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1. Introduction

In supervised machine learning, it is usually assumed that data is sampled independently
from one distribution. In other words, the feature values of instances in learning and
test sets are assumed to be independent and identically distributed (i.i.d.). Theory of
regression and classification is well developed for i.i.d. data [76]. The topic of this research
is supervised machine learning on data which contains hierarchical dependencies. These
kind of statistical structures emerge in biological comparative data which contains features
of different species or other mutually related taxonomical units. We propose new ways to
conduct regression and classification on hierarchically dependent comparative data, and
apply them to mammal biology and ecology.

Biological species are related through their evolutionary history, so their features
are correlated through evolution [18]. The hierarchical dependencies of traits can also
be called phylogenetic dependencies. The ancestry relationships of some set of species
can be described with phylogenetic trees. Various approaches to reconstructing ancestry
relationships have been proposed since Darwin [60]. Phylogenies are constructed based on
phenotypic or genetic data, using probabilistic or parsimony inference [54]. In maximum
likelihood approach, one constructs trees that maximise the likelihood of some statisti-
cal model. Maximum parsimony refers to building trees that minimise the evolutionary
changes in the branches of the tree [54]. Several phylogenetic trees can be combined to
form a supertree of a large set of species, like supertree of 5020 mammals [6, 27]. As the
trees are estimates of evolutionary history, they contain uncertainty about their topology
and branch lengths [22].

Procedures that take into account phylogenetic dependencies are called phylogenetic
comparative methods. These methods answer questions of evolutionary associations or
strength of phylogenetic dependencies in traits of species. Compared to ordinary meth-
ods that ignore phylogeny, phylogenetic comparative methods reduce model variance, and
thus produce more reliable models on phylogenetically dependent data [69]. Properties of
different phylogenetic methods are often proved with simulation studies, because formal
proofs of asymptotic model properties with phylogenetic data include additional com-
plexity compared to i.i.d. data [4, 44]. Evolutionary models like Brownian motion [18] or
Ornstein-Uhlenbeck models [49, 8] provide mappings from phylogenetic trees to instance-
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3 Chapter 1. Introduction

instance covariances in features. Measures of phylogenetic signal, that is dependence,
are often closely related to evolutionary models. These include branch length transfor-
mations on phylogenies [54, 25], Ornstein-Uhlenbeck parameters [8] and D-statistic [28].
Regression methods like independent contrasts [18], phylogenetic generalised least squares
[34] and phylogenetic eigenvector regression [15] are often variants of linear regression.
Other regression methods include phylogenetic logistic regression [44] and phylogeneti-
cally weighted regression [12]. A phylogenetic variant of principal component analysis
can be used as part of regression models [62].

Westoby [78] criticises phylogenetic methods for attributing all trait similarity be-
tween related species to phylogeny, when some of that similarity could be attributed to
shared ecology. Traits in different species are correlated with both phylogeny and ecology,
as relative species tend to inhabit similar ecological niches. Principle of phylogenetic niche
conservatism states that the traits of an ancestor make it fit for its specific habitat, and
thus its descendants will mostly thrive in similar habitats. It is not plausible to assume
that trait similarity between related species is due to inertia in evolutionary timescales of
millions of years, because of continuous selection pressure affects the properties of species.

Most animals cut and chew food with their teeth, so teeth function as an interface
for energy intake. Efficient nutrition acquisition is an integral part of survival and fitness,
so selection pressure demands that teeth work efficiently. The plant-based diet of herbivo-
rous mammals places special demands on the functionality and durability of teeth [48, 30].
Availability of plant material for the consumption of herbivores is partly determined by
climate, which connects the dental traits of herbivorous animals to climatic features. The
closeness of form and function in teeth and feeding being a direct interaction with envi-
ronment makes dental traits ecomorphological features [17]. The functional connection
of herbivore teeth with climate suggests that dental traits can be used as proxies for
estimating climate conditions [17].

The relationships of animal community features and environmental conditions have
been studied in ecometric literature [1, 17, 16, 23, 30, 48, 80]. Mammal dental traits
are connected to the dietary environment of the species. In herbivorous mammals, high
crowned teeth are an evolutionary response to diet that demands durability and tolerance
for wear [16]. Average crown height in communities tends to increase with decreasing
annual precipitation [16] or net primary productivity [48]. Cutting capacity is seen as
a response to annual primary productivity, so the relationship of cutting features and
bioclimatic variables would estimate primary productivity [23]. Of environmental features
in general, dental traits should have the clearest signal to those that describe the diet of
herbivorous mammals in some way.

In addition to teeth, environment can affect mammalian body size. Aava [1] pro-
posed that mammalian body size should grow with increasing primary productivity, and
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showed that this relationship holds in Australian communities. Hypothesis of the study
was that energy availability limits the size of animals in a given environment. As pri-
mary productivity measures the plant matter that is available for herbivores to consume,
the body mass of herbivorous mammals should increase with primary productivity. The
means of body mass distributions were found to increase, and standard deviations to
decrease with primary productivity in Australian communities.

Primary productivity tends to decrease with decreasing temperature, and climate
in extreme latitudes is cold. Bergmann’s law [10] is a biophysical hypothesis on the
relationship of temperature and body size. Anatomy of an animal determines the ways of
heat exchange with the environment. Because the ratio of body volume to surface area
increases with increasing size, larger animals should be more efficient in conserving heat
and surviving in cold climates. Due to anatomical differences, this relationship should be
evident in anatomically similar animals, that is individuals of the same species, or closely
related species. Clauss et al. [10] found that there is a positive correlation between
mammalian body mass and mean or maximum latitude, when phylogeny is taken into
account.

Ecometric approach has been described as taxon-free. It is based on the idea that
communities in geographical locations form based on environmental conditions [17]. An-
imals change location and spread to new ones practically instantly, so communities are
formed so fast that community structures do not show evolutionary inertia. In this analy-
sis, the relationship of dental traits and environment is studied in mammal species rather
than communities. Analysing this relationship on species level makes phylogeny relevant
as both dental traits and environmental features can be phylogenetically dependent.

Freckleton [24] recommends against reporting results from both phylogenetic and
phylogenetically independent models, because the two types of models are based on dif-
ferent assumptions about the data and model residuals. In this study we are interested
in the properties of the models and effects of phylogeny, so we report both if there is an
interesting difference between them. The nature of difference between phylogenetic and
ordinary models can give insights into the structure of the data and provide a deeper
understanding of the situation than observing only one model.

In this study, we develop evaluation procedures and machine learning methods that
take into account phylogenetic information. For evaluation of phylogenetic regression
models, error metrics exist, so we only consider cross-validation. For classification tasks,
we propose a phylogenetic evaluation framework based on effective sample size. As new
methods are concerned, we show how to reduce regularised phylogenetic generalised least
squares to ordinary regularised linear regression. We touch briefly on principal component
regression and regression trees. Phylogenetic versions of k-nearest neighbour regression
and classification are proposed, as well as phylogenetic perceptron training and neural
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Figure 1.1: Scheme of the dataset. Traits X are input variables, and environments y output variables.
Each row of input and output features are measurements or estimates of traits and environments of
different animal species. As biological species are related through evolution, a phylogeny connects the
species causing hierarchical statistical dependencies.

network regression. We apply some of these methods to real data on mammal dental traits
and environments. General scheme of this comparative dataset is presented in Figure 1.1.
We also test k-nearest neighbour regression and perceptron training on synthetic data.



2. Related Work

Assumptions of independence and identical distribution of instances can be violated in
several ways. In this section we go through different settings of non-i.i.d. data in predictive
modelling, and theory and methods associated with them. The key topics are population
drift, domain adaptation, concept drift, temporal and spatial autocorrelation, transfer
learning and phylogenetic comparative methods.

Hand [35] analysed what kind of effects method complexity and sampling of training
data have on classifier performance. In many practical situations, if a model is trained
with one data and applied to some future data, these two sets of data are drawn from
different distributions. Population drift means that even if the training instances were
drawn independently from identical distributions, the data that the model should predict
is differently distributed. Changing environment can result to population drift.

A machine learning problem closely related to population drift is domain adaptation.
If training and testing data are drawn from different distributions, the model needs to
adapt for this change. A data environment which provides labelled training data is called
source domain. Target domain is the environment which provides possibly unlabelled
testing data [45]. Formally, a domain D is a pair of feature space X of all possible
values of observation x and marginal probability distribution P (x), D = {X , P (x)} [56].
Training data can be combined from several separate source domains, and target domain
can be modelled as a combination of source domains [41].

Concept drift refers to changes in conditional distribution p(y|x) of the output vari-
able y and input variables x [32]. In a concept drift situation, instances in a time series
are not identically distributed. A change from one distribution to another can happen
abruptly or incrementally. The change can also be gradual so that both the original and
the new distribution are present in some time interval, or the original distribution can
recur after a time.

Machine learning models that operate in changing environments need to detect
concept drift and differentiate between concept drift and noise. They are also required
to adapt to new distributions. These models are structured as online learning models,
which produce predictions and make updates as new instances arrive. Concept drift sets
demands for memory management, change detection, learning and loss estimation [32].
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7 Chapter 2. Related Work

Online model operation in a changing environment requires receiving new, and for-
getting old data. Data can function as a short term memory of the observed phenomenon,
whereas model provides a long term memory. One way to manage data storage in a chang-
ing environment is to store a finite number of recent instances. The amount of stored
instances can range from one to several, using a sliding window in time. Old data can be
omitted from the memory, or weighted with a decreasing function of time [32].

A retraining method builds a new model if a change occurs. Another approach is
incremental learning, in which model is updated in case of change. Approach to adaptation
can be blind or informed. Blind adaptation methods do not monitor change, whereas
informed adaptation methods include diagnostics about concept drift. A model can be
replaced or updated globally or locally [32].

Data streams from environmental or other sensors often contain temporal depen-
dence [79]. Time series data with temporal autocorrelation is not independent, and pos-
sibly not even identically distributed at different moments in time. Žliobaitė et al. [79]
presented two predictive modelling approaches for time series data, temporal correction
classifier and temporally augmented classifier. The former assumes first order temporal
dependence, that is dependence between observation yt and previous observation yt−1.
The latter is a heuristic approach to include higher order temporal dependency in predic-
tive models. Temporally augmented classifier is a model which at time t predicts label
yt using input features xt augmented with previous labels yt−1, yt−2..., yt−l for some l:
ŷt = f(xt, yt−1, ..., yt−l).

For i.i.d. data, random classifier and majority class classifier are baseline methods
for performance evaluation. Random classifier is a baseline for situation where information
about data distribution is not available. The model predicts a class uniformly at random.
If prior probabilities of the classes are available, it is possible to use majority classifier,
which outputs the class with the maximum prior probability as prediction. If the data
shows temporal autocorrelation, a temporally local persistent classifier performs better
than the majority class classifier [79]. Persistent classifier outputs the previously observed
class yt−1 as prediction for yt. In general, properties of the baseline classifiers depend on
the properties of the data stream.

Evaluation statistics developed for i.i.d. data can give misleading results if tempo-
ral autocorrelation is present. Kappa statistic for classification of imbalanced data can
overestimate accuracy for temporally autocorrelated data streams. Žliobaitė et al. [79]
formulated evaluation metrics suitable for predictive models on these data streams. In
addition to evaluation statistics, temporal autocorrelation can also break assumptions of
concept drift detection algorithms [79].

Like domain adaptation, transfer learning uses information from source domain DS
to model target domain DT . Need for transfer learning can arise in case if data distribution
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changes so that training data and test data are not identically distributed, like in concept
drift. However, transfer learning is its own subfield of machine learning, where learning
of new tasks is augmented with information from previous tasks. Knowledge transfer can
have positive or negative effect on learning of the target task, and naturally transfer with
negative results should be avoided [56]. An example of transfer learning in humans is
knowledge transform across different languages: knowing French makes learning Spanish
easier, because knowledge of French grammar and vocabulary can be applied for Spanish
with some modifications.

Learning task T is pair of output label space Y and conditional probability distri-
bution P (y|x), T = {Y , P (y|x)}. In transfer learning, source and target domains can be
different, or learning tasks in the domains can be different: DS 6= DT or TS 6= TT [56]. If
some relationship connects source and target feature spaces XS and XT , the domains DS
and DT are related.

Transfer learning can be categorised to inductive, transductive and unsupervised
learning. In inductive transfer learning, source and target tasks are different. In this case,
some labelled data needs to be available in the target domain. In transductive transfer
learning, source and target domains are different, but source and target tasks are the
same. It is assumed that labelled data is available in the source domain, but not in target
domain. Third type of transfer learning, that is unsupervised transfer learning, concerns
situations where label spaces YS and YT are not observable [56]. Transferred knowledge
can concern instances, feature representation, parameters or relational knowledge. Each
of these types of transfer takes different forms in inductive, transductive and unsupervised
transfer learning.

Geospatial data and spatial patterns are one area where assumption of independent
samples is broken. Gradual variation in quantities (e.g. temperature) and geograph-
ical clustering of similar things (e.g. people with similar income level) causes spatial
autocorrelation between samples [72]. The strength of this autocorrelation depends on
spatial relation of the instances. The spatial relation of two geographic units can be their
distance or some other connection, and this information is represented in an instance-
instance contiguity matrix [72]. Contiguity matrices are analogous to phylogenies and
phylogenetic covariance matrices. Main tasks in analysis of spatial data are outlier de-
tection, co-location patterns, spatial regression and classification, spatial clustering and
hotspot analysis [72].

So far we have considered machine learning in situations where i.i.d. assumptions
break in some other way than with a shared phylogeny. Phylogenetic comparative methods
can be divided into analysis of trait evolution and analysis of lineage diversification [59].
The subfield most relevant to this study is analysis of trait evolution. These methods
can concern evolutionary correlations and models of trait evolution. Trait correlations
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are analysed with different kinds of regression methods. Evolutionary models describe
evolution of measured traits, and they can be used to map phylogenies to instance-instance
covariances.

Phylogenetically independent contrasts (IC) [18] is a linear regression method for
continuous traits. The method assumes a Brownian motion model of trait evolution,
and it outputs a univariate linear regression slope. Phylogenetic generalised least squares
(PGLS) [34] is a more general linear regression method, which uses the generalised least
squares (GLS) framework. Model residuals are assumed to be normally distributed with
phylogenetic instance-instance covariance. The difference to ordinary least squares (OLS)
is that in OLS the residuals are independent. IC regression estimate is equivalent to PGLS
slope with Brownian covariance, so independent contrasts are a special case of PGLS [7].
As with OLS, output feature of PGLS is assumed to be continuous, but input features
can be continuous or discrete.

