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Chapter 1

Introduction

The most prominent logic studied in classical model theory is first-order logic FO. As a
consequence of the compactness theorem, any first-order axiom system without infinite
models can only have finite models of limited cardinality. Since finitely many finite struc-
tures can be described explicitly by a single first-order sentence, classical model theory is
mostly concerned with infinite structures.

However, this does not mean that finite structures are uninteresting. Finite struc-
tures appear naturally in many contexts, especially in questions about computation. The
subarea of model theory where finite structures are studied is called finite model theory.
Many central theorems of classical model theory do not hold when we are restricted to
finite structures. For this reason, methods of proof are quite different in the finite setting.
One important result in finite model theory is Trahtenbrot’s theorem (1950) that demon-
strates the failure of the completeness theorem in the finite. The proof of the theorem
(see e.g. [4]) relies on the undecidability of the halting problem, and thus it is an example
of how finite model theory is linked to (theoretical) computer science.

One of the main areas of application for finite model theory is descriptive complexity.
Descriptive complexity theory is an area of computational complexity theory that char-
acterizes complexity classes by determining a corresponding logic for them: every class of
finite (ordered) structures, a language, definable in the logic has to be in the complexity
class, and the logic has to have enough expressive power for defining any such language in
the complexity class. If a logic corresponds to the complexity class in this way, the logic
is said to capture that complexity class.

Since first-order logic is not expressive enough for some features of computation, sev-
eral of its extensions are studied in the field of descriptive complexity. Transitive closure
logic FO(TC) and deterministic transitive closure logic FO(DTC), both of which ex-
tend first-order logic with transitive closure operators, are examples of such extensions. In
1987, Immerman [10] showed that logics FO(DTC) and FO(TC) capture the space com-
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plexity classes DSpace(log n) and NSpace(log n), respectively. The class DSpace(log n)
consists of the languages that are decidable by some deterministic Turing machine using
a logarithmic amount of memory space. The class NSpace(log n) is defined analogously,
but the Turing machines are allowed to be nondeterministic. It is an open problem in
complexity theory whether these two classes are the same.

Besides Turing machines, there are also other mathematical models of computation.
One example of these are finite automata for which the usage of memory is more limited
than for Turing machines. Finite automata were the subject of much research in the
1940’s and 1950’s, and they were originally considered for modelling brain function – or
more precisely neural networks. Later, they have shown to be useful for a variety of
other purposes, particularly in computer science [8]. They are also studied in finite model
theory. In fact, the historically first logical characterization of a complexity class was the
characterization of the class of languages accepted by finite automata by means of monadic
second-order logic (see e.g. [4]). The result was obtained in the 1960’s independently by
Büchi, Elgot, and Trakhtenbrot. By now, many different types of finite automata have
been introduced, for example, multihead automata which have more than one head for
reading the input, and pebble automata with a finite set of pebbles that are used for
marking positions on the input tape.

In this thesis, we consider the fragments FO(DTCk) and FO(TCk) of transitive
closure logics. In these fragments, the arities of transitive closure operators appearing in
formulas are restricted to k, where k ≥ 1. Additionally, in the case of transitive closure
logic FO(TC), where transitive closure operators can be nondeterministic, we further
restrict to the fragments FO(posTCk) containing only positive occurrences of transitive
closure.

We study the expressive power of these fragments in the class of finite structures called
word models in terms of multihead finite automata. The automaton model that we work
with is a two-way multihead automaton with nested pebbles. It is a finite automaton that
has k heads for reading the input. The automaton can move these heads both left and
right on the input tape, and mark specific positions on the tape by using pebbles in nested
fashion.

The main theorem in this thesis concerns deterministic k-head automata and frag-
ments FO(DTCk) in word models. The theorem was proved more generally for trees
in the article Automata with nested pebbles capture first-order logic with transitive clo-
sure by Joost Engelfriet and Hendrik Jan Hoogeboom [5]. Based on the proofs presented
in the article, we show that deterministic two-way k-head automata with nested peb-
bles capture first-order logic with k-ary deterministic transitive closure. In the article, a
nondeterministic version of the theorem is proved for the fragments FO(posTCk). The
proofs for deterministic and nondeterministic versions are similar, so only the necessary
modifications to the proof for the nondeterministic version are covered.
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The thesis is divided into seven chapters. We give most of the necessary definitions in
Chapters 2 and 3. In these chapters, we define transitive closure logics and word models,
and give some examples to help the reader understand or recall the concepts. We also
consider the automaton model that is used in the following chapters. We explain why we
want our automata to have multiple heads and nested pebbles, and then give the formal
definition with some examples.

Chapters 4 and 5 contain proofs of lemmas which we need for the main theorem. In
Chapter 4, we show by induction that for every FO(DTCk) formula there is a corre-
sponding k-head automaton, and describe the changes needed in the proof for the nonde-
terministic case. In Chapter 5, we consider the other direction, and show that for every
deterministic automaton with k heads, there is a corresponding FO(DTCk) formula. The
same is done for the nondeterministic automata and FO(posTCk) formulas.

In Chapter 6, we combine the lemmas from the previous two chapters to obtain the
main theorem. We also discuss the case of singlehead automata and unary transitive
closure, and the nondeterministic version of the main theorem, in which restriction to
FO(posTCk) is needed. In Chapter 7, we look at the main theorem and its nondeter-
ministic version in the context of some other related results and open questions.
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Chapter 2

Preliminaries

In this chapter, we give definitions of transitive closure logics and word models with some
examples. We also explain some of the reasons for adding transitive closure to first-order
logic and studying word models. Most of the definitions and examples in this chapter are
based on [4].

2.1 Transitive Closure Logic

As logics can be used to describe computations, it is possible to approach complexity
theory from the point of view of logic: to characterize queries in a given complexity class
by a suitable logic, which has enough expressive power. By itself, first-order logic FO
is not quite suitable for this, as some features of computation cannot be expressed in
FO. For example, the addition operator we will use in example 2.13 cannot be defined in
FO. For this reason, several extensions of first-order logic are studied. Two examples of
such extensions are transitive closure logic FO(TC) and deterministic transitive closure
logic FO(DTC), which we obtain by adding to first-order logic the operations of taking
transitive closure and deterministic transitive closure of definable relations. Transitive
closure and deterministic transitive closure of a given relation are, in general, inexpressible
in first-order logic.

Definition 2.1 (Transitive Closure). Let k ≥ 1 and X be a 2k-ary relation on a set B.
The transitive closure TC(X) of the relation X is defined by

TC(X) := {(ā, b̄) ∈ B2k : there exists n > 0 and ē0, . . . ēn such that ā = ē0, b̄ = ēn,

and for all i < n, (ēi, ēi+1) ∈ X},
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and the deterministic transitive closure DTC(X) by

DTC(X) := {(ā, b̄) ∈ B2k : there exists n > 0 and ē0, . . . ēn such that ā = ē0, b̄ = ēn,

and for all i < n, ēi+1 is the unique ē for which (ēi, ē) ∈ X}.

Example 2.2. Let B be a set of some cities in the world and X be a binary relation on
a set B such that

X = {(a, b) ∈ B2 : airline A flies from a to b without stopover}.

The transitive closure TC(X) contains all the pairs (a, b) of the cities in B such that one
can fly from a to b (possibly with several stopovers) using only flights of airline A.

Next we define formulas, free variables, and semantics for transitive closure logic
FO(TC). For deterministic transitive closure logic FO(DTC) these definitions are anal-
ogous.

Definition 2.3 (Transitive Closure Logic). Let τ be a vocabulary. In the following
definition, ϕ and ψ are formulas of vocabulary τ . By FO(TC), we denote the class of
formulas of vocabulary τ defined as follows:

(i) All first-order atomic formulas ϕ are in FO(TC).

(ii) For all formulas ϕ and ψ in FO(TC), formulas ¬ϕ, ϕ∧ψ, and ϕ∨ψ are in FO(TC).

(iii) For all variables x and formulas ϕ in FO(TC), formulas ∃xϕ, and ∀xϕ are in
FO(TC).

(iv) For all tuples x̄, ȳ, s̄, t̄ of the same length, with tuples of variables x̄, ȳ being pairwise
distinct and s̄, t̄ being tuples of terms, and for all formulas ϕ in FO(TC), formula
[TCx̄,ȳ ϕ]s̄t̄ is in FO(TC).

Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) for some n ≥ 1. In longer formulas, we will
often use the abbreviation x̄ = ȳ to denote the formula:∧

1≤i≤n

xi = yi.

For a FO(TC) formula ϕ, the set of free variables of ϕ is denoted by free(ϕ). Free
variables of FO(TC) formulas are defined in the usual way with the following addition
for formulas containing transitive closure:

free([TCx̄,ȳ ϕ]s̄t̄) = free(s̄) ∪ free(t̄) ∪ (free(ϕ)\{x̄, ȳ}).
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Formulas without free variables are called sentences.
Let B be a τ -model with Dom(B) = B, and let f be an assignment. The semantics for

FO(TC) is defined as the semantics for first-order logic but with the additional definition
for transitive closure:

B |=f [TCx̄,ȳ ϕ]s̄t̄ if and only if (f(s̄), f(t̄)) ∈ TC(Xϕ),

where
Xϕ := {(ā, b̄) ∈ B2k : B |=f(ā/x̄,b̄/ȳ) ϕ}.

Next we introduce some notations which will be useful: let τ be a vocabulary and L
a logic. By L[τ ], we denote the class of formulas of L of vocabulary τ . For a sentence
ϕ ∈ L[τ ], the class of finite models of ϕ is denoted by Mod(ϕ).

Definition 2.4. Let L and L′ be logics.

(i) L ≤ L′ if for every τ and every sentence ϕ ∈ L[τ ] there exists a sentence ϕ′ ∈ L′[τ ]
such that Mod(ϕ) = Mod(ϕ′).

(ii) L ≡ L′ if L ≤ L′ and L′ ≤ L.

(iii) L < L′ if L ≤ L′ and not L′ ≤ L.

If L ≤ L′, we say that L is at most as expressive as L′. Similarly, if L ≡ L′, we say
that logics L and L′ have the same expressive power.

Example 2.5. For every FO(DTC) formula of the form ϕ = [DTCx̄,ȳ ψ(x̄, ȳ, ū)]s̄t̄, there
exists an equivalent FO(TC) formula

ϕ′ = [TCx̄,ȳ (ψ(x̄, ȳ, ū) ∧ ∀z̄(¬ψ(x̄, z̄, ū) ∨ z̄ = ȳ)]s̄t̄,

from which it follows that FO(DTC) ≤ FO(TC).

Next we define FO(TCk) and FO(DTCk), which are fragments of transitive closure
logic. These fragments and their expressive power will be our main focus in the following
chapters.

Definition 2.6 (FO(TCk) and FO(DTCk)). Let k ≥ 1 and ϕ be a FO(TC) formula
of the form [TCx̄,ȳ ψ]s̄t̄. If the length of tuple x̄ is k, formula ϕ is called the k-ary
transitive closure of ψ. We denote by FO(TCk) the class FO(TC) formulas for which
every subformula of the form ϕ is a k-ary transitive closure. The class FO(DTCk) is
defined analogously.
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Note that from example 2.5 we immediately obtain that FO(DTCk) ≤ FO(TCk), for
all k ≥ 1: if the formula ϕ in example 2.5 is a k-ary transitive closure then the equivalent
formula ϕ′ is also a k-ary transitive closure.

