
Faculty of Science Department of Mathematics and Statistics

Tuukka Wahtera

Introduction and Comparison of Dynamic Complexity Classes

Mathematics

Master’s thesis May 2020 39 pages

Dynamic Complexity Theory

Kumpula Campus Library

This thesis gives some background and an introduction on dynamic complexity theory, a subfield

of descriptive complexity theory in which queries on databases are maintained dynamically upon

insertions and deletions to the database. The basic definitions of the dynamic complexity framework

are given along with examples of queries maintainable with dynamic queries and a comparison of

different dynamic complexity classes.

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/323319980?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Introduction and Comparison of Dynamic
Complexity Classes

Tuukka Wahtera

University of Helsinki
Department of Mathematics and Statistics

May 10, 2020

1

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Complexity Theory . 3
1.3 Descriptive Complexity Theory 4

2 Dynamic Complexity Framework 6
2.1 Background . 6
2.2 Definitions . 7

2.2.1 Basic Notation . 7
2.2.2 Structures and First-Order Logic 8
2.2.3 The Dynamic Complexity Framework 8
2.2.4 DynFO . 10
2.2.5 DynProp . 11
2.2.6 DynQF . 12

2.3 Reachability in Undirected Graphs in DynFO 14

3 Relating Dynamic Complexity Classes 17
3.1 Techniques for Collapsing Dynamic Classes 19
3.2 Collapsing Dynamic Complexity Classes 21
3.3 Δ-semantics . 31
3.4 RelatingDynamic Complexity Classeswith Static Complexity Classes 35

4 Conclusions 38

2

1 Introduction

1.1 Introduction

Traditionally descriptive complexity theory has been concernedwith static queries
of finite structures. This is often not appropriate for databases in practice as
queries are often made multiple times with modifications in between. In the tra-
ditional static context this would lead to requiring powerful query languages with
computationally expensive model-checking problems.

Dynamic complexity theory defines a system that allows us to maintain a
query on a database in a dynamic setting with the help of auxiliary relations. This
can often be achieved with weaker logics than what would be required in the
static setting.

We will start by giving an informal introduction to complexity theory, de-
scriptive complexity theory and how dynamic complexity ties into them. We will
then continue with the formal definition of the dynamic complexity framework
and common dynamic complexity classes with examples on maintaining queries
with dynamic programs and a more detailed example on maintaining reachability
in undirected graphs in DynFO.

The rest of the thesis is dedicated to examining the relations of different dy-
namic complexity classes and static complexity classes.

The thesis is structured in the following way:
Chapter 1 (this chapter) gives a short introduction to complexity theory and

descriptive complexity theory. Chapter 2 introduces the dynamic complexity
framework, different dynamic complexity classes that use different updating log-
ics and shows how to maintain reachability in undirected graphs In DynFO. In
Chapter 3 we compare the power of different complexity classes to each other
and to static complexity classes.

1.2 Complexity Theory

Computational complexity is the field of computer science that studies howmany
computational steps or how much memory in relation to the size of an input in-
stance of a problem is required to determine whether it has a given property or
not.

For example, reachability is a problem where, for a given directed graph and
two nodes 𝑠 and 𝑡, to determine whether there exists a path from 𝑠 to 𝑡. Reacha-
bility can be solved in an amount of steps that is linear to the input graph, that is,
in linear time, by a breadth first search starting from the node 𝑠 for 𝑛 iterations,
where 𝑛 is the amount of nodes in the graph. The node 𝑡 is reachable from 𝑠 if 𝑡 is

3

encountered in the search before 𝑛 iterations are reached or we run out of nodes
to check, otherwise it is not.

Anotherwell known problem is three-colourability, given an undirected graph,
determine whether its vertices can be coloured with three colours with no two
connected vertices sharing a colour. It can be solved by trying all ways to as-
sign a colouring to the vertices and testing if the assignment is valid. This takes
an amount of steps that is exponential in size compared to the size of the input
graph and no asymptotically faster algorithm is known.

Let Time[𝑡(𝑛)] be the set of problems solvable in 𝑂(𝑡(𝑛)) computational steps,
that is, problems for which an algorithm which uses at most a constant multiple
of 𝑡(𝑛) steps exists. Since the underlying machine model affects the amount of
steps that running a computation takes, we are often interested in larger classes
of problems that are more robust to variations in the underlying machine. An
important complexity class like this is polynomial time, P, the class of problems
solvable in 𝑂(𝑛𝑘) steps for some fixed k

P = ∞⋃𝑘=1 Time[𝑛𝑘].
Other important complexity classes include nondeterministic polynomial time,

NP, and exponential time, Exp. Nondeterministic polynomial time is the class of
problems solvable in polynomial time on a nondeterministicmachine. A nondeter-
ministic machine can make arbitrary decisions during the computation and if any
of the combinations of decisions lead to an accepting state, the input is accepted.
Exp is the class of problems solvable in 𝑂(2𝑝(𝑛)) where 𝑝(𝑛) is a polynomial func-
tion of 𝑛, or

Exp = ∞⋃𝑘=1 Time[2(𝑛𝑘)].
The aforementioned three-colourability problem can be solved in polynomial

time by the following nondeterministic algorithm: For every node, assign arbi-
trarily any one of three colours, then check whether each node connected by an
edge is of a different colour. If so, accept the input and otherwise reject it. The
three-colourability problem is thus in NP. With a deterministic model of compu-
tation, three colourability is in Exp.

1.3 Descriptive Complexity Theory

Descriptive complexity theory is the logician’s take on complexity theory. Instead
of asking how much of a computational resource it takes to solve a problem, de-
scriptive complexity theory is interested in how difficult it is to specify the answer

4

to it in a formal language. The underlying idea is that answers to computationally
difficult problems would require more sophisticated languages or longer formulas
to define which, perhaps surprisingly turns out to often be the case.

In descriptive complexity theory inputs are represented as finite logical struc-
tures. For example, a graph is a structure𝒜𝐺 = ({1, …, 𝑣}, 𝐸𝐺)

with the set of vertices (1, 2, ...𝑣) as the universe and the set of edges 𝐸𝐺.
With first-order logic we can, for example, define the graphs for which there are
exactly two edges leaving every vertex:∀𝑥∃𝑦𝑧∀𝑤(𝑦 ≠ 𝑧 ∧ 𝐸(𝑥, 𝑦) ∧ 𝐸(𝑥, 𝑧) ∧ (𝐸(𝑥, 𝑤) → 𝑤 = 𝑦 ∨ 𝑤 = 𝑧))

or graphs in which there exists a path with length of at most two between
every node: ∀𝑥𝑦∃𝑧((𝐸(𝑥, 𝑧) ∧ 𝐸(𝑧, 𝑦)) ∨ 𝐸(𝑥, 𝑦) ∨ 𝑥 = 𝑦).

Unlike in first-order logicwhere quantifiers range over the universe, in second-
order logic we can also quantify over relations over the universe. Second-order
formulas are much stronger in their expressive power than first-order formulas.
For example, the following formula defines the three-colourable graphs, some-
thing that is not expressible with first-order formulas.∃𝑅∃𝑌 ∃𝐵∀𝑥((𝑅(𝑥) ∨ 𝑌 (𝑥) ∨ 𝐵(𝑥))∧(∀𝑦)(𝐸(𝑥, 𝑦) → ¬(𝑅(𝑥) ∧ 𝑅(𝑦)) ∧ ¬(𝑌 (𝑥) ∧ 𝑌 (𝑦)) ∧ ¬(𝐵(𝑥) ∧ 𝐵(𝑦))))

This formula is also a existential second-order formula. Existential second-
order formulas (SO∃) are second-order formulas that begin with a number of ex-
istential second-order quantifiers that are followed by a first-order formula.

To tie logic to complexity theory, we can look at the complexity of themodel-
checking problem. Given a logic 𝐿 and a domain 𝒟 of finite structures the model-
checking problem for 𝐿 asks, given a structure 𝒮 ∈ 𝒟 and a formula 𝜓 ∈ 𝐿,
is it the case that 𝒰 ⊨ 𝜓? When both the structure and formula are fixed, the
computational complexity of the model-checking problem is called the combined
complexity of the model-checking problem. When the formula is fixed and we
want to find the class of models that satisfy it, we get the data complexity for 𝐿
and 𝒟. When the

We say that a logic 𝐿 captures a complexity class Comp over the domain of
structures 𝒟, when for every fixed sentence 𝜓 ∈ 𝐿, the data complexity of evalu-
ating 𝜓 on structures from 𝒟 is in complexity class Comp, and every property of

5

structures in 𝒟 that can be decided with complexity Comp is definable in logic 𝐿
[1].

The first important result of descriptive complexity theory was Fagin’s theo-
rem [2] stating that second-order existential logic captures the complexity class
NP on the domain of all finite structures.

Another seminal result by Immerman and Vardi states that, on the domain of
all linearly ordered structures, a problem is in P if and only if it is expressible in the
extension, FO(LFP), of FO by the least fixed point operator, LFP. [3, 4]. Adding the
least fixed point operator to FO can be thought of as adding the ability to iterate
a formula polynomially many times. It is unknown, whether SO is strictly larger
than FO(LFP) on domain of linearly ordered structures. This is unsurprising, as
putting the two results together yields

P = NP ⇔ FO(LFP) = SO,
which rewords the classic problem in computational complexity in the lan-

guage of logic.

2 Dynamic Complexity Framework

2.1 Background

First-order queries on finite structures play a very interesting role in database the-
ory as they have a one-to-one correspondence with the relational algebra, the core
of SQL, the most widely used query language for databases. First-order logic over
structures with “built-in” arithmetic operations also corresponds to the circuit
complexity class AC0, circuits that are of constant depth, may have polynomially
many ∧-, ∨-, and ¬ gates where the ∧ and ∨ gates may have unbounded fan-in
[5]. Circuits in AC0 can be simulated in constant-time by parallel random access
machines, PRAMs, with polynomially many processors [6], which in turn means
that first order logic queries can be efficiently executed in parallel.

Unfortunately, many interesting queries cannot be expressed by first-order
formulas. In particular, it has been shown that the transitive closure (TC) of a
binary relation cannot be expressed by first order formulas [7]. This hasmotivated
research into stronger logics such as fixed point logics or Datalog in database
theory.

In practice, databases are often dynamic in nature i.e., we often have a set
of queries that we wish to evaluate against a gradually changing set of relations.
Therefore it would be desirable if we could take advantage of this and build up the

6

result to our query incrementally when relations in the database are being modi-
fied instead of having to rebuild the query from scratch on every modification.

This desire gives rise to the notion of Dynamic Complexity, independently for-
malized by Dong, Su and Topor [8] as first-order incremental evaluation system
(FOIES) and equivalently by Patnaik and Immerman [9] as DynFO, the formula-
tion we will be using.

In the dynamic complexity framework, the structure to be queried (called
the input-relation) is updated tuple-by-tuple, and each time a tuple is inserted
or deleted, a dynamic programmay update one or more auxiliary relations, one of
which is a designated query relation that contains the relation we are interested
in.

Before we dive in to the formal definitions related to the dynamic complexity
framework, we will go through an example of a query that is not in FO, but is
easily maintained by a dynamic program.

Example 2.1. The parity query asks whether a unary relation 𝑈 contains a num-
ber of elements divisible by two. A dynamic program can maintain the parity of𝑈 in the boolean query relation 𝑄 with the update formulas 𝜙𝑄

ins𝑈 and 𝜙𝑄
del𝑈 .

When a new element gets inserted into the input relation 𝑈 , the value of the
query relation 𝑄 will be set to true if it was previously false. If the element was
already present in 𝑈 , the value of 𝑄 remains unchanged.𝜙𝑄

ins𝑈 (𝑢) def= (¬𝑈(𝑢) ∧ ¬𝑄) ∨ (𝑈(𝑢) ∧ 𝑄)
The update on removal of an element is very similar:𝜙𝑄

del𝑈 (𝑢) def= (𝑈(𝑢) ∧ ¬𝑄) ∨ (¬𝑈(𝑢) ∧ 𝑄)
2.2 Definitions

We will be using the definitions used by Thomas Zeume in his PhD thesis [10],
which were introduced by Zeume and Schwentick in their joint publication, On
the Quantifier-Free Dynamic Complexity of Reachability [11] and which are a
variation of the definitions from Patnaik and Immerman [9].