PGLS-models can in include other evolutionary models than Brownian motion.
Branch length transformations like Pagel’s λ [54, 25] are often applied evolutionary mod-
els. If the used mapping from phylogeny to covariance is a complex one, the resulting
regression can look very different from the simplest PGLS-models. Ornstein-Uhlenbeck
models are a family of evolutionary models which contain both random walk and adap-
tation components [36]. These evolutionary models and regressions built with them vary
most on how adaptation is modelled. To give an example, regression with adaptation to
randomly changing environment is presented in [37]. If parameters of evolutionary models
are estimated with regression coefficients, closed form generalised least squares estimator
does not provide the correct solution. Instead parameters are estimated with maximum
multivariate Gaussian likelihood, like in [25].

Phylogenetically weighted regression (PWR) [12] is a data exploration framework
that allows evolutionary correlations to vary in different parts of the studied phylogeny.
Instead of a global regression model produced by PGLS, PWR builds a separate model
for each studied species. The method is a weighted least squares regression, where the
weights are phylogenetic distances from the studied species, or some other mappings of
said distances.

Rolshausen et al. [70] explored temporal properties of trait diversification in a
phylogeny with a quantity called trait space saturation. This analysis is based on trait
distances and phylogenetic distances, standardised to interval [0, 1] for all pairs of species
in a phylogeny. If fraction a of the relative trait distances is filled in relative time in-
terval θa, then time θa corresponds to trait space saturation level a. Brownian motion,
Ornstein-Uhlenbeck processes and early burst processes all have their characteristic trait
space saturation behaviour, so this analysis can measure phylogenetic signal and identify
an evolutionary process behind a measured trait. Evolution of continuous traits can be
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studied with this analysis without maximum likelihood or other statistical fitting method-
ology.

Frequentist methods do not usually incorporate uncertainty in phylogeny or other
measurements and estimates. Different sources of uncertainty can be included with
Bayesian statistics. A Bayesian formulation of PGLS is presented by de Villemereuil
et al. [13]. The difference between the method of de Villemereuil et al. and Bayesian or-
dinary least squares regression is that variance-covariance matrix in the model likelihood
is not proportional to identity matrix, but phylogenetic variance-covariance matrix. The
prior distribution for the covariance matrix is defined using existing Bayesian methods
for phylogeny construction. A more complex Bayesian phylogenetic regression with less
restrictive assumptions is presented in [29].

Phylogenetic factor analysis combines phylogenetic information with Bayesian factor
analysis to reduce data dimensionality [75]. The method of Tolkoff et al. [75] assumes
that measured traits arise from a smaller number of factors, which are traits themselves.
The factors develop as Brownian motion stochastic processes [18], but the method can be
extended to other evolutionary models like Orntein-Uhlenbeck processes [8].

Variation in a continuous trait can be divided to phylogenetic and specific compo-
nent with phylogenetic eigenvector regression (PVR) [15]. In this method, a phylogenetic
distances of the studied species are collected to a distance matrix, and principal coordi-
nate analysis is performed on this matrix. This results in phylogenetic eigenvectors and
eigenvalues that serve as input features in a linear regression. The output feature of this
regression is an observed continuous trait. Model predictions of PVR are the phylogenetic
component of trait variation, and model residuals are the specific component.

Ives and Garland mention three different methods for phylogenetic regression on
binary output features in [43]: logistic regression of the same authors, frequentist gener-
alised linear mixed models and Bayesian generalised linear mixed models. Without input
features, these methods serve as measurement procedures for phylogenetic signal [43]. In-
dications of phylogenetic signal are often connected to particular models of trait evolution
explicitly or implicitly. Models for evolution of continuous traits are not appropriate for
binary traits, so binary features require both separate models and phylogenetic signal
measurement procedures. In addition to phylogenetic signal statistics mentioned by Ives
and Garland, D-statistic is another measure of phylogenetic signal for binary traits [28].

Pagel [53] presented an evolutionary model for binary traits based on a continuous
time Markov process. Based on this model, Pagel and Meade [55] studied correlated
evolution of binary traits with Markov Chain Monte Carlo (MCMC) inference. In addition
to Markov processes, discrete traits can be modelled with underlying continuous traits
and thresholds. Felsenstein [19] presents a model of binary traits based on an underlying
Brownian trait. If the continuous trait has a value greater than a threshold, the binary
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feature is assigned value 1, and 0 otherwise. In this model, likelihood of observed data
is based on the multivariate normal distribution, and it can be estimated with MCMC
techniques. This method can estimate phylogenetically informed correlations between
binary traits. In [20], Felsenstein expanded the method to include both discrete and
continuous traits, and proposed a different MCMC sampling procedure than in the earlier
article.

Ives and Garland [44] developed a phylogenetic logistic regression method and phy-
logenetic signal measure for binary traits. The method is based on Markov process model
with two states and two transition probabilities. The covariance structure that this model
produces for the binary trait resembles that of Ornstein-Uhlenbeck covariances for con-
tinuous traits [36]. When used with one or more input features, training phylogenetic
logistic regression consists of estimating an overall state transition rate which measures
phylogenetic signal, and regression coefficients for input features. The parameters are
estimated by maximising (and penalising) a quasi-likelihood expression which resembles
multivariate Gaussian likelihood [44].

Separate methods have been developed for modelling the evolution of multiple traits
or multiple output features. In this area of study, covariation of traits and high dimension-
ality result in additional issues compared to univariate phylogenetic comparative methods.
Adams and Collyer go through different approaches for multivariate phylogenetic com-
parative methods in [2]. These methods mainly concern fitting evolutionary models to
multivariate data.

For estimation of evolutionary model parameters with multivariate data, one can
compute model log-likelihoods and conduct tests with them like Revell and Harmon did
with continuous traits in [65]. Different surrogate log-likelihoods have been proposed for
situations in which direct estimation of model log-likelihood is not feasible. An example of
these methods is SURFACE-algorithm, which fits univariate evolutionary models to dif-
ferent dimensions of the data, and summarises them to select the best fitting evolutionary
model [42].

Phylogenetic principal component analysis (PCA) [62] can be used to reduce dimen-
sionality of a phylogenetic dataset. The difference between this and ordinary principal
component analysis is that the utilised version of feature-feature covariance matrix con-
tains phylogenetic information. This matrix is called evolutionary variance-covariance
matrix, and it is employed also by other methods like phylogenetic partial least squares
[3]. Both phylogenetic PCA and partial least squares were presented using Brownian
motion evolutionary model in [62] and [3], but they can be used with other evolutionary
models.

Canonical correlation analysis is a dimensionality reduction method for multiple
output regression. Its goal is to find pairs of transformed input and output features
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with maximum pairwise correlations [26]. Phylogenetic canonical correlation analysis
[66] is a phylogenetic version of this method. It was also introduced with Brownian
motion evolutionary model, but is not limited to it. Combining Pagel’s λ-transformation
[54, 25] with canonical correlation analysis lead to a multivariate generalisation of λ-
transformation [66].

Clavel et al. [11] presented a penalised likelihood framework for estimating param-
eters of multivariate evolutionary models. In univariate setting, parameter estimation
and model comparisons of evolutionary models is traditionally done with Gaussian max-
imum likelihood estimation. If the number of traits approaches or exceeds the number
of instances, maximum likelihood approach no longer works. Clavel et al. formulate
regularised matrix normal objectives for evolutionary variance-covariance matrices with
different kinds of ridge- and LASSO-regularisations. Additionally, they present a leave-
one-out cross-validation procedure based on matrix normal likelihood [11].

In addition to the assumptions of statistical models, dependencies in data affect
error estimation and model selection. Roberts et al. [67] considered cross-validation with
non-i.i.d. data in ecological context. Standard validation procedures like k-fold cross-
validation assume that the data is independent, which is not the case with phylogenetic
data, spatially autocorrelated data or time series data. If validation data is dependent
on training data, models appear more robust than they are. Roberts et al. established
that strategic, non-random data splits of dependent data to training and validation sets
resulted in validation errors that were closer to true error than with random splits. When
data had spatial, temporal or phylogenetic dependence, random splits underestimated
model error. Non-random splits were done by forming data blocks using the dependency
structures, which are phylogenies in the case of comparative species data.



3. Problem Formulation

In this chapter we define supervised machine learning, formulate the main research ques-
tion and explain the theoretical background of the work. We explain evolutionary models
as tools to model statistical dependencies between species. A generalisation of squared
error loss function for phylogenetic regression will be introduced.

3.1 Supervised Machine Learning

Supervised machine learning is a prediction problem, where the goal is to predict value
of output variable y based on input variables x ∈ Rp. In regression tasks y ∈ R or some
subset of R. In classification tasks y is categorical. In this study, we mostly consider
binary classification y ∈ {0, 1}. Output variable y is modelled as a function of x and
parameters θ. Value of y is also affected by random error ε:

y = f(x; θ) + ε

Optimal parameter values θ̂ are estimated from the data. Prediction ŷ is a function of x
and parameter estimates θ̂:

ŷ = f(x; θ̂)

An instance is a pair of values (x, y). Dataset is a collection of n instances, and we notate
a set of input variables as X ∈ Rn×p. Often dataset is divided randomly into training,
validation and testing data, but this division is based on i.i.d. assumption, so we regard
all data as training data. In addition to a singe value, we can make a prediction for the
whole dataset:

ŷ = f(X; θ̂) ∈ Rn

In addition to predicted values, we are also interested how f(x; θ̂) can increase our knowl-
edge of the relationship between input and output variables, and thus develop under-
standing of the underlying phenomenon.

13
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3.2 Research Question

How to formulate and validate supervised machine learning models using samples that
are statistically dependent in a hierarchical way? Training set consists of input and
output features, and phylogeny of all training instances. Using evolutionary models, the
phylogeny can be mapped to estimates of statistical dependency between the training
instances.

3.3 Models of Trait Evolution

Species that recently shared a common ancestor tend to resemble each other by ap-
pearance, behaviour and physiology. Phylogeny is a description of evolutionary ancestry
relationships of a set of species or other taxonomical units. It is often presented in a tree
format, like the phylogeny of 10 extant mammals in Figure 3.1. Each node in the tree
represents a common ancestor of its child species.

When data is sampled from measurements on species or other hierarchically related
units (e.g. families, individuals, languages, cultures), the samples are not drawn indepen-
dently from the same distribution [18]. Most standard statistical and machine learning
procedures assume that data is independent and identically distributed. Analysis of phy-
logenetic data requires thus methods that take into account phylogenetic correlation.

Traits are properties of animals (e.g. body mass), their behaviour (e.g. does the
species display parental care) or their environment (e.g. temperature of the habitat). If
phylogenetic correlation is present in a trait, we say that there is phylogenetic signal in
the trait. Phylogenetic correlation (or signal) can also be present in a set of multiple
traits or residuals of a statistical model.

Process that generates the data is a central concept in any statistical modelling. In
the analysis of phylogenetic data, we want to formulate explicit models for these processes
so that we can include assumptions on the statistical dependence between instances.
Evolution of continuously valued traits can be modelled with a random walk, where
change of a trait y in a species in time ∆t is proportional to the time [25]:

∆y ∼ N(0,∆tσ2)

This simple model is called Brownian motion model of trait evolution. Here we assume
that the rate of evolution σ2 is same for all the species. We also assume that the phylo-
genetic tree is ultrametric, so all the leaves of the tree are at the same distance T from
the root. Biological interpretation of this assumption is that the tree depicts ancestry
relations of extant species. Without loss of generality, we can choose relative time units
in which T = 1. Speciation is modelled as bifurcation where the paths of two species i
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Figure 3.1: A phylogenetic tree of 10 extant mammals. The tree is constructed as a subtree of large
mammalian phylogeny of 5020 species [27]. In this representation, the horizontal axis represents time
from an inferred common ancestor on the left, to present day mammals on the right. Time units are
arbitrary, and in this study we assume relative time from 0 to 1. The vertical axis contains no information
about evolutionary history.
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Figure 3.2: A phylogeny of four species with a corresponding Brownian covariance matrix. Time flows
from zero to 1.0. Cov(i, j) = taσ

2, where ta is the last time when i and j shared a common ancestor, and
parameter σ has been chosen σ = 1.

and j diverge. In this model, rate of trait change and speciation are independent of each
other. Covariance of trait values of species i and j is [25]:

Cov(yi, yj) = taσ
2

where ta is the latest time when i and j shared a common ancestor. These covariances
form the elements of Brownian species-species covariance matrix σ2C ∈ Rn×n, where the
elements are Cij = ta. An example phylogeny and corresponding Brownian covariance
matrix are presented in Figure 3.2.

If trait y changes so quickly that the change seems instantaneous in the time scale of
ancestry relations, then phylogenetic correlation is not present and Cov(yi, yj) = 0 if i 6= j.
In this case we say that y shows no phylogenetic signal. Strength of phylogenetic signal
in continuous traits can be measured with Pagel’s λ, which is a multiplier of non-diagonal
elements of C [54, 25]. Usually it is assumed that 0 ≤ λ ≤ 1.

Other models of trait evolution for continuous traits include Ornstein-Uhlenbeck
[36, 8] and early burst-models [38]. In Ornstein-Uhlenbeck models, traits experience
random variation in time like in Brownian motion model, but are simultaneously pulled
towards optima. The trait optima can themselves vary as random walk, or remain stable.
In early burst models, most trait variation in a phylogeny emerges early in diversification,
and evolution slows down as time progresses [38].

Binary traits can be modelled as Markov processes [53, 55, 44], or with underlying
continuous traits [19, 20]. Based on the latter approach, D-statistic [28] is a measure
of phylogenetic signal in binary traits. Value D = 1 indicates no phylogenetic signal,
and D = 0 indicates signal which is comparable to Brownian motion. Possible values of
D-statistic are not constrained to this interval.

Ives et al. [44] presented a covariance model for binary traits with elements

Cov(yi, yj) = e−αdij
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where dij is phylogenetic distance between species i and j, and parameter α is estimated
from data. In this model, α ≈ 1 corresponds to phylogenetic signal of similar strength
with Brownian motion. Parameter α can measure phylogenetic signal in a binary trait,
or residuals of a logistic regression model.

