interpret.587

588

Methodological perspective: power of genome scans589

The candidate gene set identified in this study is based on the overlapping results of two590

approaches for identifying signals of selection, implemented in the Bayenv2.0 and591
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BayeScan2.1 software. A focus on loci identified as outliers in several tests has been applied592

in a number of studies to strengthen the candidacy of identified loci targeted by selection and593

to reduce type I errors (Oleksyk et al., 2008; Vasemägi et al., 2005). Such an approach may,594

however, reduce the chances of identifying loci under weak selection (Whitlock and Lotterhos,595

2015). Both approaches implemented in the current study suggested a large number of “outlier”596

SNPs and associated genes, but just under half were common between the tests (57 genes out597

of more than 115 in each test). These tests are based on quantifying population differentiation598

in terms of FST or related measures and use different approaches to correct for neutral599

population structure (Hoban et al., 2016); thus, some of the resulting outliers might be an600

outcome of pronounced genetic drift and restricted gene flow (Bierne et al., 2011; Oleksyk et601

al., 2010), explaining the lack of full overlap between the identified regions of selection.602

One caveat that is relevant for our study, and indeed all outlier analyses conducted in Atlantic603

salmon thus far is that due to not complete genome rediploidization approximately 10% of Atlantic604

salmon genome retain residual tetrasomy (Lien et al., 2016). Because of this, SNPs from this portion of605

the genome are not represented in the SNP array for technical reasons. Therefore potentially important606

genes residing in those regions might not have been detected. Another factor that could potentially607

affect outlier identification is ascertainment bias (Lachance and Tishkoff 2013) stemming from the608

fact that SNPs included in the array were based on their polymorphism in Norwegian aquaculture609

salmon from the Atlantic lineage. However, the relative levels of population genetic diversity and610

divergence estimated in the present study are in line with previous assessments using a different611

marker type (microsatellites: Ozerov et al., 2010; Tonteri et al., 2009). Further, all comparisons612

are between multiple populations from lineages other than the Atlantic lineage. Thus, it is613

unlikely that potential SNP ascertainment bias has had a large effect on the results.614

CONCLUSIONS615

Overall, our results suggest an apparently complex genetic basis of Gyrodactylus salaris616

susceptibility and resistance in Atlantic salmon and highlight some methodological617

challenges for separating the effects of various environmental factors. Despite these618

challenges, it appears that the regulation of both innate and acquired immunity are important619

mechanisms in the response of Atlantic salmon to G. salaris and this study provides a number620

of promising candidate genes for future studies.621
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Figure 1. Sampling site locations. Populations that were also studied previously (Zueva et al.1186
2014) are presented in grey, while white circles indicate populations that were added for1187
this study.1188

(Figure 1 is intended as a 2-column fitting image; colour)1189



35

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

Figure 2. Population sub-structuring based on principal component (PC) analysis. Individual1205
populations plotted as dots and coloured based on their geographic location; percentage of1206
variance explained by PC1 and PC2 is given in brackets.1207
(Figure 2 is intended as a 1 or 1.5-column fitting image; colour)1208
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Figure 3. Levels of SNP differentiation (measured using the XTX statistic, chromosome 25)1230
between G. salaris susceptible (Barents & White Seas) and resistant (lakes Onega and Ladoga)1231
salmon stocks. Each dot represents one SNP, and outlier SNPs with elevated XTX (above1232
99.5% percentile) are marked with blue. Arrows indicate one candidate region associated with1233
differences in parasite response, characterized by a high density of outlier SNPs in both1234
“resistant vs susceptible” comparisons, but absent from the “resistant vs resistant” test.1235
(Figure 3 is intended as a 2-column fitting image; colour)1236
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№ Population Pool size Sampling year Coordinates

Non-anadromous Ladoga lake
1 Taipale 30 2000 60° 37’ 26.4’’ N, 30° 30’ 07.2’’ E
2 Hiitola 44 2006 61° 11’ 56.5’’ N, 29° 46’ 12.3’’ E
3 Sysky* 33 1999 61° 38’ 51.5’’ N, 31° 16’ 18.3’’ E
4 Uuksa 29 2006 61° 29’ 24.5’’ N, 31° 35’ 54.0’’ E
5 Tulema 63 2006 61° 21’ 25.0’’ N, 31° 50’ 28.4’’ E
6 Vidlitsa 44 2006 61° 10’ 32.7’’ N, 32° 23’ 12.1’’ E

Non-anadromous Onega lake
7 Shuya 31 1996 61° 52’ 00’’ N, 34° 18’ 00’’ E
8 Lizma 23 1996 62° 22’ 35.6’’ N, 34° 30’ 18.9’’ E
9 Kumsa 31 2004 62° 54’ 31.4’’ N, 34° 28’ 17.5’’ E