2.2.1 Basic Notation

Let 𝐴 be a finite set. We denote by 𝐴𝑘 the set of all 𝑘-tuples over 𝐴, and by[𝐴]𝑘 the set of all 𝑘-element subsets of 𝐴. For two tuples ̄𝑎 = (𝑎1, …, 𝑎𝑘) and�̄� = (𝑏1, …, 𝑏𝑙) over 𝐴, the (𝑘 + 𝑙)-tuple obtained by concatenating ̄𝑎 and �̄� is
denoted by (̄𝑎, �̄�). We slightly abuse set-theoretic notations and write 𝑐 ∈ ̄𝑎 if𝑐 = 𝑎𝑖 for some 𝑖, and ̄𝑎 ⋃ �̄� for the set {𝑎1, …, 𝑎𝑘, 𝑏1, …, 𝑏𝑙}.

7

2.2.2 Structures and First-Order Logic

A (relational) schema 𝜏 consists of a set 𝜏rel of relation symbols and a set 𝜏const of
constant symbols together with an arity function Ar ∶ 𝜏rel → ℕ. A domain 𝐷 is
a finite set. A database 𝒟 over a schema 𝜏 with a domain 𝐷 is a mapping that
assigns to every relation symbol 𝑅 ∈ 𝜏rel a relation of arity Ar(𝑅) over 𝐷 and to
every constant symbol 𝑐 ∈ 𝜏const an element (called constant) from 𝐷.

The set of first-order formulas over the schema 𝜏 is defined inductively as fol-
lows:

• Every atomic formula of the form 𝑅(𝑡1, …, 𝑡2) or 𝑡1 = 𝑡2, where all 𝑡𝑖 are
either constant symbols or variables, is a first-order formula.

• If 𝜑 is a formula, then every composed formula of the form ¬𝜑, 𝜑 ∧ 𝜓, or∃𝑥𝜑 is a first-order formula.

The abbreviations ∨, →, ↔ and ∀𝑥 are defined as usual.
A 𝜏 -structure 𝒮 is a pair (𝐷, 𝒟) where 𝒟 is a database over the schema 𝜏 and

with the domain 𝐷. For a relation symbol 𝑅 ∈ 𝜏 and a constant symbol 𝑐 ∈ 𝜏 we
denote by 𝑅𝒮 and 𝑐𝒮 the relation and constant, respectively, that are assigned to
those symbols in 𝒮.

Let 𝒮 = (𝐷, 𝒟) be a 𝜏 -structure, 𝜑 a first-order formula over 𝜏 with free
variables 𝑥1, …, 𝑥𝑘, and 𝛼 an assignment that maps every 𝑥𝑖 to an element of 𝐷.
By (𝒮, 𝛼) ⊨ 𝜑 we indicate that (𝒮, 𝛼) is a model of 𝜑. The satisfaction relation ⊨
is defined as usual.

An m-ary query 𝒬 on 𝜏 -structures is a mapping that is closed under isomor-
phisms and assigns a subset of 𝐷𝑚 to every 𝜏 -structure over the domain 𝐷. Clo-
sure under isomorphisms means that 𝜋(𝒬(𝒮)) = 𝒬(𝜋(𝒮)) for all isomorphisms 𝜋.
Often we will denote 𝒬(𝒮) by ans(𝒬, 𝒮).

A query 𝒬 is definable (alternatively: expressible) in first-order logic if there
is a first-order formula 𝜑(̄𝑥) such that Ans(𝒬, 𝒮) = { ̄𝑎|(𝒮, ̄𝑎) ⊨ 𝜑(̄𝑥)} for all
structures 𝒮.

For an arbitrary quantifier prefix ℚ ∈ {∃, ∀}∗, we will denote by ℚ𝐹𝑂 the
class of queries expressible by formulas with the quantifier prefix ℚ.

2.2.3 The Dynamic Complexity Framework

A dynamic instance of a query 𝒬 is a pair (𝒟, 𝛼), where 𝒟 is a database over
some finite domain 𝐷 and 𝛼 is a sequence of modifications to 𝒟. Here, a modi-
fication is either an insertion of a tuple over 𝐷 into a relation of 𝒟 or a deletion
of a tuple from a relation of 𝒟. The result of 𝒬 for (𝒟, 𝛼) is the relation that is

8

obtained by first applying the modifications from 𝛼 to 𝒟 and then evaluating 𝒬
on the resulting database. We use the Greek letters 𝛼 and 𝛽 to denote modifica-
tions as well as modification sequences. The database resulting from applying a
modification 𝛼 to a database 𝒟 is denoted by 𝛼(𝒟). The result 𝛼(𝒟) of apply-
ing a sequence of modifications 𝛼 def= (𝛼1, …, 𝛼𝑚) to a database 𝒟 is defined by𝛼(𝒟) def= 𝛼𝑚(…(𝛼1(𝒟))…).

A dynamic schema is a tuple (𝜏inp, 𝜏aux) where 𝜏inp and 𝜏aux are the schemas of
the input database and the auxiliary database, respectively. While 𝜏inp may con-
tain constants, we do not allow constants in 𝜏aux in the basic setting. We always
let 𝜏 def= 𝜏inp ∪ 𝜏aux.
Definition 2.2 (Update program). An update program 𝑃 over a dynamic schema(𝜏inp, 𝜏aux) is a set of first-order formulas (called update formulas in the following)
that contains, for every relation symbol𝑅 in 𝜏aux and every 𝛿 ∈ {ins𝑆,del𝑆}with𝑆 ∈ 𝜏inp, an update formula 𝜑𝑅𝛿 (̄𝑥, ̄𝑦) over the schema 𝜏 where ̄𝑥 and ̄𝑦 have the
same arity as 𝑆 and 𝑅, respectively.

A program state 𝒮 over the dynamic schema (𝜏inp, 𝜏aux) is a structure (𝐷, ℐ, 𝒜)
where 𝐷 is a finite domain, ℐ is a database over the input schema (the current
database) and 𝒜 is a database over the auxiliary schema (the auxiliary database).

The semantics of update programs is as follows. Let 𝑃 be an update program,𝒮 = (𝐷, ℐ, 𝒜) be a program state and 𝛼 = 𝛿(̄𝑎) a modification where ̄𝑎 is a tuple
over 𝐷 and 𝛿 ∈ ins𝑆,del𝑆 for some 𝑆 ∈ 𝜏inp wath arity equal to that of ̄𝑎. If 𝑃 is
in state 𝒮 then the application of 𝛼 yields the new state 𝒫𝛼(𝒮) def= (𝐷, 𝛼(ℐ), 𝒜′)
where, in 𝒜′, relation symbols 𝑅 ∈ 𝜏aux are interpreted by {�̄�|𝒮 ⊨ 𝜑𝑅𝛿 (̄𝑎, �̄�)}. The
effect 𝑃𝛼(𝒮) of applying a modification sequence 𝛼 def= (𝛼1, …, 𝛼𝑚) to a state 𝒮 is
the state 𝒫𝛼𝑚(…(𝒫𝛼1(𝒮))…).
Definition 2.3 (Dynamic program). A dynamic program is a triple (𝑃 , Init, 𝑄),
where

• 𝑃 is an update program over some dynamic schema (𝜏inp, 𝜏aux)
• Init is a mapping that maps 𝜏inp-databases to 𝜏aux-databases, and
• 𝑄 ∈ 𝜏aux is a designated query symbol.

A dynamic program 𝒫 = (𝑃 , Init, 𝑄) maintains a query 𝒬 if, for every dy-
namic instance (𝒟, 𝛼), the relation Ans(𝒬, 𝛼(𝒟)) coincides with the query rela-
tion 𝑄𝒮 in the state 𝒮 = 𝑃𝛼(𝒮Init(𝒟)) where 𝒮Init(𝒟) is the initial state for 𝒟, that
is, 𝒮Init(𝒟) def= (𝐷, 𝒟, Init(𝒟)).

9

Definition 2.4 (Dyn𝒞). For some fragment of FO 𝒞, we call Dyn𝒞 the class of
dynamic queries that can be maintained by dynamic programs with updates for-
mulas in 𝒞.

2.2.4 DynFO

Definition 2.5 (DynFO). DynFO is the class of queries that can be maintained by
dynamic programs defined by first-order update formulas formulas and arbitrary
initialization mappings.

DynFO is the most extensively studied of the dynamic complexity classes and
it is the one we will also pay the most attention to.

We will follow the argument from [9] and construct a DynFO-program with
one binary auxiliary relation 𝑇 which is intended to store the transitive closure
of an acyclic graph.

Example 2.6. Insertions can be handled straightforwardly: after inserting an
edge (𝑢, 𝑣) there is a path from 𝑥 to 𝑦 if, before the insertion, there has been a
path from 𝑥 to 𝑦 or there have been paths from 𝑥 to 𝑢 and from 𝑣 to 𝑦. There is a
path 𝑝 from 𝑥 to 𝑦 after deleting an edge (𝑢, 𝑣) if and only if there was a path from𝑥 to 𝑦 before the deletion and 1. there was no such path via (𝑢, 𝑣), or 2. there is
an edge (𝑧, 𝑧′) on 𝑝 such that 𝑢 can be reached from 𝑧 but not from 𝑧′, as if such
an edge would not exist, 𝑢 would be reachable from 𝑦 which would contradict
acyclicity. All conditions can be checked using the transitive closure of the graph
before deletion of (𝑢, 𝑣). The update formulas for 𝑇 are as follows:

𝜙𝑇
ins𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= 𝑇 (𝑥, 𝑦) ∨ (𝑇 (𝑥, 𝑢) ∧ 𝑇 (𝑣, 𝑦))

𝜙𝑇
del𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= 𝑇 (𝑥, 𝑦) ∧ ((¬𝑇 (𝑥, 𝑢) ∨ ¬𝑇 (𝑣, 𝑦))∨ ∃𝑧∃𝑧′(𝑇 (𝑥, 𝑧) ∧ 𝐸(𝑧, 𝑧′) ∧ (𝑧 ≠ 𝑢 ∨ 𝑧′ ≠ 𝑣)∧ 𝑇 (𝑧′, 𝑦) ∧ 𝑇 (𝑧, 𝑢) ∧ ¬𝑇 (𝑧′, 𝑢))).

With this, we have the required dynamic program 𝒫 = (𝑃 , Init, 𝑄) where
the update program 𝑃 contains the update formulas 𝜙𝑇

ins𝐸 and 𝜙𝑇
del𝐸 , Init is a

mapping that takes the initial state of the input database to its transitive closure,
and 𝑄 = 𝑇 .

In the upcoming proofs, we will generally only show the update formulas,
since we allow arbitrary initialization functions, constructing the update program
from the formulas is trivial.

10

2.2.5 DynProp

A rather natural restriction toDynFO is to disallow the use of quantifiers in update
formulas, and exactly this limitation yields DynProp.

Definition 2.7 (DynProp). DynProp is the class of all queries that can be main-
tained by dynamic programs with quantifier-free first-order update formulas and
arbitrary initialization mappings.

It would first seem that disallowing all quantification would severly limit the
usefulness of DynProp, but it turns out that many interesting queries are in Dyn-
Prop. As Example 2.1 shows, no quantification is needed to express parity.

Example 2.8. We will now show how the boolean query NonEmptySet can
be implemented by a DynProp program 𝒫. NonEmptySet is a query that says
whether a unary relation 𝑈 is empty or not.

The input schema for 𝒫 will be 𝜏inp = {𝑈}, where 𝑈 is the unary rela-
tion that is subject to insertions and deletions. The auxiliary schema 𝜏aux ={𝑄, First, Last, List} consists of the boolean query relation 𝑄, which will con-
tain ⊤ if 𝑈 is non-empty and ⊥ if it’s empty. First, Last and List will be used to
maintain a list of elements in 𝑈 , First and Last are unary relations that contain
the first and last elements respectively and List contains all pairs (𝑎, 𝑏) where 𝑎
and 𝑏 are adjacent in the list.

Inserting an element 𝑎 into 𝑈 : The element a is added to the end of the list. If
it already occurs somewhere in the list, the old instance of it will be removed so
the list only contains unique occurences of each element. Since we take care of
duplicate entries on insertion, we will only need to handle removing one element
at a time. After adding an element, the input relation is always non-empty and 𝑄
will be set to true.