3.4 Phylogenetic Loss Function for Regression

Our sample contains n species or other taxonomic units. We have measurements of p
covariates xj, j = 1...p and of target variable y. Vectors of covariates form a matrix
X ∈ Rn×p. We can assume that the first column of X is a vector of ones 1 ∈ {1}n, so
that we do not need to add intercept terms to our models. Model f determines how trait
y depends on input X and parameters β:

y = f(X, β) + ε

Residuals ε are normally distributed with mean zero and covariance σ2C: ε ∼ N(0, σ2C).
If C is identity matrix, the data is assumed to be mutually independent. In linear model
f(X, β) = Xβ, β ∈ Rp, the resulting regression is ordinary least squares (OLS). If C in
a linear model is a phylogenetic covariance matrix, the regression becomes phylogenetic
generalised least squares (PGLS) [34].

The probability distribution function for y is [33]:

p(y; f(X, β), σ2C) = 1√
(2σπ)ndet(C)

e−
1

2σ2 (y−f(X,β))TC−1(y−f(X,β))

The loss function for generalised least squares can be derived from cross-entropy [33]
H(P,N) of the process P that generates the observations (X,y) and the n-dimensional
normal distribution N with probability distribution function p:

H(P,N) = − logEX,y∼Pp(y; f(X, β), σ2C)

The resulting loss function equals negative logarithmic likelihood of the observations given
the model:

L(β; X,y,C) = n

2 log(2σ2π) + 1
2 log det(C) + 1

2σ2 (y− f(X, β))TC−1(y− f(X, β))

In general, phylogenetic covariance C(θ) can depend on some parameters θ, but now we
assume that C is constant. If we seek an optimal estimator β̂ for parameters β, it is
sufficient to minimise the part that depends on β:

L(β; X,y,C) = (y− f(X, β))TC−1(y− f(X, β))

If C is identity matrix, L(β) is equivalent to sum of square error loss (SSE).
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In practical implementations we want to avoid computing C−1. The inverse covari-
ance C−1 can be decomposed with root C− 1

2 of C−1. The specific matrix root used in this
study is Cholesky decomposition [50], C = LLT , L ∈ Rn×n. The loss function becomes:

L(β) = (y− f(X, β))T (LLT )−1(y− f(X, β)) = (y− f(X, β))TL−TL−1(y− f(X, β))

= [L−1(y− f(X, β))]TL−1(y− f(X, β)) = (L−1y− L−1f(X, β))T (L−1y− L−1f(X, β))

In linear regression, this decomposition leads us to phylogenetic GLS-transformation [9].
The model is f(X, β) = Xβ, and the loss function gets the form:

L(β) = (L−1y− L−1Xβ)T (L−1y− L−1Xβ)

We can write U = L−1X ∈ Rn×p and Z = L−1y ∈ Rn. The covariance matrix that links
U and Zβ is identity:

L(β) = (Z−Uβ)T (Z−Uβ) = (Z−Uβ)T I−1(Z−Uβ)

This formulation of L(β) shows that variables U and Z are independent, so they can be
used in many standard procedures for independent data. It is good to note that a model
built with U and Z does not contain an intercept. What was a homogenous column of
ones in X is a non-homogenous column L−11 in U.

In a model f , output for U is f(U, β) = f(L−1X, β). The prediction terms in the
loss function are in the form L−1f(X, β), so this gives a model-dependent condition for
the GLS-transformation:

f(L−1X, β) = L−1f(X, β)

We can apply the phylogenetic GLS-transformation in linear models f(X, β) = Xβ.
A special case of (linear) regression is regression onto a constant β0. In the i.i.d.

case the solution is the arithmetic mean of y: β̂0 = 1
n

∑n
1 yi. In the phylogenetic case, this

regression takes a different form. We can write the loss function for this regression with
f(X) = β01:

L(β0) = (y− β01)TC−1(y− β01)

To solve the estimator β̂0, we take a partial derivative of L along β0:
∂

∂β0
L(β0) = 2(y− β01)TC−1 · (−1)

When β = β̂0, the partial derivative is equal to zero:

2(y− β̂01)TC−1 · (−1) = 0

Solving the equation, estimator β̂0 equals so called phylogenetic mean of y with covariance
C:

β̂0 = yTC−11
1TC−11
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An efficient computation procedure for phylogenetic mean is given in Algorithm 2. The
quantity 1TC−11 in the denominator was identified as effective sample size of the intercept
by Ané [4]. Computation procedure for effective sample size is given in Algorithm 1. Note
that yT I−11 = ∑n

1 yi, and 1T I−11 = n. This mean that if C = I, we get arithmetic mean
as a special case of phylogenetic mean. Weighted mean is also a special case of phylogenetic
mean. In the weighted case, C is a diagonal matrix with a non-uniform diagonal.

Effective sample size is a function of a covariance matrix C. Covariance matrices
describe dependencies in some feature or model residuals, so means of different variables
have different effective sample sizes. In addition to evolutionary model, the value of
effective sample size also depends on the subset of data where it is computed. We notate
effective sample size of covariance C by Ess(C), and effective sample size for a subset s
of the data by Ess(Cs) = Ess{s}.

Ané [4] showed that PGLS estimate for the intercept is not a consistent estimate, if
the number of branches from the root of the phylogenetic tree is limited, and the length
of the branches has a lower limit. These limitations apply to comparative datasets in
practice, because all the species are sampled from branches that exist today. Slopes on
input features, on the other hand, are estimated consistently in PGLS.

Algorithm 1: Effective sample size. Here 1 is an n × 1 vector of ones and
z ∈ Rn×1.

input : Covariance matrix C ∈ Rn×n

output: Effective sample size of C

L← Lower triangular Cholesky decomposition of C
z← L−11
return zTz

Algorithm 2: Phylogenetic mean. Here 1 is an n× 1 vector of ones and z, z1 ∈
Rn×1.

input : Data vector x ∈ Rn×1 and covariance matrix C ∈ Rn×n

output: Phylogenetic mean of x given covariance C

L← Lower triangular Cholesky decomposition of C
z1 ← L−11
z← L−1x
return (zT1 z1)−1zT1 z

The loss function presented here is suitable for building global models that take into
account phylogenetic correlation in the observed quantities. In this type of modelling,
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we aim to make generalisations of the data generating process, and sacrifice local accu-
racy. Another approach would be to build locally accurate models using the information
that phylogenetically close species resemble each other in trait values. Phylogenetically
weighted regression of Davies et al. is an example of such a model [12]. This is analo-
gous to using spatial locality information with geospatial data [72], or temporal locality
information in data streams which contain temporal autocorrelation [79].



4. Validation procedures

Here we consider how to evaluate model performance taking into account hierarchical
dependence of instances. We consider cross-validation of phylogenetic regression models
based on generalised residual sum of squares. As classification is concerned, we focus on
developing phylogenetic accuracy and error metrics. Using the concept of effective sample
size, we propose phylogenetic generalisations of indicator loss, classification accuracy, error
rate and majority voting.

4.1 Cross-validation of regression

Ordinary leave-one-out cross-validation objective for regression is the sum of squared
prediction error ∑

i(yi − ŷ−i)2, where xi has been left out of the data for the training
of model f−i, giving prediction ŷ−i = f−i(xi). We recognise this as squared Euclidean
distance of observation y and prediction vectors ŷ:∑

i

(yi − ŷ−i)2 = (y− ŷ)T (y− ŷ)

The squared Euclidean distance is equivalent to squared Mahalanobis distance with iden-
tity covariance matrix. In cross-validation of phylogenetic models, we need to treat the
prediction errors not as independent but dependent through the evolutionary process.
When we replace the identity covariance with the phylogenetic covariance matrix C, the
generalised leave-one-out objective becomes

(y− ŷ)TC−1(y− ŷ)

where ŷi is prediction for yi from model f−i trained with data X−i that includes all
other instances but xi. We assume that covariance C is constant in all n models. We
call this cross-validation objective phylogenetic error. The objective is consistent with the
assumption that prediction errors are phylogenetically dependent. Form of the objective is
the same as generalised residual sum of squares (y−f(X, β))TC−1(y−f(X, β)) presented
by Martins and Hansen for an individual model f [49].

If more than one instance is left out in cross-validation steps, there is phylogenetic de-
pendence in the training subset, validation subset and between subsets. Different subsets

21
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contain varying phylogenetic dependence determined by their local phylogenetic struc-
ture. Due to this additional complexity, we only consider leave-one-out cross-validation
in this study.

Validation procedures for phylogenetic models based on non-random sampling have
been proposed in the literature. Roberts [67] suggested a blocking procedure that tries
to select independent samples from the phylogenetic tree. Another approach for cross-
validation of phylogenetic models is presented in Clavel et al. [11] in the context of
multivariate evolutionary model fitting.

4.2 Indicator loss and classification accuracy

Here we propose phylogenetic generalisations of indicator loss, classification error and
classification accuracy. We are not aware of any previously proposed classification ac-
curacy metrics that would take into account phylogenetic information. In the method
evaluation of phylogenetic logistic regression [44], Ives and Garland focus on statistical
properties of logistic regression coefficients instead of accuracy metrics.

Phylogenetic loss function should depend on model prediction, target variable and
phylogeny. In this study, covariance represents the phylogenetic dependence, but if the
loss is based on a statistical distribution which does not have covariance, then other
quantities are appropriate. Indicator loss I for i.i.d. models measures the number of
wrongly classified instances [76]:

I(y, f(x)) =

0 if y = f(x)

1 otherwise

Let us collect the indicator loss values of all n instances and predictions in vector
y′. This vector has elements y′i = 0 if yi = f(xi), and 1 otherwise for all i = 1, ..., n. With
i.i.d. models, indicator loss for the whole data would be I(y, f(X)) = y′Ty′ = y′T I−1y′.
Let us assume that we have an appropriate covariance estimate C which describes depen-
dence structure in these model errors. Now we can write a phylogenetic generalisation of
indicator loss Ip with this matrix product by including phylogenetic covariance C. Only
the elements y′i for which yi 6= ŷi are non-zero, so this is equivalent to the effective sample
size of subset {y 6= ŷ}:

Ip(y, ŷ) = y′TC−1y′ = Ess{y 6= ŷ}

Because instances are mutually correlated, ratios of correctly or wrongly classified
samples are not appropriate validation metrics for phylogenetic classifiers. A phylogenetic
algorithm gives different importances for the data instances based on their phylogenetic
distances in the training set. As minimising various loss functions for classification of i.i.d.
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Figure 4.1: An example of classification problematics in phylogenetic data. In the phylogeny, each
species has a binary trait value of either 0 or 1. Without any input variables and without the phylogeny,
a baseline generalisation of this data of nine instances would be 0. With the phylogeny, intuitively better
baseline generalisation is 1. Using effective sample size as a measure instead of instance counts gives 1
as the baseline generalisation: Ess{y = 0} ≈ 1.1 and Ess{y = 1} = 2.5 with a Brownian covariance.

data indirectly minimise classification error, we suggest that phylogenetic classification
loss functions like multivariate Gaussian loss or phylogenetic logistic regression loss [44]
indirectly minimise wrongly classified effective sample size, and this is a desirable property.

To gain an intuitive understanding of this classification setup and evaluation pro-
cedure, consider phylogeny and binary trait y ∈ {0, 1} distribution in Figure 4.1. Of
the nine species, six has trait value y = 0, and three have trait value y = 1, so without
phylogenetic information, baseline generalisation is 0. However, all the species with y = 0
are closely related, so this set of instances contains much less information than a set of
six independent samples. Species in other parts of the tree have trait value y = 1, so
1 can be seen as better generalisation than 0. This reasoning can be quantified with
effective sample size. The effective sample size of species with y = 0 is Ess{y = 0} ≈ 1.1
using Brownian covariance matrix, and for species with y = 1 the effective sample size
is Ess{y = 1} = 2.5. With this metric, better generalisation of the process is 1. In
conclusion, using effective sample size as a metric, we can make make classification gener-
alisations with phylogenetic information. Brownian covariance matrix is not statistically
appropriate for binary traits [44], but it is very illustrative for this example.

In this framework, absolute number of correctly classified samples generalises into
absolute correctly classified effective sample size:

Ess{y = ŷ}

Using effective sample size as a phylogenetic generalisation of number of instances, we
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could define relative correctly classified effective sample size:

Ess{y = ŷ}
Ess{y}

This quantity measures how much information from a set is classified correctly. On the
i.i.d. case the ratio becomes standard classifier accuracy:

Ess{y = ŷ}
Ess{y} −−−→

C→I

#{y = ŷ}
#{y}

Similarly, we can define phylogenetic classification error rate with wrongly classified sam-
ple size:

Ess{y 6= ŷ}
Ess{y}

Again, on the i.i.d. limit this ratio becomes standard error rate:

Ess{y 6= ŷ}
Ess{y} −−−→

C→I

#{y 6= ŷ}
#{y}

Effective sample size is a non-linear function, so unlike with standard accuracy and error
rate, the sum of correctly and wrongly classified relative sample sizes is not necessarily
equal to one. We can formulate an alternative quantity which sums up to one by replacing
the denominator with Ess{y 6= ŷ} + Ess{y = ŷ}. We call this quantity effective sample
size accuracy (EA):

EA = Ess{y = ŷ}
Ess{y = ŷ}+ Ess{y 6= ŷ}

The same substitution of denominator can be done for the relative wrongly classified
sample size. We call the resulting quantity effective sample size error (EE):

EE = Ess{y 6= ŷ}
Ess{y = ŷ}+ Ess{y 6= ŷ}

These become standard classification accuracy and error rate on the i.i.d. limit.
Ordinary majority voting means taking majority output label cmaj from some set

of instances: cmaj = arg maxc #{y = c}. With the concepts presented above, we pro-
pose phylogenetic generalisation of majority vote as the label cmax that corresponds to
maximum effective sample size:

cmax = arg max
c

Ess{y = c}

This is a formal presentation of the reasoning that was applied to the data in Figure 4.1.
Maximum effective sample size label for the data with given covariance was cmax = 1. In
this example, we applied effective sample size-based classification framework as a baseline
classifier without any input variables. In Chapter 5 we will present some predictive models
in this framework that use both input and output variable information.



