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Thanks to modern medical advances, humans have developed tools for detecting diseases so early,
that a patient would be better off had the disease gone undetected. This is called overdiagnosis.
Overdiagnosis is a problem especially common in acts, where the target population of an intervention
consists of mostly healthy people.

Colorectal cancer (CRC) is a relatively rare disease. Thus screening for CRC affects mostly cancer-
free population. In this thesis I evaluate overdiagnosis in guaiac faecal occult blood test (gFOBT)
based CRC screening programme.

In gFOBT CRC screening there are two goals: to detect known predecessors of cancers called
adenomas and to remove them (cancer prevention), and to detect malign CRCs early enough to
be still treatable (early detection). Overdiagnosis can happen when detecting adenomas, but also
when detecting cancers. This thesis focuses on overdiagnosis due to detection of adenomas that are
non-progressive in their nature.

Since there is no clinical means to make distinction between progressive and non-progressive ade-
nomas, statistical methods must be applied. Classical methods to estimate overdiagnosis fail in
quantifying this type of overdiagnosis for couple of reasons: incidence data of adenomas is not
available, and adenoma removal results in lowering cancer incidence in screened population. While
the latter is a desired effect of screening, it makes it impossible to estimate overdiagnosis by just
comparing cancer incidences among screened and control populations.

In this thesis a Bayesian Hidden Markov model using HMC NUTS algorithm via software Stan is
fitted to simulate the natural progression of colorectal cancer. The five states included in the model
were healthy (1), progressive adenoma (2), screen-detectable CRC (3), clinically apparent CRC (4)
and non-progressive adenoma (5). Possible transitions are from 1 to 2, 1 to 5, 2 to 3 and 3 to 4.
The possible observations are screen-negative (1), detected adenoma (2), screen-detected CRC (3),
clinically manifested CRC (3).

Three relevant estimands for evaluating this type of overdiagnosis with a natural history model
are presented. Then the methods are applied to estimate overdiagnosis proportion in guaiac faecal
occult blood test (gFOBT) based CRC screening programme conducted in Finland between 2004
and 2016.

The resulting mean overdiagnosis probability for all the patients that had an adenoma detected for
programme is 0.48 (0.38, 0.56, 95-percent credible interval). Different estimates for overdiagnosis
in sex and age-specific stratas of the screened population are also provided.

In addition to these findings, the natural history model can be used to gain more insight about
natural progression of colorectal cancer.
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1 Introduction

1.1 Biological and epidemiological background

Cancers are the second to most common cause of death in Finland, behind only
artery and hearth diseases. For people in working ages 15-64, cancer is the leading
cause of death. According to Finnish Cancer Registry, 12788 people died due to
cancer in 2017. 1368 of them died due to colorectal cancer (CRC), which is the
second-to-most common cancer for both women and men.

According to Syöpätaudit (Cancer Diseases, Duodecim, 2013) the most typical CRC
symptoms are stomach pain, constipation and blood in stool. The patients are often
relatively old and the symptoms have been sporadically present in their lives through
years. This often leads to postponing the visit to a doctor. Additionally, the general
nature of the symptoms may lead to even more delays in the diagnostic confirmation
of the disease.

This makes CRC a tempting subject for screening. Additionally there exists a known
pre-cancerous phase for CRC. Benign tumors called adenomas are known to precede
malign adenocarcinomas, which, According to IARC (2019), consist of 85% of the
CRCs worldwide.

The problem with huge screening programmes is that an organised screening af-
fects mostly healthy people. Mass-screening of asymptomatic inviduals can lead to
excessive detection of such diseases, that the patient would be better off without
diagnosis. This is called overdiagnosis.

The phenomena of overdiagnosis in cancer screening has been illustrated in many
screening programmes and in multiple studies with different study designs. Overview
of these are provided by, for example, Houssami (2017) for breast cancer screening
and Loeb et al. (2015) for prostate cancer screening. It’s hypothesised that practi-
cally all of the cancer screening programmes come with some degree of overdiagnosis.

Estimates of overdiagnosis rates and proportions tend to vary even within a certain
type of cancer screening programme. Marcus et al. (2015) cite figures ranging even
from 0 to 50% in a same type of screening programme for same cancer. One study
can find no overdiagnosis in a programme and another study that half true positive
findings are due to overdiagnosis.

This thesis will focus on overdiagnosis in CRC screening programme organised in
Finland between 2004 and 2016. More precisely, the focus will be on overdiagnosis
caused by unnecessary detection of pre-cancerous lesions, namely non-progressive
adenomas.
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1.2 Colorectal cancer screening

The eventual end goal of organised cancer screening programme is simple: extension
of life.

Cancers have the ugly feature of being treacherous residents in human body, some-
times for years, before showing any clinical symptoms. When symptoms appear,
the disease may be too advanced for successful treatment. Thus earlier detection of
a cancer is often beneficial. Organised cancer screening programmes are a widely
used public health policy aiming for this.

The general idea behind an organised screening programme is to invite whole pop-
ulation of a certain area, often in a certain feasible age, to some kind of systematic
procedure that is aiming to spot an asymptomatic cancer or its predecessor.

The benefit of cancer screening can be achieved via two different ways: by prevention
of cancer and by early detection of cancer. For example, cervical cancer screening
extends life by preventing cancers by detecting pre-cancerous lesions and treating
them, while breast cancer screening focuses on detecting cancers while they are still
local and thus more treatable. This distinction is due to both biological traits of
certain cancer type and the availability of tests for their detection. In cervical cancer
screening there exists both a known pre-cancerous stages with long sojourn times
and tests for detecting that pre-cancerous lesion (papa-test).

CRC screening can be organised in variety of ways. One review of different pro-
grammes is given by Patel and Ahnen in the book Epidemiologic Studies in Cancer
screening and prevention (2013, chapter 16). Options can be rougly separated to
two categories: stool tests and imaging (radiographic or endoscopic). This thesis
will forcus on a programme that used the former. To be more specific, Finnish
health service study concluded between 2004 and 2016 used a test called gFOBT,
that stands for guaiac fecal occult blood test.

In gFOBT screening both prevention of cancer (finding adenomas and removing
them) and early detection of the cancer are achieved. Patel and Ahnen write that
blood-based tests are currently more sensitive at detecting cancers that colonic
polyps, yet most of the detected lesions are indeed polyps, not cancers. This is
because pre-cancerous lesions are more prevalent and have higher incidence than
cancers, but cancers tend to bleed more.

For example, estimates of sensitivity of gFOBT for CRC are around 50% (Hakama
and Malila, 2019, Patel and Ahnen, 2013), while estimates for adenoma sensitivity
are closer to 10% according to Brenner (2015) and Morikawa (2005). Specificity
estimates for gFOBT range from 87% to 98% according to Patel and Ahnen (2013).

Screening procedure is following: an invited person gets a gFOBT kit via mail. If the
person decides to attend, he or she sends their own stool sample to a laboratory for
analysis. If blood is found, person is further invited for colonoscopy for diagnostic
confirmation of the disease (adenoma or cancer). Most of the gFOBT-positive lesions
are not adenomas or CRCs: from the total of 17440 colonoscopy confirmations
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conducted in the whole Finnish RHS study 10532 were neither adenomas nor CRCs.

Patients with confirmed diagnosis receive a proper treatment, while both initially
gFOBT-negative and colonoscopy-negative persons return to screening programme
for the next screening round. A screening interval is two years. People who are
treated will also return to programme, but since reliable data on treatments is
unavailable, events after return will be ignored in this thesis.

1.3 Definition of overdiagnosis in cancer screening

Overdiagnosis is loosely defined as detecting a disease when a patient with the
disease would be better off had the disease been undetected, but a more rigorous
conceptual definition is required in order to proceed to mathematical treatment of
the subject.

First, to have overdiagnosis, one must have a true-positive finding from the screening.
In this study, a true positive is a screen-found adenoma. Here the term "disease"
is adopted to mean the whole path from adenoma to cancer. Screen-found malign
cancers in real world are also "true positives", but since the focus is on overdiagnosis
due to detection of non-progressive adenomas, it’s practical to forget about malign
cancers for now.

Miller (2010) has divided true positive screening findings into four categories:

1. Disease detected by screening that would have been incurable after waiting
until clinical diagnosis.

2. Disease detected by screening that could be cured even after waiting until
clinical diagnosis.

3. Disease detected by screening that are incurable either way.

4. Disease that would never appear if one had kept waiting until clinical diagnosis.

Now category 1 means adenomas that would progress into eventually deadly cancers,
category 2 are the adenomas that, when progressed into cancers, would have still
been able to be treated (5-year relative survival for colorectal cancer is around 70%).
Category 3 does not practically exists for adenomas and is thus not relevant in this
thesis.

The definition of category 4 corresponds to commonly used term overdiagnosis. To
decompose things even further, the framework proposed by Miller has been extended
by Marcus et al. (2015). Miller was a part of their group that further categorised
these overdiagnosed (category 4) diseases into three different types:

A Disease that would regress by itself even if left untreated.
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B Disease that stops growing or progresses so slow that it would not threaten
even oldest of people.

C Patient dies due to another disease before the cancer would become evident.

Now this thesis focuses on types A and B - the non-progressive adenomas.

Statistically the question with types A and B is about clustering diseases into non-
progressive or regressive cancers and type C about calculating residual life distri-
bution of the patient (from detection to death) and residual life distribution of the
disease (from detection to hypothetical clinical appearance). These are two different
problems, and I will only address the first one.

Additionally I will assume all the malign screen findings to be progressive in their
nature. This is because, as Kalager et al. (2018) point out, there is no evidence
for stagnation or regression of the malign disease, and because malign diseases ac-
count for very small proportion of the screen-positive findings and won’t affect the
estimates that much, but it would indeed complicate the model.

1.4 Earlier research

Kalager et al. (2018) point out that there is not a lot of literature about overdiagnosis
in specific domain of colorectal cancer screening.

The natural history of colorectal cancer has been studied earlier with the data from
the Finnish colorectal cancer screening programme by Chiu et al. [9]. The research,
though, only included data from 2004 to 2007, while this thesis will have the screen-
ing trial data from 2004 to 2016 and follow-up data up until 2017. Also, they focused
on mortality reduction and detection of malign disease.

Overdiagnosis using similar kind of Hidden Markov model that will later be applied
in this thesis has been studied by Wu et al. (2019) in breast cancer screening,
without very conclusive results, though.

Luo, Cambon and Wu (2011) developed a three-state semi-Markov model for cancer
progression, that they used to classify screen-attending inviduals into four categories
based on their disease status. One of these categories was overdiagnosed patients,
where the overdiagnosed patient was defined as a patient who had a pre-clinical can-
cer in screening, but would not have had a clinically emergent disease before dying
in case of no screening. Then they reported the posterior conditional probabilities
for being overdiagnosed patient given they had a pre-clinical finding in screening.
They eventually reported an overdiagnosis percentage between 6 to 9 percent for
females and males respectively, with relatively wide confidence intervals of (2,5%,
23,1%) and (1,9%, 44,7%). Their data was based on Minnesota trial concluded in
the US in the 1970s and 1980s.

Their work was focused on lifetime distribution of a person compared to cancer
incidence probability of a person. Practically they would have, in context of this
work, had focused on malign cancers and overdiagnosis of category 4 type C.
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Hakama et al. (2019) give an indicator of overdiagnosis in Finnish randomised
health service study in CRC screening, but their focus is on difference between two
sensitivities for malign cancers and is thus very different in focus from the focus of
this thesis, where the focus is on adenoma. Also their approach differs fundamentally.

1.5 Terminology and notations

A brief summary of cancer screening terminology is required for concluding a study
of the subject.

Screening round refers to one set of actions, where people are invited to screening,
those who attend are screened, evaluated and then directed to proper successive
care, that can be for example an oncological treatment (if a cancer is diagnosed) or
no treatment (if cancer is not found).