𝜙First
ins𝑈 (𝑎; 𝑥) def= (¬𝑄 ∧ 𝑎 = 𝑥) ∨ (𝑄 ∧ First(𝑥) ∧ 𝑥 ≠ 𝑎) ∨ (𝑄 ∧ First(𝑥) ∧ Last(𝑥))𝜙Last
ins𝑈 (𝑎; 𝑥) def= 𝑎 = 𝑥𝜙List

ins𝑈 (𝑎; 𝑥, 𝑦) def= 𝑥 ≠ 𝑎 ∧ 𝑦 ≠ 𝑎 ∧ (List(𝑥, 𝑦) ∨ (List(𝑥, 𝑎) ∧ List(𝑎, 𝑦))∨ (Last(𝑥) ∧ 𝑎 = 𝑦))𝜙Q
ins𝑈 (𝑎; 𝑥) def= ⊤
Deleting the element 𝑎 fromU: Deleting worksmuch like insertion except that

no nodes are inserted and the last element needs a bit more consideration. The

11

query relation will be true unless the first and the last element are the element to
be removed or the query was false to begin with.

𝜙First
del𝑈 (𝑎; 𝑥) def= (First(𝑥) ∧ 𝑎 ≠ 𝑥) ∨ (First(𝑎) ∧ List(𝑎, 𝑥))𝜙Last
del𝑈 (𝑎; 𝑥) def= (Last(𝑥) ∧ 𝑎 ≠ 𝑥) ∨ (Last(𝑎) ∧ List(𝑥, 𝑎))𝜙List

del𝑈 (𝑎; 𝑥, 𝑦) def= 𝑥 ≠ 𝑎 ∧ 𝑦 ≠ 𝑎 ∧ (List(𝑥, 𝑦) ∨ (List(𝑥, 𝑎) ∧ List(𝑎, 𝑦)))𝜙Q
del𝑈 (𝑎; 𝑥) def= ¬((First(𝑎) ∧ Last(𝑎)) ∨ ¬𝑄).

2.2.6 DynQF

While programs in DynFO have great freedom in accessing tuples during updates
using quantifiers, DynProp programs can only access the tuple being inserted or
removed and the tuple that is currently being accessed. DynQF falls between
the two by allowing auxiliary functions to be maintained in addition to auxiliary
relations. These auxiliary functions allow quantifier-free formulas to access addi-
tional tuples that they otherwise could not, working as a sort of weakened version
of quantification.

To define DynQF, we need to first expand the definition of a dynamic pro-
gram to include update terms, expressions that may be used as parts of the update
formulas.

Definition 2.9 (Update term). Update terms are inductively defined as follows:

1. Every variable and every constant is an update term.

2. If 𝑓 is a k-ary function symbol and 𝑡1, …, 𝑡𝑘 are update terms, then 𝑓(𝑡1, …, 𝑡𝑘)
is an update term.

3. If 𝜙 is a quantifier-free update formula (possibly using update terms) and𝑡1 and 𝑡2 are update terms, then ITE(𝜙, 𝑡1, 𝑡2) is an update term.

The semantics of update terms associates with every update term 𝑡 and in-
terpretation 𝐼 = (𝒮, 𝛽), where 𝒮 is a state and 𝛽 a variable assignment, a value
J𝑡K𝐼 from 𝑆. The semantics of 1) and 2) are straightforward. If 𝐼 ⊨ 𝜙 holds, then
JITE(𝜙, 𝑡1, 𝑡2)K𝐼 is J𝑡1K𝐼 , otherwise J𝑡2K𝐼 .

The extension of the notion of update programs for auxiliary schemas with
function symbols is now straightforward. An update program still has an update
formula 𝜙𝑅𝛿 (possibly using update terms instead of only variables and constants)

12

for every relation symbol 𝑅 ∈ 𝜏aux and every 𝛿 ∈ ins𝑆,del𝑆 with 𝑆 ∈ 𝜏inp.
Furthermore, it has, for every such 𝛿 and every function symbol 𝑓 ∈ 𝜏aux, an
update term 𝑡𝑓𝛿 (̄𝑥, ̄𝑦). For a modification 𝛿(̄𝑎) it redefines 𝑓 for each tuple �̄� by
evaluating 𝑡𝑓𝛿 (̄𝑎, �̄�) in the current state.

Definition 2.10 (DynQF). DynQF is the class of queriesmaintainable by quantifier-
free update programs with (possibly) auxiliary functions and arbitrary initializa-
tion mappings.

Example 2.11. We will now construct a DynQf program that maintains a graph
query 𝒬 that returns the set of nodes with maximal outdegree in the input graph𝐺.

With the help of two functions Succ and Pred, we will treat the domain as if
were of the form 𝐷 = {0, …, 𝑛 − 1}. For all the states 𝒮, Succ𝒮 is the standard
successor function on 𝐷 with Succ𝒮(𝑛 − 1) = 𝑛 − 1 and Pred𝒮 the standard
predecessor function with Pred𝒮(0) = 0. Both functions are initialized for the
whole domain and neither will be updated on modifications.

Whenwe refer to numbers, 0 is a constant with a value from 𝐷 (the only value𝑥 ∈ 𝐷 for which Pred(𝑥) = 𝑥) and any other number 𝑛 refers to the element𝑥 ∈ 𝐷 so that

Succ(Succ(…⏟⏟⏟⏟⏟𝑛 applications of Succ

(0)…)) = 𝑥
The program will maintain the unary functions #Edges and #nodes. The

function #edges maintains the outdegree for all the nodes in the graph so that
#edges(𝑎) = 𝑏 if 𝑏 is the number of outgoing edges from 𝑎 and #nodes maintains
the amount of nodes in the graph with a certain number of outgoing edges, that
is #nodes(𝑎) = 𝑏 if there are 𝑏 nodes with 𝑎 outgoing edges, for all 𝑎, 𝑏 ∈ 𝐷. A
constant Max is maintained so that it always points to the number 𝑖 such that 𝑖
is the maximal number of outgoing edges for any node in the graph.

When a new edge (𝑢, 𝑣) is inserted for the node 𝑢 that has 𝑎 outgoing edges,#𝑒𝑑𝑔𝑒𝑠(𝑢) is updated from 𝑎 to 𝑎+1, #nodes(𝑎) is decremented and #nodes(𝑎+1) is incremented. Max is incremented if 𝑢 was a node with maximal outgoing
edges before the insertion. With this, we get the following update terms:

13

𝑡#edgesins𝐸 (𝑢, 𝑣; 𝑥) def= ITE(¬𝐸(𝑢, 𝑣) ∧ 𝑥 = 𝑢, Succ(#edges(𝑥)), #edges(𝑥))𝑡#nodesins𝐸 (𝑢, 𝑣; 𝑥) def= ITE(¬𝐸(𝑢, 𝑣) ∧ 𝑥 = #edges(𝑢), Pred(#nodes(𝑥)),
ITE(¬𝐸(𝑢, 𝑣) ∧ 𝑥 = Succ(#edges(𝑢)),

Succ(#nodes(𝑥)), #nodes(𝑥)))𝑡Max
ins𝐸(𝑢, 𝑣) def= ITE(Max = #edges(𝑢) ∧ ¬𝐸(𝑢, 𝑣), Succ(𝑢),Max)

The update formula for the designated query symbol 𝑄:𝜙𝑄
ins𝐸(𝑢, 𝑣; 𝑥) def= 𝑡#edgesins𝐸 (𝑢, 𝑣; 𝑥) = 𝑡Max

ins𝐸(𝑢, 𝑣)
The update terms for deletion are similar:

𝑡#edgesdel𝐸 (𝑢, 𝑣; 𝑥) def= ITE(𝐸(𝑢, 𝑣) ∧ 𝑥 = 𝑢, Pred(#edges(𝑥)), #edges(𝑥))𝑡#nodesdel𝐸 (𝑢, 𝑣; 𝑥) def= ITE(𝐸(𝑢, 𝑣) ∧ 𝑥 = #edges(𝑢), Pred(#nodes(𝑥)),
ITE(𝐸(𝑢, 𝑣) ∧ 𝑥 = Pred(#edges(𝑢)),

Succ(#nodes(𝑥))), #nodes(𝑥)))𝑡Max
del𝐸(𝑢, 𝑣) def= ITE(Max = #edges(𝑢) ∧ 𝐸(𝑢, 𝑣) ∧ #nodes(Max) = Succ(0),

Pred(Max),Max)
And the update formula for the designated query symbol for deletions:𝜙𝑄

del𝐸(𝑢, 𝑣; 𝑥) def= 𝑡#edgesdel𝐸 (𝑢, 𝑣; 𝑥) = 𝑡Max
del𝐸(𝑢, 𝑣).

2.3 Reachability in Undirected Graphs in DynFO

It was shown by Patnaik and Immerman in [9] that reachability in acyclic graphs
is in DynFO.

The proof is an adaptation of the one shown by Patnaik and Immerman, it
works by constructing a dynamic program that maintains a spanning forest of
the input graph, that is, a subgraph with vertices removed so that it is acyclic but
has the same connected components as the original graph. Therefore, if there is
a path in forest from node x to node y, a path must also exist in the input graph.

Theorem 2.12. Reach𝑢 is in DynFO

14

Proof. Our input schema 𝜏inp will consist only of the edge relation 𝐸. Since our
graph is undirected, we will interpret the addition of an edge (𝑥, 𝑦) to also add
the edge (𝑦, 𝑥).

We will use two auxiliary relations, 𝐹 which will contain a tuple (𝑥, 𝑦) if the
edge (𝑥, 𝑦) is in the spanning forest and 𝑃𝑉 , which will contain tuples (𝑥, 𝑦, 𝑢)
if there exists a path from 𝑥 to 𝑦 via the vertex 𝑢, which may be equal to 𝑥 or 𝑦.

For convenience, we will define the abbreviations 𝑃(𝑥, 𝑦) and 𝐸𝑞(𝑥, 𝑦, 𝑐, 𝑑)
for testing whether a path exists from 𝑥 to 𝑦 and testing if the edges (𝑥, 𝑦) and(𝑐, 𝑑) are equal, respectively.

𝑃(𝑥, 𝑦) def= (𝑥 = 𝑦 ∨ 𝑃𝑉 (𝑥, 𝑦, 𝑥))𝐸𝑞 def= (𝑥 = 𝑐 ∧ 𝑦 = 𝑑) ∨ (𝑥 = 𝑑 ∧ 𝑦 = 𝑐).
Maintaining the input graph on insertions is easy, we simply insert both 𝑢, 𝑣

and 𝑣, 𝑢. 𝜙𝐸
ins𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= 𝐸(𝑥, 𝑦) ∨ 𝐸𝑞(𝑢, 𝑣, 𝑥, 𝑦)

If the added vertices 𝑢 and 𝑣 were already in the same connected component,
the edges in the forest stay the same. If 𝑢 and 𝑣 were not connected, the edge(𝑢, 𝑣) is added to the forest.𝜙𝐹

ins𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= 𝐹(𝑥, 𝑦) ∨ (𝐸𝑞(𝑥, 𝑦, 𝑢, 𝑣) ∧ ¬𝑃(𝑢, 𝑣))𝑃𝑉 changes if and only if the added edge (𝑢, 𝑣) connects two trees that were
previously disconnected. If that is the case, all the tuples 𝑥, 𝑦, 𝑧 where 𝑥 and 𝑦
are in the previously disjoint trees and 𝑧 is in either one will be added to 𝑃𝑉

𝜙𝑃𝑉
ins𝐸(𝑢, 𝑣; 𝑥, 𝑦, 𝑧) def= 𝑃𝑉 (𝑥, 𝑦, 𝑧)∨(∃𝑎𝑏)(𝐸𝑞(𝑎, 𝑏, 𝑢, 𝑣) ∧ 𝑃(𝑥, 𝑎) ∧ 𝑃(𝑏, 𝑦) ∧ (𝑃𝑉 (𝑥, 𝑎, 𝑧) ∨ 𝑃𝑉 (𝑏, 𝑦, 𝑧)))
When deleting the edge (𝑢, 𝑣), if it is not in the forest, the relations stay the

same. If it is, we identify the vertices of the two trees created by the deletion, and
if there exists an edge in the input graph between nodes of the two trees, we pick
one and insert it into the forest.

We will use 𝑇 (𝑥, 𝑦, 𝑧) as an abbreviation for the 𝑃𝑉 relation after the node(𝑢, 𝑣) has been deleted. Since 𝑃𝑉 is acyclic, if there were paths from 𝑥 to 𝑦 via𝑢 and 𝑣, the forest cannot have any path between 𝑥 and 𝑦 after the removal of(𝑢, 𝑣).
15

Figure 1: Inserting a new edge (𝑎, 𝑒). Solid lines are edges both in 𝐸 and in 𝐹 ,
while dashed lines are only in 𝐸.