5. New Methods

Here we develop new computational procedures from the assumption that the data con-
tains phylogenetic dependencies. The chosen methods represent varying types of super-
vised learning and operate with different principles: Regularised regression and principal
component regression can be used for feature selection. Instance based regression makes
local predictions using nearest neighbours. Regression trees are a greedy recursive method.
Perceptron and general neural network regression represent neural computing.

5.1 Regularised regression

Predictive model f is a function of X and parameters β, f = f(X, β), and phylogenetic
covariance is parametrised by θ, C = C(θ). A regularised loss function L based on
Gaussian cross-entropy is:

L(β, θ; X,y,C) = n

2 log(2π) + 1
2 log det(C(θ))

+1
2(y− f(X, β))TC−1(θ)(y− f(X, β)) + α1Ω1(β) + α2Ω2(θ)

where α1 and α2 are a regularisation parameters, and Ω1 and Ω2 functions of model and
covariance parameters. We focus on regularised linear regression f(X, β) = Xβ. Here
we do not consider simultaneous optimisation of β and θ, but limit the analysis on op-
timisation of model parameters. Regularisation procedures for phylogenetic covariance
matrices C(θ) are presented in [11]. Parameters θ have separate optimum values for dif-
ferent models f , but we approximate the resulting covariances with C(θ) optimised for
output variable y. In other words, phylogenetic signal in regression residuals is approx-
imated with phylogenetic signal in output variable. With these assumptions, our model
is regularised PGLS, and loss function L(β) takes the form:

L(β) = (y−Xβ)TC−1(y−Xβ) + αΩ(β)

Minimising L(β) can be reduced to regularised OLS regression with a particular GLS-
transformation.

25



26 Chapter 5. New Methods

Our procedure can be applied to any regularisation Ω, but we are most interested
in LASSO regularisation because it produces sparse models. Ordinary LASSO regression
is linear regression where the loss function ∑n

i=0(yi−β0 + xiβ)2 is minimised on condition∑p
i=1 |βi| ≤ a for some a ∈ R [74]. This is practical for feature selection for OLS regression

models. Current implementations of LASSO regression can allow an intercept that is not
penalised [39]. Loss for ordinary LASSO can also be written in the same (Lagrangian)
form as above, if we assume that there is no intercept in the model. Now regularisation
function Ω is L1-norm of regression coefficients, Ω(β) = ||β||1:

L(β) = (y−Xβ)T (y−Xβ) + α||β||1

Ordinary least squares regression in GLS-transformed variables U and Z does not
contain intercept, because a possible intercept term vector 1 in X has been transformed
with root of inverse into L−11 and is not uniform. In other words, regression in U and
Z is regression through origin, so intercept must be omitted in phylogenetic regularised
regression. There are two possible approaches for the slope of the transformed intercept
variable L−11: either it must not be penalised to preserve the model correct, or variables
must be centered so that the slope would be equal to zero. We follow the latter approach,
which is more compatible with available implementations.

In the context of Brownian trait evolution, Rohlf [68] states that PGLS line goes
through the point of ancestral state estimates or phylogenetic means [62] µx ∈ Rp and
µy ∈ R:

(µx, µy) = (1TC−1X
1TC−11

,
1TC−1y
1TC−11

)

This is true also in other models than Brownian motion, but then phylogenetic mean is
not necessary interpretable as an ancestral state estimate. In order to modify a PGLS
model so that the regression line goes through the origin, one needs to center the data
with phylogenetic means µx and µy. Centering with phylogenetic mean is used also in
evolutionary variance-covariance matrix (phylogenetic principal component analysis [62]
and phylogenetic partial least squares [3]) and phylogenetic canonical correlation analysis
[66].

If we center X and y with phylogenetic means and transform the centered variables
with phylogenetic GLS transformation, the OLS line for the resulting independent vari-
ables has zero intercept coefficient β̂0 for the transformed dimension L−11. The centering
GLS transformation is:

U0 = L−1(X− 1
1TC−1X
1TC−11

)

Z0 = L−1(y− 1
1TC−1y
1TC−11

)
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Computing regularised PGLS regression with transformed variables U0 and Z0 is
equivalent to regularised OLS with zero intercept. Computational procedure for centering
GLS-transformation is presented in Algorithm 3, and regularised PGLS in Algorithm 4.

Algorithm 3: Centering GLS-transformation. Here 1 is an n× 1 vector of ones,
Xmean ∈ R1×p, z1 ∈ Rn×1 and z ∈ Rn×p.

input : Data matrix X ∈ Rn×p and covariance matrix C ∈ Rn×n

output: Centered and GLS-transformed variable U0 ∈ Rn×p.

L← Lower triangular Cholesky decomposition of C
z1 ← L−11
z← L−1X
Xmean ← (zT1 z1)−1zT1 z
U0 ← L−1(X− 1 ·Xmean)
return U0

Algorithm 4: Regularised PGLS. Procedure for computing PGLS with LASSO,
Ridge or other regularisation using available libraries for regularised OLS.

input : Data matrices X ∈ Rn×p, y ∈ Rn×1 and covariance matrix C ∈ Rn×n

output: Regularised PGLS regression

U0 ← Center and GLS-tranform X given C
Z0 ← Center and GLS-tranform of y given C
Call regularised OLS regression with input variables U0, output variable Z0 and
no intercept

5.2 Principal component regression

Phylogeny can be taken into account in computing principal components of compara-
tive data [62]. A related method is phylogenetic eigenvector regression [15, 14], which
partitions trait variations into phylogenetic and taxon-specific components. Principal
component analysis is often applied in data preprocessing to reduce input dimensionality
for predictive models.

It is possible to choose principal components as input features for a regression model
based on their ordering. However, there is no guarantee that the first principal components
would be the ones with strongest signal to the output feature. That is why we recommend
applying feature selection methods like LASSO regression on the principal components.
Here we present a phylogenetic procedure for principal component regression:
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1. Conduct phylogenetic principal component analysis for input variables

2. Compute data vectors from principal components

3. Perform centering GLS-transformation for the new data vectors and output variable

4. Compute regularised PGLS regression on transformed data to choose principal com-
ponents for modelling

5. Build PGLS model on chosen principal components

6. Transform back to original input variables

5.3 Instance based methods

Ordinary k nearest neighbour (KNN) regression returns mean 1
k

∑k
i=1 yi of output variable

y in the set of k nearest neighbours of a point of query x′ ∈ Rp [26]. We assume that
relation of x′ with the phylogeny of the training set is unknown, x′ is simply a point
in the input feature space. In phylogenetic comparative data, the neighbours are not
independent instances, so prediction with arithmetic mean can be biased by phylogeny.
The set of nearest neighbours of point x′ also contain varying amounts of information
depending on their phylogeny. In the worst case, all k nearest instances in the training
set are closely related and contain a lot less information than k independent instances
would contain.

For phylogenetic version of this algorithm, we replace the output of arithmetic mean
with phylogenetic mean, computed in some subset of the training data:

ŷ(x′) = 1TC−1y
1TC−11

Here covariance C describes dependencies in the output variable y. As mentioned before,
the denominator was identified as effective sample size of intercept (or mean) [4]. To
make sure that the instances selected for prediction form a sufficiently general subset of
the data, we demand that the effective sample size of the nearest neighbours 1TC−11 ≥ k

for some k ≥ 1. If the phylogenetic covariance C is identity, k ∈ {1, 2, ..., n} and we
regain ordinary KNN regression. If some phylogenetic dependence is present, the effective
sample size of the whole observation y is smaller than n, giving an upper limit for k. With
this new meaning of hyperparameter k, we need to search a number of nearest neighbours
that correspond to the given effective sample size threshold. Even if the evolution of input
variables X and output variable y were described by different evolutionary models, we
are interested in the information content of selected instances in the output variable, so it
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is sufficient to use one covariance suitable for y in determining a sufficient neighbourhood
and computing the output value.

Phylogenetic KNN regression is presented in Algorithm 5. An instance-based classi-
fication algorithm can be gained by replacing phylogenetic mean in the algorithm output
with effective sample size voting, see Algorithm 6. In phylogenetic KNN classification,
prediction is the label with maximum effective sample size in the set of nearest neighbours.
We chose to use Euclidean distance in these algorithms, but alternative distance metrics
can be applied as well. Specifically, use of phylogenetic information does not prevent
application of any distance metrics in the input variable space.

Algorithm 5: Phylogenetic k nearest neighbour regression.
input : Input features X ∈ Rn×p, output feature y ∈ Rn, covariance matrix

C ∈ Rn×n, instance of query x′ ∈ Rp and hyperparameter k
output: Estimate ŷ(x′)

Xsorted ← sort X by increasing distance to x′

nn← binary search number of neighbours in Xsorted such that
Ess{Xsorted[1 : (nn− 1), ]} < k and Ess{Xsorted[1 : nn, ]} ≥ k

neighbours← index(Xsorted[1 : nn, ])
return Phylogenetic mean of yneighbours given Cneighbours,neighbours

Algorithm 6: Phylogenetic k nearest neighbour classification.
input : Input features X ∈ Rn×p, output feature y ∈ Rn, covariance matrix

C ∈ Rn×n, instance of query x′ ∈ Rp and hyperparameter k
output: Estimate ŷ(x′)

Xsorted ← sort X by increasing distance to x′

nn← binary search number of neighbours in Xsorted such that
Ess{Xsorted[1 : (nn− 1), ]} < k and Ess{Xsorted[1 : nn, ]} ≥ k

neighbours← index(Xsorted[1 : nn, ])
return arg maxc Ess{yneighbours = c}

5.4 Regression trees

Regression tree divides input feature space into M regions R1, R2, ..., RM and models y
as constant cm in regions m [26]:

f(x) =
M∑
m=1

cmI(x ∈ Rm)
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I is an indicator function. In the i.i.d. case the tree is trained with a recursive greedy
algorithm which minimises sum of square error loss in binary partition to regions R1 and
R2 [26]:

min
R1,R2

[min
c1

∑
xi∈R1

(yi − c1)2 + min
c2

∑
xi∈R2

(yi − c2)2]

Solution for internal minimisations is arithmetic mean in each region.
We take into account phylogeny by replacing sums of square error with phylogenetic

error. Binary partitioning is now determined by condition:

min
R1,R2

[min
µ1

(y1 − µ11)TC−1
1 (y1 − µ11) + min

µ2
(y2 − µ21)TC−1

2 (y2 − µ21)]

where xj ∈ Rj, and Cj are covariance matrices for instances in regions j = 1, 2. In this
case, solution for internal minimisations is phylogenetic mean in each region:

µ̂j = (1TC−1
j 1)−11TC−1

j yj

Constructing a generalising tree, we should avoid branches that contain only closely
related instances. That is, the branches should contain enough information and large
enough effective sample size. This requirement leads to effective sample size regularisation
1TC−1

m 1 ≥ α for region Rm and some real number α, which is a generalisation of leaf size
regularisation.

5.5 Perceptron

Perceptron is a linear classification algorithm for a binary output feature [26], which we
assume to be y ∈ {0, 1}. Prediction is based on input features x ∈ Rp and weights
w ∈ Rp. We assume that the first element of w represents the bias, and the first element
of x equals 1. The output function of perceptron is:

ŷ = f(x,w) =

1 if w · x > 0

0 otherwise

Ordinary perceptron learning algorithm updates the weights w with misclassified
instances (xi, yi) multiplied with learning rate: wj+1 ← wj + η(yi − ŷi)xi. This learning
algorithm handles misclassified instances in a local and greedy manner, and it is suit-
able for linearly separable data. If phylogenetic data is linearly separable, no changes
are required for the perceptron learning algorithm. It is therefore more interesting to
consider learning algorithms for non-separable cases, where we need to weigh different
non-reducible errors in light of phylogenetic information.

A modification of perceptron learning for non-separable data is the pocket algorithm,
which stores the weights w.s with the most consecutive correct predictions in the learning
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process [31]. We propose two phylogenetic modifications of this pocket perceptron learning
algorithm. In the case of classification of phylogenetic data, we do not want our algorithm
to be greedy purely about misclassified instances, but misclassified effective sample size.
Algorithm 7 is a pocket perceptron algorithm, where we iterate the instances, update the
weights w and store a suitable set of weights w.s. In this algorithm, the stored weights
w.s are chosen by largest consecutively correctly classified effective sample size (instead
of number of instances). If the phylogenetic covariance matrix C is the identity I, we
regain the ordinary pocket perceptron.

In Algorithm 7, the learning itself is not guided by phylogenetic information. To find
the linear decision surface that classifies correctly as much effective sample size as possible,
we can guide the learning algorithm by the wrongly classified effective sample size and
minimise it. Additionally, we can store the weights with largest global effective sample
size accuracy. This is the principle of Algorithm 8. In the case of identity covariance,
Algorithm 8 reduces to a learning procedure with weight storing by the global classification
accuracy. The advantage of the locally determined weight storing of the pocket perceptron
compared to globally determined storing are lighter memory and time requirements. The
same applies to this phylogenetic algorithm, namely the training process is heavy with
frequent effective sample size calculations, but on the other hand training should require
fewer epochs because of the directed nature of the training. Algorithm 8 should be
considered as a brute-force approach to finding decision surface with maximum effective
sample size accuracy.