Example 2.7. For all k ≥ 1 and FO(TCk) formula of the form [TCx̄,ȳ ψ]s̄t̄, there exists
an equivalent FO(TCk+1) formula

[TCx̄′,ȳ′ (ψ ∧ xk+1 = yk+1)]s̄′t̄′,

where ū = (u1, . . . , uk) and ū′ = (u1, . . . , uk, uk+1), for u = x, y, s, t. Note that the same
holds analogously for FO(DTCk) formulas, and thus

FO(TCk) ≤ FO(TCk+1) and FO(DTCk) ≤ FO(DTCk+1).

Definition 2.8 (FO(posTC)). An occurrence of transitive closure [TCx̄,ȳ ψ]s̄t̄ is called
positive if it is in the scope of an even number of negations symbols. The class of
FO(TC) formulas that only have positive occurrences of transitive closure is denoted
by FO(posTC).

2.2 Word Models

In this section, we define a class of finite models called word models, but first we introduce
some notations that are needed: an alphabet Σ is a finite and non-empty set of symbols.
We denote by Σ∗ the set of finite strings over Σ. The strings in Σ∗ are also called words.
Note that Σ∗ contains the string of length zero, denoted by λ, which we call the empty
word. The set Σ+ = Σ∗\{λ} is the set of non-empty words. The subsets L ⊆ Σ∗ are
called languages.

For some languages, devices called finite automata can be used for checking whether
a given word w is in the language. On the other hand, we have logics by which we can
describe some properties of structures. Defining the concept of word models makes it
possible to formulate a correspondence between words and structures, which is needed for
studying the relationship between finite automata and transitive closure logics.

The following definitions and some of the examples are based on [4], although there
are some differences which will be explained further after Example 2.10.

Definition 2.9 (Word Model). Let Σ be an alphabet such that ., / /∈ Σ, and define a
vocabulary

τ(Σ) = {≤} ∪ {Pα : α ∈ Σ ∪ {., /}},

where Pα are unary. For w ∈ Σ+, w = α1 . . . αn, let structure B = (B,≤, (Pα)α∈Σ∪{.,/})
be such that
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(i) |B| = n+ 2,

(ii) ≤ is an ordering of B,

(iii) P. is a singleton containing the minimal element of ≤,

(iv) P/ is a singleton containing the maximal element of ≤, and

(v) for all α ∈ Σ,

Pα = {b ∈ B : for some 1 ≤ j ≤ n, b is the j + 1-th element of ≤ and αj = α}.

We call such structures word models for w, and denote the class of word models for w by
Kw.

Example 2.10. Let Σ = {a, b} and w = ababab. The structure

({0, . . . , 7},≤, P., P/, Pa, Pb),

where ≤ is a natural ordering on {0, . . . , 7}, P. = {0}, P/ = {7}, Pa = {1, 3, 5}, and
Pb = {2, 4, 6}, is a word model for w.

Since any two word models for w are isomorphic, it is sufficient to consider the word
model of w with the domain {0, . . . , n+ 1}. We call this model the word model for w and
denote it by Bw.

Note that the definition of a word model differs slightly from the usual (e.g. from the
definition in [4]). For a given word w, in addition to the elements corresponding to the
positions of the symbols in w, the word model for w contains two extra elements. These
elements are always in predicates P. and P/ as specified in Definition 2.9. When we con-
sider the finite automata in the following chapters, these elements will have corresponding
symbols on the input tape that allow the automata to detect the beginning and the end
of input words.

There are ways to construct correspondence between automata and structures without
having these extra elements in the model. For example, it is possible to do analogously
to the case of trees (cf. the child number test and rank of the symbols in [5]), and define
the automata to have an additional ability to test whether any of its heads are on the
first symbol of the word without the extra symbol marking the start (cf. the case of trees,
where the root is the only node with child number 0). In that case, we would have a larger
alphabet Σ ∪ {α′ : α ∈ Σ}, which contains two versions of each letter, and each α′ can
appear only at the end of a word (cf. the case of trees, where the leaves are labelled by
symbols of rank 0). Of course, the instructions of the automaton should also be modified
accordingly. This kind of approach is more suited for tree-walking automata which have to
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be able to move up and down along the branches of the input tree. In the case of strings, it
does not only make the alphabet unnecessarily complicated but also the automata harder
to construct. A larger alphabet could be avoided by also adding a test for detecting the
end of the input word, but the automaton would have to use the ’beginning’ test (’end’
test) every time before it moves left (right). This is not that inconvenient because that
has to be done in some way anyway, but we still have chosen the more common approach
(for two-way automata) to have the two extra symbols on the tape for detecting both
ends of the input.

Another way would be to consider the movements of the automaton in the distinctly
marked end cells (which do not have the corresponding elements in the word model) in
the formulas when we describe computations of the automata by using k-ary transitive
closure in Chapter 5. Compared to that, the two extra elements of the model allow us
to have less complex formulas – already the formulas for the single computation steps
are simpler. It seems likely that proofs similar to the ones in Chapter 5 would also work
without the two extra symbols, but it is not clear whether using k-ary transitive closure
is enough in that case or do we need higher arity.

Definition 2.11. Let L ⊆ Σ+ be a language and L a logic. The language L is definable
in logic L if there is a sentence ϕ ∈ L[τ(Σ)] such that

Mod(ϕ) =
⋃
w∈L

Kw.

Example 2.12. The language Σ+ is definable in FO. Let ψord be the first-order sentence
saying that ≤ is an ordering, and denote the minimal and the maximal elements of the
ordering by min and max. Note that we may introduce these notations because order
relations and their minimal and maximal elements are definable in first-order logic. For
the following FO[τ(Σ)]-sentence

ϕW :=∃x
∨
α∈Σ

Pα(x) ∧ ψord ∧ P.(min) ∧ P/(max)∧

∀x(x = min ∨ ¬P.(x)) ∧ ∀x(x = max ∨ ¬P/(x))∧

∀x
∨

α∈Σ∪{.,/}

Pα(x) ∧
∧

α,β∈Σ∪{.,/},
α6=β

∀x¬(Pα(x) ∧ Pβ(x)),

Mod(ϕW ) is the class of all word models.

From this, it follows that the the class of word models is also definable in FO(TCk)
and FO(DTCk), and it is reasonable to speak of the definability of languages in these
logics. In the following example, we have a language that is definable in FO(DTC2) but
not in FO.
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Example 2.13. Let Σ = {a, b} and L = {anbn : n ∈ N}. We show that language L is
definable in FO(DTC2).

We want to show that there exists an FO(DTC2) sentence ϕL such that the models
of the sentence ϕL ∧ ϕW are exactly the word models for all the words of L. For this, we
again denote the minimal and the maximal elements of the ordering ≤ by min and max,
and let S be the successor relation. Note that the relation S is definable in first-order
logic. It can also be shown that the addition relation + is definable in FO(DTC2) (see
e.g. [4]), so we can define the following FO(DTC2) formulas:

χ(s1, s2, t1, t2) := s1 = min ∧ s2 = max ∧ t1 + t1 = s2 ∧ S(t1, t2)

and
ψ(x1, x2, y1, y2) := S(x1, y1) ∧ S(y2, x2) ∧ Pa(y1) ∧ Pb(y2).

Now the FO(DTC2)-sentence

ϕL := ∃s̄∃t̄(χ(s̄, t̄) ∧ [DTCx̄,ȳ ψ]s̄t̄)

is as wanted.

The language L = {anbn : n ∈ N} is an example of a language that is not definable
in logic FO(DTC1). (Note that since FO ≤ FO(DTC1), L is not definable in FO
either.) The reason for this is that, in the class of word models, only regular languages
are definable in FO(DTC1), and the language L is not regular. Actually, the languages
definable in FO(DTC1) over strings are exactly the regular languages, and this is also
the case for the logic FO(TC1). (See [1, 8], and Chapter 6 of [4] for more about regular
languages.) Although in the case k = 1, logic FO(DTCk+1) has more expressive power
than FO(DTCk), it is not known whether FO(DTCk) < FO(DTCk+1) holds on ordered
structures more generally for any k. In other words, we do not know whether there is
some arity k0 such that for all k, we can express every FO(DTCk) formula using only
FO(DTCk0) formulas [1, 6].
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Chapter 3

Two-way Multihead Automata with
Nested Pebbles

Finite automata are machines that, given a finite string1 of symbols as input, can either
accept or reject the string. An automaton does this by executing a computation which
depends on the input and the instructions of the automaton. During its computation, the
automaton goes through a sequence of states and its result is based on the last state of
the sequence2.

There exist different types of finite automata. For example, an automaton may only
be able to read the input string from left to right, or it may read the symbols of the string
with one or more heads which can be moved left and right. The automaton can also
be either deterministic or nondeterministic, depending on the instructions. In addition
to these examples, there are also automata that are able to mark positions in the string
during computation.

The automaton we will consider here and in the following chapters is based on the
automaton described in [5]. Before defining the type of automata in detail, we give an
informal description of the automaton we are going to work with. In the next section, we
also explain reasons why we consider a type of automaton that has multiple heads and
nested pebbles.

1We only consider finite automata that run with strings as inputs. Generally, the inputs given to
automata do not need to be strings. There are also e.g. automata called tree-walking automata, which
take ordered trees as inputs. For these automata, strings can be thought as a special case of ordered trees
called monadic trees.

2For the automaton that we consider, it is possible that the computation does not halt on some inputs.
For our purposes, these computations can be viewed as rejecting, even though we define accepting or
rejecting only for halting configurations in Section 3.2.
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3.1 On the Properties of the Automaton

Since examining the expressive power of logics FO(TCk) and FO(DTCk) is one of our
focuses, we want to have an automaton with the ability to check input strings (words)
for properties that can be described with k-ary transitive closure (as the properties of the
corresponding word models). For this reason, we will look at a type of automaton which
we call two-way multihead automaton with nested pebbles. It is a finite automaton that
has multiple heads, all of which can be moved in two ways – both left and right – and a
finite set of pebbles which can be dropped to mark specific positions in the string.

As the automaton is a two-way one, we may visualize it as moving its heads left and
right on a tape where the input word is written. We do not want the automaton to move
its heads out of the part of the tape which contains the symbols of the word, so the input
is written with two extra symbols marking the start (symbol .) and the end (symbol /)
of the word.

The operation of taking k-ary transitive closure is reflected in the number of the heads
of the automaton. As mentioned before, the language L = {anbn : n ∈ N} is a nonregular
language. Two-way single-head automata (whether deterministic or nondeterministic)
can only accept regular languages (see e.g. Theorem 5 in [1] or [12]), so there exists no
such automaton accepting the language L. Since it was shown in example 2.13 that the
language L is definable in logic FO(DTC2), we need more than one head to capture
deterministic k-ary transitive closure for k ≥ 2. This is also the case for the nondeter-
ministic k-ary transitive closure because it is at least as expressive as the deterministic
version.

On the other hand, when any finite number of heads is allowed, the languages accepted
by deterministic two-way multihead automata are exactly the string languages definable
in logic FO(DTC), see e.g. Corollary 3.5 in [9].3 As we are looking for automata that
capture FO(DTCk), an unrestricted number of heads gives us too much computational
power.

It can be shown that languages accepted by deterministic and nondeterministic two-
way automata with exactly k heads can be described by FO(DTCk) and FO(TCk)
formulas, respectively. For that, we do not need the whole classes of FO(DTCk) and
FO(TCk) formulas. In the nondeterministic case, such formulas are called k-regular, and
they capture the power of k-head automata. (For the proof and the definition of k-regular
formulas, see [1].) In the deterministic case, the formulas cannot be given in a nice form
as in k-regular formulas.

To construct automata for the full class of FO(DTCk) formulas and the class of
FO(posTCk) formulas, the two-way k-head automaton model is augmented with pebbles.