Screen 1

Entry to
study

Screen 3Screen 2

End of 
follow up

Screening
episode

Screening
round

Screening
programme

Additional
follow-up

3

2

1

Figure 1: Illustration of some definitions used in this thesis. Person enters the
study during first screening event. Space between screen and following dashed line
is screening episode, a term used for inital screening test and possible diagnostic
confirmation. Screening round includes one screening and time up until the next
screen. Screening interval, the length between two screens, is two years. Three
different follow-ups are illustrated in the figure as well: follow-up of a person can
end during a screening interval (if an interval cancer is found or person dies (1)), in
a screen (if an adenoma or cancer is found (2)) or at the latest three years after last
screen (3).

CRC screening programme studied in this thesis is periodic, which means it consists
of multiple rounds.

This study focuses on one screening programme that consists of multiple screening
rounds. One round includes test and two-year screening interval.
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Pre-clinical cancer refers to a colorectal cancer, that is possible to detect in a cancer
screening (but may not be, due to lack of sensitivity of a screening test).

Screening cycle refers to period (tk, tk+1] where tk, tk+1 are screening times. Interval
cancers are cancers diagnosed during period (tk, tk+1). In this notation screening
round includes [tk, tk+1).

Screening episode is the period from the positive gFOBT test to clinical confirmation.
Episode-negative refers to a screening round of an invidual, where the end result for
the person is negative finding. These cases are thus gFOBT-negative persons who
are not invited to colonoscopy and gFOBT-positive persons who have no disease
found in clinical confirmation. They may have other malady than cancer, but as the
terminology above suggests, those are not labeled diseases. Terms screen-negative
and episode-negative will be used interexchangeably from now on.

Finally, below is a table where mathematical notations and common abbreviations
of this thesis are introduced.

Symbol/abbreviation Meaning

(CT-)HMM (Continuous Time) Hidden Markov model

p(x|θ) P(X ∈ A | θ), where A is an event.

R.V. Random variable

MCMC Markov Chain Monte Carlo

P ∈ RN×M Matrix P with N rows and M columns.

exp(Q) Matrix exponential

(g)FOBT (guaiac) Fecal Occult Blood Test

MSM Multi-state model

Table 1: Abbreviations and mathematical notations

1.6 Outline

This thesis has six sections.

• Chapter 1 is introduction.

• Chapter 2 provides a few examples of how to mathematically quantify over-
diagnosis and illustrate why some approaches may or may not work.

• Chapter 3 is about reviewing the necessary mathematical basis for building a
Hidden Markov model, starting from very basic definition of a Markov chain
and generalizing it to a continuous time Hidden Markov Model. Additionally
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the chapter contains a general framework for making statistical inference in
those models.

• Chapter 4 will focus on the data and likelihood details of this specific model.

• Chapter 5 provides the results.

Final chapter discusses the relevance of the findings and limitations of the model.
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2 Estimands for overdiagnosis

The conceptual definition of overdiagnosis is counterfactual in its nature: in order to
detect cancers in cancer screening, screening must be applied, and thus one cannot
know for certain if the disease had progressed to a clinically significant cancer in
case of no screening.

In ethically very questionable setting it would be possible to apply only screen-
ing and no treatments for found lesions and find which ones progress, but use of
mathematical modelling is often more feasible solution.

Often this counterfactual quantity is tackled using methods that estimate either:

1 the excess cumulative incidence between screened population and expected
incidence of screened population in case of no screening (for example: by
estimating it from control population of a RCT), or

2 the natural history of colorectal cancer and derive overdiagnosis using the
attained natural history model (for example: a hidden Markov model).

I’ll start with expected incidence methods and their limitations and proceed to
natural history methods.

2.1 Expected incidence methods

Most classical approach is using an approach where the expected incidence for pop-
ulation in case of no screening comes from a control population of RCT or similar
study design.

To be more formal, let λi(t) and λu(t) be the CC incidence rates for invited popula-
tion (not necessarily participicated) and uninvited (control population, not invited
to screening) population starting from t = 0 beginning at the screening programme.

Then overdiagnosis can be defined as:

O1 := 1−
∫ T

0
λu(v)dv∫ T

0
λi(v)dv

, (1)

where T is some follow-up time extending hopefully far beyond the screening pro-
gramme.

The need for long follow-up time comes from the effect screening has on cancer
incidence. First, at the start of the programme, the incidence rate is bigger for the
screening population since, as wished, the cancers are detected earlier. Later the
effect should wear out a bit, since the cancers in control population will eventually
(if they are not very slowly progressive or regressive) became evident clinically. This
behavior is illustrated in figure 2.
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Screening
treshold

Clinical
treshold

Time

Tumor
"size"

C3C2C1

�1 �2

Figure 2: Effect of early detection. Y-axis represents the size of cancer tumour (in
quotes since this is a more abstract "detectableness" but it should be very much
correlated with size), x-axis time. Now at time t1 cancers C1 and C2 would have
been found if screened, but without screening C2 would not have been found. At
t2 similarly, all the three cancers would have been found, but C3 would have not in
case of no screening. Yet the excess incidence caused by this phenomena should not
be counted as overdiagnosis, since all the earlier detections were indeed favorable
(assuming all the patients lived long enough to reach the clinical "barrier").

The approach of O1, though, can be a bit misleading, since some of the population
invited to programme will never attend. Thus the person-years accumulated by the
non-attended population will smoothen out the incidence rate a bit, and the effects
of screening in excess incidence will not be as evident as they should be.

One might be more interested in comparing only screen-attenders (given a certain
screening round) to an estimate derived from the control population, but then using
just incidence rate from control population yields biased estimates since screening
attendance is voluntary and thus elective.

One method for correcting this phenomena is as follows. Assuming uninvited control
population has the incidence rate λu = αλu1 + (1−α)λu2 , where α is the proportion
of person years of screen-attenders (and λu2 their incidence rate), λu1 has the inter-
pretation as the unbiased expected incidence rate of screen-attenders in case of no
screening. Then after solving the equation for λu1 overdiagnosis becomes:

O2 := 1−
∫ T

0
λu1(v)dv∫ T

0
λa(v)dv

, (2)

where λa is the incidence rate for screen-attenders.

While easy to interpret and conceptually sound, these approaches are are very much
dependent on having a control population. If no control population exists, one has
to do some kind of model (such as age-period-cohort model as in Hakama et al.
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(2015) or another extrapolation) to calculate the counterfactual cancer incidence.
These approaches, though, are very sensitive for assumptions made in the modelling
process.

Additionally, since focus of this thesis is on overdiagnosis due to detecting pre-
cancerous adenomas, these methods are destined to fail for two reasons.

First, people usually don’t need medical care for regular adenomas, which means
there’s no data on adenoma incidence for control population. Additionally there
exists the effect of reducing incidence. In colorectal cancer screening programme
where almost 90% of the found lesions are indeed pre-cancerous stages that can be
removed and thus the incidence can be reduced. If the incidence is reduced more
than there is cancer overdiagnosis, these methods fail to account overdiagnosis for
cancer as well.

The effect is illustrated in figure 3.

Figure 3: Cumulative incidence of colorectal cancer screening first increases due to
early detection and overdiagnosis, then starts to decrease when the effect of incidence
reduction starts to show. Eventually cumulative incidence in control population
exceeds the cumulative incidence in screening population due to this effect in both
groups of men and women.

Calculating O1 and O2 from this type of figure for long follow up time would yield
negative estimates. This is not necessarily a contradiction with the heuristic that all
the cancer programmes come with some kind of overdiagnosis, since the indicators
are dealing with only incident cancers and overdiagnosis can be apparent in cancers
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that are not yet in cancerous stage.

Additionally, since gFOBT CRC screening both reduces the incidence and detects
cancers early, this just shows that the effect of incidence reduction is larger than the
effect of overdiagnosis of malign cancers (category 4 type C in terms of introductory
section).

Yet it should now be apparent that simply looking at the difference of the cohorts
is not enough, when there are both effects of increasing incidence and reducing
incidence. This opens up the field for another kind of estimands.

2.2 Natural progression based methods

Methods of type 2 provide very different approach for modelling overdiagnosis. The
basic idea is to simulate the progression of colorectal cancer using some kind of
multi-state model (MSM) and calculate overdiagnosis using the estimated MSM
parameters. MSMs have been used extensively for cancer progression, and there are
lot of different versions about how the cancer progression should be modelled.

Typical choice is to focus on states that are apparent on the data or that are relevant
with respect to the quantities that are to be estimated.

One model used in this kind of setting was proposed by Wu et al. (2019) for
breast cancer screening, where they defined four latent states that describe a natural
progression breast cancer, namely: (1) healthy, (2) progressive pre-clinical cancer,
(3) clinical disease and (4) non-progressive pre-clinical cancer. The approach of this
thesis is conceptually similar, but due to different biological characteristics of breast
cancer and CRC the model has to be adjusted a bit.

For CRC let’s adopt five states: (1) healthy, (2) progressive pre-cancerous lesion, (3)
pre-clinical cancer, (4) clinical cancer and (5) non-progressive pre-cancerous lesion.
This multi-state stucture is illustrated in figure 4.
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Figure 4: Transition structure of the colorectal cancer overdiagnosis model. One
must note that the model has only transitions forward.

Now transitions between these states are described using matrix Q, where element
i, j describes transition intensity from state i to state j:

Q(t; z) =



−(µ1(t; z) + µ2(t; z)) µ1(t; z) 0 0 µ2(t; z)

0 −µ3(t; z) µ3(t; z) 0 0

0 0 −µ4(t; z) µ4(t; z) 0

0 0 0 0 0

0 0 0 0 0


. (3)

Theory behind these MSM models will be addressed in chapter 3, so without going
into details: t denotes time and z the covariates associated with the person (sex,
eating habits, and so on). µ1(t; z) is the transition rate from being free of CC and
adenoma to a progressive adenoma and µ3(t; z) the transition rate from progres-
sive pre-clinical disease to pre-clinical cancer, and µ4(t; z) is the transition from
pre-clinical cancer to clinical cancer. This is the assumed progression path from
adenoma-free to cancerous.

Additionally µ2(t; z) represents the transition intensity from free of CC to non-
progressive adenomas (these are the diseases, that are labeled as overdiagnosed
ones, in case they are detected). This state transition structure is visualised in 4.

From the transition intensity matrix one can construct transition probability matrix
P(t; z), and that will be addressed in chapter 3.
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The problem in screening setting is that we don’t know when the transitions are
made, nor if there has really happened a transition (gFOBT-based CRC screening
comes with relatively low sensitivity). Thus one needs to have one more layer of ab-
straction: assume that given state Xt the screening observations come from certain
probability distribution P(Yt | Xt) where Yt represents the observation. These pos-
sible observations are (1) no pre-clinical finding, (2) adenoma, (3) screen-detected
CC. Clinical cancers (4), in this model, are defined to become clinical the precise
moment they are clinically diagnosed, and thus clinical disease is observed if and
only if in clinical state: P(Yt = 4 | Xt = 4) = 1,P(Yt = 4 | Xt 6= 4) = 0.

Since our observations are categorical, this behavior is best characterised using a
matrix E that is called emission matrix in some machine learning lingo:

E(t, z) =

1 2 3 4



1 e11(t; z) 0 0 0

2 e21(t; z) e22(t; z) 0 0

3 e31(t; z) 0 e33(t; z) 0

4 0 0 0 1

5 e51(t; z) e52(t; z) 0 0

(4)

Each row ei(t; z) of this emission matrix E(t; z) defines a conditional distribution
Yt | Xt ∼ Categorical(ei(t; z)), where z again represents covariates associated with
the person. In probability sense this means that:

eij(t; z) = P(Yt = j | Xt = i, Zt = z). (5)
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Figure 5: Emission stucture of the hidden Markov model. If person is healthy, it
is assumed that there will be no colonscopy-found adenoma or cancer. Progressive
and non-progressive adenomas output episode-negatives (if no blood is or when
the clinical colonoscopy confirmation of the disease is negative) and screen-positive
findings (when both gFOBT and colonoscopy are positive). The emission for clinical
appearance of the cancer is omitted from the figure, since it is assumed to follow
identity distribution (only clinical cancers are found outside screening programme
and there is no misclassification assumed).