𝑇 (𝑥, 𝑦, 𝑧) def= 𝑃𝑉 (𝑥, 𝑦, 𝑧) ∧ ¬(𝑃𝑉 (𝑥, 𝑦, 𝑢) ∧ 𝑃𝑉 (𝑥, 𝑦, 𝑣))
Now, using 𝑇 we can define another abbreviation, 𝑁𝑒𝑤(𝑥, 𝑦) which will ei-

ther be empty or contain the single edge 𝑥, 𝑦 from 𝑇 that is needs to be added to
the tree in the forest to make it connected after the removal of the node (𝑢, 𝑣).

𝑁𝑒𝑤(𝑥, 𝑦) def= 𝐸(𝑥, 𝑦) ∧ 𝑇 (𝑢, 𝑥, 𝑢) ∧ 𝑇 (𝑣, 𝑦, 𝑣)∧(∀𝑎𝑏)((𝐸(𝑎, 𝑏)∧𝑇 (𝑢, 𝑎, 𝑢)∧𝑇 (𝑣, 𝑏, 𝑣)) → (𝑥 < 𝑎∨(𝑥 = 𝑎∧(𝑦 = 𝑏∨𝑦 < 𝑏)))
Note that here we use an ordering on the nodes. If no such ordering exists, we

can easily construct one with a new auxiliary relation into which all new nodes
are added upon insertion into 𝐸.

We can now define the update formulas for deletion:𝜙𝐸
del𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= 𝐸(𝑥, 𝑦) ∧ ¬𝐸𝑞(𝑥, 𝑦, 𝑢, 𝑣)

We remove the edge 𝑢, 𝑣 from the forest and possibly add the new edge:𝜙𝐹
del𝐸(𝑢, 𝑣; 𝑥, 𝑦) def= (𝐹(𝑥, 𝑦) ∧ ¬𝐸𝑞(𝑥, 𝑦, 𝑢, 𝑣)) ∨ 𝑁𝑒𝑤(𝑥, 𝑦) ∨ 𝑁𝑒𝑤(𝑦, 𝑥)
If a path from 𝑥 to 𝑦 via 𝑧 did not go through the edge between 𝑢 and 𝑣, it is

still valid. If 𝑁𝑒𝑤 contained an edge, paths passing through it need to be added.

16

Figure 2: Deleting the edge (𝑎, 𝑐). Solid lines are edges both in 𝐸 and in 𝐹 , while
dashed lines are only in 𝐸.

𝜙𝑃𝑉
del𝐸(𝑢, 𝑣; 𝑥, 𝑦, 𝑧) def= 𝑇 (𝑥, 𝑦, 𝑧) ∨ ((∃𝑎𝑏)(𝑁𝑒𝑤(𝑎, 𝑏) ∨ 𝑁𝑒𝑤(𝑏, 𝑎))∧ 𝑇 (𝑥, 𝑎, 𝑥) ∧ 𝑇 (𝑦, 𝑏, 𝑦) ∧ (𝑇 (𝑥, 𝑎, 𝑧) ∨ 𝑇 (𝑦, 𝑏, 𝑧)))

3 Relating Dynamic Complexity Classes

One of the major goals in descriptive complexity theory is to compare the power
of different logics, whether queries expressible in one are expressible in another.
Sometimes, like in the case of propositional logic and first-order logic, the rela-
tion is obvious but other times, like in the case of SO and FO+LFP, it is not. If
we know how logics relate to each other in terms of expressive power, we can
more easily say if a given query is expressible in a certain logic or not, and how
computationally demanding it’s evaluation is.

In a similar manner, we can compare different complexity classes with each
other. Knowing that two complexity classes, Dyn𝒞 and Dyn𝒞′ induced by static
complexity classes 𝒞 and 𝒞′ are equal means that queries maintainable by in one
are also maintainable in the other.

We are also interested in comparing dynamic classes to static ones, of specific
interest are cases of a dynamic class Dyn𝒞′ and a static class 𝒞 where the static

17

class 𝒞′ that induces Dyn𝒞′ is smaller than 𝒞. Finding instances of this would
mean that we can maintain queries using a simpler logic, which can in turn lead
to lower computational complexity.

Most of the dynamic complexity classes that have been studied are fragments
of DynFO that have been obtained from DynFO by restricting update programs
in one of the following ways: restricting the arity of auxiliary relations used,
restricting the syntax of update formulas or restricting the initialization mapping.

We will now informally introduce some of the restrictions of FO that have
been studied as update languages in dynamic complexity.

Conjunctive queries (CQs) or first-order queries with a prefix of existential
quantifiers and whose quantifier-free part consists of a conjunction of atoms, that
is formulas of the form ∃𝑥1…𝑥𝑛 ⋀𝑖 𝜑𝑖 Unions of conjunctive queries (UCQs) are
formulas of the form 𝑞1 ∪ … ∪ 𝑞𝑚, where each 𝑞𝑖, 𝑖 ∈ ℕ is a conjunctive query.
Conjunctive queries with negations (CQ¬s) are conjunctive queries but atoms can
be negated, and unions of conjunctive queries with negations (UCQ¬s) are like
UCQs but atoms can again be negated.

If existential quantification from FO is disallowed, we get the corresponding
classes PropCQ, PropUCQ, PropCQ¬ and PropUCQ¬. It is thought that all of
these static complexity classes except UCQ¬ and Σ01, the fragment of FO that al-
lows only existential quantifiers, are distinct for relational databases. Figure 3
shows how these different fragments of FO relate to each other.

Another variation of the dynamic framework that has been studied can be
obtained by using Δ-semantics. So far, all updates to relations have worked by
re-defining them upon every insertion or deletion. This will be referred to as ab-
solute semantics, in contrast to Δ-semantics, where the new state of a relation 𝑅
is defined in terms of a set of tuples 𝑅+ to be added to 𝑅 and 𝑅− that will be
removed from it. For update languages that are closed under Boolean operations,Δ-semantics and absolute semantics coincide trivially but some of the query lan-
guages that have been studied, like conjunctive queries, are not closed under all
Boolean operations.

Zeume gives the hierarchy shown in Figure 4 showing the relations between
dynamic classes induced by different fragments of FO under absolute and Δ-
semantics. It is notable that so many of the dynamic complexity classes turn out
to be equal.

We will not go through all of the proofs necessary to obtain the equivalences
and separations shown in Figure 4 but we will introduce some of the techniques
used in them and give examples that demonstrate their use.

18

Figure 3: Hierarchy of fragments of first-order logic. Solid lines are strict separa-
tions. Figure from [10].

3.1 Techniques for Collapsing Dynamic Classes

Many of the proofs that show that a class Dyn𝒞 is contained in a class Dyn𝒞′
are pretty similar in structure, showing that for all programs with update queries
from class 𝒞 an equivalent program with update queries from class 𝒞′ can be
constructed. Many of the proofs also use one on more of the following three
techniques.

The replacement technique is used to replace certain types of subformulas
with additional auxiliary relations that do something equivalent. The replace-
ment technique can be used to remove negations or disjunctions in formulas.

The preprocessing technique simplifies complicated subformulas in update for-
mulas by performing a part of it in the initialization step and storing it in an addi-
tional auxiliary relation that is used in the simpler update formula. This technique
can be used to remove unions from dynamic unions of conjunctive queries and
proving that dynamic conjunctive queries with negations are equally expressive
under absolute and Δ-semantics.

The squirrel technique maintains additional auxiliary relations that reflect on
the state of some auxiliary relation after every possible single modification (or
short modification sequence). For a relation 𝑅, a new relation symbol 𝑅ins can
be maintained so that the interpretation of 𝑅ins contains what 𝑅 would contain

19

Figure 4: Hierarchy of fragments of DynFO. Solid lines are strict separations.
Classes above a solid or dashed line contain those under it. Figure from [10].
Numbers on equalities refer to theorems in [10].

20

after every insertion modification.

3.2 Collapsing Dynamic Complexity Classes

We will now start working towards proving the equalities that form the left side
of Figure 4. As most of the theorems we are working to are about showing the
equality of various dynamic classes, most of our proofs revolve around taking a
dynamic program 𝒫 with update formulas from a static class 𝒞, and transforming
it to an equivalent program 𝒫′ with update formulas from a different static class𝒞′.

We will start by giving formal definitions of the covered restrictions of FO
that induce the DynFO fragments we will be examining.

Definition 3.1.

• CQ is the class of conjunctive queries, that is, first-order queries of the form𝜑(̄𝑥) = ∃ ̄𝑦𝜓 where 𝜓 is a conjunction of atomic formulas.

• UCQ is the class of all unions of conjunctive queries, that is conjunctive
queries expressible by formulas of the form 𝜑(̄𝑥) = ⋁𝑖 ∃ ̄𝑦𝜓𝑖 where each𝜓𝑖 is a conjunction of atomic formulas.

• CQ¬ and UCQ¬ are the same as CQ and UCQ but atoms are allowed to be
negated.

• PropCQ, PropUCQ, PropCQ¬ and PropUCQ¬ are as above, but quantifiers
are disallowed.

Lemma 3.2. Let ℚ be an arbitrary quantifier prefix. For every DynℚFO-program
there is an equivalent DynℚFO-program 𝒫 such that the update formulas for the
designated query symbol of 𝒫 consists of a single atom.

Proof. In this proof, the squirrel technique will be used. For simplicity, the input
schema will be fixed to be 𝜏inp = {𝐸}, where 𝐸 is a binary relation symbol, but
the proof can easily be adapted to arbitrary input schemas.

Let 𝒫 be a Dyn𝒞-program over the auxiliary schema 𝜏 with the designated
query symbol 𝑄. We will construct an equivalent Dyn𝒞 program over the schema𝜏 ′ where 𝜏 ′ contains a designated query symbol𝒬′ and a 𝑘+2-ary relation symbol𝑅𝛿 for every 𝑘-ary 𝑅 ∈ 𝜏 and every 𝛿 ∈ {ins,del}.

The idea is that 𝑅𝛿 will reflect the state of 𝑅 in the next state, for each possible
modification of kind 𝛿. Let 𝐺 = (𝐸, 𝑉) be a graph , 𝛼 a sequence of modifications,𝛽 = 𝛿(̄𝑒) a modification with 𝛿 ∈ {ins,del} and ̄𝑒 ∈ 𝑉 2. If 𝒮 is the state obtained

21

by 𝒫 after applying 𝛼𝛽 to 𝐺, that is, 𝒮 = 𝒫𝛼𝛽(Init(𝐺)), and 𝒮′ is the state
obtained by 𝒫 after applying 𝛼 to 𝐺, i.e. 𝒮′ = 𝒫′𝛼(Init′(𝐺)), then̄𝑎 ∈ 𝑅𝒮 if and only if (̄𝑒, ̄𝑎) ∈ 𝑅𝒮′𝛿 . (1)

Thus for every 𝛿(̄𝑒) the relation 𝑅𝛿(̄𝑒, ⋅) stores 𝑅(⋅) after the application of𝛿(̄𝑒).
Then the update formula for 𝑄′ after a modification 𝛿 can be written with a

single-atomic formula as follows:𝜙𝑄′𝛿 (�̄�, ̄𝑥) def= 𝑅𝛿(�̄�, ̄𝑥).
It remains to show how to update the relations 𝑅𝛿. Therefore it will be con-

venient to assume that the edge relation 𝐸 is updated by formulas 𝜙𝐸
ins and 𝜙𝐸

del
that express the impact of a modification to 𝐸, for example, 𝜙𝐸

ins(𝑎, 𝑏; 𝑥, 𝑦) =𝐸(𝑥, 𝑦) ∨ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦).
By 𝜙𝑅𝛿𝑖 [𝜏 → 𝜏𝛿0](�̄�0; �̄�1, ̄𝑥) we denote the formula obtained from 𝜙𝑅𝛿𝑖(�̄�1; ̄𝑥)

by replacing every atom 𝑆(̄𝑧) with 𝑆 ∈ 𝜏 by 𝑆𝛿0(�̄�𝑜, ̄𝑧). Then the update formula
for 𝑅 is 𝜙𝑅𝛿1𝛿0 (�̄�0; �̄�1, ̄𝑥) def= 𝜙𝑅𝛿1 [𝜏 → 𝜏𝛿0](�̄�0; �̄�1, ̄𝑥).

We observe that all quantifier prefixes of formulas thus obtained have been
used by the program 𝒫 already.