5.6 Neural network regression

Let function f represent a neural network, and ŷ = f(x,w) is the prediction of the
network with input x and weights w ∈ Rp. We assume that the phylogenetic covariance
matrix C is constant. Phylogenetic Gaussian loss function for the network is:

L(w; X,y) = (y− f(X,w))TC−1(y− f(X,w))

The inverse covariance can again be decomposed with a matrix root (Cholesky decompo-
sition), which gives:

L(w) = [L−1(y− f(X,w))]TL−1(y− f(X,w))

If f(X,w) = Xw, then the network is linear and L−1f(X,w) = f(L−1X,w). In this case
the loss function L(w) is equivalent to:

(L−1y− L−1Xw)T (L−1y− L−1Xw)
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Algorithm 7: Perceptron with effective sample size -controlled weight storing.
input : Input features X ∈ Rn×p, output feature y ∈ {0, 1}n, covariance matrix

C ∈ Rn×n, number of epochs and learning rate η
output: Weight vector w ∈ Rp

randomly initialise weights w
w.s← w
h.s← 0
h← 0
h.index← Boolean vector with value False for all instances
for i← 1 to epochs do

Shuffle training data
for j ← 1 to n do

y.hat← f(xj,w)
if y.hat = yj then

h.indexj ← True
h← Ess(C[h.index, h.index])
if h > h.s then

h.s← h

w.s← w

else
set h.index False for all instances
h← 0
w← w + η(yj − y.hat)xj

return w, w.s
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Algorithm 8: Perceptron with effective sample size -controlled learning. In-
stances (x, y) are chosen for weight update based on misclassified effective sample
size on each side of the decision surface.

input : Input features X ∈ Rn×p, output feature y ∈ 0, 1n, covariance matrix
C ∈ Rn×n, number of epochs and learning rate η

output: Weight vector w ∈ Rp

randomly initialise weights w
w.s← w
h.s← 0
for i← 1 to epochs do

for k ← 1 to n do
y.hat← predictions f(x,w) for all data
error.plus← indices for which y.hat > y

error.minus← indices for which y.hat < y

ess.plus← Ess(C[error.plus, error.plus])
ess.minus← Ess(C[error.minus, error.minus])
ess.ac← effective sample size accuracy of w
if ess.ac > h.s then

h.s← ess.ac

w.s← w
if ess.plus > 0 and ess.minus > 0 then

u← sample uniform distribution from 0 to 1
if u < ess.minus/(ess.minus+ ess.plus) then

choose j from error.minus

else
choose j from error.plus

else if ess.plus > 0 then
choose j from error.plus

else if ess.minus > 0 then
choose j from error.minus

else
return w, w.s

w← w + η(yj − y.hatj)xj
return w, w.s
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With phylogenetic GLS transformation, weights w can be optimised with functions
for i.i.d. data. In the general case of non-linear network the equality L−1f(X,w) =
f(L−1X,w) does not hold.

To minimise L(w) in the general non-linear case, we need to compute ŵ with some
optimisation algorithm like gradient descent. Next we will derive the gradient of the loss
function. Partial derivative of L along w is:

∂L(w)
∂w

= ∂

∂w
[(y− f(X,w))TC−1(y− f(X,w))]

Matrix C−1 is symmetric and does not depend on w, so by proposition 14 in [5], the
gradient takes the form:

∂L(w)
∂w

= 2(y− f(X,w))TC−1∂(y− f(X,w))
∂w

When we write this with Cholesky decomposition, the gradient becomes:

∂L(w)
∂w

= 2[L−1(y− f(X,w))]TL−1∂(y− f(X,w))
∂w

= −2[L−1(y− f(X,w))]TL−1∂f(X,w)
∂w

Here ∂f(X,w)
∂w is a Jacobian matrix of n × p elements, and the gradient is a row vector of

p elements.



6. Description of Data

The goal of the experimental analysis is twofold: to assess the performance of new methods
and to assess the necessity and impact of phylogenetic correction in dental trait - envi-
ronmental analysis. Species and variables in the analysed comparative data are described
here, as well as employed computational tools.

6.1 Overview of Datasets and Tools

The computations were done with R [61], using libraries Ape [57], Caper [52], Kohonen
[77], Lars [39], Madness [58], Phylolm [40], Phytools [64] and Rpart [73].

The sampled species in this study are large mammals from all over the world. The
data on mammal dental traits is from New and Old Worlds database [48]. Bioclimatic
variables for mammal species were extracted from WorldClim [21].

Mammal species were observed on different geographical sites that are spread as a
grid around the world [51]. Values of bioclimatic variables were extracted for each site,
and for each mammal species, a distribution of bioclimatic values were constructed. From
this distribution, either mean, maximum, minimum, or standard deviation was computed.
If a species was observed only on one site, the standard deviation was assigned value zero.

Phylogeny of the studied mammals was constructed as a subtree of externally given
mammalian supertree with 5020 species (Figure 6.1). The tree was originally compiled by
Bininda-Edmonds et al. [6], and later updated by Fritz et al. [27]. The branch lengths in
the phylogeny represent dating estimates of the development of the mammal species, and
Fritz et al. provided trees with earliest, best and latest estimates. The phylogeny with
best time estimates was selected for the analysis.

Estimates for mammalian body masses were compiled from PanTHERIA [46] and
MammalBase [47] by Kari Lintulaakso. I received pre-processed body mass values for
489 mammals. For the remaining 11 species, body mass value was either imputed as the
average of existing body mass estimates, or the species dropped from the analysis.

Data on dental traits was received pre-processed from Galbrun et al. [30], and it
contained information on several dental traits of large herbivorous mammals. The dataset
also included family and order of each of the mammal species.

35
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Figure 6.1: Mammalian supertree [27] in a radial format. The tree contains the ancestry relationships
of 5020 mammals. The inferred ancestor of all mammals is the node in the centre of phylogeny. In this
representation, time flows from the centre to the outer ring, which contains the leaves that represent 5020
extant mammals. The ancestor of all the mammal species was estimated to live 166.2 Ma ago, but in
further analysis we use relative time from 0 to 1. Species names are omitted to keep the figure readable.
Most diversification was estimated to happen towards the end of mammal evolution.

The combined dataset of mammal dental traits and per species values for bioclimatic
variables consists of 490 species. The mammalian orders appearing in the dataset are
presented in Table 6.1, and families in Table 6.2. The phylogeny of the dataset is presented
in Figure 6.2.

6.2 Dental Traits

Mammalian dental features in the analysis are based on functional crown type scoring
scheme [80], which describes functional features in the teeth of herbivorous mammals.
The dental features are ordinal.

Hypsodonty (HYP) is a measure of relative crown height. Low teeth are called



37 Chapter 6. Description of Data

Figure 6.2: Phylogeny of the dataset. The data contains 490 large mammals. This tree is constructed
as a subset of the mammalian phylogeny of 5020 species [27]. In this representation, horizontal axis from
left to right represents time. The common ancestor of the studied species was estimated to live 98.9 Ma
ago. The leaves of the tree in the right side represent the 490 extant mammals. In further analysis the
absolute values or units of time are not important, so we assume relative time from 0 to 1. The vertical
axis has no biological meaning. Like in the tree 5020 mammals (Figure 6.1), most diversification here
happens late in the evolution. Names of the species were omitted to keep the figure readable.
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brachyodont (1), equally high and long teeth are mesodont (2), and high teeth are hyp-
sodont (3). Average ordinated hypsodonty by site tends to have negative relationship with
net primary productivity and mean annual precipitation, that is high hypsodonty value
is associated with low net primary productivity and low precipitation [48].

Two dental features, acute lophs (AL) and obtuse lophs (OL), indicate the presence
of different kinds of lophs. A loph is a continuous structure that consists of enamel crests
or closely spaced cusps, and that is at least half the size of the tooth. If the enamel crest
forms a sharp edge, or supports a planar wear facet, then the lophs are acute. The other
possibility is that the loph is obtuse or basin-like [80].

Longitudial loph count (LOP) measures the number of longitudial cutting edges
per tooth from back of the mouth to front. Longitudial lophs count can be interpreted
as cutting capacity of teeth [48]. Like HYP, LOP has a negative relationship with net
primary productivity and precipitation. LOP is also negatively connected to mean annual
temperature [48].

Cusps are elevated points of pointed or rounded shape on the tooth crown. Struc-
tural fortification of cusps (SF) indicates whether fortification of cusps is present (1) or
not (0). The fortification amplifies the protrusion of the cusp [80].

Occlusal topography (OT) describes the topography of teeth when they are in con-
tact. The contact of teeth can involve raised cusps of lophs (0), or happen in one surface
with cusps and lophs embedded in cementum (1). It is observed in direction perpendicu-
lar to occlusal movement. Because occlusal topography is primarily determined by dental
structure as opposed to diet, and measured in the direction that exhibits little connection
with diet [80], it is expected to have little environmental signal.

Coronal cementum (CM) describes the presence of cementum on the crown and
roots of the tooth. Absent or very thin cementum is indicated with value 0, and thick
sementum with value 1 [80]. Enamel thickness (ETH) is a visual estimate of thickness of
the enamel layer, and it can be thin (0) or thick (1).

Anisodonty (ADI) measures the width ratio of upper and lower teeth. Value 1 corre-
sponds to ratios smaller than one. Maximum value on anisodonty is 5, and it corresponds
to upper and lower teeth ratio of approximately 2. Like ETH, ADI is also based on
subjective visual inspection.

6.3 Bioclimatic variables

Environment of the studied mammal species was modelled with bioclimatic variables,
which are derived from monthly temperature and precipitation values on studied sites
[21]. Net primary productivity (NPP) of a geographical location is an estimate of annual
production of plant matter measured as grams of carbon per square meter per year. It



39 Chapter 6. Description of Data

Figure 6.3: Scatter plots of dental traits. Some jitter was added to the data to make distributions
visible on the ordinal dental trait data.
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Table 6.1: Mammalian orders in the dataset.

Order Artiodactyla Perissodactyla Primates Proboscidea
Species 191 12 285 2

is minimum of productivities allowed by temperature and precipitation, so it is capped
by either temperature or precipitation. As described in [48], temperature productivity is
NPPt = 3000/(1 + exp(1.315 − 0.119MAT)), and precipitation productivity is NPPp =
3000 · (1− exp(−0.000664MAP)). Net primary productivity is:

NPP = min(NPPt,NPPp)

A binary version of NPP was constructed to serve as a target variable for binary classifi-
cation. If the mean NPP for an animal was larger than median of all mean NPP values,
binary NPP was assigned value 1, and 0 otherwise.

Mean annual temperature, mean annual precipitation and net primary productivity
were studied with dental traits in [48]. Other studies about the relationship of dental
traits and bioclimatic variables include [17], [16], [23] and [80].

Sometimes a biological law is evident in an extreme value of a feature rather than
mean (e.g. Bergmann’s law on body mass and maximum latitude [10]). Minimum and
maximum of NPP were investigated in relation to dental traits. Temperature was studied
through average mean annual temperature, maximum and minimum mean annual tem-
perature, mean and maximum of warmest quarter temperature, mean and minimum of
coldest quarter temperature. Variability of temperature was described with mean tem-
perature seasonality and maximum temperature seasonality. Precipitation was described
with mean annual precipitation, mean precipitation of driest quarter and mean precipita-
tion of wettest quarter. Latitude was studied with mean and maximum absolute latitude.
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Table 6.2: Mammalian families in the dataset.

Family Antilocapridae Bovidae Callitrichidae Camelidae
Species 1 117 23 1
Family Cebidae Cercopithecidae Cervidae Cheirogaleidae
Species 68 101 41 12
Family Daubentoniidae Elephantidae Equidae Galagidae
Species 1 2 4 8
Family Giraffidae Hippopotamidae Hominidae Hylobatidae
Species 2 1 6 11
Family Indridae Lemuridae Lorisidae Megaladapidae
Species 9 17 8 6
Family Moschidae Pitheciidae Rhinocerotidae Suidae
Species 7 10 4 12
Family Tapiridae Tarsiidae Tayassuidae Tragulidae
Species 4 5 3 6



7. Case Study

The goals of the empirical study on dental traits and environmental features are to test the
new methods on real data, and to gain knowledge about the relationship of mammal dental
traits and environments. Of the new methods presented in this study, instance based
methods and perceptron training are not directly based on the established loss function
presented in Section 3.4, so their behaviour was studied with synthetic data. Phylogenetic
signal for both dental traits and bioclimatic variables was computed to demonstrate that
the use of phylogenetic methods is necessary for this data. Some unsupervised analysis
was performed for the dental traits to gain an overview of their distributions. Regularised
PGLS, instance-based regression and logistic regression were applied on mammal dental
traits and bioclimatic variables.

7.1 Instance-based regression with synthetic data

Nearest neighbours regression was studied with synthetic data, where input and output
features contained phylogenetic signal. Performance of ordinary and phylogenetic k near-
est neighbour regression was compared in modelling a non-linear target function. The
datasets were three-dimensional with two continuous input features and one continuous
output feature.

Input features x1 and x2 were sampled from Brownian processes x1,x2 ∼ N(0,C),
where C is Brownian covariance of a random phylogeny (function rcoal of the library
Ape). Output feature y was sampled with a non-linear function yi = (x1ix2i)3 + εi,
where random variable ε is sampled from a Brownian process ε ∼ N(0,C). First, a
validation set of 100 instances was sampled from this distribution. Then training sets of
200 instances were simulated 100 times. In each simulation, the output variable values
of the validation set were predicted with ordinary and phylogenetic k nearest neighbour
regression. To choose the values of hyperparameters k for ordinary (number of neighbours)
and phylogenetic (effective sample size of neighbours) instance based regression, the y-
values of the validation set were predicted with the training set, using different values of k.
For ordinary KNN, the prediction was done with ten values from 1 to 200. In the case of
phylogenetic KNN, ten values were tried evenly from the interval [1,Ess(C)]. Values of k

42



43 Chapter 7. Case Study

that predicted the validation set y with smallest squared error were chosen for prediction.
Output feature value y(0, 0), with theoretically optimal value 0, was predicted with both
algorithms.

Mean number of neighbours in ordinary KNN prediction ŷ(0, 0) was 48, with aver-
age prediction −0.11 and variance 0.63. The average effective sample size in phylogenetic
KNN prediction was 1.4, resulting in average of 33 neighbours used in prediction. The
prediction average in phylogenetic KNN was −0.087 with variance 0.65. Both algorithms
predicted values close to the true value 0 with similar prediction variance. We also ex-
perimented with selecting the hyperparameter k of phylogenetic KNN with phylogenetic
error objective, but this approach did not lead to variance reduction.

The numbers of neighbours used in the predictions ranged from 1 to dataset size 200
in both algorithms. In 100 repeated experiments with phylogenetic KNN, the prediction
ŷ(0, 0) was made with one neighbour 54 times. Another frequent value was 200 neighbours,
which occurred in 10 experiments. Intermediate values were employed in the remaining 36
experiments. Histogram of the number of neighbours is presented in Figure 7.1. Ordinary
KNN behaved similarly, prediction was done with one neighbour 51 times, and with 200
neighbours 14 times, leaving intermediate values for 35 experiments. Of these extreme
values, dataset size 200 is problematic because in that case prediction ŷ(0, 0) is simply
mean or phylogenetic mean of the whole training set. In these cases the validation set
likely was not informative of the predictive power of the training set, possibly because
training data ended up to different area of (x1, x2)-plane than the validation set. Data
that is sampled with a phylogenetic covariance has a tendency to form clusters determined
by branches of the phylogeny.