Here many of the eij have common epidemiological interpretations: e11 is the speci-
ficity, e22 is the sensitivity for progressive pre-clinical disease and e33 is the sensitivity
for non-progressive pre-clinical disease. The notation e comes from word "error",
since the matrix is often called the misclassification matrix. To simplify model, I will
use episode sensitivity explained in chapter 1.5. The emission structure is visualised
in the figure 5.

Parameter estimation for models based on these two matrices are discussed in chap-
ter 3, but using them once can define overdiagnosis in multiple ways.

For one screening round overdiagnosis can be thought as the ratio of cumulative
incidence of non-progressive pre-clinical disease and the cumulative incidence of all
pre-clinical diseases, T being the length of the screening round:

O3 =

∫ T
0
e52(v; z)µ2(v; z)dv∫ T

0
[e22(v; z)µ1(v; z) + e52(v; z)µ2(v; z)]dv

. (6)

Assuming constant rates and sensitivities this simplifies to:

O3 =
e52µ2

µ1e22 + µ2e52

(7)
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Another approach that’s easier to generalise over a programme with multiple screen-
ing rounds would be looking at a conditional probability instead. Overdiagnosis can
be thought as the probability of being in non-progressive state conditioned on get-
ting a screen-positive result. This is dependent on not only covariates and time
but also the number of screening rounds (every screening round some adenomas are
found and removed and thus no longer detectable).

Generally this quantity is:

O4 = P(Xk = 5 | Yk = 2) (8)

Usually we are interested on overdiagnosis in some part of population and some part
of screening programme. For example, quantity of interest might be overdiagnosis
in women who entered screening programme at the age of 60. Additional interest
could be overdiagnosis in given screening round. In that case one must condition
the quantity O4 on not having earlier adenomas detected (since then a treament is
applied and the person is no longer included in the model).

For first screening round at time 0 given covariate-dependent initial distribution
θ(z), we get:

O4 =
P(Y0 = 2 | X0 = 5)P(X0 = 5)

P(Y0 = 2)

=
e52(z)θ5(z)

e22(z)θ2(z) + e52(z)θ5(z)
,

(9)

where the last expression comes from

P(Y0 = 2) = P(X0 = 2, Y0 = 2) + P(X0 = 5, Y0 = 2)

= P(Y0 = 2 | X0 = 2)P(X0 = 2) + P(Y0 = 2 | X0 = 5)P(X0 = 5).

Additionally probabilities P(X0 = 2) and P(X0 = 5) come just from initial distribu-
tion θ(z).

As said, overdiagnosis is dependent on both covariates and consecutive number of
screening round. Setting a fixed length for screening round one can estimate this
using an estimand such as:

O4(z, r) = P(X2r = 5 | Y2r = 2) (10)

for 0th (so-called prevalence round), 1st, 2nd round, and so on.

Another approach, that could be more of interest for public health policy makers, is
using actual persons observed in the programme instead of hypothetical screening
sequences.
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Then the estimand of interest is again similar to O4, but instead of conditioning on
hypothetical inviduals with constant screening round times, we calculate average of
single-invidual i probabilities

P(XKi,i = 5 | Y1,i, . . . YKi,i = 2) (11)

over the actual screened population. This quantity can be calculated, given a model,
using Forward algorithm that will be addressed in chapter 3.

Overdiagnosis probability in the whole screening programme can then be calculated
as the average of probabilities over all screen-found adenomas:

O5 =
1

N

N∑
i=1

P(XKi,i = 5 | Y0,i, . . . YKi,i = 2) (12)

Next chapters will focus on building a model to address overdiagnosis definitions O4

and O5.
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3 Markov models

3.1 Markov chains in discrete and continuous time

Some theoretical basics are necessary for building a hidden Markov model that is
needed to address overdiagnosis definitions O3, O4 and O5 in previous chapter.

Starting from the very basic first order Markov assumption: it can be heuristically
stated as: "the future is independent of the past, given the present". Markov process,
in general, is a process that satisfies the Markov assumption.

Definition 13. A Markov chain

Let {Xn}n∈N be a discrete time stochastic process. Let K be its state space, that
means ∀nXn ∈ K. {Xn}n∈N is a Markov chain, if ∀i, j ∈ K,n ∈ N the equation

P(Xn+1 = i|X0 = x0, . . . , Xn = j) = P(Xn+1 = i|Xn = j)

holds.

Letter S stands for state space of the Markov chain/process. The state space is
assumed to be finite for the rest of the thesis, since the main focus is to build a
model suitable for disease modelling.

Discrete time Markov chains are often characterised using transition probability
matrix.

Definition 14. Transition probability matrix

Consider a discrete time Markov chain {Xn}n∈N. Let S be the state-space. Let
P ∈ R|S|×|S|, where |S| is the cardinality of the state space. P is a transition
probability matrix if ∀i, j, n:

pij = P(Xn+1 = j | Xn = i),

that is the elements of the matrix pij represent probabilities of moving from state i
to state j.

This implies that
∑

j∈S pij = 1 for all i.

Discrete time Markov chains are especially useful in solving problems where ob-
servations come in sequential form. This would be great when considering only
observations from cancer screening programme. In cancer screening, though, it is
required to move on to continuous time processes, since the observed interval cancers
defined in chapter 1.5 appear in continuous time.

For continuous time Markov process the definition 13 doesn’t make sense anymore
since the set of time-indexes is uncountable. The usual way of getting rid of this
problem is by using a transition intensity matrix. One example of those was pre-
sented in equation 3.
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Definition 15. Transition intensity matrix

Let S be a finite state space. Transition intensity matrix of a continuous-time
Markov process is a matrix Q ∈ R|S|×|S| where ∀i 6= j it holds that qij ≥ 0 and
∀i
∑

j∈S qij = 0.

This implies also that qii = −
∑

j 6=i qij

The elements of the transition intensity matrix define a limit:

qij = lim
δh→0

P(Xt+δh = j | Xt = i)

δh

When Q is constant with respect to time, one can compute probability transition
matrix P using so called Kolmogorov equation P′(t) = P(t)Q with initial condition
P(0) = I, and get very neat closed-form equations.

Continuous time Markov chain with a constant transition intensity matrix is called
time-homogeneous. When Q varies over time, it’s not guaranteed there exists a
closed-form solution to this equation. These chains are called time-inhomogeneous
or time-heterogeneous. For the rest of this thesis I will make time-homogeneity
assumption to make calculations more tractable.

Solution to Kolmogorov equation is given by matrix exponential: P(t) = exp(Qt) =∑∞
k=0

Qktk

k!
. I will refer to matrix exponential from now on with exp (note the bolded

font).

Definition 16. Continuous time Markov chain (Markov process)

Let Q ∈ R|S|×|S|, and let P(t) = exp(Qt). {Xt}t∈R is a continuous time Markov
process, if for all T ∈ K and for all times ti < tj ∈ R:

P(Xtj = j | Xti = ki) = pij(tj − ti)

Theorem 17. If Q is a transition intensity matrix with constant intensities, then
corresponding probability matrix P has the property for t+s > 0 P(t+s) = P(s)P(t).

Proof. P(t+ s) = exp(Q(t+ s)) = exp(Qt)exp(Qs) = P(s)P(t)

The Kolmogorov equation also has the extremely useful property that can be used
for modelling missing observations, that is highlighted in the next example.

Example 18. Let Q ∈ R3×3 be a transition intensity matrix and S = {1, 2, 3} its
state space. Assume further that possible transitions are 1 → 2 and 2 → 3 with
intensities λ1 and λ2. Now:

P(t) = exp(Qt) =


e−λ1t

λ1(e−λ2t−e−λ1t)
λ1−λ2 1− λ1(e−λ2t−e−λ1t)

λ1−λ2

0 e−λ2t 1− e−λ2t

0 0 1


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There are no possibility for direct transformation between 1 and 3, but if, for some
reason, the transition 1 → 2 is missed, the model is still useful. This is the most
typical thing in cancer screening setting. If we assume states to be such that 1
represents being healthy, 2 having a pre-clinical cancer and 3 having a clinical cancer,
we often notice transfers from 1 to 3, even though it is assumed that the cancer
always passes through a pre-clinical state.

But matrix exponential accounts for this and gives probability for passing to state
3 throught state 2:

P(Xt1 = 3 | Xt0 = 1) = 1− λ1(e−λ2t − e−λ1t)
λ1 − λ2

.

It has to be noted that even this very simple example yields quite complex equations.

3.2 Hidden Markov models

As in this thesis, the underlying state of a Markov process is not itself fully observable
due to some misclassification error. In these situations one makes inference via
outputs that are dependent on the underlying state. This setting is called a hidden
Markov model. In Continuous time Hidden Markov model (abbreviated HMM from
now on) there is an underlying continuous time Markov process {Xt}t∈R that is not
observed. The chain, though, outputs observed data with the distribution of the
observed variable differing based on the hidden state.

The very basic structure of a HMM is illustrated in figure 6.
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Figure 6: Hidden Markov Model with observations Y , hidden states X and param-
eters θX for distribution Y | X.

Outputs Yt are often called emissions in HMM literature. Assuming Yt | Xt has a
parametric distribution, their relation can be determined by state-specific emission
parameter θX . Example of this was already addressed in equation 4, where we noted
eX = θX .

Definition 19. Hidden Markov process Let {Xt}t∈R+ be a continuous time Markov
process. Then the pair of sequences {{Xt}t∈R+ , {Yt}t∈R} is a Hidden Markov process,
if only {Yt}t∈R is observed and if ∀t:
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P(Yt | Xt) = P(Yt | Xs∈T , Ys∈T\{t}),

where T represents the set of times Yt was observed.

In application of this thesis, Yt | Xt ∼ Categorical(θXt).

For sake of simplicity, I will use notation P(Yt | Xt) := p(yt | xt) from now on.

3.3 Adding covariates

Both the emissions and state-transitions are often thought to be dependent on cer-
tain covariates associated with a person. Adding covariates to a hidden Markov
model is quite straight-forward, as long as the covariates are assumed to be time-
invariant.

Example for setting the covariates in this setting is found from, for example, Duffy
et al. (2003).

Covariates z can be added to state transitions using logarithmic link function. This
yields a new transition intensity matrix where elements qij are of form:

qij(z) = qij exp(βz). (20)

Similarly covariates w that can be same as z but don’t have to, can be added to
emission probabilities using logistic link:

log(
eij

1− eij
) = γw. (21)

3.4 Inference in Hidden Markov models

When making inference of HMM, one has two different problems: parameter infer-
ence (parameter estimation) and state sequence inference (state sequence estima-
tion). This chapter goes through them both.

I’ll discuss first how to estimate the parameters and then proceed to "online learning"
that is estimation of state at time t given observations up until time point t, namely
p(xk | y1:k).

3.4.1 Parameter estimation

All inference in Hidden Markov models requires writing down the likelihood of the
model that is the conditional density of the data given model parameter. In frequen-
tist domain this likelihood is then usually maximized to get an maximum likelihood
estimate for parameter. Typical way to do this is the expectation-maximisation
algorithm.
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In the Bayesian setting, if Z is the data and θ is the parameter of the model, the
task is to estimate posterior distribution, that is the distribution of parameter given
data:

p(θ | Z) =
p(Z|θ)p(θ)
p(Z)

. (22)

Here p(Z|θ) is the model likelihood and p(θ) the prior distribution of the parameter.
Since these two have a closed form solution, the task reduces to calculating so-called
normalizing coefficient p(Z) =

∫
Θ
p(Z, θ)dθ. This is done using Markov Chain Monte

Carlo integration (MCMC), since the integral has no tractable solution. In this thesis
the integration is done using software Stan, that is introduced by Carpenter et al.
(2014).