The initialization mapping of 𝒫′ is as follows. The query symbol 𝑄′ is initial-
ized like 𝑄 in 𝒫. For every graph 𝐺 the relation symbol 𝑅𝛿 ∈ 𝜏 ′ is initialized
as ⋃̄𝑒∈𝑉 2 ̄𝑒 × 𝒫𝛿(̄𝑒)(Init(𝐺)) ↾ 𝑅𝛿

where𝒫𝛿(̄𝑒)(Init(𝐺)) ↾ 𝑅𝛿 denotes the relation𝑅𝛿 in the state𝒫𝛿(̄𝑒)(Init(𝐺)).
The correctness of this construction is proved inductively over the length of

modification sequences by showing that states of 𝒫′ simulate states of 𝒫 as spec-
ified by Equation 1.

Therefore, let 𝐺 be a graph and 𝛼 = 𝛼1…𝛼𝑖 a modification sequence with𝛼𝑖 = 𝛿𝑖(̄𝑒𝑖). Further, let 𝒮𝑖 and 𝒮′𝑖 be the states obtained by 𝒫 and 𝒫′ respectively,
after the application of 𝛼1…𝛼𝑖.

If 𝛼 is of length 0 and 𝛽 is an arbitrary modification with 𝛽 = 𝛿(̄𝑒) then 𝒮 def=𝒫𝛽(𝒮0) and 𝒮′ def= 𝒮′0 satisfy Equation 1 due to the definition of the initialization
mapping of 𝒫′. If 𝛼 is of length 𝑖 ≥ 1 then, by the induction hypothesis, the states𝒮 def= 𝒮𝑖 = 𝒫𝛼𝑖(𝒮𝑖−1) and 𝒮′ def= 𝒮′𝑖−1 satisfy Equation 1, that is

22

̄𝑎 ∈ 𝑅𝒮 if and only if (̄𝑒𝑖, ̄𝑎) ∈ 𝑅𝒮′𝛿𝑖 (2)

for all relations 𝑅 and 𝑅𝛿𝑖 .
Now, let 𝛽 = 𝛿(̄𝑒) be an arbitrary modification. Further, let 𝒯 def= 𝒫𝛽(𝒮) and𝒯′ def= 𝒫′𝛼𝑖(𝒮′). By definition, �̄� ∈ 𝑅𝒯 if and only if(𝑅𝒮, {�̄�1 ↦ ̄𝑒, ̄𝑥 ↦ �̄�}) ⊨ 𝜙𝑅𝛿 (�̄�1; ̄𝑥).
Thanks to Equation 2 and the definition of 𝜙𝑅𝛿𝑖𝛿0 , this is equivalent to(𝑅𝒮′ , {�̄�0 ↦ ̄𝑒𝑖, �̄�1 ↦ ̄𝑒, ̄𝑥 ↦ �̄�}) ⊨ 𝜙𝑅𝛿𝑖 [𝜏 → 𝜏𝛿0](�̄�0, �̄�1, ̄𝑥).
And by definition, this is equivalent to (̄𝑒, �̄�) ∈ 𝑅𝒯.

The next two lemmas will be about removing negations and inverting quan-
tifiers.

Lemma 3.3.

(a) Every DynFO-program has an equivalent negation-free DynFO-program and

(b) Every DynProp-program has an equivalent DynPropUCQ-program

Proof. This lemma is a generalization of Theorem 6.6 from [12] and is an example
of using the replacement technique. Given a dynamic program 𝒫, the idea is to
maintain, for every auxiliary relation 𝑅 of 𝒫, an additional auxiliary relation �̂�
for the complement of 𝑅, and replace all negations with them. This technique of
replacing negations with negated relations will be used again in multiple proofs.

In the following we prove (a), and as the proof does not introduce quantifiers,
it can also be used as a proof for (b).

Let 𝒫 = (𝑃 , Init, 𝑄) be a DynFO-program over the schema 𝜏 . We will as-
sume without loss of generality that 𝒫 is in negation normal form and, for ease
of presentation, that the input relations also have update formulas.

We will construct a negation-free DynFO-program that is equivalent to 𝒫 and
that uses the schema 𝜏 ∪ ̂𝜏 ∪ {=̂} where ̂𝜏 contains, for every symbol 𝑅, a fresh
relation symbol �̂� of equal arity. The idea is to maintain the negation of 𝑅𝒮 for
every state 𝒮 in �̂�𝒮, and the complement of = in =̂.

We will start by constructing a DynFO-program 𝒫′ = (𝑃 ′, Init′, 𝑄) in nega-
tion normal form over the schema 𝜏 ∪ ̂𝜏 ∪ {=̂} that maintains 𝑅𝒮 and �̂�𝒮 but
still uses negations. The update formulas for relation symbols 𝑅 ∈ 𝜏 are as in𝒫. For every �̂� ∈ ̂𝜏 and every modification 𝛿, the update formula 𝜙�̂�𝛿 (̄𝑥, ̄𝑦) is

23

the negation normal form of ¬𝜙𝑅𝛿 (̄𝑥, ̄𝑦). The relation =̂ does not change after
initialization. The initialization mapping Init′ initializes �̂� with the complement
of R.

We can now construct a negation-free DynFO-program 𝒫″ = (𝑃 ″, Init′, 𝑄)
from 𝒫′ in the following way: an update formula 𝜙𝑅𝛿 (̄𝑥; ̄𝑦) for 𝒫″ is obtained
from the update formula 𝜙𝑅𝛿 (̄𝑥; ̄𝑦) for 𝒫′ by replacing all negative literals ¬𝑆 bŷ𝑆. The initialization mapping of 𝒫″ is the same as that of 𝒫′. The equivalence of𝒫 and 𝒫″can be proved by induction over the length of modification sequences.

Definition 3.4. Ifℚ is a quantifier prefix, ℚ̄ is the quantifier prefix that is obtained
by replacing every instance of ∃ in ℚ by ∀ and every instance of ∀ by ∃.
Lemma 3.5. Let ℚ be an arbitrary quantifier prefix. A query can be maintained in
DynℚFO if and only if it can be maintained in Dynℚ̄FO.
Proof. Let 𝒫 = (𝑃 , Init, 𝑄) be an arbitrary dynamic DynℚFO-program over the
schema 𝜏 . By Lemma 3.2 we can assumewithout loss of generality that the update
formulas of 𝑄 are atomic. Wewill construct a dynamic Dynℚ̄FO-program 𝒫′ over
the schema ̂𝜏 ∪ {𝑄′} where ̂𝜏 contains a 𝑘-ary relation symbol �̂� for every 𝑘-ary𝑅 ∈ 𝜏 . The intention is that �̂� is always equal to the complement of 𝑅. This is
achieved in a similar way as in the proof above.

We denote by 𝜙[𝜏 → ̂𝜏] the formula obtained from 𝜙 by replacing every atom𝑆(̄𝑧) in 𝜙 by ¬ ̂𝑆(̄𝑧). Then the update formulas of 𝒫′ are obtained as 𝜙�̂�𝛿 def=¬𝜙𝑅𝛿 [𝜏 → ̂𝜏] for every �̂� ∈ ̂𝜏 . Observe that this formula can easily be trans-
formed into an ℚ̄FO-formula. Further 𝜙𝑄′𝛿 = 𝜙�̂�𝛼 which is a ℚ̄FO-formula since𝜙�̂�𝛼 is quantifier-free. The initialization mapping of 𝒫′ is straightforward.

The following lemma uses the replacement technique to remove disjunctions
from quantifier-free programs.

Lemma 3.6. Every DynProp-program has an equivalent DynPropCQ¬-program
Proof. Let 𝒫 = (𝑃 , Init, 𝑄) be a DynProp-program over the schema 𝜏 . We will
assume without loss of generality that 𝜏 contains, for every relation symbol 𝑅 a
relation symbol �̂� and that 𝒫 ensures that �̂�𝒮 is the complement of 𝑅𝒮 for every
state 𝒮. This can be achieved with the technique used in Lemma 3.3. Further, we
will assume that all update formulas of 𝒫 are in conjunctive normal form.

The conjunctive DynProp-program we are going to construct will use the
schema 𝜏 ∪ 𝜏 ′, where 𝜏 ′ contains a fresh relation symbol 𝑅¬𝐶 for every clause𝐶 occuring in any update formula of 𝒫. The goal of the construction is to ensure

24

that 𝑅𝒮¬𝐶(̄𝑧) holds if and only if ¬𝐶(̄𝑧) is true in the state 𝒮. Now update formulas𝜙 = 𝐶1(̄𝑥1)∧…∧𝐶𝑘(̄𝑥𝑘) with clauses 𝐶1(̄𝑥1), …, 𝐶𝑘(̄𝑥𝑘) can be replaced by the
conjunctive formula ¬𝑅¬𝐶1(̄𝑥1) ∧ … ∧ ¬𝑅¬𝐶𝑘(̄𝑥𝑘).

We start by constructing a DynProp-program 𝒫′ = (𝑃 ′, Init, 𝑄) in conjunc-
tive normal form, that maintains the relations 𝑅𝒮¬𝐶 . To this end, let 𝐶 be a clause
with 𝑘 variables and let ̄𝑧 be the 𝑘-tuple that contains the variables of 𝐶 in the
order in which they occur. Assume that 𝐶 = 𝐿1(̄𝑧1) ∨ … ∨ 𝐿𝑙(̄𝑧𝑙). The relation
symbol 𝑅¬𝐶 is of arity 𝑘. For a modification 𝛿, the update formula for 𝑅¬𝐶 is𝜙𝑅¬𝐶𝛿 (̄𝑥; ̄𝑧) = 𝜙𝑋1𝛿 (̄𝑥; ̄𝑧1)…𝜙𝑋𝑙𝛿 (̄𝑥; ̄𝑧𝑙)

where 𝑋𝑖 is the relation symbol 𝑅 if 𝐿𝑖 = ¬𝑅 and �̂� if 𝐿𝑖 = 𝑅. Observe that𝜙𝑅¬𝐶𝛿 (̄𝑥, ̄𝑧) is in conjunctive normal form since each 𝜙𝑋𝑖𝛿 (̄𝑥, ̄𝑧𝑖) is in conjunctive
normal form. Further, 𝜙𝑅¬𝐶𝛿 (̄𝑥; ̄𝑧) does not use new clauses. The initialization
mapping Init′ extends the initialization mapping Init to the schema 𝜏 ′ in the
following way. For a clause 𝐶 and an input database ℐ, a tuple ̄𝑎 is in Init′(𝑅¬𝐶)
if and only if 𝐶 evaluates to false in Init(ℐ) for ̄𝑎.

We will then construct the desired conjunctive DynProp-program 𝑃 ″ by re-
placing every clause 𝐶 in every update formula of 𝒫′ by ¬𝑅¬𝐶 . The initialization
mapping for 𝑃 ″ is the same as that of 𝑃 ′.

Since 𝒫′ updates relations from 𝜏 exactly as 𝒫 does, and we can demon-
strate by induction over the length of modification sequences that for all tuples ̄𝑎,𝑅𝒮¬𝐶(̄𝑎) holds if and only if ¬𝐶(̄𝑎) is true in state 𝒮, the corresponding formulas
from 𝒫 and 𝒫″ always yield the same results.

Definition 3.7. ADynFO∧-program is a dynamic program with update formulas
that are in prenex normal form where the quantifier-free part is a conjunction of
atoms.

The following lemma will be needed for Lemma 3.9. The proof will not be
covered here but it can be found in [10] under Lemma 3.1.13.

Lemma 3.8. Let 𝑘 ≥ 0. For every 𝑘-ary DynUCQ-program 𝒫 there is a 𝑘′-ary
DynUCQ-program 𝒫′ with 𝑘′ def= 𝑚𝑎𝑥{𝑘, 2} and with a query symbol Q’ which is
equivalent for domains of size at least 2 and satisfies

1. in every possible state all auxiliary relations ≠ 𝑄′ of 𝒫′ are neither empty
nor do they contain all tuples and

2. no update formula uses the relation symbol 𝒬′.
Analogously for 𝐷𝑦𝑛𝑈𝐶𝑄¬- and negation-free DynFO-programs.

25

Lemma 3.9.

(a) For every DynUCQ¬-program there is an equivalent DynCQ¬ − 𝑝𝑟𝑜𝑔𝑟𝑎𝑚
(b) For every DynUCQ-program there is an equivalent DynCQ-program

(c) For every DynFO-program there is an equivalent Dynfo∧-program
Proof. We will only prove the statement for domains with at least two elements.
To see how this restriction can be lifted, see the proof of Lemma 3.1.14 from [10].

The construction will be presented for (a), but since it does not introduce any
negation operators, it also works for (b). For (c), we can assume by Lemma 3.3
that we start from a negation-free DynFO-program and use the construction from
(a) on that, the quantifier-prefix ∃ ̄𝑦 just needs to be substituted by an arbitrary
quantifier-prefix.