3Recall that the string languages definable in FO(DTC) are characterized by the complexity class
DSpace(log n).
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This means that the automaton has a finite number of pebbles that can be dropped on
the input tape to mark positions. For any position of the tape that is currently scanned
by some head, the automaton can test for any pebble whether the pebble is present or
not.

The way the pebbles can be picked up has to be restricted: if any pebble can be picked
up from the tape at any time, the automaton becomes too powerful again. In the case
of deterministic automata, we obtain the languages definable in FO(DTC) and in the
nondeterministic case, the languages definable in FO(TC). In order to avoid this, the
pebbles of the automaton are nested, which means that only the pebble that was dropped
last can be picked up. However, this pebble can be ’retrieved from a distance’: in order
for the automaton to pick the pebble up, it is not required that the position of the pebble
is scanned by any of the heads. In [2], it has been shown that allowing pebbles to be
retrieved from a distance does not change the expressive power of the automata.

3.2 Definition and Examples

Definition 3.1. A two-way k-head automaton with nested pebbles (or a 2PAk) M is a
tuple (Q,Σ, X, q0, A, I), where:

(i) Q is a finite set of states,

(ii) Σ is a finite and non-empty alphabet such that ., / /∈ Σ,

(iii) X is a finite set of pebbles,

(iv) q0 ∈ Q is the initial state,

(v) A ⊆ Q is the set of accepting states, and

(vi) I is a finite set of instructions.

The instructions in the set I are triples of the form 〈p, ψ, q〉, 〈p, ϕ, q〉, or 〈p,¬ϕ, q′〉,
where p, q, q′ ∈ Q are states, ψ is an operation and ϕ is a test. Instruction 〈p, ψ, q〉 means
that when the automaton is in state p, it executes the operation ψ, and then changes its
state to q. Instructions 〈p, ϕ, q〉 and 〈p,¬ϕ, q′〉 mean that when the automaton is in state
p, it does the test ϕ, and, depending on the result, changes its state to q (affirmative
result) or q′ (negative result).

The automaton M is deterministic if for any two different instructions 〈p, χ1, q〉 and
〈p, χ2, q

′〉, either χ1 = ¬χ2 or χ2 = ¬χ1. In the case that a 2PAk is deterministic, we use
the notation D2PAk. We sometimes use analogous notation N2PAk for a nondetermin-
istic 2PAk to clarify that the automaton is indeed nondeterministic.
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There are two different types of operations: head moves and pebble operations. Since
the automaton can move any of its heads left and right, for each head i, 1 ≤ i ≤ k, there
are the head move operations lefti and righti. The automaton can also drop and retrieve
pebbles, so for each head i and pebble x ∈ X, we have the pebble operations dropi(x)
and retrieve(x). The pebble operation retrieve(x) does not refer to any head i because,
as mentioned earlier, the pebbles of the automaton are such that they can be retrieved
even when no head is scanning the position of the pebble.

The tests are different from the operations in that the tests can appear in instructions
also in negated form. If a negated test appears in an instruction, it means that the
instruction is applied in the case that the result of the test is negative. The automaton
has two types of tests for acquiring information about the existence of certain symbols or
pebbles in the current positions of its heads: symbi,α and pebi(x), where 1 ≤ i ≤ k and
α ∈ Σ ∪ {., /}. With symbi,α and ¬symbi,α the automaton can test whether the position
in which the head i is has the symbol α or not. Similarly with pebi(x) and ¬pebi(x) the
automaton can test the position of the head i for pebble x.

A configuration of M on word w ∈ Σ+ is a triple [p, ū, σ], where p ∈ Q is a state,
ū ∈ {0, . . . , |w| + 1}k is a k-tuple indicating the positions of the k heads, and σ =
(x1, v1) . . . (xm, vm) is a stack of pebbles dropped at their positions (m ≥ 0, xj ∈ X,
vj ∈ {0, . . . , |w|+ 1}). The initial configuration is [q0, 0̄, ε], where q0 is the initial state, 0̄
is a k-tuple of 0’s indicating that the heads are scanning the position of the start symbol,
and ε is the empty stack. Recall that the input is written in the tape with two extra
symbols, . and /, marking the start and the end of the word, i.e. the positions 0 and
|w|+ 1.

The semantics of the automaton is defined with the relation `M,w on configurations
for automaton M on input w as follows:

[p, ū, σ] `M,w [q, ū′, σ′], where σ = (x1, v1) . . . (xm, vm)

if there exists an instruction 〈p, χ, q〉 such that

if then

χ = lefti u′[i] = u[i]− 1, u′[h] = u[h] for, h 6= i, and σ′ = σ

χ = righti u′[i] = u[i] + 1, u′[h] = u[h] for, h 6= i, and σ′ = σ

χ = dropi(x) ū′ = ū, and σ′ = σ(x, u[i]), x /∈ {x1, . . . , xm}
χ = retrieve(x) ū′ = ū, σ′(xm, vm) = σ, and x = xm,m ≥ 1

χ = symbi,α ū′ = ū, σ′ = σ, and u[i] has symbol α

χ = ¬symbi,α ū′ = ū, σ′ = σ, and u[i] does not have symbol α

χ = pebi(x) ū′ = ū, σ′ = σ, and (x, u[i]) occurs in σ

χ = ¬pebi(x) ū′ = ū, σ′ = σ, and (x, u[i]) does not occur in σ
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A configuration c is halting if there is no c′ such that c `M,w c
′. A halting configuration

c is accepting, if c = [p, 0̄, ε], for some p ∈ A, and otherwise rejecting. Note that this
means that when the automaton accepts, it retrieves the pebbles and moves all of its
heads back to the position 0. This simplifies proofs in later chapters.

The language L(M) ⊆ Σ+ accepted by a 2PAk M is a set of all nonempty words over
Σ on which M has a computation starting from the initial configuration and ending with
an accepting configuration, i.e.

L(M) = {w ∈ Σ+ : ([q0, 0̄, ε], c) ∈ TC(`M,w) for some accepting configuration c}.

For every w ∈ L(M), there must be at least one computation on w that ends with an
accepting configuration. If w /∈ L(M), each computation on w may or may not halt, but
clearly all the halting ones have to end in a rejecting configuration. If M is deterministic,
there is only one computation on each word w ∈ Σ+.

Example 3.2. Let Σ = {a, b} and L = {(ab)n : n ∈ N}. Now there exists a deterministic
single-head automaton M such that L(M) = L.

We define M as follows: M = (Q,Σ, X, q0, A, I), where Q = {0, . . . , 9, 9′}, X = ∅,
q0 = 0, A = {9}, and

I = {〈0, right, 1〉, 〈1, symba, 2〉, 〈1,¬symba, 9
′〉, 〈2, right, 3〉,

〈3, symbb, 4〉, 〈3,¬symbb, 9
′〉, 〈4, right, 5〉,

〈5, symba, 2〉, 〈5,¬symba, 6〉,
〈6, symb/, 7〉, 〈6,¬symb/, 9

′〉, 〈7, left, 8〉,
〈8, symb., 9〉, 〈8,¬symb., 7〉},

where the head number in the instructions is omitted as the automaton M has only one
head. Note that the finite set of pebbles X is empty because the automaton does not
require any pebbles to accept the language L. The language is actually also definable in
FO without transitive closure. M halts on every input word w ∈ Σ+, and for each halting
configuration c = [p, u, σ], state p is either 9 or 9′. If p = 9, then u = 0 and σ = ε, so the
halting configuration c is accepting. If p = 9′, the halting configuration c is rejecting.

Example 3.3. Let Σ = {a, b} and L = {anbn : n ∈ N}. We define a deterministic two-
head pebble automaton M := (Q,Σ, X, q0, A, I), where Q = {0, . . . , 14, 14′}, X = {x},
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q0 = 0, A = {14}, and

I = {〈0, right1, 1〉, 〈1, right1, 2〉, 〈2, symb1,b, 4〉, 〈2,¬symb1,b, 3〉,
〈3, symb1,/, 14′〉, 〈3,¬symb1,/, 1〉,
〈4, drop1(x), 5〉, 〈5, right2, 6〉,
〈6, symb2,a, 7〉, 〈6,¬symb2,a, 14′〉, 〈7, right1, 8〉, 〈8, right2, 9〉,
〈9, symb1,/, 10〉, 〈9,¬symb1,/, 11〉,
〈10, peb2(x), 13〉, 〈10,¬peb2(x), 14′〉,
〈11, symb1,b, 12〉, 〈11,¬symb1,b, 14′〉
〈12, symb2,a, 7〉, 〈12,¬symb2,a, 14′〉, 〈13, retrieve(x), 14〉}.

M halts on every input word w ∈ Σ+, and for each halting configuration c = [p, ū, σ], state
p is either 14 or 14′. If p = 14′, the halting configuration c is rejecting. The automaton M
is such that it uses its first head to find the position where the symbol b appears the first
time in the input word, and drops the pebble x in that position. After that, M moves
its second head to the position 1, checks that it has symbol a, and starts moving both
of its heads right. After each move, M checks whether the first heads reads b and the
second head reads a. If any of the heads read a wrong symbol, M rejects. If the first head
reaches the end of the word at the same time the second head reaches the position of the
pebble x, M accepts.

Note that to be precise, according to our definition, computations of M ending in
configurations c, for p = 14 and σ = ε are not accepting because ū 6= 0̄, i.e. after
retrieving the pebble x, M ’s heads are not in the position 0. Instructions to move the
heads to the position 0 can easily be added to the set I, so they are left out only for
the sake of simplicity. Assuming that such instructions are added (with the necessary
modifications to the sets Q and A), we obtain automaton M ′, such that L(M ′) = L.
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Chapter 4

Constructing Automata for Formulas

In this chapter, we show that for any language definable in FO(DTCk), there is a corre-
sponding D2PAk that accepts the language. We also show that the same holds for logic
FO(posTCk) and nondeterministic pebble automata, N2PAk. We first look at the de-
terministic case. As the deterministic and nondeterministic cases share many similarities,
in the nondeterministic case, we focus on describing the modifications that are needed in
the proof to handle the nondeterminism. This chapter is based on Section 4 of [5]. Note
that the result in [5] is more general as it is for ordered trees, of which word models (or
strings) are a special case.

Lemma 4.1. Let k ≥ 1 and L be a language definable in FO(DTCk). Then there exists
a D2PAk that accepts L.

Proof. As the language L is definable in FO(DTCk), there exists a sentence ϕ ∈
FO(DTCk) such that the models of ϕ are exactly the word models for the words in
L. The proof is by induction on the structure of the formula: for each FO(DTCk) for-
mula we construct a corresponding D2PAk. The proof is divided into sections for better
readability.

Since not every subformula of ϕ is necessarily a sentence, we need to have a way to deal
with possible free variables in the formulas. We do this by placing pebbles on the input
tape. For each free variable of the formula, we add a pebble which marks a position on
the tape. The automata we construct will use the positions of these pebbles to check the
truth value of the corresponding formula under evaluation indicated by these positions.

In each step, we construct an automaton that will halt on every input. Our automata
must always halt because for some formulas ϕ, the automaton we construct has automata
corresponding to the subformulas of ϕ as subroutines. There are computations that
have to halt in an accepting state even when some of these subroutines may reject. In
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these cases, the automata corresponding to the subformulas cannot loop because the
computation must continue (and eventually halt) after a rejecting subroutine.

Additionally, we construct the automata in a way that every halting configuration
(whether accepting or rejecting) will be such that all the heads of the automaton are
pointing to the cell in the position 0 on the input tape. This simplifies the constructions
as the heads are always in the same positions after a subroutine has halted.