Stan uses a certain variant of the Hamiltonian Monte Carlo (HMC) No-U-Turn-
Sampler (NUTS) algorithm. The mathematics behind HMC have been investigated
by Betancourt (2014) and conceptually described by Betancourt (2018). The very
basic naive HMC algorithm as described by Hoffmann and Gelman (2012) in their
NUTS-paper is attached to Appendix 1.

Details of the likelihood p(Z|θ) are addressed in chapter four.

3.4.2 State sequence estimation

Another type of estimation problem one may face with Hidden Markovian models
is the estimation of the hidden state sequence. This procedure is concerned with
the probabilities p(xt | y0:t), where t ≤ n. One is often very much interested what
was the hidden state at given state t (for example, was the disease non-progressive
during a screen, given current and past obsevations).

As one may note, this is directly associated with the defintion O5 of overdiagnosis
in chapter 2.

Practically there exists two possibilities for this state estimation: hard and soft
classification. Hard classification is interested in maximum a-posteriori (MAP) es-
timates of state given observations, while soft classification is more concerned with
probabilities. Hard classification in HMM is often done using Viterbi algorithm,
while the common procedure for soft classification is the forward filtering and back-
ward smoothing. All of these algorithms require a successful parameter estimation
in advance, since they make use of the fitted statistical model.

Forward filtering yields probabilities p(xk | y0:k). So-called forward-backward algo-
rithm would extend this to p(xk | y0:K) for K > k, but forward algorithm is sufficient
for purposes of this thesis. Forward algorithm it also provides a way for specifying
the likelihood in practical terms (see section 4.3).

These algorithms and their correctness is discussed in detail in chapters 3 (their
correctness) and 5 (their application for models with discrete state space) of the
book Inference in Hidden Markov Models by Cappé et al. (2005).
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Algorithm 1: Forward algorithm
Result: ν
Let S be the state space of the Hidden Markov chain. Let p(xk|xk−1) be transition
probabilities from state xk−1 to xk, p(yk | xk) the emission probabilities, K be the
number of observations and y ∈ S|K| be the observed sequence and k = 1.
∀x0 ∈ S set ν0(x0) = p(x0) that’s the initial state distribution.;
while k <= K do

for xk = 1, . . . , S do
νk(xk) = p(yk | xk)

∑
xk−1∈S νk−1(xk−1)p(xk | xk−1);

k = k + 1;
end

end

The forward algorithm’s result are the probabilities p(xk, y0:k) = νk(xk). From this
one can calculate p(xk | y0:k) = νk(xk)∑

xk∈S
νk(xk)

, that are what is the probability of being
in state xk given all the information we have at time tk. This is enough for purposes
of this thesis. The resulting probabilities p(xk | y0:k) are the probabilities that the
hidden state was xk given current observations and all the pats observations (at time
tk corresponding to k). This, given that observation yk was screen-found adenoma,
is the single person O5 from chapter 2.

3.4.3 Uncertainty of the estimates

Whole point of computational Bayesian statistics is to generate observations from
posterior distribution expressed in equation (22).

So assuming the sampling works, the end product of the analysis is a set of obser-
vations (Θi)i∈N ∼ p(Θ | data, prior distribution parameters).

Thus a general algorithm for producing estimates for uncertainty of the model is:

Algorithm 2: Uncertainty estimation algorithm
Result: U
Let (θi)i∈N ∼ p(θ | data, prior parameters) be a sample of the model parameter
from the posterior distribution. Let f : θ → ξ be a function that maps the
parameter to desired estimand. For some K:;
for k = 1, . . . , K do

Sample θk ∼ p(θ | data, prior parameters)
Calculate fk(θk) = fk

end
With f1:K calculate desired uncertainty estimate U .
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Few examples of uncertainty estimates U are:

U1 Visualised empirical distribution of the estimand or parameter.

U2 Sample variance of the f1:K .

U3 Quantiles of f1:K

This theoretical background will be put to use in the following section.
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4 Hidden Markov model for colorectal cancer

4.1 Data

This thesis uses the data from two different sources: 1) The Finnish Cancer Registry
(FCR) and 2) Randomised health service study (RHS) completed in Finland between
2004 and 2016, where there exists over 400 000 persons randomised into screening or
control groups. The RHS population consists of 60 to 69 years old men and women
living in municipalities that participated in the program.

Persons randomised into these two cohorts enter to the study during varying times
between 2004 and 2016. This is all done according to randomisation scheme de-
scribed in Malila et al. (2005), where the municipalities that attended the program
are also listed.

Basic outline of the study in multi-state model perspective is described in table 2.

Analysis specification

Inclusion criteria All screen-attenders excluding prevalent CRCs

Events
Episode-negative (1), Adenoma (2),

Screen-CRC (3), interval CRC (4)

Time origin First attended screening

Entry time First attended screening

Censoring rule
Death without CRC or

3 years after final screen-participation

Follow-up time Until 3 years after final screen-participation

Table 2: Overview of the multi state model details.

The study population is formed from the RHS population as follows:

• The control population is excluded.

• All the persons who have never attended the screening programme are excluded
from the study.

• Persons are linked to FCR data using social security number and those who
have had a CRC before first screening participation are excluded from the
model.
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For these patients an event-history is formed from following events: screen-found
adenomas, negative gFOBT-results, positive gFOBT-results with negative colonoscopy,
screen-found CRCs and interval cancers.

The data in RHS is structured as follows: every person has a specified screening
round, that includes gFOBT test. If the test is positive, there exists a colonoscopy
event that corresponds to the same screening round. From this data event history
is specified as follows:

• If person has a screening round without completed gFOBT test, that round is
removed from the data.

• If person was over 70 years old when the screening took place, that round is
removed from the data.

• If person has a screening round with negative gFOBT, that round is added to
data as screen-negative event on the date the gFOBT result was recorded.

• If person has a screening round with positive gFOBT but no colorectal polyps
found in colonoscopy, that round is added to data as screen-negative event on
the date colonoscopy exam was conducted.

• If person has CRC/adenoma in the colonoscopy succeeding a positive gFOBT,
screen-detected CRC/adenoma are added to event history of the person.

• Interval cancers (from Cancer Registry) are added to data using rolling join
procedure of R-package data.table. All cancers from the FCR data are linked
to the strictly preceding screening round of a person. If a round has both
screen-detected and clinical CRC, clinical CRC is removed from the data.

• Additionally, all the events after first not-screen-negative observation are re-
moved from the data.

• If an interval cancer is found and person would still have screening rounds left
after finding, then the cancer is assumed to be found as clinical cancer at the
screen check-up time, that is set to be two years after preceding screen.

• If an interval cancer is found and person does not have any scheduled screening
rounds left, the cancer is assumed to be found as clinical cancer three years
after previous screening round.

• If person exists the screening programme and doesn’t develop cancer in follow-
ing three years, it’s assumed the person leaves the follow up in one of states
(1), (2) or (3).

• If person dies during a screening round, the follow up stops at the start of that
screening round.
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The rationale behind this is to create a standard structure for the screening process.
I assume that persons are observed in approximately two year intervals while in the
programme, and force clinical cancers into this form even though the diagnosis dates
for those are known. This is because 1) clinical cancers are known to be diagnosed
with certain delay, Syöpätaudit (2016) cites mean delay from symptoms to detection
to be as high as 10 months, and because it’s easier to build model where all types
of event have similar observation structure.

In real world all persons are invited to participate again in the screening programme
independent of the screening results. Since the focus is now in overdiagnosis, this
thesis is only interested in the very first event.

For people with no events beside screen-negatives, follow-up is extended up to either
three years beyond final screening round or 31. December 2017, whichever is the first.
This is due to cancer registry’s close date, and after that there are no data of cancer
diagnosed outside screening programme. If no clinical cancer appears between final
screening and that time point, person is assumed to be either in healthy state, in
some of two adenoma states or in pre-clinical cancer state. If a cancer is found during
that period, it is assumed to be found three years after final round or 31.12.2017,
whichever the first.

Now all this has been combined into a time histories, figures 7 and 8 illustrate some
of them in two different time scales.
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Figure 7: Some randomly picked up event histories for given subjects with age as a
time scale. Lines represent time the person is being followed up. If there is no line,
person only contributes to initial distributions and sensitivities.
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Figure 8: Some randomly picked up event histories for given subjects with calendar
time as a time scale. Lines represent time the person is being followed up. If there
is no line, person only contributes to initial distributions and sensitivities.

As the emission matrix (4) in chapter 2 suggests, the data is partially observed. It
means that there exists observations when, according to model, the hidden state
is actually revealed. These are 1) clinical observations and 2) pre-clinical malign
observations. Also, given observed adenoma, the hidden state is known to be either
progressive or non-progressive adenoma.

In the table 3 observation counts by observation rank are tabularised:
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sex Event 1 2 3 4 5 6

Men 1 76393 62227 38968 21207 7497 0

Men 2 1167 778 465 211 64 0

Men 3 136 60 46 19 9 0

Men 4 90 77 58 43 16

Women 1 93575 80471 52367 29176 10430 3

Women 2 492 425 258 120 42 0

Women 3 81 51 39 17 7 0

Women 4 108 93 74 48 26

Table 3: Rows present events and columns their subsequent numbers in the event
history of the person. Here one can see that 93575 women started the screening
programme with episode-negative screening result. Observation rank corresponds
to screening round with exception for clinical findings (4). Persons who have had
six and some who have had five observations may have two episode-negatives for
one screening round, but this does not effect the model or estimands.

4.2 Likelihood under the model

As described in chapter 2, the probability model for CT-HMM is built from emission
matrix E and transition probability matrix P(t). Additionally, a initial distribution
of hidden state θ at time of the entry is required.

Let’s assume the hidden state X0 at time of entry, that is the time person first
attends the screening programme, has a Categorical(θ) -distribution, where:

θ =
[
θ1 θ2 θ3 0 θ5

]′
(23)

θ4 is assumed to be zero, since it would not make sense to enter people already in a
clinical phase of the cancer.

In reality θ varies depending on sex and age. Thus for the model I’ll stratify θ to
eight different stratas based on four age groups (< 60 years old, 60-61, 62-64 and
65+) and two sexes (male, female).

Then, to make estimation of transition intensity matrix easier, I will make simplify-
ing assumption that the transition rates are sex-dependent, but piecewise constant
with respect to age. So I will fit the model using four transition rates for each for
transitions: rate for young and old males (<= 65, > 65), rate for young and old
females (<= 65, > 65).

Now let Q be the transition intensity matrix of the Markovian model:
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Q(t) =



−(µ1(z) + µ2(z)) µ1(z) 0 0 µ2(z)

0 −µ3(z) µ3(z) 0 0

0 0 −µ4(z) µ4(z) 0

0 0 0 0 0

0 0 0 0 0


. (24)

It is the same as the matrix (3) in chapter 2, but with the exception that the rates
are assumed to be constant over time.

Here it is to be noted that possible transitions are from healthy to progressive
adenoma, from healthy to non-progressive adenoma, from progressive adenoma to
screen-detectable cancer and from screen-detectable maling cancer to clinically ap-
parent cancer.

Using matrix exponential P(t) = exp(Qt) one can solve the Kolmogorov equation
to get the time-dependent transition probability matrix. The analytical approach
solves some computational issues that may arise when computing, for example,
derivatives of the numerical matrix exponential.

The elements of solved matrix equation are quite complex and thus they are moved
to Appendix 3. Thus, I will refer to probability matrix as the following matrix:

P(t) =



p11(t; z) p12(t; z) p13(t; z) p14(t; z) p15(t; z)

0 p22(t; z) p23(t; z) p24(t; z) 0

0 0 p33(t; z) p34(t; z) 0

0 0 0 1 0

0 0 0 0 1


= (Pij)(t; z). (25)

The transition probability matrix is both time- and covariate-dependent. Here co-
variates are as in the transition rate matrix, the age group at beginning of screening
round and sex.