7.2 Perceptron with synthetic data

Perceptron learning algorithms were studied with synthetic data where both input and
output features contained phylogenetic signal. The learning algorithms were ordinary
perceptron learning with weight storing (pocket algorithm), perceptron learning with
weight storing by effective sample size (Algorithm 7) and directed learning algorithm
(Algorithm 8). Experiments were done first with random, and then with unbalanced
phylogenies. For weight storing algorithms, the stored weights were chosen as outputs in
all experiments.

In the experiment with random phylogenies, phylogenetic datasets were simulated
100 times. Each dataset with two continuous input features and a binary output feature
was based on a simulated phylogeny with 200 tips, that is 200 species (Ape function
rcoal). An output feature, a binary trait y ∈ {0, 1} was simulated along these trees
with transition rates Qi,i = 0.7 and Qi,j = 0.3 for i, j = 0, 1, i 6= j (Phytools function
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Figure 7.1: Number of neighbours in prediction with phylogenetic KNN in synthetic data experiments.
Output value in (0, 0) was predicted based on output values of nearest neighbours of the origin. Two
continuous input features and an output feature were created with a Brownian process along a simulated
phylogeny. Optimal value of hyperparameter k was determined by predicting output feature values
in a validation set. Then prediction ŷ(0, 0) was made with phylogenetic KNN. This figure shows the
distribution of number of neighbours used in this prediction. The distribution is bimodal with maxima
in one neighbour (54 cases) and 200 neighbours (10 cases).
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sim.Mk). Data which contained less than 5% of either label was discarded and resampled.
Input features x1 and x2 were created as continuous Brownian traits for each dataset,
separately for species y = 0 and y = 1. Values for x1 had the same mean for both classes,
x1 ∼ N(0,Ci), i ∈ {0, 1}. For x2, classes had separate means: x2 ∼ N(µi,Ci), µ0 = −0.2
and µ1 = 0.2. Note that these means are homogenous n-vectors.

Phylogenetic covariances were normed so that Ci,i = 1 for all species i. With this
design, simulated data was not necessarily linearly separable by label y. Theoretical
optimal decision surface for classification of y was the x1-axis. For perceptron weight
vectors w with an added bias w0 the theoretical optimal decision vectors were [0, 0, a],
a > 0. Perceptrons were trained for each of the 100 synthetic datasets using the binary
trait covariance of Ives et al. [44] where applicable. The covariance parameter α was
estimated from the data for each dataset, with average 1.5 for the 100 experiments.

The average weights are presented in Table 7.1. Effective sample size pocket algo-
rithm produced weights closest to the theoretical values for bias and x1, as well as correct
sign for x2-weight. Weight variances are presented in Table 7.2. None of the algorithms
had clearly smaller weight variance than the rest.

Training accuracies and effective sample size accuracies were computed for all trained
classifiers, the latter with the same binary trait covariances as the before. In the 100 ex-
periments, ordinary perceptron reached an average accuracy of 0.68, and effective sample
size accuracy of 0.54. The directed algorithm reached average accuracy of 0.92 and ef-
fective sample size accuracy of 0.79. The Ess-pocket algorithm had an average accuracy
of 0.72, and its effective sample size accuracy was 0.57, which was slightly higher than
for the ordinary algorithm. Comparing to this to the results of the directed algorithm,
ordinary perceptron updates employed by Ess-pocket algorithm do not seem to be the
best strategy to maximise effective sample size accuracy.

Additionally, the accuracy of the theoretical decision surface was studied in this
experimental setup. The decision surface determined by vector wt = [0, 0, 1] had an
average accuracy of 0.59, with variance of 0.079. The decision surface given by wt had an
average effective sample size accuracy of 0.55, with variance of 0.017, computed with the
fitted binary trait covariance. The absolute values of accuracy and effective sample size
accuracy are not directly comparable, because they are different quantities. However, the
smaller variance of effective sample size accuracy supports the claim that effective sample
size-based classification decreases variance when analysing phylogenetic data.

The experiment with unbalanced phylogenies was identical to the previous one apart
from the phylogeny. Ape functions stree and compute.brlen were used to construct an
unbalanced ultrametric tree of 200 species and assign its branch lengths. The structure
of this systematic tree is shown in Figure 7.2 in smaller size. Data was then simulated on
this unbalanced phylogeny, and classifiers were trained with the same procedure as above.
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algorithm bias x1 x2

ordinary 0.0589 0.0206 -0.0252
ordinary, ess 0.00554 -0.0131 0.0125
directed -0.0173 -0.0266 0.199

Table 7.1: Weight vector means in a repeated simulation study with random phylogenies where the
theoretical decision surface was given by vector [0, 0, a], a > 0. The algorithms were ordinary perceptron
with weight storing, perceptron with effective sample size -guided weight storing and perceptron with
directed learning.

algorithm bias x1 x2

ordinary 0.193 0.103 0.134
ordinary, ess 0.130 0.130 0.157
directed 0.144 0.342 0.239

Table 7.2: Weight vector variances in a repeated simulation study with random phylogenies where the
theoretical decision surface was given by vector [0, 0, a], a > 0. The algorithms were ordinary perceptron
with weight storing, perceptron with effective sample size -guided weight storing and perceptron with
directed learning.

Weight vector means in this experiment are presented in Table 7.3, and variances
in Table 7.4. In this experiment, the directed algorithm was the only one with average
positive weight for x2. Ordinary pocket perceptron shows larger variance of all weights
than either of the phylogenetic algorithms. The ordinary algorithm reached an average
accuracy of 0.82 and effective sample size accuracy of 0.66. Phylogenetic pocket algorithm
reached accuracy of 0.81, and effective sample size accuracy of 0.67. The directed algo-
rithm reached a comparable accuracy of 0.83, but higher effective sample size accuracy of
0.72. The theoretical decision surface had approximately same properties as before, the
average accuracy was 0.57 with variance of 0.045, and effective sample size accuracy of
0.56 with variance 0.011.

algorithm bias x1 x2

ordinary -0.00127 -0.0256 -0.00919
ordinary, ess -0.0267 0.00723 -0.00759
directed -0.00842 0.00606 0.0279

Table 7.3: Weight vector means in a repeated simulation study with unbalanced phylogenies where the
theoretical decision surface was given by vector [0, 0, a], a > 0. The algorithms were ordinary perceptron
with weight storing, perceptron with effective sample size -guided weight storing and perceptron with
directed learning.
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Figure 7.2: Unbalanced phylogenetic tree. Binary and continuous data was simulated on a tree with
this structure and n = 200 tips.

algorithm bias x1 x2

ordinary 0.0980 0.0475 0.0271
ordinary, ess 0.0852 0.00560 0.0149
directed 0.0278 0.00450 0.0172

Table 7.4: Weight vector variances in a repeated simulation study with unbalanced phylogenies where the
theoretical decision surface was given by vector [0, 0, a], a > 0. The algorithms were ordinary perceptron
with weight storing, perceptron with effective sample size -guided weight storing and perceptron with
directed learning.
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7.3 Unsupervised analysis of dental traits

A self organising map [77] was trained on the dental traits. The goal of this analysis was
to present 10-dimensional dental data meaningfully in two dimensions. Hexagonal grid
was chosen as the topology of the map. In experiments with different sized maps, the
species were found to map only on a limited number of units. The reason for this ten-
dency to clustering is that the ordinal dental data contains less variation than continuous
data would. Therefore, a map of 36 units with 6 × 6 organisation was sufficient for the
mammal data set. For the layout of the map, see Figure 7.3 or 7.4. Each unit on the self
organising map was a 10-dimensional vector, matching 10-dimensional dental trait vectors
xi of species i. Map units mk were initialised randomly, and then updated with the self
organising map update procedure in 100 epochs. In an epoch, instances were processed
one at a time so that the closest unit mk to instance xi in Euclidean distance was selected.
The closest unit and its neighbours were updated with the rule mk ← mk + α(xi −mk),
where α is a decreasing learning rate [26].

For a hexagonal map with 36 units, mammal species were mapped into 23 units,
while 13 units were left empty. The code vectors of the trained map are presented in
Figure 7.3. On the left side of the map, the elements of unit vectors have generally small
values. Units on the right have larger element values. Mappings of the instances are
presented in Figure 7.4. Species with dental traits close to zero were mapped on the left
side of the map, and species with larger dental trait values were mapped to the units on
the right. This means that species with simpler dentition were mapped mostly on two
very populated units on the left, and species with more complex dentition were spread
out on the right. One can see both highly populated and completely empty units on the
map, and the reason for this is the ordinal nature of dental data. The different traits have
two to five possible values, so this ordinal data contains less variability than continuous
data would.

As the dental trait values of the species are products of an evolutionary process,
one can expect to find a pattern between phylogenetic distance and distance on the self
organising map. Unit distance on the self organising map was plotted as function of
phylogenetic distance in Figure 7.5. Closely related species were often mapped to the
same unit, but never to opposite sides of the map. Pairs of species that were mapped
to units with maximum distance, that is six, had a phylogenetic distance that was equal
or greater than 0.7 times maximum phylogenetic distance in the data. Based on Figure
7.5, mapping on the self organising map contains some phylogenetic signal. The upper
left corner of the plot contains no pairs, which means that no closely related pair was
different enough to be mapped on different sides of the self organising map. Pairs with
large phylogenetic distance could be mapped to distant units, which can be seen on
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Figure 7.3: Codes plot of self organizing map on dental traits. The values of dental traits for different
units in the converged map are shown in this figure. Even though dental traits are ordinal, the values
plotted here are continuous parameters corresponding to different dental traits. In the training phase,
the parameters were updated based on the dental data.

the upper right corner of the figure. This behaviour is expected, because dental traits
have strong phylogenetic signal (see Table 7.8). This figure is an experimental study of
phylogenetic signal, inspired by [70].

Ordinary and phylogenetic principal component analysis was performed on a matrix
of (unscaled) dental traits. Variance distribution of phylogenetic principal components
is shown in Figure 7.6. Loadings for first four principal components are presented in
Table 7.5 for ordinary PCA, and Table 7.6 for phylogenetic PCA. For ordinary PCA, an
ordinary LASSO procedure was conducted to select principal components for regression
models with NPP. For phylogenetic PCA, phylogenetic LASSO was conducted to select
components for PGLS.
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Figure 7.4: Instance mappings in self organizing map on dental traits. The trait vectors were mapped
on a 6 × 6 hexagonal self-organising map. Positions of data points inside the units are arbitrary, being
spread around the unit for readability. The values for most traits are zero on the left side of the map,
and larger on the right side.

Variable PC1 PC2 PC3 PC4
HYP 0.509 0.628 0.246 0.403
LOP 0.709 -0.140 -0.347 -0.422
HOD 0 0 0 0.256
AL 0 -0.356 -0.562 0.583
OL 0.336 0 -0.279 0.129
SF 0 0 0 -0.363
OT 0 0 0 0.204
CM 0 0.112 0 0.164
ETH 0 0 0 0
ADI 0.337 -0.647 0.651 0.193

Table 7.5: Loadings of dental traits in first four ordinary principal components. Zero values are not
precisely zero, but they have small loading values.
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Figure 7.5: Unit distance on self organizing map as a function of phylogenetic distance. The data points
in this figure are pairs of species. The horizontal axis is phylogenetic distance mapped between 0 and
1, and the vertical axis is unit distance on the converged 6 × 6 hexagonal self organising map. Closely
related pairs of species are mapped on the left side of the figure, and we see that closely related species
were mapped on either the same or nearby units.
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Variable PC1 PC2 PC3 PC4
HYP -0.469 0.409 0.0165 -0.0116
LOP -0.121 0.175 0.603 0.499
HOD -0.786 0.0811 0.0228 -0.177
AL 0.101 -0.451 0.540 -0.469
OL 0.313 0.497 0.560 -0.291
SF 0.123 0.723 -0.320 0.0747
OT -0.722 0.152 0.224 -0.156
CM -0.299 0.231 0.108 -0.0547
ETH 0.629 0.419 0.108 -0.252
ADI 0.110 -0.0690 0.312 0.678

Table 7.6: Loadings of dental traits in first four phylogenetic principal components. The principal
components were computed using a Brownian covariance matrix.

Figure 7.6: Relative variance of phylogenetic principal components of dental traits. Variance is dis-
tributed quite evenly among the ten principal components. Loadings of the first four principal components
are presented in Table 7.6.
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Figure 7.7: Principal component regression of ordinary principal component 1 on NPP. The OLS
regression model drawn in black line is NPP = 2390 − 294PC1. Transforming the regression equation
back to dental traits results in model that has large negative slopes for HYP, LOP and ADI. The first
principal component was also the first of the components selected by ordinary LASSO procedure.
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7.4 Phylogenetic signal

Pagel’s λ was applied as a measure of phylogenetic signal for bioclimatic variables (Table
7.7). Means, minima and maxima of primary productivity, temperature and precipita-
tion showed stronger phylogenetic signal than their standard deviations. Of the studied
bioclimatic variables, NPP showed the strongest phylogenetic dependence with λ = 0.952.

Scatter plots of phylogenetic and NPP distances between species are displayed in
Figures 7.8 and 7.9. The lower left corner in Figure 7.8 appears to be the most populated
area in the graph, but actually the largest point density is in the lower right corner. This
can be seen from the smoothed version of the graph (Figure 7.9). Very closely related
species have similar average NPP, as seen from the pairs with phylogenetic distance close
to zero. When phylogenetic distance increases, NPP distances get larger values. Small
phylogenetic distances seem continuous, while large distances are discrete. The reason for
this is the shape of the phylogenetic tree that is presented in Figure 6.2. Within closely
related species, there is a varied distribution of phylogenetic distances. On the other hand,
if the path from species i to j goes through earlier ancestors, number of possible path
lengths decreases. If the path goes through the root of the tree, phylogenetic distance is
always 1.

After missing body mass values were imputed, phylogenetic signal in logarithmic
body mass was computed. Logarithmic body mass showed a strong phylogenetic signal
with λ = 0.996.