10 Pyalma* 46 2001 62° 24’ 14.6’’ N, 35° 52’ 24.2’’ E
11 Tuba 40 2001 62° 15’ 00’’ N, 35° 49’ 18.9’’ E

Anadromous Barents Sea
12 Tenojoki_1 326 2001-2003 69° 54’ 59.5’’ N, 27° 03’ 24.2’’ E
13 Tenojoki_2 137 2001-2003 69° 25’ 55.0’’ N, 25° 48’ 26.0’’ E
14 Näätämo 240 2006-2008 69° 42’ 27.9’’ N, 28° 59’ 16.6’’ E
15 Titovka 38 2000 69° 28’ 48.6’’ N, 31° 49’ 43.5’’ E
16 Z_Litsa 43 2000 69° 24’ 30.3’’ N, 32° 09’ 13.9E
17 Ura 44 2000 69° 17’ 29.7’’ N, 32° 49’ 27.0’’ E
18 Tuloma* 40 1998 68° 40’ 12.7’’ N, 31° 56’ 20.5’’ E
19 Kola 40 2000 68° 49’ 00’’ N, 33° 05’ 00’’ E
20 Drozdovka 48 2001 68° 17’ 29.1’’ N, 38° 26’ 27.2’’ E
21 Yokanga 39 2001 67° 59’ 54.4’’ N, 39° 42’ 38.4’’ E

Anadromous White Sea
22 Kachovka 66 2008 67° 26’ 30.9’’ N, 40° 57’ 16.2’’ E
23 Ponoi 83 2008 67° 07’ 27.6’’ N, 40° 56’ 08.0’’ E
24 P_Lebyazia* 48 2001 67° 04’ 00’’ N, 38° 34’ 00’’ E
25 Danilovka 48 2008 66° 44’ 25.0’’ N, 41° 01’ 21.1’’ E
26 Sneznitsa 25 2008 66° 34’ 47.6’’ N, 40° 41’ 56.5’’ E
27 Sosnovka 47 2008 66° 30’ 33.2’’ N, 40° 35’ 19.7’’ E
28 Babya 25 2008 66° 23’ 16.0’’ N, 40° 17’ 25.2’’ E
29 Lihodeevka 53 2008 66° 20’ 09.1’’ N, 40° 10’ 46.5’’ E
30 Pulonga 57 2008 66° 15’ 58.3’’ N, 39° 58’ 18.4’’ E
31 Ust_Pyalka 45 2008 66° 12’ 00’’ N, 39° 30’ 00’’ E
32 Strelna 64 2008 66° 04’ 33.4’’ N, 38° 38’ 22.6’’ E
33 Chavanga 42 2008 66° 09’ 00’’ N, 37° 46’ 00’’ E
34 Yapoma* 34 2000 66° 37’ 25.2’’ N, 36° 12’ 10.0’’ E
35 Indera 60 2008 66° 14’ 30.7’’ N, 37° 08’ 43.2’’ E
36 Varzuga 48 2008 66° 24’ 00’’ N, 36° 37’ 00’’ E
37 Olenitsa 46 2000 66° 28’ 25.5’’ N, 35° 20’ 11.1’’ E
38 Umba 44 2001 66° 49’ 00’’ N, 34° 17’ 00’’ E
39 Nilma 39 2005 66° 30’ 04.3’’ N, 33° 08’ 04.3’’ E
40 Pongoma* 41 2005 65° 17’ 00’’ N, 34° 00’ 00’’ E
41 Suma* 36 1999 64° 16’ 58.9’’ N, 35° 24’ 08.5’’ E
42 SD_Emtsa* 42 2001 63° 30’ 36.9’’ N, 41° 50’ 19.6’’ E
43 Megra 36 2001 66° 09’ 24’’ N, 41° 34’ 44.1’’ E

1258
Table 1. Details of the studied Atlantic salmon populations: regional grouping, location, and1259
number of individuals pooled. Populations marked with asterisk (*) have been studied1260
previously in Zueva et al. 2014.1261
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Chromo-
some Gene name Gene start,