4.1 Atomic Formulas

For atomic formulas, the automata we construct only use one head. We have the atomic
formulas: x = y, x ≤ y, and Pα(x), for all α ∈ Σ ∪ {., /}. We define automata for these
formulas as follows:

For formula x = y, the automaton moves its head from left to right, checking for each
cell whether the pebble x is present or not. When the automaton finds the cell where the
pebble x is, it keeps its head in that cell and checks whether the pebble y is also present.
If it is, the automaton moves its head to the cell in the position 0 by moving its head left
and checking for the symbol ., which indicates that the head is in the correct position.
When the head is in the position 0, the automaton halts in an accepting state. If the
pebble y is not present in the same cell as the pebble x, the automaton moves its head to
the cell in the position 0 and halts in a rejecting state.

For formula x ≤ y, the automaton moves its head from left to right until it finds the
cell where the pebble y is present. When the automaton finds the cell where the pebble
y is, it keeps its head in that cell, and first checks whether the pebble x is present or
not. Then it checks whether the cell has the symbol . or not. If neither the pebble x or
the symbol . was found, the automaton keeps moving its head left until it either finds a
cell where the pebble x is present or ends up in the cell in the position 0, marked by the
symbol .. If the automaton finds the pebble x, it then moves to the cell in the position
0, and halts in accepting state. If the automaton ends up in the cell in the position 0
without finding the pebble x, it halts in a rejecting state.

For formulas Pα(x), α ∈ Σ ∪ {., /} , the automaton first moves its head right until it
finds the cell where the pebble x is present. When the head is in that cell, the automaton
checks whether the cell has the symbol α or not. If it does, the automaton moves its head
to the cell in the position 0, and accepts. If it does not, the automaton moves its head to
the cell in the position 0, and rejects.
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4.2 Negation, Conjunction, and Disjunction

In the following constructions of the automata for the negation, conjunction, and disjunc-
tion, we assume that we already have the automata for the subformulas ψ1 and ψ2.

For the negation ϕ = ¬ψ1 of a formula, the automaton is the same as the automaton
for formula ψ1, but the set A of accepting states is changed to its complement Q\A. For
this, the automaton for ψ1 must always halt. As mentioned earlier, for each formula, we
build an automaton that halts with the heads being in the cell in the position 0. This
ensures that changing the set of accepting states to its complement actually switches
rejecting results into accepting ones. Otherwise the heads of the automaton could be in
the wrong positions for the halting configuration to be accepting.

For the conjunction ϕ = ψ1∧ψ2 of formulas, we use the two automata for formulas ψ1

and ψ2. First we run the automaton for ψ1. If this automaton halts in a rejecting state,
the automaton for ϕ also halts and rejects. If the automaton for ψ1 halts in an accepting
state, we run the automaton for ψ2. If this automaton halts in a rejecting state, then the
automaton for ϕ does the same. If the automaton for ψ2 halts in an accepting state, then
the automaton for ϕ halts in an accepting state.

For the disjunction ϕ = ψ1 ∨ ψ2 of formulas, the construction of the automaton is
similar to the case of conjunction. Again, we use the two automata for formulas ψ1 and
ψ2, and we first run the automaton for ψ1. Now the case differs from the earlier case of
conjunction: if this automaton halts in an accepting state, then so does the automaton
for ϕ. If the automaton halts in a rejecting state, the automaton for ϕ does not halt yet.
Instead, we now run the automaton for ψ2. If this automaton halts in a rejecting state,
then the automaton for ϕ does the same. If the automaton for ψ2 halts in an accepting
state, then the automaton for ϕ halts in an accepting state. Note that this construction
works because the automaton for ψ1 always halts, so in the case that the automaton for
ψ1 rejects, it is possible to next run the automaton for ψ2.

In the cases of conjunction and disjunction, the free variables in ψ1 and ψ2 are not
necessarily the same, and the automaton for ϕ moves its heads on the input tape, where
there are pebbles present for all of the free variables that appear in ψ1 or ψ2. This does not
pose any difficulties for us, as the automata we use for subformulas ψ1 and ψ2 only look
for the pebbles that represent the free variables in each subformula, and the pebbles that
are placed by each automaton itself. How the pebbles placed by the automaton affect this,
will be clarified in the next section after we have described the automata for universal and
existential quantifiers. Handling these quantifiers requires that the automata can place
pebbles on the input tape.
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4.3 Universal and Existential Quantifiers

In the constructions of automata for universal and existential quantifiers, we need to take
into account the fact that formulas containing quantifiers have variables that are bound.
The automata we construct will handle these bounded variables by placing a pebble on
the input tape for each bounded variable.

As before in the cases of the negation, conjunction, and disjunction, we assume that
we already have the automata for the subformulas ψ1.

For formula ϕ = ∀xψ1, we construct the automaton for ϕ as follows. Starting with
v = 0, the automaton first tests whether the cell in the position v has the symbol / or
not. If not, the automaton drops the pebble x in the cell in the position v, moves its head
back to the position 0, and runs the automaton for ψ1. The pebble x that was dropped
now marks a position that the automaton for ψ1 uses for variable x. If the automaton
for ψ1 rejects with the placement of pebble x in the position v, then the automaton for
ϕ halts and rejects (first retrieving the pebble x). If the automaton for ψ1 accepts, the
automaton for ϕ finds the position v of the pebble x again. Then it moves its head to
the next cell v + 1, and tests it for the symbol /. If there is no symbol /, the automaton
retrieves the pebble x, and drops it in the cell v+ 1, and runs the automaton for ψ1 again
for this placement of the pebble. Depending on the result, the automaton for ϕ then
proceeds as in the case of the position v. The automaton does this until it either halts in
a rejecting state or reaches the cell with the symbol / while trying to drop the pebble x.
If the cell with the symbol / is reached, the automaton drops the pebble x in that cell,
and we run the automaton for ψ1 for the last time. If it rejects, the automaton for ϕ halts
and rejects, as before. If it accepts, the automaton now retrieves pebble x, and halts in
an accepting state.

For formula ϕ = ∃xψ1, we have a similar construction as in the previous case. The
difference is that if the automaton for ψ1 rejects with the placement of pebble x in the
position v, then the automaton for ϕ does not reject – instead, it next runs the automaton
for ψ1 for the placement of pebble x in the position v + 1. If there is a placement of the
pebble x such that the automaton for ψ1 accepts, then the automaton for ϕ halts in an
accepting state with the first one of such placements (again, first retrieving the pebble
x). If the cell with the symbol / is reached, and the automaton for ψ1 rejects again, then
no such placement exists, and the automaton retrieves pebble x, and halts in a rejecting
state. Note that as in the case of disjunction, in this construction we use the fact that
the automaton for ψ1 always halts.

Now that we have seen how the automata handle bound variables, we return to the
question posed in the previous section. How do the pebbles placed by the automaton
affect the cases of conjunction and disjunction? For example, when ψ1 = ∀xPα(x) and
ψ2 = x ≤ y, in the case of conjunction we have formula ϕ = ∀xPα(x) ∧ x ≤ y. Now the
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automaton for ψ1 cannot place the pebble x because the pebbles x and y corresponding
to the free variables of ϕ are already placed on the input tape before the computation for
ϕ begins. But this can be fixed by changing the bound appearances of variable x to a
fresh variable that does not appear in the formula.

4.4 Transitive Closure

In the construction of automata for a transitive closure formula ϕ = [DTCx̄,ȳ ψ1]s̄t̄, there
are more details we need to consider than in the previous cases. As in the case of the
quantifiers, formulas containing transitive closure have variables that are bound. These
variables are handled as before, by placing pebbles on the input tape. In addition to this,
we have to pay attention to the formula ψ1 and its free variables.

We assume that ψ1 has 2k free variables x̄ and ȳ. The remaining free variables of ψ1

are fixed by pebbles before the automaton for ϕ starts its computation, and since these
pebbles are not moved during the computation, we may disregard the corresponding free
variables.

For formula ϕ = [DTCx̄,ȳ ψ1]s̄t̄, we construct an automaton that checks whether it is
possible to find a sequence v̄0, . . . , v̄n of k-tuples of positions in the input tape such that
v̄0 = s̄, v̄n = t̄, and each pair (v̄i, v̄i+1) of consecutive k-tuples of the sequence satisfies the
formula ψ1. Since we consider the deterministic transitive closure, the sequence should
additionally be such that for i < n, the pair (v̄i, v̄) satisfies ψ1 only when v̄ = v̄i+1.

We define a directed graph G that helps us with the construction of the automaton.
Let v̄ be a k-tuple of some positions v1, . . . , vk of an input word w (including positions 0
and |w| + 1). We place all of such k-tuples in lexicographic order,1 and let the graph G
have a vertex for each k-tuple v̄. We add an edge from vertex v̄ to vertex v̄′ if ψ1(v̄, v̄′)
is satisfied in the word model Bw for w. Note that the automaton will not have direct
access to this graph (or rather to the graph G′, which we define next). The graph can
be thought of as a virtual computation space that the automaton reconstructs during its
computation by using the automaton for ψ1.

Now the existence of a wanted sequence of k-tuples can be thought of as having a path
in G connecting the two vertices corresponding to the two k-tuples s̄ and t̄. We can try to
find a path by starting from one vertex and trying possible paths in lexicographic order of
the vertices. This cannot be done by starting from the vertex s̄ and trying to find a path
to the vertex t̄ because we may end up looping. If some vertex in graph G has more than
one incoming edge, we might go through this vertex more than once, and after that, we

1Let B be a finite set of natural numbers. The lexicographic ordering of k-tuples (v1, . . . , vk), where
vj ∈ B for 1 ≤ j ≤ k, is an ordering such that (v1, . . . , vk) ≤ (v′1, . . . , v

′
k) if vj = v′j for all 1 ≤ j ≤ k or

vj′ < v′j′ , where 1 ≤ j′ ≤ k is the first index such that vj′ 6= v′j′ .
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will start circling this path without finding a correct one. Instead, we go backwards from
the vertex t̄, starting with trying to find a vertex v̄ such that ψ1(v̄, t̄) holds. We do this
by trying to find the path in a new graph G′, which we obtain by changing the direction
of every edge in G.

We still have the exact same problem with possible looping, but now that we are trying
to find a path in the graph G′, there is a simple way to fix it. We cannot start looping
in this way if there is at most one incoming edge to each vertex (i.e. each vertex of the
original graph G has an outdegree of at most 1). For this, we just have to assume that
the formula ψ1(x̄, ȳ) is functional, meaning that for every word model B and k-tuple v̄ of
elements of B = Dom(B), there is at most one v̄′ ∈ Bk such that ψ1(v̄, v̄′) is satisfied in
B. We may assume this because for every FO(DTCk) formula ϕ = [DTCx̄,ȳ ψ1(x̄, ȳ)]s̄t̄,
we have an equivalent formula

ϕ′ = [DTCx̄,ȳ (ψ1(x̄, ȳ) ∧ ∀z̄(¬ψ1(x̄, z̄) ∨ z̄ = ȳ)]s̄t̄,

where the deterministic transitive closure is now taken respective to a functional formula.
As we are looking at languages definable by FO(DTCk) sentences, the exact syntax of
the formula ϕ does not matter in this sense.

Note that if there is an incoming edge to the starting vertex t̄, we can still get stuck.
If such an incoming edge exists, we can fix this by ’throwing the edge away’: when the
automaton is trying to find the path in graph G′, for any vertices v̄, v̄′, after checking if
ψ1(v̄, v̄′) holds, the automaton additionally checks whether v̄ 6= s̄ and v̄ = t̄ hold2, and if
they do, the automaton ignores the edge from v̄′ to v̄. This can be done because on the
input tape, the cell positions corresponding to the vertices s̄ and t̄ are marked by pebbles,
so the automaton can recognize them. Knowing that such checking can be done, later
when describing the automaton, we may assume that there are no incoming edges to the
vertex t̄.