Next it’s needed to address the emission probabilities. They are stratified by sex.

First assume that p(yk = 1 | xk = 1) = 1. This is due to the fact that the model will
use the whole diagnostic episode as the screening test. It is reasonable to assume
that if a healthy person has blood in their stool and is further taken into colonoscopy,
there won’t be any adenomas or cancers found if there aren’t any.

Additionally parameters representing following quantities are required:

1) Se = p(yk = 2 | xk = 2), the sensitivity for progressive adenoma.
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2) Sd = p(yk = 3 | x3 = 3), the sensitivity for pre-clinical screen-detectable CC.

3) Sod = p(yk = 2 | xk = 5), the sensitivity for non-progressive adenoma.

Here indices e, d, od refer to words "episode", "detection" and "overdiagnosis". Now
using these elements to build the emission matrix we get:

E =

1 2 3 4



1 1 0 0 0

2 (1− Se(z)) Se(z) 0 0

3 (1− Sd(z)) 0 Sd(z) 0

4 0 0 0 1

5 (1− Sod(z)) Sod(z) 0 0

= (e)ij. (26)

For the sake of notational simplicity I will refer to elements of E as eij. This is a
special case of the matrix (4).

Now, for a given individual i, we have complete data likelihood for observations
made during screening process:

p(y0:K , x0:K | Θ) = p(x0)p(y0 | x0)
K∏
k=1

p(xk | xk−1, yk−1 . . . y0, x0)×

p(yk | xk, xk−1, yk−1 . . . y0, x0)

= p(x0)p(y0 | x0)
K∏
k=1

p(xk | xk−1, yk−1 . . . x0, y0)p(yk | xk)

= p(x0)p(y0 | x0)
K∏
k=1

p(xk | xk−1, yk−1 . . . y0)p(yk | xk)

= p(x0)p(y0 | x0)
K∏
k=1

p(xk | xk−1)p(yk | xk).

(27)

Here indices k refer to order of observations, but the observations come with certain
observation times. The observation times are assumed to be non-informative, since
they refer to deterministic administrative decisions that define the screening times.
Thus every observation k is associated with a time tk, so the likelihood could we
written in terms of initial distribution, probability transition matrix and emission
matrix as:



31

p(x0)p(y0 | x0)
K∏
k=1

p(xk | xk−1)p(yk | xk) =

θ(x0)(z)ex0,y0(z)
K∏
k=1

pxk,xk−1
(tk − tk−1; z)exk,yk(z).

(28)

When the underlying states of the process are not observed, one has to take sums
over hidden states. Then the observed likelihood, data given parameters, becomes:

p(y0:K | Θ) =
∑
xK∈S

p(y0:K , xK | Θ)

=
∑
xK∈S

p(yK | xK ,Θ)p(xK | y0:K−1,Θ)×

p(y0:K−1 | Θ)

=
∑
xK∈S

p(yK | xK ,Θ)×∑
xK−1∈S

p(xK | xK−1,Θ)×

p(xK−1, y0:K−1 | Θ)

(29)

Now recalling Forward algorithm from chapter 3, one may note that the likelihood
can be written using recursive manner using so-called forward probabilities, namely
νk(xk) = p(xk | y0:k). Then denoting all parameters of the model as single parameter
Θ:

νk(xk) = p(xk, y0:k | Θ) =
∑
xk−1

p(xk−1, xx, y0:K | Θ)

= p(yk | xk,Θ)
∑
xk−1

p(xk | xk−1,Θ)p(xk−1, y0:K−1 | Θ)

= p(yk | xk,Θ)
∑
xk−1

p(xk | xk−1,Θ)νk−1(xk−1)

(30)

simplifies the observed data likelihood into∑
xK∈S

νK(xK) =
∑
xK∈S

p(yK | xK ,Θ)×∑
xK−1∈S

p(xK | xK−1,Θ)νk−1(xk−1)
(31)

The recursive nature of defining likelihood is typical for Hidden Markov model espe-
cially in computational point of view, since it drastically reduces the computational
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cost of the fitting by this dynamic programming approach. Time-complexity of for-
ward algorithm is O(KS2), where it is O(KSK) for naive approach, where K is the
length of the sequence and S the cardinality of the state space.

Finally, as learned from the data description, all of the observations don’t come from
screening process. Since data has follow-up beyond last screening observation, the
last observed data point yK is either censoring (death or end of follow-up) or clinical
appearance of cancer.

Let SxT (t+) be the certain survival function, where the outcome is clinical appear-
ance of cancer and T is the time of final cancer screening (whether or not person
attended), and t+ = t − T where t is the time of last observation of the person
- either clinical manifestation of the disease or end of follow up. In this model
SxT (t− T ) = pxT ,4(t+), so the likelihood (still for given invidual) will become:

∑
xK∈S

SxT (t+)1−I{C}(1− SxT (t+))I{C}νK(xK) (32)

where I{C} is the indicator function of whether the last observation at final obser-
vation time t was appearance of cancer or censoring.

Taking all of the N inviduals into account, the observed data likelihood becomes:

N∏
i=1

( ∑
xKi∈S

SxKi(t+)1−I{Ci}(1− SxKi (t+))I{Ci}νi,Ki(xKi)

)
, (33)

where νi,Ki(xKi) = p(xKi , yi,0:Ki) and νi,0(x0) = p(x0)p(yi,0 | x0)

4.3 Prior distributions for parameters

As in typical Bayesian setting one needs to figure out also the prior distributions
for the parameters. These priors are constructed by my own expertise, that is not
much, and a more rigorous investigation is required to write a scientific publication.

Things we know for certain are that transition parameters µ must be somewhere
close to zero, but not infinitesimally close (µ is in the presence of zero but as we
get closer to zero the pdf of µ should also decrease). For this in both models all the
transition rates are given Gamma(2,1) prior.

Additional modelling thing I do is that I’ll assume adenomas to have one progression
rate µ̃ and from this µ1 and µ2 are constructed via relation µ̃ = (1 − α)µ1 + αµ2,
where α is the proportion of progressive adenomas out of non-progressive. α is
assumed to have 1/2-centered Beta(10,10). This is again same in both models,
and is assumed to be same independent of age group. The prior distribution has a
standard deviation of ≈ 0, 11. Thus we assume a-priori that most likely 30-70% of
the incident detected adenomas are non-progressive.
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Emissions distribution parameters can be either estimated separately, as in paper by
Wu (2018) or modelled simultaneously from the observations as Duffy et al. (2013).
I will use an approach adopted by Duffy, but since there exists literature about the
sensitivities of the blood-based stool tests for colorectal cancers and adenomas, it’s
reasonable to construct priors from those to help the convergence of the model. In
general somewhat strict priors in HMM are essential, since the model description is
vague and obtained estimates can be impossible with respect to previous research if
there are no restrictive priors put in place.

According to Patel and Ahnen the sensitivity of gFOBT test depends on both num-
ber of taken samples and wether the samples are rehydrated or not. The Finnish
RHS used multiple samples but no rehydration, that according to Patel and Ahnen
yield sensitivities around 50%. This is on par with Finnish results published in for
example Hakamaa and Malila (2019).

The priors that differ in the two models are specified in the table 4.3.

Parameter Prior

Sd Beta(500, 500)

Se Beta(60, 600)

Sod Beta(60, 600)

θ Dirichlet(100, 10, 1, 10)

µ Gamma(2,1)

Sensitivity of gFOBT for adenomas is cited to be around 8% by Brenner et al.
(2015), but ranging from 9 to 36% Morikawa et al. (2005). The data from Brenner’s
study comes from Bavaria with very similar setting as the Finnish RHS, and thus
the prior adapted for both sensitity for progressive adenoma and sensitivity for non-
progressive adenoma is assumed to be in line with these. The Beta(60, 600) prior
has mean 0.91 and standard deviation of 0.011.

Here I assume same prior for all age-stratified θ, since idea is to give just a ball-park
estimate of the phenomena. The Dirichlet priors of form Dirichlet(100a, 10a, a, 10a)
imply the expected value is such that there are roughly 83% healthy people and
17% people with adenomas (progressive and non-progressive combined), and very
few with prevalent cancers. This is justifiable by looking at table 3, where less than
a percent of the persons are diagnosed with CRC in the initial screen. The bigger
the sum of parameters, the lower variance -principle applies here as well, so model
has very much stricter prior distribution for initial distribution as well. Dirichlet
prior parameters can be interpreted as pseudo-counts, so now the prior distribution
assumes probabilites that correspond for sampling 121 "persons" from a population
and detecting 100 healthy persons, 10 with non-progressive adenomas, 1 with a
pre-clinical cancer and 10 with progressive adenomas.

Additionally I have added some constraints to parameters: Se and Sod are assumed
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to be at most half of Sd for given strata. There exists no studies where the sensitivity
of gFOBT test for adenoma would be in the same ballpark with sensitivity for cancer.
Also I assume that Se and Sod are at least 0.05, so there is at least some sentivitity
for all kinds of adenomas. Sd is constrained to be between 0.3 and 0.7. Finnish RHS
used multiple non-rehydrated version of the test, that is cited by Patel and Ahnen
to have sensitivity of 0.5, while single non-rehydrated test is cited to have sensitivity
of 0.3 and multiple rehydrated 0.7.

Transition rates are obviously constrained to be more than zero, except for µ1 and
µ2 have additional constraint µ1,2 ≥ 0.001 to avoid the sampler crashing to zero.
Thus µ1 = 0.001 + (1− α)µ1,raw for all stratas where α is as descibed earlier.
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5 Results

In this section I’ll go through model convergence, the estimates for model parameters
and finally the quantification of overdiagnosis estimands described in chapter 2.

5.1 Natural history model

Stan and its R-interface package rstan provide a wide range of tools for diagnosing
and evaluating a Bayesian model fit such as R̂ values and warnings on divergent
transitions.

For both models there exists no divergences, all R̂ values of the parameters are less
than 1.05 and HMC energy indicates no pathological behavior. These are basic re-
quirements for a possibility that a MCMC simulation has succeeded. Also traceplot
checks and autocorrelation plot checks did not indicate any pathologies.

After that it is important to take a look at the parameter posterior distributions.
All of the figures in this section are drawn using R-package bayesplot. It is available
on CRAN and described in paper Gabry, Simpson et al. (2019). Full tables of
estimated parameters with some statistics and confidence intervals can be found
from Appendix 4, but here it’s sensible to take a graphical look at the posteriors
as well since there may be pathologies that plain numerics don’t reveal (such as
multimodality of the posterior).

Let’s first take a look at the sensitivies of the model. Here the effect of different
priors for sensitivities is illustrated in figure 5.1. More informative priors lead to
more concentrated and well-behaved posteriors, when model description is otherwise
similar. In this case, though, one is in the risk of making inference out of priors only.



36

S_d (men)

S_e (men)

S_od (men)

0.1 0.2 0.3 0.4 0.5

S_d (women)

S_e (women)

S_od (women)

0.0 0.1 0.2 0.3 0.4 0.5

Figure 9: Posterior sensitivities. Sensitivity for non-progressive adenomas seems to
be a bit lower than senstivity for progressive adenomas, and adenomas sensitivities
for women seem to be less than adenoma sensitivities for men.

In general all sensitivity posteriors have quite nice form and there is no reason to
suspect the convergence.

Then let’s proceed to the initial state distributions.

No pathologies are apparent when looking at initial state posterior distributions of
the two models. They are illustrated in figures 10, 11.