Dental traits analysed in the study are binary or almost binary ordinal features.
HYP, LOP, HOD and ADI were converted to binary variables, and D-statistic [28] esti-
mates were computed on the dental traits. Strong phylogenetic signal was found in all
of the dental traits. The results are displayed in Table 7.8. Scatter plots of phylogenetic
distances and Euclidean distances of dental trait values for different species are displayed
in Figures 7.10 and 7.11. No pairs of species are closely related but with very different
dental trait values. Additionally, a smoothed scatter plot of phylogenetic distances and
unit distances on self organising map is shown in Figure 7.5.

7.5 Net Primary Productivity

Both ordinary least squares and phylogenetic generalised least squares models were built
for dental traits and NPP. LASSO regularisation was computed both for OLS and PGLS
with lambda-transformed Brownian covariance. Sequences of LASSO moves for dental
traits and NPP are presented in Table 7.9.

CM and SF coefficients for NPP are positive in OLS models and negative in PGLS
models, so they were studied separately in univariate regressions. OLS model for coronal
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Table 7.7: Pagel’s λ [54, 25] for bioclimatic variables. The values are maximum likelihood λ estimates
for the environmental variables in the phylogeny of the dataset (Figure 6.2). These environmental features
are continuous, so we can estimate their phylogenetic signal with maximum likelihood λ-estimates. Here
sd stands for standard deviation, NPP for net primary productivity and lat for absolute latitude. Lambda
takes values λ ∈ [0, 1], higher values corresponding to stronger phylogenetic signal.

mean NPP 0.952
sd NPP 0.392
min NPP 0.866
max NPP 0.794
mean lat 0.866
max lat 0.861
sd lat 0.561
mean mat 0.848
max mat 0.700
min mat 0.773
sd mat 0.503
mean warmest quarter temperature 0.753
max warmest quarter temperature 0.534
mean coldest quarter temperature 0.872
min coldest quarter temperature 0.832
mean temperature seasonality 0.752
max temperature seasonality 0.798
mean annual precipitation 0.853
sd annual precipitation 0.490
mean driest quarter precipitation 0.631
mean wettest quarter precipitation 0.687
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Figure 7.8: Normalised NPP distances as function of phylogenetic distances. Each pair of species i, j
is represented here by a point. Proximity of points i, j and k, l in this graph does not imply that species
i would be the same as k or l. Phylogenetic distances between species i and j were computed from the
phylogenetic tree, and NPP distances as |NPPi−NPPj |. Both absolute NPP differences and phylogenetic
distances were mapped between 0 and 1.

Table 7.8: D-statistic [28] for dental traits. This is a measure of phylogenetic signal for binary traits.
Estimates were computed on binary versions of the variables. Negative values indicate that the traits con-
tain strong phylogenetic signals. For this analysis, the non-binary traits HYP, LOP, HOD and ADI were
converted to binary variables, which produces some bias. We can, however, conclude that phylogenetic
signal is strong in dental traits, especially in HOD, OT and ETH.

HYP -0.484
LOP -0.494
HOD -1.16
AL -0.118
OL -0.459
SF -0.364
OT -0.683
CM -0.207
ETH -0.970
ADI -0.00941
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Figure 7.9: Smoothed scatterplot of normalised NPP distances and phylogenetic distances. The data
in this figure is the same as in Figure 7.8. Areas of higher and lower density are clearly visible in this
figure. Relatively few pairs of species are closely related, but have large NPP distances. This can be seen
from the low density in the upper left corner.
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Figure 7.10: Normalised Euclidean distances of dental traits and phylogenetic distances. Both dental
trait distances and phylogenetic distances are normalised to interval [0, 1]. All pairs of species i, j in the
data are presented by a point in this figure. Proximity of points does not imply that the points would
share a species.
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Figure 7.11: Smoothed scatterplot of normalised Euclidean distances of dental traits and phylogenetic
distances. The data in this figure is the same as in Figure 7.10. Both dental trait distances and phyloge-
netic distances are normalised to interval [0, 1]. Point densities in different parts of relative dental trait
space are clearly visible in this version.
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cementum is NPP = 1719 − 306CM, with slope p-value 0.0338. PGLS model is NPP =
1697 + 259CM with maximum likelihood lambda value λ = 0.954, p-value of the slope is
0.0757.

Univariate OLS regression model for SF is NPP = 1724− 181SF with slope p-value
0.0572. Corresponding PGLS model is NPP = 1743 + 261SF. The p-value of the slope is
0.01194, and maximum likelihood value for λ is 0.948.

Based on the LASSO moves, the HYP, SF and CM were chosen for a multivariate
PGLS regression model, giving NPP = 2197−334 HYP+297 SF+372 CM. Corresponding
multivariate OLS model for three first features from LASSO moves is NPP = 2333 −
312 HYP − 124 LOP − 156 OL. Comparison of Akaike information criterion, Bayesian
information criterion and logarithmic likelihood values for some regression models on
dental traits and NPP is presented in Table 7.10.

Ordinary LASSO regularisation was computed for NPP and ordinary principal com-
ponents of dental traits. The first selected principal components were the first, fifth and
second components (for the loadings of dental traits in components 1 - 4, see Table 7.5).
Using the first principal component as input feature and NPP as output feature gave OLS
regression model NPP = 2390 − 294PC1, where PC1 in the first principal component.
Transforming back from the principal component to dental traits resulted in the following
regression model:

NPP = 2390− 150HYP− 208LOP + 0.256HOD− 5.26AL

−98.7OL− 29.1SF− 7.31OT− 10.6CM + 2.99ETH− 98.9ADI

NPP is plotted as a function of the first ordinary principal component in Figure 7.7, with
the above regression model. Phylogenetic principal components were also used as input
features in the phylogenetic LASSO procedure. The first selected components were the
fourth, eight and third principal component (for the loadings in components 1 - 4, see
Table 7.6).

Linear classifiers were trained and validated with classifier accuracy and effective
sample size. Logistic regression models were trained with dental traits using binary NPP
as the output feature and Gaussian loss function. Classifiers were trained both with
phylogenetic and ordinary loss functions, using 10, 4 (HYP, LOP, SF, CM) and 2 (HYP,
LOP) input features. Classification accuracies and effective sample size accuracies were
computed for each classifier, the results are displayed in Table 7.11. Phylogenetic models
had higher effective sample size accuracies when at least four input features were employed.
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Table 7.9: Sequence of LASSOmoves for dental traits and NPP. The first row shows the optimal sequence
of dental traits as input features in L1-penalised OLS regression mode for NPP as regularisation factor
decreases and allows the inclusion of more input features. The second row shows the sequence of dental
traits in L1-penalised PGLS model. To compute this sequence, LASSO-regression was called with centered
GLS-transformed variables. The sequences are different for OLS and PGLS regressions. Especially LOP
and OL are less optimal input features for PGLS than OLS. HYP, SF and CM were among the most
optimal input features for PGLS-models for most of the studied environmental variables.

OLS HYP LOP OL SF CM ADI ETH AL OT HOD
PGLS HYP SF CM HOD LOP AL OL ADI ETH OT
Step 1 2 3 4 5 6 7 8 9 10

Table 7.10: Akaike information criterion, Bayesian information criterion and logarithmic likelihood
values for some predictive models for NPP. Variables for the OLS model are the first four variables from
ordinary LASSO-regularised regression.

Type Variables AIC BIC LogL
OLS HYP, LOP, OL, SF 7421 7446 -3704
PGLS HYP, SF, CM, HOD 7291 7312 -3641
PGLS HYP, SF, CM 7291 7308 -3642
PGLS HYP, SF 7295 7308 -3645

Table 7.11: Classifier accuracy metrics for dental traits and binary NPP. Classification accuracy (AC)
and effective sample size accuracy (EA) are shown for phylogenetic and ordinary classifiers. Binary NPP
is an output variable that was constructed from NPP by assigning 1 for species with larger than median
NPP, and zero otherwise. Input features for the classifiers in the middle rows were HYP, LOP, SF and
CM, and HYP and LOP for the bottom rows.

Number of features Type AC EA
10 Phylogenetic 0.698 0.536
10 Ordinary 0.735 0.525
4 Phylogenetic 0.690 0.530
4 Ordinary 0.731 0.522
2 Phylogenetic 0.502 0.493
2 Ordinary 0.527 0.517
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7.6 Latitude

Predictive power of latitude is interesting, because it is connected to Bergmann’s law
[10], and can be linked to energy economy of animals. Relationship of dental traits and
latitude was studied with mean and maximum absolute latitude. Maximum likelihood λ
was estimated for both mean and maximum latitude, and Brownian correlation matrix
was scaled with the λ-estimates. LASSO-moves for regularised PGLS are presented in
Table 7.12. Based on the LASSO-moves, a PGLS model was constructed for maximum
latitude: max LAT = −12.3 − 7.89SF + 6.91HYP − 11.1CM, with maximum likelihood
λ = 0.86.

PGLS and OLS models for logarithmic body mass and maximum latitude are shown
in Figure 7.18. These models show that a positive correlation between logarithmic body
mass and maximum latitude is present in this data. Bergmann’s law [10] states that
because of energy economy, larger species inhabit higher latitudes among closely related
species. These regressions show that among large herbivorous mammals, larger species
tend to inhabit higher latitudes, compared to close and distant relatives alike. The corre-
lation found here is likely not related to energy economy, but instead caused by availability
of habitats suitable for large herbivores as function of latitude.

Maximum latitude was predicted with ordinary and phylogenetic k nearest neigh-
bour regression. Latitude was chosen for this analysis, because effective sample sizes
associated with it are larger than ones associated with NPP which has stronger phylo-
genetic signal than latitude. Ordinary KNN was cross-validated with leave-one-out sum
of square error objective. Minimum error was reached with 49 neighbours. Errors with
different values of k are shown in Figure 7.14.

For phylogenetic KNN, Brownian covariance matrix was transformed with λ =
0.8614453. The effective sample size of the dataset was then 8.151891. Most diversi-
fication in the dataset phylogeny occurs late in time, which results in large covariances
between many species, and further in low effective sample size values.

The algorithm was cross-validated with leave-one-out sum of square error and phy-
logenetic error (of the form (y − ŷ)TC−1(y − ŷ)) objectives. While the algorithm uses
phylogenetic information for instance selection and output value computation, the cross-
validation objective SSE does not. Regression residuals from this model can have phylo-
genetic dependence, so the algorithm was cross-validated both with a phylogenetic and
ordinary error objectives. Minimum square error was reached with effective sample size
5, and phylogenetic error with effective sample size 4. Errors with ordinary sum of square
error objective are presented in Figure 7.12, and errors with phylogenetic error objective
in Figure 7.13.

Maximum latitude was predicted with ordinary KNN with k = 49. The predictions
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Figure 7.12: Leave-one-out cross-validation for maximum latitude with phylogenetic k nearest neighbour
regression. The objective is sum of square error. Input features were dental traits, and distance metric
was Euclidean distance. Effective sample size can take non-integer values, but integers were chosen here
for convenience. Relatively low values of effective sample size compared to dataset size n = 490 result
from the dependency model that was λ-transformed covariance.

Figure 7.13: Leave-one-out cross-validation for maximum latitude with phylogenetic k nearest neigh-
bour regression. The objective is phylogenetic error, and parameter k is effective sample size. Input
features were dental traits, and distance metric was Euclidean distance. Phylogenetic k nearest neigh-
bour regression uses phylogenetic information in instance selection and output value computation.
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Figure 7.14: Leave-one-out cross-validation for maximum latitude with ordinary k nearest neighbour
regression. The cross-validation objective is sum of square error. Input features were dental traits, and
distance metric was Euclidean distance. Minimum error was reached with 49 neighbours used for latitude
prediction. Here both the prediction algorithm and cross-validation objective assumed independent data.

and observations are shown in Figure 7.16. Maximum likelihood λ was estimated for the
prediction residuals with value λ = 0.84. A prediction was also made with phylogenetic
KNN using effective sample size k = 4. The predicted maximum latitude values are shown
in Figure 7.17 with the observations. The residuals of phylogenetic KNN predictions have
maximum likelihood λ value λ = 0.86, supporting the use of phylogenetic error validation
objective. Dental data is ordinal, so it contains less variation than continuous variables.
Because of this, predictions are relatively uniform. Predictions from the phylogenetic
version of the algorithm vary less than predictions from ordinary KNN regression.

Phylogenetic KNN considers varying numbers of neighbours for predictions, depend-
ing on the phylogenetic structure of the local instances in feature space. Histogram of the
number of neighbours with is shown in Figure 7.15. The average number was 88, median
83, and standard deviation 55. Minimum of neighbours in the predictions was 7, and
maximum 185. Average number of neighbours divided by total number of instances was
0.18. Proportion of effective sample size used in the prediction was k

Ess{y} = 0.49.
To demonstrate a neural network regression equivalent to a PGLS model, logarithmic

body mass was chosen as input feature, and maximum latitude as output feature. PGLS
model for latitude and logarithmic body mass with Brownian covariance is max LAT =
−19.4 + 3.98 logM . An equivalent neural network regression is presented in Figure 7.19.
The one-layer neural network model was trained with GLS-transformed logarithmic body
mass and intercept column (that is L−11). Internal bias term was excluded in order to
attribute the bias to the transformed intercept. Activation function was identity, and
loss function was based on squared error. This is equivalent to an OLS model with two
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Figure 7.15: Numbers of neighbours used in phylogenetic k nearest neighbour regression for latitude
with k = 4. In this algorithm, hyperparameter k is effective sample size, so in different parts of the
predictor space, the number of neighbours that corresponds to effective sample size k varies based on
local phylogenetic structure. Here the number of neighbours used for maximum latitude prediction varied
between 7 and 185.

Figure 7.16: Absolute maximum latitude (black) and ordinary KNN prediction with k = 49 (grey). The
prediction was done with the optimal value of hyperparameter k. The latitude observations are sorted in
ascending order, so predictions are unsorted.
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Figure 7.17: Absolute maximum latitude (black) and phylogenetic KNN predicition with effective sam-
ple size k = 4. The observation are sorted, and predictions unsorted. The prediction was done with
hyperparameter value chosen by cross-validation with phyogenetic error objective, which is a generalisa-
tion of sum of square error.