Let 𝒫 = (𝑃 , Init, 𝑄) be a DynUCQ¬-program over the schema 𝜏 . Since we
assume the domain is of size at least 2, due to Lemma 3.8 we can assume that
all auxiliary relations of 𝒫 except for 𝒬 are not empty, do not contain all tuples
and that 𝒬 is not used in any update formula. Further, without loss of generality,
we will assume that the quantifier-free parts of all update formulas of 𝒫 are in
disjunctive normal form.

We will convert 𝒫 into an equivalent DynCQ¬-program 𝒫′ with update for-
mulas in prenex normal form and quantifier-free parts of the form𝑇 (�̄�)∧⋀𝑖 𝐿𝑖(�̄�𝑖),
where 𝐿𝑖 is an arbitrary literal over 𝜏 for all 𝑖 and the symbols 𝑇 are fresh auxil-
iary relation symbols. Now let 𝒫′ = (𝑃 ′, Init, 𝑄) be a program over the schema𝜏 ′ = 𝜏 ∪ 𝜏𝑇 , where 𝜏𝑇 contains a relation symbol 𝑇𝑅,𝛿 for every relation symbol𝑅 ∈ 𝜏 and every modification 𝛿. The intent is that corresponding states for 𝒫 and𝒫′ agree on the relations from 𝜏 .

Now we will construct the update formulas for the program 𝒫′. Let 𝑅 ∈ 𝜏
and let 𝛿 be a modification. Further, let𝜙𝑅𝛿 (�̄�; ̄𝑥) = ∃ ̄𝑦(𝐶1(�̄�, ̄𝑥, ̄𝑦) ∨ … ∨ 𝐶𝑘(�̄�, ̄𝑥, ̄𝑦))

be the update formula of 𝑅 with respect to 𝛿 in 𝒫, where every 𝐶𝑖 is a con-
junction of literals.

For every 𝐶𝑖(�̄�, ̄𝑥, ̄𝑦) = 𝐿1𝑖 (̄𝑣1𝑖) ∧ … ∧ 𝐿𝑙𝑖(̄𝑣𝑙𝑖)
we define ̂𝐶𝑖(̄𝑧𝑖) def= 𝐿1𝑖 (̄𝑧1𝑖) ∧ … ∧ 𝐿𝑙𝑖(̄𝑧𝑙𝑖)

26

where all ̄𝑧𝑗𝑖 contain pairwise different, fresh variables and ̄𝑧𝑖 def= (̄𝑧1𝑖 , …, ̄𝑧𝑙𝑖).
Also, let ̄𝑣𝑖 def= (̄𝑣1𝑖 , …, ̄𝑣𝑙𝑖) and let 𝑋 be the set of variables appearing in �̄�, ̄𝑥, ̄𝑦 and
in the tuples ̄𝑧𝑖 .

The update formula 𝜓𝑅𝛿 (�̄�, ̄𝑥) for 𝑅 ∈ 𝜏 in 𝒫′ is as follows:

𝜓𝑅𝛿 (�̄�; ̄𝑥) def= ∃ ̄𝑦∃ ̄𝑧1…∃ ̄𝑧𝑘(̂𝐶1(̄𝑧1) ∧ … ∧ ̂𝐶𝑘(̄𝑧𝑘) ∧ 𝑇𝑅,𝛿(�̄�, ̄𝑥, ̄𝑦, ̄𝑧1, …, ̄𝑧𝑘))
The relations 𝑇𝑅,𝛿 are fixed, that is, their update formulas always reproduce

the current value of 𝑇𝑅,𝛿. A tuple ̄𝑎 is in the relation 𝑇𝑅,𝛿 if there is an assignment𝜋 ∶ 𝑋 → 𝐷 with ̄𝑎 = 𝜋(�̄�, ̄𝑥, ̄𝑦, ̄𝑧1, …, ̄𝑧𝑘) and 𝜋(̄𝑧𝑖) = 𝜋(̄𝑣𝑖) for some 𝑖. Here,
the tuple ̄𝑣𝑖 consists of elements from �̄�, ̄𝑥 and ̄𝑦 as specified by the definition of̄𝑣𝑖 above.

Auxiliary relation symbols 𝑅 ∈ 𝜏 are initialized as in 𝒫. The relations 𝑇𝑅,𝛿 are
initialized as intended by simple quantifier-free formulas (but with a disjunction
for selecting 𝑖).

We will now outline the proof of why 𝒫 and 𝒫′ are equivalent. The proof is
by induction over the length of modification sequences. It is sufficient to show
that the formulas 𝜙𝑅𝛿 and 𝜓𝑅𝛿 yield the same result for states 𝒮 and 𝒮′, where 𝒮′
contains the relation 𝑇𝑅,𝛿 in addition to the relations of 𝒮.

If (𝑆, ̄𝑎, �̄�) ⊨ 𝜙𝑅𝛿 (�̄�; ̄𝑥) then there is a tuple ̄𝑐 so that (𝒮, ̄𝑎, �̄�, ̄𝑐) ⊨ 𝐶𝑖(�̄�, ̄𝑥, ̄𝑦)
for some 𝑖. Now to show that (𝒮′, ̄𝑎, �̄�) ⊨ 𝜓𝑅𝛿 (�̄�, ̄𝑥) one can choose ̄𝑦 in 𝜓𝑅𝛿 as ̄𝑐
and the values for ̄𝑧𝑖 accordingly. This will satisfy ̂𝐶𝑖(̄𝑧𝑖) and 𝑇𝑅,𝛿. The values
for each ̄𝑧𝑗 with 𝑗 ≠ 𝑖 are chosen so that all literals in ̂𝐶𝑗(̄𝑧𝑗) are satisfied, which
is possible because all auxiliary relations are neither empty nor do they contain
all tuples.

If (𝒮′, ̄𝑎, �̄�) ⊨ 𝜓𝑅𝛿 (�̄�; ̄𝑥) then there are tuples ̄𝑐 and ̄𝑑1, …, ̄𝑑𝑘 so that (𝒮′, ̄𝑑𝑖) ⊨̂𝐶𝑖(̄𝑧𝑖) for some 𝑖 and (𝒮′, ̄𝑎, �̄�, ̄𝑐, ̄𝑑1, …, ̄𝑑𝑘) ⊨ 𝑇𝑅,𝛿(�̄�, ̄𝑥, ̄𝑦, ̄𝑧1, …, ̄𝑧𝑘). But then,
due to the definition of 𝑇𝑅,𝛿, there is a tuple ̄𝑐″ so that (𝒮, ̄𝑐′) ⊨ 𝐶𝑖(̄𝑣𝑖). Therefore
also (𝒮, ̄𝑎, �̄�) ⊨ 𝜙𝑅𝛿 (�̄�; ̄𝑥).

From the lemmas 3.3, 3.5, 3.6 and 3.9 we get the following four theorems:

Theorem 3.10. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in DynUCQ¬.
(b) 𝒬 can be maintained in DynCQ¬.
(c) 𝒬 can be maintained in Dyn∃∗FO.
(d) 𝒬 can be maintained in Dyn∀∗FO.

27

Proof.

(a) ⇔ (b): follows from Lemma 3.9 and the fact that every DynCQ¬-program is
a DynUCQ¬-program.

(c) ⇔ (d): follows from Lemma 3.5.

(a) ⇔ (c): follows from the definition of DynUCQ¬ and Dyn∃∗FO.

Theorem 3.11. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in DynUCQ.

(b) 𝒬 can be maintained in DynCQ.

Proof. Follows from Lemma 3.9 and the fact that every DynCQ-program is a
DynUCQ-program.

Theorem 3.12. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in DynFO.

(b) 𝒬 can be maintained in DynFO∧.
Proof. (a) ⇒ 𝑏: by definition.

(b) ⇒ (a): follows from Lemma 3.9.

Theorem 3.13. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in DynProp.

(b) 𝒬 can be maintained in DynPropUCQ¬.
(c) 𝒬 can be maintained in DynPropCQ¬.
(d) 𝒬 can be maintained in DynPropUCQ.

Proof.

(a) ⇒ (c): follows from Lemma 3.6.

(c) ⇒ (b): follows from the definitions of DynPropCQ¬ and DynPropUCQ¬
(a) ⇒ (d): follows from Lemma 3.3.

28

(b), (c), (d) ⇒ (a): follow from the definitions.

Theorem 3.14.

(a) The class DynPropCQ is a strict subclass of DynProp.

(b) The class DynProp is a strict subclass of DynCQ.

Proof. Part (a) follows from the of the fact that 𝑠-𝑡-Reach cannot be maintained in
DynPropCQ (Theorem 4.1.14 in [10]) and part (b) follows from the next theorem
and the fact that DynQF can express the equal cardinality query while DynProp
cannot [13].

Theorem 3.15. DynQF is contained in DynCQ.

Proof. Let 𝒫 = (𝑃 , Init, 𝑄) be a dynamic DynQF-program over the schema 𝜏 =𝜏rel ∪ 𝜏fun. As in Lemma 3.3, we will assume, without loss of generality that 𝒫 is
in negation normal form and that input relations also have update formulas.

We will now prove that there is a DynUCQ-program 𝒫″ that is equivalent to𝒫. Then, by Lemma 3.9, there is an equivalent DynCQ-program.
As a preparatory step, we will construct, from 𝒫, a DynQF-program 𝒫′ over

the schema 𝜏 ′ def= 𝜏rel ∪ ̂𝜏rel ∪ {=̂} ∪ 𝜏fun where ̂𝜏rel contains, for every 𝑅 ∈ 𝜏 , a
relation symbol �̂� intended to contain the complement of 𝑅 and =̂ that contains
the complement of the relation =, as in Lemma 3.3.

From 𝒫′ we construct a DynUCQ-program 𝒫″ over the schema 𝜏″ def= 𝜏rel ∪̂𝜏rel∪𝜏𝐹 , where 𝜏𝐹 contains a 𝑘+1-ary relation symbol𝑅𝑓 for every 𝑘-ary function
symbol 𝑓 ∈ 𝜏fun. The intention is that 𝑅𝑓 simulates 𝑓 in the sense that (̄𝑎, 𝑏) ∈𝑅𝒮′𝑓 if and only if 𝑓𝒮″(̄𝑎) = 𝑏 in states 𝒮′ and 𝒮″ reached in 𝒫′ and 𝒫″ reached by
the same modification sequence. The initialization of 𝑅𝑓 can easily be obtained
from the initialization of 𝑓 .

We say that two states 𝒮′ and 𝒮″ over 𝜏 ′ and 𝜏″ correspond, if

1. (̄𝑎, 𝑏) ∈ 𝑅𝒮′ if and only if 𝑓𝒮″(̄𝑎) = 𝑏, and
2. 𝑅𝒮′ = 𝑅𝒮″ for all 𝑅 ∈ 𝜏rel ∪ ̂𝜏rel.
We will now explain how to update relations from 𝜏𝐹 . To this end, we will

define CQ-formulas 𝜑𝑡(̄𝑥, 𝑧) and 𝜑𝜙(̄𝑥) over 𝜏″ for every update term 𝑡(̄𝑥) and
every update formula 𝜙(̄𝑥) over 𝜏 so that the following conditions are satisfied
for all corresponding states 𝒮′, 𝒮″, all tuples ̄𝑎 and all elements 𝑏:

29

• (𝒮″, ̄𝑎, 𝑏) ⊨ 𝜑𝑡(̄𝑥, 𝑧) if and only if 𝑡𝒮′(̄𝑎) = 𝑏, and
• (𝒮″, ̄𝑎) ⊨ 𝜑𝜙(̄𝑥) if and only if (𝒮′, ̄𝑎) ⊨ 𝜙(̄𝑥)
Then the update formulas in 𝒫″ after a modification 𝛿 can be defined as fol-

lows. For every 𝑅𝑓 ∈ 𝜏𝐹 , define the update formula as 𝜙𝑅𝑓𝛿 def= 𝜑𝑡 where 𝑡 is the
update term for 𝑓 ∈ 𝜏fun in 𝒫′. For every 𝑅 ∈ 𝜏rel ∪ ̂𝜏reldefine the update formula
as 𝜙𝑅𝛿 def= 𝜑𝜙 where 𝜙 is the update formula of 𝑅 in 𝒫′. An easy induction shows
that 𝒫′ and 𝒫″ yield corresponding states when the same modification sequence
is applied. This proves the claim.