<60, state 1

<60, state 2

<60, state 5

0.00 0.25 0.50 0.75 1.00

60−62, state 1

60−62, state 2

60−62, state 5

0.00 0.25 0.50 0.75 1.00

62−65, state 1

62−65, state 2

62−65, state 5

0.00 0.25 0.50 0.75 1.00

65+, state 1

65+, state 2

65+, state 5

0.00 0.25 0.50 0.75 1.00

Figure 10: Initial state posterior distributions for men.
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0.00 0.25 0.50 0.75 1.00

60−62, state 1

60−62, state 2

60−62, state 5

0.00 0.25 0.50 0.75 1.00

62−65, state 1

62−65, state 2

62−65, state 5

0.00 0.25 0.50 0.75 1.00

65+, state 1

65+, state 2

65+, state 5

0.00 0.25 0.50 0.75 1.00

Figure 11: Initial state posterior distributions for women.

These posteriors also seem to be well-behaved. Additionally an interesting feature
is that prevalence for non-progressive adenoma seems to grow with age. This can be
explained, since progressive-adenomas indeed progress and are thus removed from
the bowel naturally by turning into cancers, but non-progressive adenomas should
not and thus they should be more prevalent in later ages.

This behavior is inevitable in progressive model that was used with transition rates,
but the initial distributions are kind of independent of the progressive behavior,
which indicates that the phenomena could be real instead of being just a model
technicality.

More interesting phenomena becomes apparent when looking at posterior distribu-
tions for transition rates.
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mu2, women >= 65

mu2, women, <65

mu1, women >= 65

mu1, women, <65

mu2, men >= 65

mu2, men, <65

mu1, men >= 65

mu1, men, <65

0.0025 0.0050 0.0075

Figure 12: Transition rate parameter posteriors from healthy to different adenomas.

mu3, women >= 65

mu3, women, <65

mu3, men >= 65

mu3, men, <65

0.02 0.04 0.06

Figure 13: Transition rate parameter posteriors from adenoma to pre-clinical cancer.
The rates seem to be higher for older people, as could be expected.
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mu4, women >= 65

mu4, women, <65

mu4, men >= 65

mu4, men, <65

0.4 0.8 1.2 1.6

Figure 14: Transition rate parameter posteriors from pre-clinical to clinical cancer.
The rates seem to be higher for older people, as could be expected.

Looking at figures 12, 13 and 14 it seems that men have on average a bit higher
adenoma rate, but women have both higher progression rate from adenoma to cancer
and especially from pre-clinical cancer to clinical cancer. This is not directly related
to overdiagnosis, but could indicate why women are found to benefit less from CRC
screening, as noted by for example Koskenvuo et al. (2018).

5.2 Overdiagnosis

Let’s first take a look at overdiagnosis O3 described in chapter 2. Since transition
rates were parametrised as constants and additionally transition rates µ1 and µ2

were restricted to follow relation µ̃ = (1− α)µ1 + αµ2 where α ∈ (0, 1), O3 remains
constant through age, the overdiagnosis of type O3 remains constant through age
for men and women.

From this we get following estimates for male and female visualised in figure 15 and
tabularised in table 5.2.

Weakness of this estimator is that it doesn’t take into account the prevalence at start
of the study, and is only focused on estimated incidence rates. Following results will
come to opposite conclusions, since the estimated prevalences of adenomas were
higher for male than female (see figures 10, 11). This is why point estimates for
women are lower than for men, even though estimates O4 and O5 will have a different
opinion.
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●

●

Men

Women

0.35 0.40 0.45 0.50 0.55

Figure 15: Overdiagnosis using cumulative incidence ratio of progressive and non-
progressive adenomas, with 50 and 90% credible intervals (thin and deep blue) and
median point estimate..

mean se_mean sd 2.5% 25% 50% 75% 97.5%

O3, men 0.45 0.00 0.06 0.34 0.41 0.45 0.48 0.56

O3, women 0.44 0.00 0.06 0.33 0.40 0.44 0.47 0.55

Table 4: Method O3 overdiagnosis for men and women.

Then I calculated the overdiagnosis using method O4(z) = P(Xt = 5 | Yt = 2) by
conditioning on history of a hypothetical invidual, where covariates z include sex,
age at the initial screen and number of consecutive screening round.

I used inviduals for both sexes with four age groups: persons starting the programme
at age 60 (thus having θ<60 as the initial state distribution, person starting at 61
(θ60−62 as the initial distribution), and persons in ages 63 and 66. Then the hypo-
thetical persons went through 5, 5, 4 and 3 screening rounds (five rounds was the
maximum in data and no screenings were conducted for persons over 70 years old).
These are described in tables 5.2, 5.2 and figures 16, 17.



41

mean se_mean sd 2.5% 25% 50% 75% 97.5%

Men, 60-, round 1 0.36 0.00 0.09 0.20 0.30 0.36 0.42 0.53

Men, 60-, round 2 0.38 0.00 0.08 0.22 0.32 0.38 0.43 0.54

Men, 60-, round 3 0.39 0.00 0.08 0.24 0.34 0.39 0.45 0.54

Men, 60-, round 4 0.41 0.00 0.08 0.26 0.35 0.41 0.46 0.55

Men, 60-, round 5 0.43 0.00 0.07 0.29 0.38 0.43 0.48 0.57

Men, 61, round 1 0.50 0.00 0.09 0.32 0.44 0.51 0.56 0.66

Men, 61, round 2 0.51 0.00 0.08 0.34 0.46 0.51 0.57 0.66

Men, 61, round 3 0.52 0.00 0.08 0.36 0.47 0.52 0.57 0.66

Men, 61, round 4 0.53 0.00 0.07 0.38 0.48 0.54 0.58 0.66

Men, 61, round 5 0.54 0.00 0.07 0.40 0.50 0.55 0.59 0.67

Men, 63, round 1 0.50 0.00 0.09 0.32 0.44 0.51 0.57 0.67

Men, 63, round 2 0.51 0.00 0.08 0.34 0.46 0.52 0.57 0.67

Men, 63, round 3 0.53 0.00 0.08 0.37 0.47 0.53 0.58 0.67

Men, 63, round 4 0.54 0.00 0.08 0.39 0.49 0.54 0.59 0.67

Men, 66, round 1 0.52 0.00 0.11 0.30 0.44 0.52 0.60 0.71

Men, 66, round 2 0.53 0.00 0.10 0.33 0.46 0.53 0.61 0.71

Men, 66, round 3 0.54 0.00 0.10 0.35 0.48 0.55 0.61 0.72

Table 5: Overdiagnosis using method O4 for hypothetical men starting screening
at given age (corresponds to given initial distribution) and given screening round
(corresponds to round - 1 predecessing episode-negative findings). 60- means starting
at "just before" age 60, that is the hypothetical person still gets the same initial
distribution as everyone under 60.
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mean se_mean sd 2.5% 25% 50% 75% 97.5%

Women, 60-, r 1 0.37 0.00 0.08 0.22 0.32 0.37 0.42 0.52

Women, 60-, r 2 0.39 0.00 0.07 0.25 0.34 0.39 0.44 0.53

Women, 60-, r 3 0.41 0.00 0.07 0.28 0.36 0.41 0.46 0.54

Women, 60-, r 4 0.43 0.00 0.06 0.31 0.39 0.43 0.48 0.56

Women, 60-, r 5 0.46 0.00 0.06 0.34 0.41 0.46 0.50 0.57

Women, 61, r 1 0.47 0.00 0.08 0.31 0.42 0.47 0.53 0.63

Women, 61, r 2 0.48 0.00 0.08 0.33 0.43 0.48 0.53 0.63

Women, 61, r 3 0.49 0.00 0.07 0.35 0.45 0.50 0.54 0.63

Women, 61, r 4 0.51 0.00 0.07 0.38 0.47 0.51 0.56 0.63

Women, 61, r 5 0.53 0.00 0.06 0.40 0.48 0.53 0.57 0.64

Women, 63, r 1 0.62 0.00 0.07 0.46 0.58 0.63 0.68 0.75

Women, 63, r 2 0.63 0.00 0.07 0.48 0.58 0.63 0.67 0.75

Women, 63, r 3 0.63 0.00 0.06 0.49 0.59 0.64 0.68 0.74

Women, 63, r 4 0.64 0.00 0.06 0.51 0.60 0.64 0.68 0.74

Women, 66, r 1 0.55 0.00 0.10 0.34 0.49 0.55 0.63 0.74

Women, 66, r 2 0.57 0.00 0.10 0.37 0.50 0.57 0.63 0.74

Women, 66, r 3 0.58 0.00 0.09 0.39 0.52 0.58 0.64 0.74

Table 6: Overdiagnosis using method O4 for hypothetical women starting screening
at given age (corresponds to given initial distribution) and given screening round
(corresponds to round - 1 predecessing episode-negative findings). 60- means starting
at "just before" age 60, that is the hypothetical person still gets the same initial
distribution as everyone under 60.
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Figure 16: Overdiagnosis O4 for hypothetical male patients starting at given ages
at given screening rounds with estimated median and 50 and 90-percent credible
intervals (thin line, thick line). 60 means "60-", that is just below sixty so the initial
distribution is still θ<60.
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Figure 17: Overdiagnosis O4 for hypothetical woman patients starting at given ages
at given screening rounds with estimated median and 50 and 90-percent credible
intervals (thin line, thick line). 60 means "60-", that is just below sixty so the initial
distribution is still θ<60.
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Here the overdiagnosis percentage shows interesting behavior, since it is usually
thought that the overdiagnosis is highest during the first screening round. Yet here
it seems that it just increases with age, with some non-linearity caused by stratified
initial state distributions. This is addressed in discussion.

Additionally I calculated overdiagnosis percentage averages (O5) for whole pro-
gramme taking average over all the state occupancy probabilities of non-progressive
adenoma for the persons who had an adenoma diagnosed.

The estimated posterior median for overdiagnosis in the whole programme was 48%
(38%-56% 95-percent credible interval).

Additionally I calculated O5 for both sexes and in different strata by age at start of
the screening programme. This is just O5 again but instead averaging over whole
programme, I took the average over certain given strata.

The results for these are presented in figures 18 and 19 and in table 7.
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Figure 18: Average state 5 occupancy probability given eventually observed adenoma
for men, stratified by age at start of the screening programme.
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Figure 19: Average state 5 occupancy probability given eventually observed adenoma
for women, stratified by age at start of the screening programme.

mean se_mean sd 2.5% 25% 50% 75% 97.5%

Men, <60 0.38 0.00 0.08 0.22 0.32 0.38 0.43 0.54

Men, 60-62 0.51 0.00 0.08 0.34 0.46 0.52 0.57 0.66

Men, 62-65 0.51 0.00 0.08 0.34 0.46 0.52 0.57 0.67

Men, 65+ 0.52 0.00 0.11 0.31 0.45 0.52 0.60 0.71

Women, <60 0.40 0.00 0.07 0.26 0.35 0.39 0.45 0.53

Women, 60-62 0.48 0.00 0.07 0.34 0.44 0.49 0.54 0.63

Women, 62-65 0.63 0.00 0.07 0.48 0.58 0.63 0.68 0.75

Women, 65+ 0.56 0.00 0.10 0.34 0.49 0.56 0.63 0.74

Programme total 0.48 0.00 0.05 0.38 0.45 0.48 0.51 0.56

Table 7: Overdiagnosis using method O5 in different sex-starting age strata and in
the whole screening programme.

These results seem to be quite well in line with O4 but different from O3, that is, as
said, due to O3 modelling only incidence of adenoma and ignoring the prevalence.
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6 Discussion

This thesis has provided two different things: 1) investigation of a specific kind of
overdiagnosis in CRC screening, and 2) an investigation of natural history models
for colorectal cancer progression.

In literary review I found no similar study made for CRC screening, so it’s hard to
compare this to existing research. The main result is that around half of the screen-
detected adenomas are overdiagnosed ones. This wasn’t unexpected, since similar
results have been found when analysing overdiagnosis in screening for pre-cancerous
lesions.

One comparison point, to get an idea of in which ballpark these estimates should
be in, could be found from studies conducted on overdiagnosis in cervical cancer
screening, where the overdiagnosis comes from similar source (from detecting non-
progressive pre-cancerous forms) as in this study. Hamashima et al. (2018) cite
lifetime overdiagnosis frequencies (the same thing estimated here) of over 50% for
cervical cancer screening. This is on par with this study - but two different cancers
are of course not comparable directly.