As mentioned before, the automaton for ϕ places pebbles on the input tape and uses
these pebbles to evaluate the free variables of the formula ψ1. Since we want to find a
path in graph G′ by checking the existence of edges in lexicographic order of the vertices,
the automaton has to be able to place pebbles to positions on the input tape in a way
that corresponds to the lexicographic order of vertices.

For that reason, before fully describing the automaton for ϕ, we show how the automa-
ton can go through the placements of pebbles x1, . . . , xk to the cells in positions v1, . . . , vk
in lexicographic order. As the automaton starts with all the heads in the position 0, it
can place the pebbles x1, . . . , xk to the positions indicated by the first k-tuple (0, . . . , 0)
of the lexicographic ordering by just dropping them one by one, starting with x1. Let

2Checking both that v̄ 6= s̄ and v̄ = t̄ is done to handle the special case that s̄ = t̄. In the case that
s̄ 6= t̄, it would be enough to check only that v̄ = t̄.
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v̄ be the k-tuple indicating the positions of the pebbles x1, . . . , xk. Next we show how
the automaton moves the pebbles to the positions v′1, . . . , v

′
k, where v̄′ = (v′1, . . . , v

′
k) is

the successor of v̄ in lexicographic order. The automaton first finds the position vk of
the pebble xk. When the position vk is found, the automaton checks if the cell vk has
the symbol /. If not, then the automaton moves its head to the next cell in the position
vk + 1, retrieves xk and drops it in the cell vk + 1. Thus v̄′ = (v1, . . . , vk−1, vk + 1) and
we are done. If the cell vk has the symbol /, then the automaton moves to the cell in the
position 0, retrieves xk, and drops it in the cell 0. Then the automaton finds the position
vk−1 of the pebble xk−1, and continues in the same way as for the pebble xk, starting with
checking if the cell vk−1 has the symbol /. If the automaton ends up going through all of
the pebbles xk, . . . , x1, and it cannot move the pebble x1 to the position v1 + 1, it finds
this out by checking that the position v1 has the symbol /. This can only happen when
the tuple (v1, . . . , vk) is the last one in lexicographic order. In this case the automaton
has already gone through all the placements of the pebbles.

Now that it has been shown how the automaton can place the pebbles x1, . . . , xk to
the positions v1, . . . , vk in the lexicographic order of the vertices of G′, we show how the
automaton can find a wanted path in the graph G′ (if it exists). The central idea is that
when we are in some vertex v̄′ on a possible path from t̄ to s̄, we try to find a next vertex
v̄ such that there is an edge from v̄′ to v̄. We start from vertex v̄′ = t̄, marked by pebbles
ȳ, and use pebbles x̄′ and ȳ′ to find a vertex v̄. We do this by first placing the pebbles ȳ′

to the positions indicated by the vertex v̄′, and then placing the pebbles x̄′. We place the
pebbles x̄′ to the positions corresponding to the vertices of G′, and go through vertices
in lexicographic order until we find a vertex v̄ with an incoming edge from v̄′. From the
vertex v̄, we then again try to find a next vertex with an incoming edge from v̄ using
pebbles x̄′ and ȳ′. We do this until we have found the vertex s̄ marked by the pebbles
x̄ or there are no outgoing vertices from the vertex v̄ marked by the pebbles ȳ′. If there
are no outgoing vertices from the vertex v̄, we need to go back to the unique vertex v̄′

with an outgoing edge to the vertex v̄ and try the next vertex (i.e. the successor of v̄)
in lexicographic order. If we end up going back to the vertex t̄ marked by the pebbles ȳ,
and testing all the vertices for possible paths with no luck, we know that a wanted path
cannot be found.

There is one important thing to note: when we end up in a vertex v̄ with no outgoing
edges, in order to try the next vertex of the lexicographic ordering, we need to remember
which vertex was the one that we just checked. This can be done because the vertex v̄
is marked by the pebbles ȳ′, but we also need pebbles to find back to the vertex v̄′ from
which we can look for a ’new’ vertex v̄. If we use the pebbles x̄′ for finding v̄′, we do not
have any pebbles left for trying to find the ’new’ vertex v̄, as we cannot move the pebbles
ȳ′ before lifting the pebbles x̄′. To keep the pebbles nested, we have to use additional
pebbles z̄′. As it is necessary to pay attention to the order in which we place and lift the
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pebbles, in addition to the main idea of the automaton, we now also give a more detailed
description.

The automaton uses 3k pebbles x̄′ = x′1, . . . , x
′
k, ȳ

′ = y′1, . . . , y
′
k, and z̄′ = z′1, . . . , z

′
k.

Note that before the actual computation of the automaton starts, the pebbles x̄ =
x1, . . . , xk and ȳ = y1, . . . , yk are already placed on the input tape and the automaton does
not move these pebbles. First, the automaton finds the positions v′1, . . . , v

′
k of the pebbles

ȳ, and places the pebbles ȳ′ in the same positions. Then, starting with the first k-tuple
v̄ = (0, . . . , 0) of the positions v1, . . . , vk of lexicographic ordering, the automaton places
k pebbles x̄′ to the k cells in the positions v̄. Then we run the automaton corresponding
to the formula ψ1(x̄′, ȳ′).

If the automaton for ψ1(x̄′, ȳ′) accepts, the automaton for ϕ checks whether x̄′ = x̄
(i.e. whether the position vj of the pebble x′j is the same as the position of the pebble xj,
for 1 ≤ j ≤ k). If this holds, the automaton halts and accepts (first retrieving the pebbles
and moving its heads to the position 0). If not, the automaton moves each head i (of its
k heads) to the position vi of the pebble x′i. Then the automaton retrieves the pebbles x̄′

and ȳ′ (from a distance, without moving its heads), and then places each pebble y′i to the
position vi of the head i. Now these positions mark a ’new’ vertex v̄′, from which we try
find the next vertex v̄. So the automaton starts again with the first tuple v̄ = (0, . . . , 0) of
the positions of lexicographic ordering, and places pebbles x̄′ to the k cells in the positions
v̄. Then we run the automaton corresponding to the formula ψ1(x̄′, ȳ′) again.

If the automaton for ψ1(x̄′, ȳ′) rejects, we move the pebbles x̄′ to the next k-tuple of
positions in lexicographic order, and run the automaton for ψ1(x̄′, ȳ′) again for this new
placement of pebbles. If the automaton goes through all k-tuples of positions for the
pebbles x̄′ without the automaton for ψ1(x̄′, ȳ′) accepting, we have to move the pebbles
ȳ′ to the next k-tuple of positions in lexicographic order. To do this, we need to use the
pebbles z̄′. The automaton first retrieves pebbles x̄′. (The pebbles ȳ′ are still left on the
input tape.) Then the automaton places the pebbles z̄′ in positions in lexicographic order
of the vertices of G′ to find the only vertex with an outgoing edge to the vertex marked by
the pebbles ȳ′. This is done by using the automaton for ψ1(ȳ′, z̄′). When the placement of
the pebbles corresponding to this vertex is found, the automaton finds the positions of the
pebbles ȳ′ again. The automaton continues from there in lexicographic order, placing the
pebbles x̄′ and using them to find the next vertex by using the automaton for ψ1(x̄′, z̄′).
When the positions corresponding to the correct vertex are found, the automaton checks
whether x̄′ = x̄, and halts and accepts if this holds (first retrieving the pebbles and moving
its heads to the position 0). If it does not, the automaton moves its heads to the positions
of the pebbles x̄′, retrieves pebbles x̄′, z̄′, and ȳ′, and places pebbles ȳ′ in the positions
where the heads are. Then the automaton continues with placing the pebbles x̄′ to the
first tuple v̄ in lexicographic order.

If the automaton does not accept, it ends up placing the pebbles ȳ′ back to the
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vertex marked by pebbles ȳ and going through all placements of pebbles x̄′ without the
automaton for ψ1(x̄′, ȳ′) accepting. When this happens, the automaton retrieves pebbles
x̄′ and ȳ′, moves all of its heads to the position 0, and halts and rejects.

From the previous constructions we see that for each formula ϕ ∈ FO(DTCk), the
corresponding automaton needs only a finite number of pebbles. The number of pebbles
depends on the number of nested quantifiers and transitive closures of the formula. We
use one pebble for each quantifier and 3k for transitive closure, but as the pebbles can be
reused, it is enough to have a number of pebbles that is the maximum depth of nested
operators appearing in the formula.

4.5 Nondeterministic Automata and FO(posTCk)

It is not known whether the class of languages accepted by nondeterministic two-way
k-head pebble automata is closed under complement, so we cannot handle negations of
formulas in the same way we did in the deterministic case. We will have to restrict to
languages definable in FO(posTCk). For every formula in FO(posTCk), there is an
equivalent formula where negation appears only in front of atomic formulas. Since we can
construct automata for negations of atomic formulas, this restriction allows us to prove
the following lemma for FO(posTCk) and the nondeterministic automata.

Lemma 4.2. Let k ≥ 1 and L a language definable in FO(posTCk). Then there exists
an N2PAk that accepts L.

Proof. For atomic formulas, conjunction, and universal quantification, the constructions
of the automata are much like in the deterministic case before. Note that in the cases
of conjunction and universal quantification the automata might not halt if the result of
the automaton is not accepting. This is not a problem because we do not require the
nondeterministic automata to always halt. For every word w in the language L, the
automaton only needs to have at least one accepting computation on w.

As the automata for atomic formulas always halt, we get the automata for negations
of atomic formulas from the construction in the deterministic case. The automata for
disjunction, existential quantification, and (nondeterministic) transitive closure will use
nondeterminism, so we will describe the constructions for these automata.

For the disjunction ϕ = ψ1 ∨ ψ2 of formulas, the automaton nondeterministically
chooses between two instructions, resulting in running either the automaton for ψ1 or the
automaton for ψ2. The result of the automaton for ϕ is the same as the result of the
chosen automaton. Now the automaton for ϕ has a computation on a given word ending
in an accepting configuration if and only if the automaton for ψ1 or the automaton for ψ2

has one.
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For formula ϕ = ∃xψ1, the automaton first nondeterministically chooses a placement
for pebble x. This can be done by having the automaton move its head from left to right
and check for each cell whether the cell has the symbol /. If not, then it either chooses to
place the pebble on that cell or to move its head one cell to the right without placing the
pebble. If the automaton places the pebble, it moves its head back to the position 0. If
the automaton ends up in the cell marked by the symbol /, it is in the last cell and it has
to place the pebble on that cell. After placing the pebble and moving to the position 0,
we run the automaton for ψ1 with the placement chosen for the pebble x. The result of
the automaton for ϕ is the same as the result of the automaton for ψ1. The automaton
for ϕ has a computation on a given word ending in an accepting configuration if and only
if there is some placement of pebble x for which the automaton for ψ1 has one.

For formula ϕ = [TCx̄,ȳ ψ1]s̄t̄, we cannot assume that the formula ψ1 is functional
as we did in the deterministic case. Fortunately, this assumption is not needed, because
allowing the automaton to be nondeterministic simplifies its construction. By using non-
determinism, the checking for existence of a path can be done in a straightforward way
from s̄ to t̄ in the graph G. The automaton places pebbles x̄′ to the positions indicat-
ing the current vertex, places the pebbles ȳ′ to a candidate vertex, and then checks for
existence of an edge by using the automaton for ψ1(x̄′, ȳ′).

Now the placement of the pebbles ȳ′ is not done in lexicographic order but chosen
nondeterministically pebble by pebble as described in the case of existential quantification.
Note that the possibility of looping is not a problem because the automaton does not need
to halt on every computation.