It remains to define the CQ-formulas𝜑𝑡(̄𝑥, 𝑧) and𝜑𝜙(̄𝑥) for every update term𝑡(̄𝑥) and every formula 𝜙(̄𝑥). Those formulas are defined inductively as follows:

1. If 𝑡(̄𝑥) = 𝑦 for some variable 𝑦 occuring in ̄𝑥, then𝜑𝑡(̄𝑥, 𝑧) def= 𝑦 = 𝑧
2. If 𝑡(̄𝑥) = 𝑓(𝑡1(̄𝑥1), …, 𝑡𝑘(̄𝑥𝑘)) with ̄𝑥𝑖 ⊆ ̄𝑥, then𝜑𝑡(̄𝑥, 𝑧) def= ∃𝑧1…𝑧𝑘(𝑅𝑓(𝑧1, …, 𝑧𝑘, 𝑧) ∧ ⋀𝑖 𝜑𝑡𝑖(̄𝑥, 𝑧𝑖))
3. If 𝑡(̄𝑥) = ITE(𝜙(̄𝑦), 𝑡1(̄𝑥1), 𝑡2(̄𝑥2)) with ̄𝑦, ̄𝑥1, ̄𝑥2 ⊆ ̄𝑥, a quantifier-free

update formula 𝜙 and update terms 𝑡1, 𝑡2, then𝜑𝑡(̄𝑥, 𝑧) def= (𝜑𝜙(̄𝑦) ∧ 𝜑𝑡𝑖(̄𝑥1, 𝑧)) ∨ (𝜑¬𝜙(̄𝑦) ∧ 𝜑𝑡2(̄𝑥2, 𝑧))
4. If 𝜙(̄𝑥) contains the maximal update terms 𝑡1(̄𝑥1), …, 𝑡𝑘(̄𝑥𝑘) then let𝜑𝑡(̄𝑥) def= ∃𝑧1…∃𝑧𝑘(𝜙′ ⋀𝑖 𝜑𝑡𝑖(̄𝑥𝑖, 𝑧𝑖))

where𝜙′ is obtained from𝜙 by replacing 𝑡𝑖 by 𝑧𝑖, transforming the resulting
formula into negation normal form and then replacing every literal of the
form ¬𝑅(𝑠1, …, 𝑠𝑙) by �̂�(𝑠1, …, 𝑠𝑙). Here, a term 𝑡𝑖 is maximal if it is not
contained in another update term.

Observe that the formula 𝜙 in 4. contains only relation symbols from 𝜏rel∪ ̂𝜏rel ,
and therefore no symbols from 𝜏fun need to be replaced in 𝜙′. The correctness of
this construction can be proved inductively.

With theorems 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15 we have now covered the
left side of Figure 4.

30

3.3 Δ-semantics

We will now consider an alternative semantics to dynamic programs, called theΔ-semantics. Commonly, when updating the input relation, only some of the
tuples in the auxiliary relations will change. It therefore makes sense to express
the updated version of relations as the previous versionwith some elements added
and some elements removed.

We will now give a formal definition of Δ-semantics and compare the expres-
sive power of Δ-semantics with different logics for update formulas against each
other and their counterparts with absolute semantics.

Definition 3.16 (Δ-Update program). A Δ-update program 𝒫 over the dynamic
schema (𝜏inp, 𝜏aux) is a set of first-order formulas (called Δ-update formulas in
the following) that contains, for every 𝑅 ∈ 𝜏aux and every 𝛿 ∈ {ins𝑆,del𝑆} with𝑆 ∈ 𝜏inp two formulas 𝜙𝑅+𝛿 (�̄�; ̄𝑥) and 𝜙𝑅−𝛿 (�̄�; ̄𝑥) over the schema 𝜏 where �̄� and 𝑆
have the same arity, ̄𝑥 and 𝑅 have the same arity, and 𝜙𝑅+𝛿 ∧ 𝜙𝑅−𝛿 is unsatisfiable.

For a modification 𝛿 = 𝛿(̄𝑎) and a program state 𝒮 = (𝐷, ℐ, 𝒜) we denote by𝑃𝛿(𝒮) the state (𝐷, 𝛿(ℐ), 𝒜′) where the relations 𝑅′ of 𝒜′ are defined by𝑅′ def= (𝑅 ∪ {�̄�|𝒮 ⊨ 𝜙𝑅+𝛿 (̄𝑎; �̄�)})\{�̄�|𝒮 ⊨ 𝜙𝑅−𝛿 (̄𝑎; �̄�)}.
The effect of a modification sequence on a state, dynamic Δ-programs and

so on are defined like their counterparts in absolute semantics except for usingΔ-update programs instead of update programs.

Definition 3.17 (Δ-Dyn𝒞). For a class 𝒞 of formulas, let Δ-Dyn𝒞 be the class of
all dynamic queries that can be maintained by dynamic Δ-programs with formu-
las from 𝒞 and arbitrary initialization mappings.

Lemma3.18. LetΔ-Dyn𝒞 be one of the dynamic complexity classesΔ-DynPropCQ¬,Δ-DynCQ¬, Δ-DynUCQ¬ orΔ-DynℚFO for an arbitrary quantifierℚ. If a query𝑄
can be maintained in Δ-Dyn𝒞 then 𝑄 can be maintained in negation-free Δ-Dyn𝒞.
Proof. Given a dynamic Δ-program 𝒫 over the schema 𝜏 , we will construct a
dynamic Δ-program 𝒫′ over the schema 𝜏 ∪ ̂𝜏 , where ̂𝜏 again contains, for every𝑘-ary relation symbol 𝑅 ∈ 𝜏 , a fresh 𝑘-ary relation symbol �̂� with the intent that�̂� always stores the complement of 𝑅.

The update formulas for 𝑅 ∈ 𝜏 are as in 𝒫. For a relation symbol 𝑅 ∈ 𝜏 , let𝜙𝑅+𝛿 (�̄�; ̄𝑥) and 𝜙𝑅−𝛿 (�̄�; ̄𝑥) be the update formulas for 𝑅. Now the update formulas
from �̂� can be defined in the following way:

31

𝜙�̂�+𝛿 (�̄�; ̄𝑥) def= 𝜙𝑅−𝛿 (�̄�; ̄𝑥)𝜙�̂�−𝛿 (�̄�; ̄𝑥) def= 𝜙𝑅+𝛿 (�̄�; ̄𝑥)
As 𝜙𝑅+𝛿 ∧ 𝜙𝑅−𝛿 is unsatisfiable, all tuples will be contained either in 𝑅 or �̂�.

From 𝒫′, a negation-free dynamic Δ-program 𝒫″ can be constructed by replacing
all occurences of ¬𝑅(̄𝑥) in it’s update formulas by �̂�(̄𝑥).

The following lemma will not be proved here. The proof can be found in
Lemma 3.2.8 in [10].

Lemma 3.19. Let ℚ be an arbitrary quantifier prefix. If a query can be maintained
in DynℚFO, then it can be maintained in Δ-DynℚFO as well.

Lemma 3.20.

(a) If a query can be maintained in Δ-DynUCQ¬, then it can be maintained in
DynUCQ¬ as well.

(b) If a query can be maintained in Δ-Dyn∀∗FO, then it can be maintained in
Dyn∀∗FO as well.

Proof. We will only prove (a), the proof for (b) follows the same construction. Let𝒫 = (𝑃 , Init, 𝒬) be a dynamic Δ-DynUCQ¬-program over the schema 𝜏 . By
Lemma 3.18 we can assume without loss of generality that the update formulas
of 𝒫 are negation-free. For ease of presentation we will assume that the input
schema is 𝐸, where 𝐸 is a binary relation.

We will construct an equivalent DynUCQ¬-program 𝒫′ in the following way.
Consider some update formulas 𝜙𝑅+𝛿 (�̄�; ̄𝑥) and 𝜙𝑅−𝛿 (�̄�; ̄𝑥) of a relation 𝑅 ∈ 𝜏

for a modification 𝛿 in 𝒫. The naïve translation into a DynFO-update formula𝜙𝑅𝛿 (�̄�; ̄𝑥) would yield𝜙𝑅𝛿 (�̄�, ̄𝑥) = (𝑅(̄𝑥) ∨ 𝜙𝑅+𝛿 (�̄�; ̄𝑥)) ∧ ¬𝜙𝑅−𝛿 (�̄�; ̄𝑥)
which is not necessarily in UCQ¬ since¬𝜙𝑅−𝛿 (�̄�; ̄𝑥) is not in UCQ¬ if𝜙𝑅−𝛿 (�̄�; ̄𝑥)

is not atomic. Therefore, 𝒫′ will maintain a relation 𝑅−𝛿 that contains all tuples(̄𝑎, �̄�) so that ̄𝑎 would be removed from 𝑅 after applying the modification 𝛿(�̄�).
Those relations are maintained using the squirrel technique.

The dynamic program 𝒫′ is over the schema 𝜏 ∪ 𝜏∆ where 𝜏∆ contains a𝑘 + 2-ary relation symbol 𝑅−𝛿 ∈ 𝜏 for every 𝑘-ary relation symbol 𝑅 ∈ 𝜏 and
every modification 𝛿 ∈ {ins,del} of the input relation 𝐸.

32

The update formula for a relation symbol 𝑅 ∈ 𝜏 is𝜙𝑅𝛿 (�̄�, ̄𝑥) def= (𝑅(̄𝑥) ∨ 𝜙𝑅+𝛿 (�̄�, ̄𝑥)) ∧ 𝑅−𝛿 (�̄�; ̄𝑥).
This formula can be translated into an existential formula in a straightforward

manner.
For updating a relation 𝑅−𝛿1 after a modification 𝛿0, the update formula 𝜙𝑅−𝛿1

for 𝑅− is used. However, since 𝑅−𝛿1 will store tuples that have to be deleted after
applying 𝛿1, the formula 𝜙𝑅−𝛿1 has to be adapted to use the content of relational
symbols 𝑆 ∈ 𝜏 after modification 𝛿0.

For this purpose, relation symbols 𝑆 ∈ 𝜏 in 𝜙𝑅− 𝛿1 need to be replaced by their
update formulas as defined above.

The update formula for 𝑅−𝛿1 is𝜙𝑅−𝛿1𝛿1 (�̄�0; �̄�1, ̄𝑥) def= 𝜙𝑅−𝛿1𝛿1 [𝜏 → 𝜙𝜏](�̄�0; �̄�1, ̄𝑥)
where 𝜙𝑅−𝛿1𝛿1 [𝜏 → 𝜙𝜏](�̄�0; �̄�1, ̄𝑥) is obtained from 𝜙𝑅−𝛿1𝛿1 by replacing every

atom 𝑆(̄𝑧) by 𝜙𝑆𝛿0(�̄�0, ̄𝑧), as constructed above. Since by our initial assumption,𝜙𝑅−𝛿1 itself is an UCQ-formula and all update formulas 𝜙𝑆𝛿0 for 𝑆 ∈ 𝜏 are UCQ-

formulas, the formula 𝜙𝑅−𝛿1𝛿1 can easily be converted into an UCQ-formula as well.

The following lemma will not be proved here. The proof can be found in
Lemma 3.2.11 in [10].

Lemma 3.21.

(a) For every Δ-DynUCQ¬-program there is an equivalent Δ-DynUCQ-program.

(b) For every Δ-DynFO-program, there is an equivalent Δ-DynFO∧-program.

Theorem 3.22. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in Δ-DynUCQ¬.
(b) 𝒬 can be maintained in Δ-DynUCQ.

(c) 𝒬 can be maintained in Δ-DynCQ¬.
(d) 𝒬 can be maintained in Δ-DynCQ.

(e) 𝒬 can be maintained in Δ-Dyn∃∗FO.
33

(f) 𝒬 can be maintained in Δ-Dyn∀∗FO.
Proof.

(a) ⇔ (b) and (c) ⇔ (d): follow from Lemma 3.18.

(a) ⇔ (c): follows from Lemma 3.21.

(a) ⇔ (e): (a) and (e) are equivalent by definition.

(e) ⇔ (f): follows by combining Lemmas 3.19 and 3.20 with Theorem 3.10.

Theorem 3.23. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in DynUCQ¬.
(b) 𝒬 can be maintained in Δ-DynUCQ¬.
Proof.

(a) ⇒ (b): follows from Lemma 3.19.

(b) ⇒ (a): follows from Lemma 3.20.

Theorem 3.24. Let 𝒬 be a query. Then the following statements are equivalent:

(a) 𝒬 can be maintained in Δ-DynFO.

(b) 𝒬 can be maintained in Δ-DynFO∧.
Proof. (a) ⇒ (b): Follows from Lemma 3.21.

(b) ⇒ (a): is by definition.