Wu et al. (2019) concluded, using a very similar HMM, that there is practially
no overdiagnosis in breast cancer screening programme (less than 3%), while RCT-
based for excess detection of cancers estimates start from 10%. For breast cancer
there is no similar known pre-cancerous state as adenoma, which could explain why
HMM could work differently for CRC screening.

Also they stated that a model misspecification cannot be ruled out. In Bayesian
framework, though, there exists a lot of possible ways to check that. A medical
expert can take a look at multiple things in this kind of model - for example there
exists posterior distributions for all of the 60 parameters that can be evaluated
critically with respect to biological reality. If the model is not biologically realistic,
it must be restructured.

The thesis illustrates an interesting phenomena that contradicts a common heuristic:
usually it is thought that the prevalence round (first screening round) comes with the
most overdiagnosis, while the results show that overdiagnosis due to detection of non-
progressive adenomas might increase when more screening rounds is applied. This
is an inevitable consequence of the model: only forward transitions are allowed, the
proportion of prevalence for progressive adenomas decreases as age increases, since
these adenomas move forward to next states in the model, but the non-progressive
adenoma state is an absorbing state. Of course both kinds of adenomas are removed
when found, but since there is no reason to suspect gFOBT test having a higher
sensitivity for non-progressive adenomas, the model inevitably converges to this
situation.

Yet the increasing prevalance proportion of non-progressive adenomas is also ap-
parent in the initial state distributions, which are estimated in different framework.
This could indicate, that the phenomena is not only a model property.
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Overdiagnosis in CRC screening is a very subtle problem - there are many aspects to
it and all of them cannot be answered using a single model. These results estimate
overdiagnosis of very specific kind. That is both a strength and a limitation of this
kind of model.

Natural history models for cancer enable researcher to do many kinds of inference
even without control population,. That is essential in CRC screening in Finland right
now, since the ongoing programme has no control population at all. Developing more
methods of this kind or different to overcome this is essential in order to evaluate
properties of that kind of programme. This model shows some really interesting
features such as that men have more adenomas but women in general have pre-
clinical diseases progressing more rapidly into cancers. Also according to model
women have lower sensitivities for adenomas. These are things that, if deemed
realistic, need to be accounted when thinking about fine-tuning a CRC screening
programme.

I used informative priors, but they were not constructed in co-operation with a
medical expert. That would be definitely needed in order to write a scientific pub-
lication about a subject with this much importance. When good informative priors
and their critical evaluation is done properly, the framework of this thesis provides
a great way for doing open science about this subject.

The model could be extended in multiple ways, such as moving from piece-wise con-
stant rates to continuously time-dependent rates and adding covariates. Also death
could be modelled simultaneously in order to account for more types of overdiagnosis
described in chapter 2.

One assumption that needs to be critically evaluated when using HMM for CRC
screening is the conditional indepencence of a screening tests given underlying state.
It’s reasonable to assume that some people in their nature just bleed less, and this
would make screening sensitivities for one invidual come from very different distribu-
tions. Using some kind of hierachical model for sensitivities could be more realistic
for modelling repeating episode-negative observations. Also Markov switching mod-
els could be used to model the dependence between observations of a person.

Another improvement could be modelling the screening programme using multiple
processes, for example using a different process for screen-attendance. This, though,
goes beyond the question of overdiagnosis

Additionally a lot of data available in the Mass Screening Registry’s database was
not used at all. For example, the database containing screening results has a lot
more information such as histological behavior of detected adenomas and different
covariates about living habits for the screened population. Taking these into account
could yield more interesting results.
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Appendix 1. Naive HMC algorithm

Algorithm 3: Hamiltonian Monte Carlo
Result: θ ∈ RM×N

Let θ0 ∈ RN be initial value of parameter, where N is the dimension of parameter
space. L the log-likelihood of the model, M ∈ N the number of iterations and
L ∈ N the number of leapfrog steps. I ∈ RN×N is the identity matrix. r and
∇θL(θ) have the same dimension as the parameter space so the calculations make
sense. ε is a tuning-parameter admitting values in (0, 1).;
for m = 1, . . . ,M do

Sample r0 ∼ N (0, I);
Set θm = θm−1, θ̃ = θm−1, r̃ = r0;
for i = 1, . . . , L do

Set θ̃, r̃ = Leapfrog(θ̃, r̃, ε);
end

With probability α = min

{
1,

exp(L(θ̃)− 1
2
r̃·r̃)

exp(L(θm−1)− 1
2
r0·r0)

}
set θm = θ̃, rm = −r̃;

end
function Leapfrog(θ̃, r̃, ε)
Set r̃ = r + (ε/2)∇θL(θ);
Set θ̃ = θ + εr̃;
Set r̃ = r̃ + (ε/2)∇θ̃L(θ̃);
return θ̃, r̃



Appendix 2. Stan code for parameter estimation

functions {

matrix transition_matrix(
real mu1, real mu2,
real mu3, real mu4,
real ts

) {

matrix[5,5] P = rep_matrix(0, 5, 5);

P[1,1] = exp((-mu1-mu2) * ts);
P[1,2] = mu1 * (exp(-mu3*ts) - exp(-(mu1+mu2) * ts)) / (mu1+mu2-mu3);
P[1,3] = mu1 * mu3 * (
exp(-mu4*ts) * (mu1+mu2-mu3) +
exp(-mu3*ts) * (mu4-mu1-mu2) +
exp(-(mu1+mu2) * ts) * (mu3 - mu4)
)/(
(mu1+mu2-mu3) * (mu1+mu2-mu4) * (mu3-mu4)
);

P[1,4] = mu1/(mu1+mu2) +
exp(-mu3*ts) * mu1 * mu4 / ((mu1+mu2-mu3)*(mu3-mu4)) +
exp(-mu4*ts) * mu1 * mu3 / ((mu3-mu4) * (mu4-mu1-mu2)) +
exp(-(mu1+mu2) * ts) * (
- mu1 / (mu1+mu2) + mu1/(mu1+mu2-mu3)
- mu1 *mu3 * (1.0 /

((mu1+mu2-mu3)*(mu3-mu4))+1.0/((mu3-mu4)*(mu4-mu1-mu2)))
);

P[1,5] = mu2*(1.0-exp(-(mu1+mu2)*ts))/(mu1+mu2);
P[2,2] = exp(-mu3 *ts);
P[2,3] = mu3 *(exp(-mu4*ts)-exp(-mu3*ts))/(mu3-mu4);
P[2,4] = 1.0-(mu3*exp(-mu4 *ts))/(mu3-mu4)+mu4*exp(-mu3*ts)/(mu3-mu4);
P[3,3] = exp(-mu4 *ts);
P[3,4] = 1.0-exp(-mu4*ts);
P[4,4] = 1.0;
P[5,5] = 1.0;

return(P);
}

vector efficient_forward_loop(
matrix phi,
matrix P,
int obs,



vector gamma_prev
) {

int current_state[4] = {1,2,3,5};
int prev_state[4] = {1,2,3,5};
vector[5] gamma;
vector[5] acc;

for(i in current_state) {
if(obs != 5 && phi[i, obs] == 0) {
gamma[i] = negative_infinity();

} else {
for(j in prev_state) {
acc[j] = gamma_prev[j] + log(P[j,i]);
if(obs != 5) {
acc[j] += log(phi[i, obs]);

}
}
gamma[i] = log_sum_exp(acc[prev_state]);

}

}

return gamma;

}

vector hmm_seq_lr(
vector pars,
vector covs,
real[] ts,
int[] obs

) {
vector[15] all_pars;
vector[4] mu;
matrix[5,4] phi;
int M;
row_vector[5] gamma;
matrix[5,5] P;
matrix[4,4] prev_matr;
real res;
real k;
vector[5] acc;
vector[5] gamma_safe;

if(covs[1] == 0) {



if(covs[2] < 61) {
all_pars = pars[{1,2,3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9,10,11}];

} else if(covs[2] < 63) {
all_pars = pars[{1,2,3, 4, 5, 6, 7, 16, 17, 18, 19, 8, 9, 10,11}];

} else if(covs[2] < 65) {
all_pars = pars[{1,2,3, 4, 5, 6, 7, 20, 21, 22, 23, 8, 9, 10,11}];

} else {
all_pars = pars[{1,2,3,8,9,10,11,24,25,26,27,8,9,10,11}];

}
} else if(covs[1] == 1) {
if(covs[2] < 61) {
all_pars = pars[{1 + 27,2 + 27,3 + 27, 4 + 27, 5 + 27, 6 + 27, 7 +

27,
12 + 27, 13 + 27, 14 + 27, 15 + 27, 8+27, 9+27, 10+27,11+27}];

} else if(covs[2] < 63) {
all_pars = pars[{1 + 27,2 + 27,3 + 27, 4 + 27, 5 + 27, 6 + 27, 7 +

27,
16 + 27, 17 + 27, 18 + 27, 19 + 27, 8+27, 9+27, 10+27,11+27}];

} else if(covs[2] < 65) {
all_pars = pars[{1 + 27,2 + 27,3 + 27, 4 + 27, 5 + 27, 6 + 27, 7 +

27,
20 + 27, 21 + 27, 22 + 27, 23 + 27, 8+27, 9+27, 10+27,11+27}];

} else {
all_pars = pars[{1 + 27,2 + 27,3 + 27, 8 + 27, 9 + 27, 10 + 27,
11 + 27, 24 + 27, 25 + 27, 26 + 27, 27 + 27, 8+27, 9+27,

10+27,11+27}];
}

}

M = dims(ts)[1];
phi = rep_matrix(0, 5, 4);
phi[1,1] = 1;
phi[2,1] = 1-all_pars[1];
phi[2,2] = all_pars[1];
phi[3,1] = 1-all_pars[2];
phi[3,3] = all_pars[2];
phi[4,4] = 1;
phi[5,1] = 1-all_pars[3];
phi[5,2] = all_pars[3];
mu = all_pars[4:7];
gamma[{1,2,3,5}] = log(all_pars[8:11]’) + log(phi[{1,2,3,5}, obs[1]]’);

for (m in 2:M) {



if(ts[m] + covs[2] > 65) {
mu = all_pars[12:15];

}
if(obs[m] != -1) {
P = transition_matrix(
mu[1],
mu[2],
mu[3],
mu[4],
ts[m]-ts[m-1]

);
if(ts[m] < ts[m-1]) {
reject("Mita helv.. negat. aika for obs: ", obs[m]);

}
}

if(obs[m] == 6 || obs[m] == 4 || obs[m] == -1) {
M = m;
break;

}

if(obs[m] == 2 || obs[m] == 3 || obs[m] == 1) {
gamma = efficient_forward_loop(phi, P, obs[m], gamma’)’;

}

}

if(obs[M] == 6) {
gamma[{1,2,3,5}] += log(1-P[{1,2,3,5}, 4]’);

}

if(obs[M] == 4) {
gamma[{1,2,3,5}] += log(P[{1,2,3,5}, 4]’);

}

res = log_sum_exp(gamma[{1,2,3,5}]);

return [res]’;
}

}

data {
int<lower=1> N;
int<lower=1> M;
int<lower=-1,upper=6> w[N, M];
real<lower = 0> times[N, M];
vector[2] covs[N];
vector[4] xi;



}

parameters {
// Sex-specific parameters
// Men
real<lower = 0.3, upper = 0.7> S_d_men;
real<lower = 0.05, upper = S_d_men/2.0> S_e_men;
real<lower = 0.05, upper = S_e_men> S_od_men;
real<lower = 0, upper = 1> mix_par_men;
// Women
real<lower = 0.3, upper = 0.7> S_d_women;
real<lower = 0.05, upper = S_d_women/2.0> S_e_women;
real<lower = 0.05, upper = S_e_women> S_od_women;
real<lower = 0, upper = 1> mix_par_women;