When the automaton for ψ1(x̄′, ȳ′) accepts, indicating that an edge was found, the
automaton checks whether ȳ′ = ȳ. If it does, the automaton accepts. If it does not,
the automaton moves its heads to the positions of pebbles ȳ′, lifts pebbles ȳ′, and then
retrieves x̄′ from a distance, without moving its heads. Then the automaton places the
pebbles x̄′ in the position of the heads, and continues checking for some candidate vertex
by again nondeterministically choosing a placement for pebbles ȳ′. If a path from s̄ to t̄
in the graph G exists, the automaton for ϕ finds it on some of its computations.
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Chapter 5

Defining Formulas for Automata

In this chapter, we show that for every language accepted by some D2PAk, there is
a FO(DTCk) formula that defines the language. As in the previous chapter, we also
show that the same holds for nondeterministic pebble automata, N2PAk, and logic
FO(posTCk). We do this by constructing formulas that describe the accepting computa-
tions of the automaton: we define formulas for single computation steps of the automaton,
and by using k-ary transitive closure, we construct formulas that describe computations
consisting of sequences of consecutive steps.

This chapter is mostly based on Section 5 of [5]; some parts are also based on Section
3 of [1] by Bargury and Makowsky. The technique used is similar to Kleene’s algorithm
[11] that transforms classical finite automata into regular expressions. (For regular ex-
pressions and languages, see also [8] and Chapter 6 of [4].) In [1], it was shown that
Kleene’s algorithm can be generalized to multi-head automata in multidimensional grids,
and transitive closure can be used to express sequences of consecutive positions of the
heads. As the automata we use here additionally contain pebbles, we follow the proof
presented in [5], iterating the construction for each pebble of the automaton.

The deterministic and nondeterministic cases are again similar, so we focus on the
deterministic case, and then describe the necessary modifications to the proof in the non-
deterministic case. In Section 5.1, we define a matrix which expresses computational be-
haviour of a given automaton. We call it the computation closure matrix, and in Lemma
5.3, we present some observations concerning it. These observations will be useful in
Section 5.2, where we show how to define formulas that describe computations of the au-
tomaton. The observations are used for proofs in both deterministic and nondeterministic
cases.
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5.1 Computation Closure Matrix

Let M be a 2PAk and Q the finite set of its states. We define Φ as a Q × Q matrix of
predicates ϕp,q(x̄, ȳ), where p, q ∈ Q, and x̄, ȳ are k-tuples of distinct variables occurring
free in all predicates in Φ. These predicates can be thought to correspond to the single
computation steps1 of the automaton M . Later in this chapter, the predicates will be
defined with suitable formulas, so we assume here that each predicate is definable by a
formula. In this chapter, we denote Dom(B) = B for any word model B.

Definition 5.1 (Computation closure). Let Φ be as above. The computation closure of Φ
with respect to x̄, ȳ is the matrix Φ# consisting of predicates ϕ#

p,q(x̄, ȳ) such that for any
word model B, B |= ϕ#

p,q(ū, ū
′) if and only if there exists a sequence ū0, . . . ūn of k-tuples

of elements in B and a sequence p0, . . . , pn of states, such that n ≥ 1, ū = ū0, ū′ = ūn,
p = p0, q = pn, and B |= ϕpi,pi+1

(ūi, ūu+1) for 0 ≤ i < n.

In other words, the matrix Φ contains predicates that correspond to the single compu-
tation steps of the automaton M , and the matrix Φ# contains predicates that correspond
to the sequences of these steps. Note that in the definition above, the predicates ϕ#

p,q(x̄, ȳ)
are also assumed to be definable by formulas. Let w be some word, and Bw the word
model for w. Then Bw |= ϕ#

p,q(ū, ū
′) means that when the automaton M is run on input

w, for some n, there is a Φ-path of n consecutive steps of M leading from state p to
state q, where in state p, the k heads of M are in positions ū, and in state q, they are in
positions ū′. Since we require that n ≥ 1, the path is always nonempty.

Suppose that in addition to x̄, ȳ, all the free variables of formulas for predicates
ϕp,q(x̄, ȳ) are among z1, . . . , zm. The formulas for predicates ϕ#

p,q(x̄, ȳ) will be defined
with the help of predicates ϕp,q(x̄, ȳ), so the free variables of each ϕ#

p,q(x̄, ȳ) will be among
x̄, ȳ, z1, . . . , zm. If B |= ϕ#

p,q(ū, ū
′, v1, . . . , vm), the variables z1, . . . , zm must have fixed

values v1, . . . , vm.

Definition 5.2. If for any states p, q, q′ ∈ Q, word model B, and ū, ū′, ū′′ ∈ Bk,

(i) B |= ϕp,q(ū, ū
′) and B |= ϕp,q(ū, ū

′′) implies that ū′ = ū′′, then the predicate ϕp,q(x̄, ȳ)
is functional,

(ii) B |= ϕp,q(ū, ū
′) and B |= ϕp,q′(ū, ū

′′) implies that q = q′, then the predicate ϕp,q(x̄, ȳ)
is exclusive.

Matrix Φ is called deterministic if its predicates are both functional and exclusive.

1Not all of these predicates correspond to any computation step of automaton M , but such predicates
will be defined with formulas that are always false.
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We say that a state q is final if B 6|= ϕq,r(ū, ū
′) for any state r ∈ Q, word model B, and

ū, ū′ ∈ Bk. If the requirements (i) and (ii) of definition 5.2 hold for predicates ϕp,q(x̄, ȳ)
and ϕp,q′(x̄, ȳ), only when q and q′ are final states, then Φ is called semi-deterministic.

In the following Lemma, when we say that the matrix Φ is in some logic L, we mean
that all the predicates of the matrix are formulas in L.

Lemma 5.3. Let Φ be a matrix of predicates and Φ# its computation closure.

(i) If Φ is deterministic, then Φ# is semi-deterministic.

(ii) If Φ is in FO(TCk), then Φ# can also be defined in in FO(TCk).

(iii) If Φ is in FO(DTCk) and deterministic, then Φ# can be defined in FO(DTCk).

Proof. (i) Let q, q′ ∈ Q be final states, and B a word model such that B |= ϕ#
p,q(ū, ū

′) and

B |= ϕ#
p,q′(ū, ū

′′) for p ∈ Q and ū, ū′, ū′′ ∈ Bk. Assume that the lengths of Φ-paths for

ϕ#
p,q(ū, ū

′) and ϕ#
p,q′(ū, ū

′′) are n and n′, respectively.
Let n = 1. Then B |= ϕp,p1(ū, ū1) for p1 = q and ū1 = ū′, and B |= ϕp,p′1(ū, ū′1) for

some p′1 ∈ Q and ū′1 ∈ Bk. From the determinism of Φ, it follows that the predicates
ϕp,p1(x̄, ȳ) and ϕp,p′1(x̄, ȳ) are functional and exclusive, so p′1 = p1 and ū′1 = ū1. Since

p′1 = q is final, B 6|= ϕ#
p′1,q

′(ū′1, ū
′′), which means that the path cannot be extended from p′1

and ū′1. Thus n′ = n = 1, implying that p′1 = q′, and ū′1 = ū′′. Now q = q′ and ū′ = ū′′,
so predicates ϕ#

p,q(x̄, ȳ) and ϕ#
p,q′(x̄, ȳ) are functional and exclusive.

Let n = l + 1 and n′ = l′ + 1 for some l, l′ ≥ 1. From B |= ϕ#
p,q(ū, ū

′), it now follows
that there exists p1 ∈ Q and ū1 ∈ Bk such that B |= ϕp,p1(ū, ū1) and B |= ϕ#

p1,q
(ū1, ū

′),
and there is a path of length l for ϕ#

p1,q
(ū1, ū

′).

Since B |= ϕ#
p,q′(ū, ū

′′), there also exists p′1 ∈ Q and ū′1 ∈ Bk such that B |= ϕp,p′1(ū, ū′1)

and B |= ϕ#
p′1,q

′(ū′1, ū
′′), and there is a path of length l′ for ϕ#

p′1,q
′(ū′1, ū

′′). From the deter-

minism of Φ, it now follows that p′1 = p1 and ū′1 = ū1.
Now B |= ϕ#

p1,q
(ū1, ū

′) and B |= ϕ#
p1,q′

(ū1, ū
′′), so by the induction hypothesis for p1, ū1,

l, and l′, we have that q′ = q, ū′′ = ū′, and l′ = l. Thus n′ = n, and predicates ϕ#
p,q(x̄, ȳ)

and ϕ#
p,q′(x̄, ȳ) are functional and exclusive.

(ii) Let Φ be a Q × Q matrix of FO(TCk) formulas ϕp,q(x̄, ȳ), where p, q, x̄, ȳ are
as before. Without loss of generality, we may assume that Q = {1, . . . ,m}. Let 0 ≤
l ≤ m. We define predicates ϕ

(l)
p,q(x̄, ȳ) in the same manner as ϕ#

p,q(x̄, ȳ), but with an
additional requirement that the intermediate states p1, . . . , pn−1 must be chosen from the
set {1, . . . , l}. We show by induction on l how to construct a matrix Φ(l) of predicates

ϕ
(l)
p,q(x̄, ȳ) such that each predicate ϕ

(l)
p,q(x̄, ȳ) is an FO(TCk) formula. For l = m, all the

states in Q are allowed as intermediate states, so we notice that Φ(m) = Φ(#).
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For l = 0, no intermediate states are allowed, meaning that the length of Φ-path for
all predicates ϕ

(0)
p,q(x̄, ȳ) is one. So, we let Φ(0) = Φ, which is in FO(TCk).

Let Φ(l) be in FO(TCk). We show how to construct Φ(l+1). Assume that B is a word

model such that B |= ϕ
(l+1)
p,q (ū, ū′), for some ū, ū′ ∈ Bk. Then for some n ≥ 1, there exists

a Φ-path of length n for ϕ
(l+1)
p,q (ū, ū′). If the path is such that pi 6= l+ 1, for all 0 < i < n,

then we have B |= ϕ
(l)
p,q(ū, ū′). In that case, we already have (from the construction of

Φ(l)) an FO(TCk) formula ϕ
(l)
p,q(x̄, ȳ).

If the path is such that pi = l + 1 for some 0 < i < n, then there exist indices i0
and i1, such that 0 < i0 ≤ i1 < n, and i0 is the first and i1 is the last index for which
pi0 = pi1 = l + 1. If i0 6= i1, there may be indices i, such that i0 < i < i1 and pi 6= l + 1.
In that case, on the path from state p to state q, there is (at least) one loop from state
l + 1 back to itself, before the path continues from state l + 1 to state q.

The transitive closure of predicate ϕ
(l)
l+1,l+1(x̄, ȳ) contains all the pairs of tuples which

consist of the first and the last tuple of some path (that possibly contains several loops)
from state l + 1 back to itself. Note that the transitive closure is applied to a predicate
from Φ(l), so the states (other than l + 1) visited on these paths are among the states
1, . . . , l as wanted.

Since the states p1, . . . , pi0−1, pi1+1, . . . , pn−1 are also among 1, . . . , l, it follows from

B |= ϕ
(l+1)
p,q (ū, ū′), that there exist intermediate k-tuples ūi0 , ūi1 ∈ Bk such that: B |=

ϕ
(l)
p,l+1(ū, ūi0) and B |= ϕ

(l)
l+1,q(ūi1 , ū). Now we have that

B |= ϕ
(l)
p,l+1(ū, ūi0) ∧

(
ūi0 = ūi1 ∨ [TCx̄,ȳ ϕ

(l)
l+1,l+1(x̄, ȳ)](ūi0 , ūi1)

)
∧ ϕ(l)

l+1,q(ūi1 , ū
′).