34

3.4 Relating Dynamic Complexity Classes with Static Complexity
Classes

In this sectionwe are interested in finding cases where we canmaintain all queries
from a static descriptive complexity class using updates from a weaker class.

Prior to [10], the only known such cases were that MSO-queries on strings can
be maintained in DynPROP and that on the general structures, ∃∗FO is captured
by DynQF [13].

Zeume presents two further results in [10]. The first result if that all first-order
definable queries are maintainable using conjunctive queries with negations as
update formulas.

The second result presented by Zeume is that when restricting modifications
to be insertions only, queries definable by unions of conjunctive queries with
negated equality atoms can be maintained in DynProp.

Definition 3.25. The dependency graph of a dynamic program 𝑃 with the aux-
iliary schema 𝜏aux is a graph with the vertex set 𝑉 = 𝜏aux and all edges (𝑅, 𝑅′)
where 𝑅′ occurs in one of the update formulas for 𝑅.

Definition 3.26. A non-recursive dynamic program is a dynamic program with
an acyclic dependency graph.

For every class 𝒞, non-recursive Dyn𝒞 refers to the set of queries that can be
maintained by a non-recursive Dyn𝒞 program.

We say that a formula𝜑 is in existential prefix form if it has a prefix of ((¬∃)|∃)∗
and no quantifiers after this prefix. As all FO formulas have an equivalent formula
in prenex normal form, and universal quantifiers can be replaced by existential
quantifiers and negations, all FO formulas have an equivalent formula in existen-
tial prefix form.

Lemma 3.27. If a query is definable in FO, then it can be maintained in non-
recursive Dyn∃1FO.
Proof. Let 𝜑 be a FO formula in existential prefix form. Wewill prove by induction
over the length of the prefix of𝜑 that, for every finite sequence 𝛿1, …, 𝛿𝑗, the query
defined by 𝜑𝛿1…𝛿𝑗 is maintainable in non-recursive Dyn∃1FO. The claim follows
by setting 𝑗 = 0. We construct dynamic programs where the result of the query
defined by 𝜑𝛿1…𝛿𝑗 is stored in the relation 𝑅𝜑𝛿1…𝛿𝑗 .

For a formula 𝜑 with a prefix of length 0, we define𝜙𝑅𝜑𝛿1…𝛿𝑗𝛿0 (̄𝑣0; ̄𝑦, ̄𝑣1, …, ̄𝑣𝑗) def= 𝜑𝐸𝛿0…𝛿𝑗(̄𝑦, ̄𝑣1, …, ̄𝑣𝑗)
35

where 𝜑𝐸𝛿0…𝛿𝑗 is as defined above.
For the induction step, let 𝜑 be a formula of prefix length 𝑖. By induction

hypothesis, every query defined by 𝜓𝛿1…𝛿𝑗 where 𝜓 has prefix length 𝑖 − 1 can
be maintained in non-recursive Dyn∃1FO for every sequence 𝛿1…𝛿𝑗 of modifica-
tions.

We distinguish the two cases 𝜑(̄𝑦) = ∃𝑥𝜓(𝑥, ̄𝑦) and 𝜑(̄𝑦) = ¬𝛾(̄𝑦). If𝜑(̄𝑦) = ∃𝑥𝜓(𝑥, ̄𝑦) then the dynamic program for 𝜑 and 𝛿1…𝛿𝑗 has auxiliary rela-
tions 𝑅𝜓𝛿0…𝛿𝑗 for 𝛿 ∈ ins,del containing the result of the query 𝜓𝛿0…𝛿𝑗 . Further𝜙𝑅𝜑𝛿1…𝛿𝑗𝛿0 (̄𝑣0; ̄𝑦, ̄𝑣1, …, ̄𝑣𝑗) def= ∃𝑥𝑅𝜓𝛿0…𝛿𝑗(𝑥, ̄𝑦, ̄𝑣0, …, ̄𝑣𝑗).

If 𝜑(̄𝑦) = ¬𝛾(̄𝑦), then the dynamic program for 𝛿 and 𝛿1…𝛿𝑗 has auxiliary
relations 𝑅𝛾𝛿0…𝛿𝑗 for 𝛿0 ∈ ins,del containing the result of the query 𝛾𝛿0…𝛿𝑗 . Fur-
ther, 𝜙𝑅𝜑𝛿1…𝛿𝑗𝛿0 (̄𝑣0; ̄𝑦, ̄𝑣1, …, ̄𝑣𝑗) def= ¬𝑅𝛾𝛿0…𝛿𝑗(̄𝑦, ̄𝑣0, …, ̄𝑣𝑗).

This yields a non-recursive ∃1FO-program for every 𝜑𝛿1…𝛿𝑗.
Lemma 3.28. If a query can be maintained in non-recursive DynFO, then it can be
expressed in FO.

Proof. Let 𝒬 be a query which can be maintained by a non-recursive DynFO pro-
gram 𝒫 = (𝑃 , Init, 𝑄) over the schema 𝜏 = 𝜏inp ∪ 𝜏aux. For simplicity, we will
assume that 𝜏inp = 𝐸, for a binary symbol 𝐸. We let 𝑅0 def= 𝐸 and assume that
the auxiliary relations 𝑅1, …, 𝑅𝑚 are enumerated with respect to a topological
sorting of the dependency graph of 𝒫 with 𝑅𝑚 = 𝑄.

We define inductively, by 𝑖, for every sequence 𝛿1…𝛿𝑗 with 𝑗 ≥ 𝑖, first-order
formulas 𝜑𝑅𝑖𝛿1…𝛿𝑗(̄𝑦, ̄𝑥, …, ̄𝑥) over the schema 𝜏inp = 𝐸 so that 𝜑𝑅𝑖𝛿1…𝛿𝑗 defines 𝑅𝑖
after modifications 𝛿1(̄𝑥1)…𝛿𝑗(̄𝑥𝑗). More precisely 𝜑𝑅𝑖𝛿1…𝛿𝑗 will be defined so that
for every state 𝒮 = (𝑉 , 𝐸𝒮, 𝒜𝒮) of 𝒫 and every sequence 𝛿 = 𝛿1(̄𝑎1…𝛿𝑗(̄𝑎𝑗)) of
modifications the following holds:𝒫𝛿(𝒮) ↾ 𝑅𝑖 = {�̄�|(𝑉 , 𝐸) ⊨ 𝜑𝑅𝑖𝛿1…𝛿𝑗(�̄�, ̄𝑎1… ̄𝑎𝑗)} (3)

Here 𝒫𝛿(𝒮)𝐸 ↾ 𝑅𝑖 denotes the relation stored in 𝑅𝑖 in state 𝒫𝛿(𝑆). For 𝑅0 =𝐸 the formula 𝜑𝐸𝛿1…𝛿𝑗(̄𝑦, ̄𝑥1, …, ̄𝑥𝑗) is obtained from the update formula 𝜙𝑅𝑖𝛿𝑗 (̄𝑥; ̄𝑦)
36

of 𝑅𝑖 by substituting all occurences of 𝑅𝑖′(̄𝑧) by 𝜑𝑅′𝑖𝛿1…𝛿𝑗−1(̄𝑥1, …, ̄𝑥𝑗−1, ̄𝑧) for all𝑖′ ≤ 𝑖. Using induction over 𝑖, one can prove that the formulas 𝜑𝑅𝑖𝛿𝑖…𝛿𝑗 satisfy
Equation 3. As 𝒫 is non-recursive, each formula 𝛿𝑅𝑖𝛿1…𝛿𝑗 with 𝑗 ≥ 𝑖 is over the
schema {𝐸}.

The first-order formula𝜑 for𝒬 over the schema 𝜏inp = {𝐸} can be constructed
in the following way. The formula “guesses” a tuple ̄𝑎 ∈ 𝐸, deletes it and inserts
it 𝑚 times and applies 𝜑𝑅𝑚(ins,del)𝑚 to the result.

More precisely, 𝜑 for 𝒬 is defined by

𝜑(̄𝑦) def= ∃ ̄𝑥((𝐸(̄𝑥) ∧ 𝜑𝑅𝑚(del ins)𝑚(̄𝑦, ̄𝑥, …, ̄𝑥⏟2𝑚-times

))∨ (¬𝐸(̄𝑥) ∧ 𝜑𝑅𝑚(ins del)𝑚(̄𝑦, ̄𝑥, … ̄𝑥⏟2𝑚-times

)))
And with these lemmas, we get the following result.

Theorem 3.29. For every query 𝒬 the following statements are equivalent

(a) 𝒬 can be expressed in FO.

(b) 𝒬 can be maintained in non-recursive DynFO.

(c) 𝒬 can be maintained in non-recursive Dyn∃1FO.
(d) 𝒬 can be maintained in non-recursive Dyn∀1FO.
Proof.

(a) ⇒ (c): follows from Lemma 3.27.

(c) ⇒ (d): follows from Theorem 3.10 since the proof does not introduce recur-
sion when applied to a non-recursive program.

(d) ⇒ (b): by definition.

(b) ⇒ (a): follows from Lemma 3.28.

Combining Theorem 3.29 with Theorem 3.10 yields the following corollary:

Corollary 3.30. Every first-order query can be maintained in DynCQ¬.
37

4 Conclusions

We have introduced the dynamic complexity framework, defined multiple differ-
ent dynamic complexity classes both with absolute semantics and Δ-semantics
and shown how to maintain queries with dynamic programs.

We have also compared the relative power of different complexity classes
against each other and against static complexity classes. Although we covered
quite a few fragments of DynFO, more have been studied. Maybe most notable
are classes where the arity of auxiliary relations for update formulas has been
restricted.

Although many equalities between dynamic complexity classes have been
drawn in this thesis, the amount of strict separations made is very small. Find-
ing separations between classes requires finding lower bounds for them, an en-
deavour that has proven to be difficult but nonetheless, some results have been
established. For a number of them, see Chapter 4 in [10].

References

[1] Erich Graedel, Phokion Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,
Moshe Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its
Applications. Springer Science & Business Media, 01 2007.

[2] Siam-ams Proceedingn and Ronald Fagin. Generalized first-order spectra
and polynomial-time recognizable sets’. SIAM-AMS Proc., 7, 01 1974.

[3] Neil Immerman. Upper and lower bounds for first order expressibility. J.
Comput. Syst. Sci., 25(1):76–98, 1982.

[4] Moshe Y. Vardi. The complexity of relational query languages (extended
abstract). Proceedings of the fourteenth annual ACM symposium on Theory of
computing - STOC ’82, 1982.

[5] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uni-
formity within nc1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[6] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.

[7] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

38

[8] Guozhu Dong and Jianwen Su. First-order incremental evaluation of data-
log queries. In Catriel Beeri, Atsushi Ohori, and Dennis E. Shasha, editors,
Database Programming Languages (DBPL-4), Proceedings of the Fourth Inter-
national Workshop on Database Programming Languages - Object Models and
Languages, Manhattan, New York City, USA, 30 August - 1 September 1993,
Workshops in Computing, pages 295–308. Springer, 1993.

[9] Sushant Patnaik and Neil Immerman. Dyn-fo: A parallel, dynamic complex-
ity class. In Victor Vianu, editor, Proceedings of the Thirteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 24-26,
1994, Minneapolis, Minnesota, USA, pages 210–221. ACM Press, 1994.

[10] Thomas Zeume. Small Dynamic Complexity Classes: An Investigation into
Dynamic Descriptive Complexity, volume 10110 of Lecture Notes in Computer
Science. Springer, 2017.

[11] Thomas Zeume and Thomas Schwentick. On the quantifier-free dynamic
complexity of reachability. CoRR, abs/1306.3056, 2013.

[12] William M Hesse and Neil Immerman. Dynamic computational complexity.
PhD thesis, University of Massachusetts Amherst, 2003.

[13] Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic
complexity of formal languages. In Susanne Albers and Jean-Yves Marion,
editors, 26th International Symposium onTheoretical Aspects of Computer Sci-
ence, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, vol-
ume 3 of LIPIcs, pages 481–492. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2009.

39

	Introduction
	Introduction
	Complexity Theory
	Descriptive Complexity Theory

	Dynamic Complexity Framework
	Background
	Definitions
	Basic Notation
	Structures and First-Order Logic
	The Dynamic Complexity Framework
	DynFO
	DynProp
	DynQF

	Reachability in Undirected Graphs in DynFO

	Relating Dynamic Complexity Classes
	Techniques for Collapsing Dynamic Classes
	Collapsing Dynamic Complexity Classes
	Δ-semantics
	Relating Dynamic Complexity Classes with Static Complexity Classes

	Conclusions