// Sex-age-group-stratified parameters
real<lower = 0> mu1_raw_old_men;
real<lower = 0> mu3_old_men;
real<lower = 0> mu4_old_men;

real<lower = 0> mu1_raw_young_men;
real<lower = 0> mu3_young_men;
real<lower = 0> mu4_young_men;

real<lower = 0> mu1_raw_old_women;
real<lower = 0> mu3_old_women;
real<lower = 0> mu4_old_women;

real<lower = 0> mu1_raw_young_women;
real<lower = 0> mu3_young_women;
real<lower = 0> mu4_young_women;

simplex[4] theta_u60_men;
simplex[4] theta_60_62_men;
simplex[4] theta_62_65_men;
simplex[4] theta_65_plus_men;

simplex[4] theta_u60_women;
simplex[4] theta_60_62_women;
simplex[4] theta_62_65_women;
simplex[4] theta_65_plus_women;

}

transformed parameters {
real<lower = 0> mu1_old_men = 0.001 +(1-mix_par_men) * mu1_raw_old_men;
real<lower = 0> mu2_old_men = 0.001 + mix_par_men * mu1_raw_old_men;



real<lower = 0> mu1_young_men = 0.001 +(1-mix_par_men) *
mu1_raw_young_men;

real<lower = 0> mu2_young_men = 0.001 + mix_par_men * mu1_raw_young_men;

real<lower = 0> mu1_old_women = 0.001 +(1 - mix_par_women) *
mu1_raw_old_women;

real<lower = 0> mu2_old_women = 0.001 + mix_par_women *
mu1_raw_old_women;

real<lower = 0> mu1_young_women = 0.001 +(1-mix_par_women) *
mu1_raw_young_women;

real<lower = 0> mu2_young_women = 0.001 + mix_par_women *
mu1_raw_young_women;

}

model {

theta_u60_men ~ dirichlet(xi);
theta_60_62_men ~ dirichlet(xi);
theta_62_65_men ~ dirichlet(xi);
theta_65_plus_men ~ dirichlet(xi);

theta_u60_women ~ dirichlet(xi);
theta_60_62_women ~ dirichlet(xi);
theta_62_65_women ~ dirichlet(xi);
theta_65_plus_women ~ dirichlet(xi);

mix_par_men ~ beta(10,10);
mix_par_women ~ beta(10,10);

mu1_raw_young_men ~ gamma(2,1);
mu1_raw_young_women ~ gamma(2,1);
mu1_raw_old_men ~ gamma(2,1);
mu1_raw_old_women ~ gamma(2,1);

mu3_young_men ~ gamma(2,1);
mu3_young_women ~ gamma(2,1);
mu3_old_men ~ gamma(2,1);
mu3_old_women ~ gamma(2,1);

mu4_young_men ~ gamma(2,1);
mu4_young_women ~ gamma(2,1);
mu4_old_men ~ gamma(2,1);
mu4_old_women ~ gamma(2,1);

S_od_men ~ beta(60, 600);
S_d_men ~ beta(500, 500);



S_e_men ~ beta(60, 600);

S_od_women ~ beta(60, 600);
S_d_women ~ beta(500, 500);
S_e_women ~ beta(60, 600);

target += sum(
map_rect(
hmm_seq_lr,
to_vector([
S_e_men, S_d_men, S_od_men,
mu1_young_men, mu2_young_men, mu3_young_men, mu4_young_men,
mu1_old_men, mu2_old_men, mu3_old_men, mu4_old_men,
theta_u60_men[1], theta_u60_men[2], theta_u60_men[3],

theta_u60_men[4],
theta_60_62_men[1], theta_60_62_men[2], theta_60_62_men[3],

theta_60_62_men[4],
theta_62_65_men[1], theta_62_65_men[2], theta_62_65_men[3],

theta_62_65_men[4],
theta_65_plus_men[1], theta_65_plus_men[2], theta_65_plus_men[3],

theta_65_plus_men[4],
S_e_women, S_d_women, S_od_women,
mu1_young_women, mu2_young_women, mu3_young_women, mu4_young_women,
mu1_old_women, mu2_old_women, mu3_old_women, mu4_old_women,
theta_u60_women[1], theta_u60_women[2], theta_u60_women[3],

theta_u60_women[4],
theta_60_62_women[1], theta_60_62_women[2], theta_60_62_women[3],

theta_60_62_women[4],
theta_62_65_women[1], theta_62_65_women[2], theta_62_65_women[3],

theta_62_65_women[4],
theta_65_plus_women[1], theta_65_plus_women[2],

theta_65_plus_women[3], theta_65_plus_women[4]
]),

covs,
times,
w

)
);

}



Appendix 3. Solution to Kolmogorov equation

The non-zero elements for transition probability matrix are given in the table below.

p11 p12 p13 p14 p15

0 p22 p23 p24 0

0 0 p33 p34 0

0 0 0 1 0

0 0 0 0 1


(34)

Element Equation

p11 exp(−(µ1+µ2)t)

p12
µ1(exp(−µ3t)−exp(−(mu1+mu2)t))

(µ1+µ2−µ3)

p13
µ1µ3(exp(−µ4t)(µ1+µ2−µ3)+exp(−µ3t)(µ4−µ1−µ2)+exp(−(µ1+µ2)t)(µ3−µ4))

(µ1+µ2−µ3)(−µ4+µ1+µ2)(µ3−µ4)

p14

µ1
µ1+µ2

+ exp(−µ3t)µ1µ4
(µ1+µ2−µ3)(µ3−µ4)

+ exp(−µ4t)µ1µ3
(µ3−µ4)(µ4−µ1−µ2)

+

exp(−(µ1+µ2)t)(− µ1
µ1+µ2

+
µ1

µ1+µ2−µ3
−µ1µ3( 1

(µ1+µ2−µ3)(µ3−µ4)
+ 1

(µ3−µ4)(µ4−µ1−µ2)
))

p15
µ2(1−exp(−(µ1+µ2)t))

µ1+µ2

p22 exp(−µ3t)

p23
µ3(exp(−µ4t)−exp(−µ3t))

(µ3−µ4)

p24 1− µ3 exp(−µ4t)+µ4 exp(−µ3t)
µ3−µ4

p33 exp(−µ4t)

p34 1− exp(−µ4t)

Table 8: Solution to equation P(t) = exp(Qt) where Q is as in equation 24.



Appendix 4. Parameter estimates, R̂-values and ef-
fective sample sizes.

Table 9: Sensitivity parameter estimates in modelM1

Parameter Rhat n_eff mean sd 2.5% 50% 97.5%

Sd,men 0.999 2666 0.492 0.016 0.462 0.492 0.522

Se,men 1.000 1266 0.111 0.010 0.093 0.110 0.130

Sod,men 1.003 1667 0.092 0.009 0.073 0.092 0.109

Sd,women 0.998 2997 0.485 0.015 0.455 0.485 0.514

Se,women 1.002 1117 0.076 0.008 0.062 0.076 0.094

Sod,women 1.001 1175 0.064 0.007 0.051 0.063 0.077



Table 10: Transition rate parameter estimates in modelM1

Parameter R̂ n_eff mean sd 2.5% 50% 97.5%

µ1,men,<65y 0.999 2872 0.002 0.001 0.001 0.002 0.003

µ1,men,≥65y 0.999 2414 0.003 0.001 0.001 0.002 0.005

µ2,men,<65y 0.999 2765 0.002 0.001 0.001 0.002 0.003

µ2,men,≥65y 0.998 2294 0.003 0.001 0.001 0.002 0.005

µ3,men,<65y 1.003 1341 0.013 0.002 0.008 0.012 0.018

µ3,men,≥65y 0.999 1166 0.025 0.004 0.017 0.024 0.034

µ4,men,<65y 0.999 3227 0.245 0.035 0.185 0.244 0.321

µ4,men,≥65y 0.999 3117 0.487 0.067 0.368 0.482 0.629

µ1,women,<65y 0.998 2341 0.002 0.000 0.001 0.002 0.003

µ1,women,≥65y 0.999 3550 0.002 0.001 0.001 0.002 0.003

µ2,women,<65y 0.998 3272 0.002 0.000 0.001 0.002 0.003

µ2,women,≥65y 0.999 2368 0.002 0.001 0.001 0.002 0.004

µ3,women,<65y 1.001 1253 0.020 0.004 0.014 0.019 0.028

µ3,women,≥65y 1.000 878 0.031 0.006 0.022 0.031 0.044

µ4,women,<65y 0.999 3071 0.327 0.045 0.248 0.324 0.421

µ4,women,≥65y 0.999 3057 0.912 0.135 0.685 0.902 1.196

αmen 0.999 3278 0.514 0.113 0.294 0.520 0.731

αwomen 0.999 3543 0.543 0.110 0.319 0.547 0.747



Table 11: Age stratified initial state distribution parameter estimates for men in
modelM1

Parameter R̂ n_eff mean sd 2.5% 50% 97.5%

θ1,<60,men 1.002 1119 0.875 0.009 0.858 0.875 0.891

θ2,<60,men 1.001 1113 0.073 0.011 0.052 0.072 0.095

θ3,<60,men 0.999 1887 0.003 0.000 0.002 0.003 0.004

θ4,<60,men 1.001 1263 0.049 0.011 0.029 0.049 0.073

θ1,60−62,men 1.003 1112 0.851 0.011 0.828 0.851 0.871

θ2,60−62,men 0.999 1339 0.066 0.012 0.045 0.065 0.089

θ3,60−62,men 0.999 2251 0.004 0.001 0.003 0.004 0.005

θ4,60−62,men 1.000 1333 0.080 0.014 0.052 0.080 0.107

θ1,62−65,men 1.004 1212 0.839 0.012 0.815 0.839 0.862

θ2,62−65,men 1.002 1531 0.071 0.013 0.048 0.070 0.097

θ3,62−65,men 0.999 2828 0.004 0.001 0.003 0.004 0.005

θ4,62−65,men 0.999 1692 0.087 0.015 0.056 0.087 0.116

θ1,65+,men 1.002 1599 0.820 0.018 0.784 0.820 0.853

θ2,65+,men 0.999 2185 0.076 0.018 0.043 0.075 0.113

θ3,65+,men 0.999 2906 0.006 0.001 0.004 0.006 0.009

θ4,65+,men 0.999 2177 0.098 0.022 0.058 0.098 0.142



Table 12: Age stratified initial state distribution parameter estimates for women in
modelM1

Parameter R̂ n_eff mean sd 2.5% 50% 97.5%

θ1,<60,women 1.002 1053 0.933 0.006 0.920 0.933 0.944

θ2,<60,women 0.999 1168 0.038 0.006 0.028 0.038 0.051

θ3,<60,women 1.000 2041 0.002 0.000 0.001 0.002 0.002

θ4,<60,women 1.003 1124 0.027 0.006 0.015 0.027 0.040

θ1,60−62,women 1.002 1114 0.919 0.008 0.903 0.920 0.934

θ2,60−62,women 1.000 1378 0.038 0.007 0.026 0.038 0.051

θ3,60−62,women 1.000 2629 0.002 0.000 0.001 0.002 0.003

θ4,60−62,women 1.002 1419 0.040 0.008 0.025 0.040 0.058

θ1,62−65,women 1.002 1143 0.896 0.011 0.874 0.897 0.915

θ2,62−65,women 0.999 1430 0.034 0.007 0.022 0.033 0.049

θ3,62−65,women 1.000 3401 0.002 0.000 0.001 0.002 0.003

θ4,62−65,women 1.002 1369 0.068 0.011 0.047 0.067 0.091

θ1,65+,women 1.000 2004 0.875 0.018 0.836 0.876 0.905

θ2,65+,women 1.000 2539 0.049 0.012 0.027 0.048 0.074

θ3,65+,women 0.999 3778 0.004 0.001 0.002 0.004 0.007

θ4,65+,women 1.001 2537 0.072 0.018 0.041 0.071 0.113