From the construction of Φ(l) we have that the predicates ϕ
(l)
p,l+1(x̄, ȳ), ϕ

(l)
l+1,l+1(x̄, ȳ),

and ϕ
(l)
l+1,q(x̄, ȳ) are FO(TCk) formulas. Then the formula

ϕ(l)
p,q(x̄, ȳ) ∨ ∃z̄∃z̄′

(
ϕ

(l)
p,l+1(x̄, z̄) ∧

(
z̄ = z̄′ ∨ [TCx̄,ȳ ϕ

(l)
l+1,l+1(x̄, ȳ)](z̄, z̄′)

)
∧ ϕ(l)

l+1,q(z̄
′, ȳ)
)

for predicate ϕ
(l+1)
p,q (x̄, ȳ) is in FO(TCk).

(iii) This part can be proved in a similar way as the previous part (ii), but there are
some details we have to consider. We want to take the deterministic transitive closure of
predicate ϕ

(l)
l+1,l+1(x̄, ȳ) to get the needed FO(DTCk) formula for predicate ϕ

(l+1)
p,q (x̄, ȳ). If

there are tuples ūj, ūj+1, ū
′
j+1 ∈ Bk such that ūj+1 6= ū′j+1, but both B |= ϕ

(l)
l+1,l+1(ūj, ūj+1),

and B |= ϕ
(l)
l+1,l+1(ūj, ū

′
j+1) hold, then the transitive closure cannot always be changed into

a deterministic one. If the path for B |= [TCx̄,ȳ ϕ
(l)
l+1,l+1(x̄, ȳ)](ūi0 , ūi1) goes through such

a tuple ūj, the deterministic version of the transitive closure does not contain the pair

(ūi0 , ūi1), and the FO(DTCk) formula for ϕ
(l+1)
p,q (x̄, ȳ) is not true when it should be.
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However, the determinism of Φ ensures that each predicate of the form ϕ
(l)
r,l+1(x̄, ȳ) is

functional, making the situation described above impossible to occur. The functionality
of each ϕ

(l)
r,l+1(x̄, ȳ) can be shown by induction similarly to the proof of part (i). The only

difference is that unlike state q in part (i), state l + 1 does not need to be final. This is

the case since any Φ-path for ϕ
(l)
r,l+1(x̄, ȳ), by definition of Φ(l), cannot contain l+ 1 as an

intermediate state, and thus paths to state l + 1 cannot be extended.

5.2 Formulas Describing Steps of the Automaton

In the following, we use notations min and S for the minimal element of the domain and
the successor relation, respectively (see examples 2.12 and 2.13).

Lemma 5.4. Let k ≥ 1 and L be a language accepted by some D2PAk. Then L is
definable in FO(DTCk).

Proof. Let M be a D2PAk that accepts language L. Without loss of generality, we may
assume that M := (Q,Σ, X, q0, A, I) is such that

(1) accepting states do not have outgoing instructions:
if p, q ∈ Q and 〈p, χ, q〉 ∈ I, then p /∈ A,

(2) the initial state is not accepting: q0 /∈ A, and

(3) computations between dropping and retrieving a pebble are nonempty:
if 〈p, dropi(x), q〉 ∈ I, then 〈q, retrieve(x), r〉 /∈ I.

The first assumption ensures that the automaton halts when it reaches an accepting state.
We make the other two assumptions so that the accepting computations and computations
between dropping and retrieving a pebble are nonempty, and we can use Lemma 5.3.

Additionally, we assume that the automaton M uses n pebbles, xn, . . . , x1 such that
it always places pebbles on the tape in the given order, starting with the pebble xn. Now
the automaton M can be divided to n+ 1 different ’levels’ according to how many of its
pebbles are still available for use (i. e. not already placed on the tape). We view these
levels as automata Mn, . . . ,M0, where each automaton Ml has pebbles xl, . . . , x1. For
the automaton Ml, the pebbles xn, . . . , xl+1 have fixed positions on the tape, and while
Ml can test for their presence, it cannot move them. When the automaton Ml drops the
pebble xl, it can be thought that it then queries the automaton Ml−1 where to go in the
input tape, moves there, and retrieves the pebble xl from a distance. Note that when any
of the pebbles xl−1, . . . , x1 is dropped during a query, we view it as a pebble dropped by
the corresponding automaton, meaning that each pebble xi is thought to be dropped by
the automaton Mi, 0 < i < l.
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We partition the set of states as Q = Qn ∪ · · · ∪Q0, where each Ql is the set of states
where the pebbles available for dropping are exactly xl, . . . , x1. Such partition is possible
since the pebbles are dropped in the fixed order xn, . . . , x1, and the automaton M keeps
them nested. For each 0 ≤ l ≤ n, the automaton Ml can be viewed as the restriction of
the automaton M to the states in Ql. Note that q0 ∈ Qn and A ⊆ Qn, but initial and
accepting states are not specified for automata Ml, when l < n.

We show that computations of the automaton M on input words w ∈ Σ+ can be
expressed as an FO(DTCk) formula such that the formula is satisfied in the word model
for w if and only if M accepts w. We do this inductively by showing how to express the
computations of each Ml, l ≥ 0.

Let Bw be the word model for w. For each automaton Ml, we construct a matrix Φ(l)

of predicates ϕ
(l)
p,q, where p, q ∈ Ql. The predicates ϕ

(l)
p,q correspond to the single steps

of automaton Ml. This means that Bw |= ϕ
(l)#
p,q (ū, ū′) if and only if Ml has a nonempty

computation from configuration [p, ū, σ] to configuration [q, ū′, σ], where σ represents the
pebble stack σ = (xn, vn) . . . (xl+1, vl+1). In the matrix Φ(l), there are additional free
variables xn, . . . , xl+1 for positions vn, . . . , vl+1 of the pebbles that have already been
placed on the tape.

When we have the pebble stack σ = (xn, vn) . . . (xl+1, vl+1), either l = 0 or the pebble
xl exists but is not currently placed on the tape. Let the configurations [p, ū, σ] and
[q, ū′, σ] be such that [p, ū, σ] `Ml,w [q, ū′, σ]. We first handle the cases where l = 0, or
l ≥ 1 but the automaton Ml does not drop the pebble xl between these configurations.
For each of its heads i, the automaton Ml can move left or right, test the symbol of the
current cell, or the presence of any of the pebbles xn, . . . , xl+1 in the current position of
the head i. This means that the relation between the two configurations, the predicate
ϕ

(l)
p,q(ū, ū′), can be expressed by the following first-order logic formulas corresponding to

the instructions of the automaton:

instruction: formula:

〈p, righti, q〉 S(u[i], u′[i]) ∧
∧

h6=i
u[h] = u′[h]

〈p, lefti, q〉 S(u′[i], u[i]) ∧
∧

h6=i
u[h] = u′[h]

〈p, symbi,α, q〉 Pα(u[i]) ∧
∧

h
u[h] = u′[h]

〈p,¬symbi,α, q〉 ¬Pα(u[i]) ∧
∧

h
u[h] = u′[h]

〈p, pebi(xm), q〉 u[i] = xm ∧
∧

h
u[h] = u′[h]

〈p,¬pebi(xm), q〉 ¬u[i] = xm ∧
∧

h
u[h] = u′[h],

where S is the successor relation. Note that if Ml was nondeterministic, ϕ
(l)
p,q(ū, ū′) would

33



be, in general, a disjunction of some of the formulas above.
If l ≥ 1, the automaton Ml may also place the pebble xl on the input tape. In

that case, Ml drops the pebble xl in state p, simulates the automaton Ml−1, retrieves
the pebble xl, and then changes to state q. Then the existence of a computation from
configuration [p, ū, σ] to [q, ū′, σ] requires that there are instructions 〈p, dropi(xl), p

′〉 and
〈q′, retrieve(xl), q〉, such thatMl−1 has a nonempty computation from configuration [p′, ū, σ′]
to [q′, ū′, σ′], where σ′ = σ(xl, u[i]). The automaton Ml has such a computation from
[p, ū, σ] to [q, ū′, σ], if and only if

Bw |=
∨
q′

ϕ
(l−1)#
p′,q′ (ū, ū′), (5.5)

where the disjunction is taken over all q′ for which there exists instruction 〈q′, retrieve(xl), q〉,
and the free variable xl is replaced with u[i], i.e the position at which Ml placed the

pebble xl in state p. Thus the predicate ϕ
(l)
p,q(ū, ū′) can be expressed by the formula∨

q′ ϕ
(l−1)#
p′,q′ (ū, ū′). Note that due to the determinism of M , states q′ are final in Φ(l−1)#:

since q /∈ Ql−1 and every q′ is such that there is an instruction 〈q′, retrieve(xl), q〉, the
automaton Ml−1 does not have outgoing instructions from state q′.

All the other predicates ϕ
(l)
p,q do not correspond to any steps of Ml, so they are defined

to be false. Now we have constructed a step matrix Φ(l). By the induction hypothesis,
the matrix Φ(l−1) is deterministic and in FO(DTCk), so by parts (i) and (iii) of Lemma
5.3, the matrix Φ(l−1)# is semi-deterministic and in FO(DTCk). This means that the

predicates ϕ
(l−1)#
p′,q′ are FO(DTCk) formulas, and functional and exclusive for states q′

that are final in Φ(l−1)#. If tuples ū, ū′, and state p′ are such that 5.5 holds, the tuple ū′ is
unique, and there is a unique state q′ such that Bw |= ϕ

(l−1)#
p′,q′ (ū, ū′). Thus for given tuple

ū and state p′, 5.5 holds for at most one of the disjuncts, and the predicate ϕ
(l)
p,q(ū, ū′)

expressed by the disjunction is functional and exclusive.
Since the automaton M is deterministic, so is Ml. From the determinism of Ml, and

if l ≥ 1, from the semi-determinism of Φ(l−1)#, it follows that Φ(l) is deterministic. Since
Φ(l) is also in FO(DTCk), from Lemma 5.3 (iii), we have that Φ(l)# is in FO(DTCk).

For all 0 ≤ l ≤ n, the matrix Φ(l)# contains the formulas that describe the possible
computations of the automaton Ml. Since the computations of Mn are the same as M ’s,
for every w ∈ Σ+, we have

Bw |=
∨
q∈A

ϕ(n)#
q0,q

(0̄, 0̄),

if and only if the automaton M has a computation on w starting from the initial state q0

with all the heads in the position of the first cell on the tape, and ending in some accepting
state q, again with all the heads in the position of the first cell (i.e. the automaton M
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accepts w). Recall that the element 0 ∈ Dom(Bw) corresponds to the position of the first
cell on the input tape, the cell which contains the symbol .. In general, the minimal
element in a word model is not 0. If min denotes the minimal element, the k-tuple 0̄ in
the word model Bw corresponds to the k-tuple min in an arbitrary word model for w.
Since min is first-order definable, we can substitute min for 0̄ in the formula above, and
obtain a sentence2 in FO(DTCk) such that it is satisfied in any word model for w if and
only if the automaton M accepts w.

Lemma 5.6. Let k ≥ 1 and L be a language accepted by some N2PAk. Then L is
definable in FO(posTCk).

Proof. We notice that in the proof of Lemma 5.4, the determinism of M is only needed
for applying parts (i) and (iii) of Lemma 5.3. By omitting the assumption that M is
deterministic, we can use part (ii) of Lemma 5.3 to make the proof work also in the
nondeterministic case – we only have to ensure that the formulas that we obtain are in
FO(posTCk). In the proof of Lemma 5.4, negation is only applied to atomic formulas
for the negative tests of the automaton, i.e. to check that there is no specific pebble
or symbol in the cell. Additionally, all the first-order definitions needed in the proof,
e.g. for the relation S and the minimal element min, can be done with formulas where
negation appears only in front of atomic formulas. As we construct the formulas in the
proof of Lemma 5.3 (ii) without adding negations, the formulas that we obtain are in
FO(posTCk).