bp
Gene end,

bp Gene product

ssa01 LOC106569418 142150894 142165267 uncharacterized protein C18orf25-like
ssa01 LOC106608943 74119498 74124819 chromobox protein homolog 7-like
ssa01 LOC106609330 74197728 74204071 chondroadherin-like protein
ssa01 LOC106612532 93113743 93675639 CUB and sushi domain-containing protein 1-like
ssa03 LOC106599503" 19230012 19476371 partitioning defective 3 homolog
ssa04 LOC106602322 7837836 7849338 probable E3 ubiquitin-protein ligase HERC3
ssa04 pdk3 35428078 35436339 pyruvate dehydrogenase kinase 2C isoenzyme 3
ssa05 LOC106604946 40861196 40914104 fibroblast growth factor receptor-like 1
ssa05 LOC106605373 58379225 58400842 N-acetylglucosamine-1-phosphodiester α -N-acetylglucosaminidase (NAGPA)-like
ssa06 LOC106608134*" 72162107 72202063 serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit γ
ssa07 LOC106608623 13548236 13565188 phospholipase A-2-activating protein-like
ssa07 LOC106608629 13151483 13287518 serine/threonine-protein phosphatase 2B catalytic subunit α isoform
ssa09 LOC106611113 28405568 28417294 intron-binding protein aquarius-like
ssa09 LOC106611166 30445432 30494810 sodium/potassium/calcium exchanger 4-like
ssa09 LOC106611262 37711638 37752583 nesprin-3-like
ssa10 adgrl2 2603630 2817943 adhesion G protein-coupled receptor L2
ssa10 ddx11 86640661 86652856 DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11
ssa10 fkbp4 86653186 86669653 FK506 binding protein 4 2C 59kDa
ssa10 hipk3 100391425 100436959 homeodomain interacting protein kinase 3
ssa10 LOC106560916 76184088 76220764 sphingomyelin phosphodiesterase 3-like
ssa10 LOC106561152 83386500 83544652 talin-2-like
ssa10 usb1 75766859 75773108 U6 snRNA biogenesis 1
ssa11 LOC106563271 66340506 66382645 zinc finger protein 618-like
ssa12 LOC106566150 83440324 83569524 kinesin heavy chain isoform 5A-like
ssa12 LOC106566244 90131368 90147215 inositol-pentakisphosphate 2-kinase-like
ssa13 LOC106567000 32769414 32851876 disco-interacting protein 2 homolog B-A
ssa13 LOC106568111 84873016 84901978 trace amine-associated receptor 13c-like
ssa13 wwc1 70955397 71005911 WW and C2 domain containing 1
ssa14 LOC106568933 13949128 13959922 choline-phosphate cytidylyltransferase A-like
ssa15 itpk1 40858484 40928332 inositol-tetrakisphosphate 1-kinase
ssa15 LOC106571359 31283077 31391251 protein 4.1-like
ssa15 LOC106571529 36312596 36414587 protein enabled homolog
ssa15 LOC106571754* 51217329 51409612 utrophin-like
ssa15 stxbp5 52022403 52213226 syntaxin binding protein 5 (tomosyn)
ssa15 tmem251 40830323 40857942 transmembrane protein 251
ssa16 bend7 23356567 23364386 BEN domain containing 7
ssa16 LOC106573414 23323009 23327401 kelch repeat and BTB domain-containing protein 13-like
ssa16 LOC106573416" 23343331 23354806 selenide2C water dikinase 1-like
ssa16 LOC106573427 23563538 23623694 C2 domain-containing protein 5-like
ssa16 LOC106573506 27440279 27710925 nuclear receptor ROR-alpha-like
ssa16 LOC106573509 22715465 23002856 SH3 and multiple ankyrin repeat domains protein 3-like
ssa16 LOC106573702 32362952 33047110 cadherin-13-like
ssa17 LOC106576270 44492421 44504981 transcription factor Spi-C-like
ssa18 LOC106576912 12854410 12857878 T-cell leukemia homeobox protein 1-like
ssa20 atp2a2 18887587 18934973 ATPase2C Ca++ transporting2C cardiac muscle2C slow twitch 2
ssa21 baz2b 14640471 14732354 bromodomain adjacent to zinc finger domain2C 2B
ssa21 LOC106582019 24697123 24759127 guanine nucleotide exchange factor DBS-like
ssa22 LOC106582736 9175335 9458601 protein FAM19A2-like
ssa22 LOC106582832 12436441 12558962 SLIT-ROBO Rho GTPase-activating protein 2-like
ssa22 poc1a 59808411 59890914 POC1 centriolar protein A
ssa24 ndufaf2 7520982 7558381 NADH dehydrogenase (ubiquinone) complex I2C assembly factor 2
ssa25 LOC106586888 47217827 47228437 interferon-induced GTP-binding protein Mx-like
ssa25 LOC106586889 47139132 47161992 interferon-induced GTP-binding protein Mx-like
ssa25 LOC106586890 47175785 47193272 interferon-induced GTP-binding protein Mx2-like
ssa26 LOC106587022 1866292 1879289 protein FAM160B2-like
ssa27 LOC106588883 28636513 28673938 inactive phospholipase C-like protein 2
ssa27 tbc1d5 28678800 28706730 TBC1 domain family 2C member 5
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1262
Table 2. Candidate genes under positive selection based on overlap between the Bayenv2.01263
and BayeScan2.1 tests. Genes harboring SNPs that are among 50 the most differentiated1264
SNPs are marked with (*) if they appear in Barents & White Seas vs. Ladoga comparison,1265
and with (") if they are in Barents & White Seas vs. Onega comparison. Genes that harbor1266
non-synonymous outlier SNPs are noted in bold.1267