2To obtain the sentence whose models are the word models for all the words w ∈M(L), we also need
to take a conjunction with the sentence ϕW that says that the model is a word model.
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Chapter 6

Transitive Closure Logic and
Automata: the Deterministic and
the Nondeterministic Case

In this chapter, we combine the lemmas from the previous two chapters to get the main
theorem: deterministic two-way k-head automata with nested pebbles capture first-order
logic with k-ary deterministic transitive closure. We also mention a corollary of the
theorem and discuss the nondeterministic case where the restriction to FO(posTCk) is
needed. The case of singlehead automata and unary transitive closure has its own section.

6.1 Results for FO(DTCk) and FO(posTCk)

By combining Lemmas 4.1 & 5.4, and Lemmas 4.2 & 5.6 from the previous two chap-
ters, we obtain the following theorems concerning the relationship between the transitive
closure logics and the multihead automata with nested pebbles:

Theorem 6.1. Let k ≥ 1 and L be a language. Then L is definable in FO(DTCk) if
and only if there exists a D2PAk that accepts L.

Theorem 6.2. Let k ≥ 1 and L be a language. Then L is definable in FO(posTCk) if
and only if there exists an N2PAk that accepts L.

Recall that in the proof of Lemma 4.1, the deterministic automata are constructed to
halt on every input. As observed in [5], then from Theorem 6.1 it follows that:

Corollary 6.3. Let k ≥ 1, and let M be a D2PAk. Then there exists another D2PAk

M ′ such that L(M ′) = L(M) and M ′ always halts.
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Since the class of languages definable in FO(DTCk) is closed under complement and
union, the same holds for the class of languages accepted by automata D2PAk. Note
that closure under complement and union also follow directly from Corollary 6.3. In the
nondeterministic case, the union closure property can similarly be transferred from logic
to automata. For closure under complement, this cannot be done as the logic we consider
in the nondeterministic case is FO(posTCk).

If the class of languages accepted by nondeterministic automata N2PAk was closed
under complement, there would exist corresponding automata also for subformulas of the
form ¬ψ1, where ψ1 ∈ FO(TCk) (cf. the induction proof for Lemma 4.2). This would
mean that there exists an automaton for any language definable in FO(TCk), and the
restriction to FO(posTCk) is not necessary in Theorem 6.2. But as it is not known
whether the class is closed under complement in the case of nondeterministic automata
N2PAk, we do not know if the restriction to FO(posTCk) can be removed from the
theorem.

On the other hand, it is known (see e.g. [4]) that on ordered structures:

FO(posTC) ≡ FO(TC).

Each formula ϕ ∈ FO(TCk) is clearly in FO(TC), but since the known translation to
FO(posTC) is such that the equivalent translated formula has occurrences of higher-arity
transitive closure than the original formula, the translated formula is not in FO(posTCk)
anymore.

This is not the case for FO(DTCk). On finite structures, logics FO(posDTC) and
FO(DTC) are known to be expressively equivalent (see e.g. [4]), and since the translation
is such that it preserves the arities of the transitive closures appearing in the formula, we
also know that:

FO(posDTCk) ≡ FO(DTCk)

on finite structures. This is also in line with the fact that in the proof of Lemma 5.4, for-
mulas for deterministic automata could be defined such that they are in FO(posDTCk).

6.2 Singlehead Automata

In the case of the singlehead automata, some of the considerations in the previous section
become irrelevant. As mentioned earlier at the end of Chapter 2, the languages definable
in FO(DTC1) over strings are exactly the regular languages, and this is also the case
for the logic FO(TC1). Knowing that, we can show that for singlehead pebble automata
and first-order logic with transitive closure of arity one, there is no difference in the
deterministic and nondeterministic case in the sense of the following theorem:
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Theorem 6.4. For a language L, the following are equivalent:

(1) L is regular

(2) L is definable in FO(DTC1)

(3) L is definable in FO(TC1)

(4) L is accepted by a D2PA1

(5) L is accepted by an N2PA1

Proof. The equivalence holds by the following chain of implications:

(1) =⇒ (2) =⇒ (4) =⇒ (5) =⇒ (3) =⇒ (1).

The implications (1) =⇒ (2) and (3) =⇒ (1) follow from the fact mentioned at the
beginning of this section, see [1] for the proof. From Lemmas 4.1 and 5.6, we obtain that
(2) =⇒ (4) and (5) =⇒ (3), respectively. The implication (4) =⇒ (5) is clear, since every
deterministic automaton is also a nondeterministic one.

Since the regular languages can also be characterized as the languages accepted by
deterministic one-way singlehead automata without any pebbles, we also see that in the
case of singlehead automata on strings, neither the nested pebbles nor the ability to move
both ways increase the expressive power of the automata.

Theorem 6.4 cannot be extended to multiple heads and higher arities by using a similar
proof. As observed in [1] (in the case of automata without pebbles), the proof of the
theorem relies on the fact that the Büchi-Elgot-Trakhtenbrot theorem (see e.g. Theorem
6.2.3 in [4]) can be used to show that the implication (3) =⇒ (1) holds. The Büchi-
Elgot-Trakhtenbrot theorem states that language L is regular if and only if it is definable
in monadic second-order logic MSO. Transitive closure can be expressed in MSO: let
ϕ = [TCx,y ψ]st be in FO(TC1), and define an MSO formula1

θ(s) :=A(s) ∧ ∀x∀y((A(x) ∧ ψ(x, y))→ A(y))∧
(∀B(B(s)) ∧ (∀x∀y((B(x) ∧ ψ(x, y))→ B(y))→
∀z(A(z)→ B(z))).

As the formula θ(s) says that the set A is the minimal set that contains s and is closed
under ψ, the MSO formula ϕ′ := ∃A(θ(s) ∧ A(t)) is as wanted. Now it can be seen
that to express k-ary transitive closure in a similar manner, one would need to quantify
over k-ary relations, resulting in that the formula ϕ′ would not be in MSO. Without the
restriction of second-order quantification to quantification over sets, the expressive power
of second-order logic SO corresponds to the polynomial hierarchy PH.

1Here all the subformulas of the form ¬ϕ ∨ ψ have been expressed as ϕ→ ψ for the sake of clarity.
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Chapter 7

Related Results and Questions

In previous chapters, we have considered some results concerning the fragments FO(DTCk)
and FO(posTCk) of transitive closure logics. Since a correspondence between k-head au-
tomata and k-ary transitive closure logics has been established, it can be used for trans-
ferring results between automata theory and finite model theory. For example, there exist
model theoretical tools such as Ehrenfeucht-Fräıssé games for transitive closure logics (see
[3] and Chapter 8 of [4]). Such games for transitive closure logics are simpler for formulas
with lower arity transitive closures, so properties of simpler automata (with a small num-
ber of heads) can be expressed as properties of these simpler formulas, and then be studied
with these games. Naturally, the same applies also vice versa: the fragments FO(DTCk)
and FO(posTCk) can be studied by investigating properties of the corresponding k-head
automata.

Both multihead automata and transitive closure logics have connections to the space
complexity classes DSpace(log n) and NSpace(log n), which are, respectively, the classes
of languages decidable by deterministic and nondeterministic Turing machines using a
logarithmic amount of memory space. In this chapter, we use the usual denotations
L = DSpace(log n) and NL = NSpace(log n) for these two complexity classes.

One of the main results in the field of descriptive complexity is that the complexity
classes L and NL are characterized by logics FO(DTC) and FO(TC), respectively [5,
10]. On the other hand, these classes can also be characterized by two-way multihead
automata: if any finite number of heads is allowed, the languages accepted by deterministic
two-way multihead automata are exactly the languages in the complexity class L. The
analogous characterization holds for the nondeterministic two-way multihead automata
and the class NL. (See e.g. [1, 5, 9].) In the light of Lemmas 5.4 and 5.6, we can see that
in the latter two characterizations, it does not make any difference whether the automata
have nested pebbles or not.

It is known that the class NL is closed under complement, so the class of languages

39



accepted by some N2PAk for any k ≥ 1 (i.e. any finite number of heads is allowed) is
also closed under complement. It is not known whether this is the case for the class of
languages accepted by automata N2PAk for a fixed k (see also Section 6.1).

It is an open problem whether these two complexity classes are the same, i.e. whether
L = NL. By the correspondences between the space complexity classes and transitive
closure logics discussed above, we have the following well-known result (see e.g. [4]):

Theorem 7.1. L = NL if and only if FO(DTC) ≡ FO(TC) on ordered structures.

For the two-way multihead automata, it is also known (see [1, 7]) that:

Theorem 7.2. L = NL if and only if every language accepted by some nondeterministic
two-way three-head finite automaton is accepted by some deterministic two-way multi-head
finite automaton.

In fact, the above result has been improved in [13] by showing that the relation remains
valid even for nondeterministic one-way two-head automata:

Theorem 7.3. L = NL if and only if every language accepted by some nondeterministic
one-way two-head finite automaton is accepted by some deterministic two-way multi-head
finite automaton.

Every formula in FO(posTC2) is clearly in FO(TC). When we combine this observa-
tion with Theorem 7.1, we see that L = NL would imply that FO(posTC2) ≤ FO(DTC)
on ordered structures. As mentioned already in Section 3.1, the languages accepted by
deterministic two-way multihead automata are exactly the languages definable in logic
FO(DTC). Every language accepted by some nondeterministic one-way two-head au-
tomaton can also be accepted by some N2PA2. From Lemma 5.6, we know that every
language accepted by some N2PA2 is definable in FO(posTC2). Thus we obtain the
following result (cf. [1]):

Theorem 7.4. L = NL if and only if FO(posTC2) ≤ FO(DTC) on ordered structures.

We see that if L 6= NL, then there exists a language that is definable in FO(posTC2)
but not in FO(DTCk) for any k ≥ 1. Since FO(DTCk) ≤ FO(posTCk) for all k ≥ 1,
this would imply that, on ordered structures, FO(DTCk) < FO(posTCk) for all k ≥ 2.
In other words, if L 6= NL, starting already from the binary case k = 2, the (positive)
nondeterministic k-ary transitive closure has more expressive power on ordered structures
than the deterministic k-ary transitive closure. Recall that FO(DTC1) ≡ FO(posTC1)
on strings.

In addition to comparing the expressive power of deterministic and nondeterministic
transitive closure, we can also compare the expressivity of these k-ary fragments in terms
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of k. It has been shown in [6] that the arity hierarchies of FO(DTC) and FO(TC) are
strict on the class of finite graphs i.e.

FO(DTCk) < FO(DTCk+1) and FO(TCk) < FO(TCk+1),

for all k ≥ 1. On ordered structures, this kind of comparison has turned out to be
difficult. As mentioned briefly at the end of Section 2.2, it is still open whether the arity
hierarchies of FO(DTC) and FO(TC) are strict on ordered structures. As seen in the
aforementioned section, in the case k = 1 this holds, so the first steps of the hierarchies
are strict. Naturally, the corresponding problem for two-way multihead automata with
nested pebbles is also open: we do not know if there exist strict hierarchies in L and NL
concerning the number of the heads.

41



Bibliography

[1] Yaniv Bargury and Johann Makowsky. The expressive power of transitive closure and
2-way multihead automata. In Egon Börger, Gerhard Jäger, Hans Kleine Büning, and
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