Table 7.12: Sequence of LASSO moves for dental traits and latitude. For both regularised regression
analyses, Brownian covariance matrix was transformed with maximum likelihood λ for the output vari-
ables mean latitude and maximum latitude. Regularised regression analyses was then conducted with
centered GLS-transformed data. The LASSO moves show the optimal input variables in L1-penalised
PGLS regression. New variables are added as the regularisation constant decreases, until it ceases to
limit the number of variables.

Variable λ 1 2 3 4 5 6 7 8 9 10
mean latitude 0.87 OT CM ADI HOD LOP AL ETH SF HYP OL
max latitude 0.86 SF HYP CM AL ETH OL LOP ADI HOD OT
Step 1 2 3 4 5 6 7 8 9 10

input features and zero intercept, except here the computation was done with originally
non-independent GLS-transformed variables. Linear models can be trained with these
transformed variables, but non-linear models require taking the phylogeny into account
in the loss function.

7.7 Temperature

Temperature was studied through mean, maximum and minimum of mean annual tem-
perature, coldest quarter mean, coldest quarter minimum, warmest quarter mean and
warmest quarter maximum temperature. Additionally, mean and maximum tempera-
ture seasonality were studied. For each temperature variable, maximum likelihood λ was
estimated, and Brownian correlation matrix was scaled with the estimate. Centering
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Figure 7.18: Regression of logarithmic body mass on maximum latitude. Logarithmic body mass is on
the horizontal axis, and absolute maximum latitude is on the vertical axis. PGLS-model is drawn with
the black line, and OLS-model with the grey line.
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Figure 7.19: A neural network regression equivalent to PGLS model max LAT = −19, 4 + 3, 98 logM .
The training variables logarithmic body mass, intercept (vector of ones) and maximum latitude were
GLS-transformed, and bias of the neural unit was set to zero.
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Table 7.13: Sequence of LASSO moves for dental traits and temperature. The sequence shows the
optimal order of dental traits as they are added as input variables to an L1-penalised PGLS model
when regularisation constant decreases. For each regularised regression, Brownian covariance matrix was
transformed with maximum likelihood λ for the temperature quantity in question.

Variable λ 1 2 3 4 5 6 7 8 9 10
mean MAT 0.85 SF CM HYP OL ETH LOP OT AL HOD ADI
max MAT 0.70 SF CM OT ADI LOP OL HYP AL HOD ETH
min MAT 0.77 SF HYP OL ETH CM OT HOD AL ADI LOP
coldest quarter mean 0.87 SF CM HYP AL LOP OL ETH OT ADI HOD
coldest quarter min 0.83 SF HYP CM OL ETH OT ADI HOD LOP AL
warmest quarter mean 0.75 SF ETH AL OL CM OT LOP HYP ADI HOD
warmest quarter max 0.53 HOD SF AL HYP ADI OT ETH CM LOP OL
mean seasonality 0.75 HYP CM SF AL LOP OL ADI OT HOD ETH
max seasonality 0.80 HYP SF AL CM LOP HOD OL ADI OT ETH

GLS-transformation was performed for dental traits and temperature variables with cor-
responding covariance matrices. Moves for LASSO-regularised PGLS are presented in
Table 7.13.

Based on the LASSO moves, SF, CM and HYP were selected for a regression model
on mean annual temperature (in units 10 degrees C): MAT = 239 + 40.2 SF + 41.0 CM−
17.5 HYP. Generally SF, CM and HYP seem to be the optimal input variables for
temperature quantities.

7.8 Precipitation

The studied precipitation variables were mean annual precipitation, driest quarter mean,
and wettest quarter mean precipitation. Maximum likelihood λ was computed for different
precipitation measures, and Brownian covariance matrix was scaled with each λ-estimate.
Centering GLS-transformation was performed on dental traits and the precipitation vari-
ables, and LASSO regularised regression was computed on the dental traits using the
precipitation variables as targets. The results are displayed in Table 7.14. Generally
HYP, SF and CM dominate as explanatory variables for precipitation output variables.

First LASSO moves for mean annual precipitation are the same as for NPP: HYP,
SF and CM. However, the features were ordered differently in relation to driest quarter
precipitation. PGLS model for driest quarter precipitation is DQP = 221− 33.5 HYP +
41.3 AL− 68.2 OL.
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Table 7.14: Sequence of LASSO moves for dental traits and precipitation. The sequence shows the
optimal order of dental traits as they are added as input variables to an L1-penalised PGLS model. For
each precipitation variable, Brownian covariance matrix was transformed with maximum likelihood λ.
Mean annual precipitation shows the strongest phylogenetic signal of these three variables, while driest
quarter mean precipitation shows the weakest.

Variable λ 1 2 3 4 5 6 7 8 9 10
mean 0.85 HYP SF CM OT HOD AL OL ADI LOP ETH
driest quarter mean 0.63 HYP AL OL HOD LOP OT CM SF ADI ETH
wettest quarter mean 0.69 SF HYP CM OT AL ADI HOD OL ETH LOP



8. Discussion

In synthetic data experiments, the data was created with a phylogenetic process, so the
assumptions of phylogenetic signal in input and output variables were true. Based on
this, it would have been expected that phylogenetic KNN produced better predictions
than the ordinary KNN algorithm. However, the variance of predictions of ordinary and
phylogenetic KNN was similar, even if taking phylogeny into account should decrease
variance [69]. The reason for lack of variance reduction in the phylogenetic algorithm
can be the changing number of neighbours in predictions, determined by local effective
sample size. Another reason for this might be non-consistency of phylogenetic mean as
an estimator [4]. Experimentation with variants of the algorithm and different validation
objectives like phylogenetic error objective are left for future work, as well as varying
evolutionary models in data generation and modelling. Experimenting with unbalanced
phylogenies and different output functions is also possible.

Experiments with perceptron training in the case of unbalanced phylogeny support
the proposition of the effective sample size based classification framework. When the data
was sampled on random phylogenies, Ess-pocket algorithm was on average slightly more
accurate in retrieving the theoretical decision surface than the ordinary perceptron, but
variances were similar. However, when the phylogeny was unbalanced, the phylogenetic
algorithms produced less weight variance. The directed perceptron training algorithm is
expensive with many matrix inversions, but it was effective in retrieving the ground truth
of synthetic data on unbalanced phylogeny. With regard to the mammalian data, i.i.d.
classifiers produced higher training accuracy, and phylogenetic classifiers produced higher
effective sample size accuracy, as long as there were at least four input features. With two
input features, ordinary classifier was more accurate in both metrics, but the accuracies
were not better than what a random classifier would produce.

All the studied dental traits show strong phylogenetic signal. Measured with D-
statistic, the strongest phylogenetic signal was found in HOD, ETH and OT. D-statistic
values were smaller than zero for all the dental traits, indicating phylogenetic dependency
that is at least as strong as in a binary trait with an underlying continuous Brownian
trait [28]. This level of phylogenetic signal in dental traits suggests phylogenetic patterns
which Fritz and Purvis called clumped or extremely clumped [28].

71
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Based on D-statistic values, one could have expected a slower saturation of trait
space as a function of phylogenetic distance than what is observed in Figure 7.10. Rol-
shausen et al. [70] present a nearly linear characteristic trait space saturation function for
Brownian motion, as opposed to exponential-like steep rise seen on the left side of Fig-
ure 7.10, which would suggest a stable optimum Ornstein-Uhlenbeck process. However,
the smoothed version of the same data (Figure 7.11) shows that it is relatively rare for
a pair of species to be closely related but have very different dental trait values. Also,
one difference with this analysis and simulations of Rolshausen et al. is that Rolshausen
discovered the characteristic saturation curves in the context of a univariate trait, but
here trait distances are Euclidean distances of 10-dimensional dental trait vectors.

Some ecological features of species show a strong phylogenetic signal. Of the studied
bioclimatic variables, NPP has the strongest phylogenetic signal with λ = 0.952, followed
by average coldest quarter temperature with λ = 0.872. High λ-value of NPP indicates
that NPP is distributed in the phylogeny of the dataset almost like a Brownian trait.
Based on the phylogenetic signal in NPP, species tend to live in similar environments as
their ancestors as productivity is concerned. Standard deviations of NPP, latitude, mean
annual temperature and annual precipitation have weaker phylogenetic signal than the
corresponding means, maxima and minima. Weakest phylogenetic signal was found in
standard deviation of NPP with λ = 0.392. Weak phylogenetic signal in standard devia-
tions implies that scale of variation in possible environments for herbivorous mammals is
not strongly passed to descendant species in evolution.

Of the bioclimatic variables, NPP has the clearest connection to dental traits. Con-
sidering that NPP also had the strongest phylogenetic signal of the studied environmental
features, NPP seems to affect mammal species the most of the studied variables. This
is not surprising because NPP is an estimate of annual food production for herbivorous
mammals.

Body mass is more correlated with latitude and temperature than NPP. In this data,
body size showed only a weak connection with NPP, contrary to results of Aava [1]. The
connection of latitude and body mass has been studied in the context of Bergmann’s law
[10], but considering that the dataset in study contained only large herbivorous mammals,
the causes for the connection here might be different than in [10]. Area of land, desert,
forest and grassland varies as a function of latitude, so the positive correlation between
body mass and maximum latitude in OLS and PGLS regressions might be caused by
availability of habitats.

Without phylogeny the data implies that structural fortification has a negative effect
on NPP in univariate regression, but with phylogeny the effect is positive. The same
applies for coronal cementum. This may imply that while the overall trend for NPP in
SF and CM is decreasing, some clades of mammals show an increasing trend. These
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kinds of patterns for differing OLS and PGLS slopes are presented in supplement of [10].
The results show that the relationship of NPP with SF and CM is more complex than
previously thought.

Phylogenetic linear regression models had better values of information criteria (AIC,
BIC) and likelihood than comparative ordinary linear regression models on the mammal
data. Comparison of phylogenetic and i.i.d. models is best to do with likelihood or AIC,
if possible. BIC contains an i.i.d. assumption [4], as obviously do ordinary squared error
and accuracy statistics. If one uses i.i.d. validation statistics, phylogenetic models likely
fare worse than i.i.d. models, even if their assumptions matched the data better than
i.i.d. assumptions.

Study of phylogenetic signal in input and output features revealed that both dental
traits and environmental features of mammal occurrence have strong phylogenetic de-
pendencies. For linear regression models, phylogenetic signal in output features is more
consequential than one in input features, although it is not equivalent to phylogenetic
signal in residuals [63]. Covariance structures in NPP, latitude, temperature and pre-
cipitation models were based on maximum likelihood λ-transformations, so they were
optimised for the training data. Phylogenetic and ordinary (linear) regression models are
based on different assumptions of the training data, so is not surprising that a phylo-
genetic model fares better in a model comparison when its assumptions match the data
better, and covariance is optimised in relation to the data.



9. Conclusions

We have proposed new machine learning methods and validation procedures for phyloge-
netic data and models. (1) Regularised PGLS as presented here offers a simple and easily
interpretable way to build regression models. It can be used for feature selection or to
avoid overfitting. Sequence of input variables in a LASSO-regularised PGLS model can
be different from sequence of the same variables in a LASSO-regularised OLS model.

For feature selection, LASSO-regularised PGLS offers two benefits compared to
phylogenetic PCA. First, the selection of features in regularised PGLS is made directly
in relation to the output variable. In PCA on the other hand, the principal components
do not necessarily have any connection to the target variable. Second, selected individual
features are easier to interpret than principal components that are linear combinations of
all features. A way to combine the two approaches is to choose principal components in
phylogenetic principal component regression using LASSO-regularisation.

(2) Phylogenetic instance based regression algorithm was presented, designed to
take into account local phylogenetic information in instance selection and output func-
tion. Prediction correctness and decrease of prediction variance are desirable properties of
phylogenetic regression algorithms. However, decrease of prediction variance was not ob-
served with phylogenetic KNN regression compared to the ordinary KNN algorithm. De-
spite these results, experiments with phylogenetic instance based methods are interesting
because generative and instance based prediction is unexplored territory in phylogenetic
comparative methods.

(3) Neural network regression is another family of methods that is not explored with
phylogenetic data. We have presented a phylogenetic loss function for neural network
regression in a general form, and shown how to recreate PGLS regression with neural
networks. Non-linear feed-forward networks with phylogenetic loss can be built on these
principles, increasing the available flexibility in phylogenetic discriminative regression
models.

(4) A classification framework based on effective sample size was presented, including
a generalisation of indicator loss, classification error and classification accuracy. Effective
sample size accuracy of a ground truth decision surface was found to have less variance
in resampling than ordinary classification accuracy, so the concept of effective sample size
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seems to offer good basis for a phylogenetic classification framework. Effective sample size
-based variants of the perceptron learning algorithm were able to learn weights closer to
the ground truth with less variance than ordinary pocket perceptron, when the phylogeny
was unbalanced. The quantity of effective sample size was introduced in the context of
phylogenetic mean, so it relates to this estimator, but experiments with synthetic and real
data indicate that it also has predictive power outside of context of phylogenetic mean.

Compared to i.i.d. models, phylogenetic models have additional complexity. To
begin with, one needs to choose an evolutionary model to map phylogenies to statisti-
cal dependencies. Interpretation of phylogenetic predictive models can be more difficult
than i.i.d. models because of additional evolutionary model component, some data varia-
tion attributed to phylogeny (for discussion, see Westoby [78]) and patterns on different
hierarchical levels (see supplement of Clauss et al. [10]).

Model comparison can be done with likelihood and information criteria, if model
likelihoods are available. Especially regarding regression models based on Gaussian cross-
entropy loss, likelihood is a concept that applies regardless of specific covariance assump-
tions. However, phylogenetic and ordinary models are based on different assumptions,
so model comparisons between them are comparisons of assumptions rather than direct
modelling success. The assumptions about data should influence evaluation procedures.

The analysis revealed diverse connections between mammal dental traits and their
environment. Previous research has concentrated mostly on the connection of community
HYP, LOP and primary productivity. This study diversifies the use of dental traits in
ecometric modelling, with the difference that here modelling is based on individual species
instead of communities.

NPP seems to capture herbivore diet the best of all studied environmental features.
Dental traits show only weak signal to environmental variability of geographical distribu-
tions of mammal species. Average and extreme values of bioclimatic variables generally
have both clearer signal on teeth and stronger phylogenetic signal. Personal hypsodonty
is a good predictor of NPP both in ordinary and phylogenetic models. HYP has consis-
tently a negative effect on NPP in all models, unlike SF and CM which can have positive
or negative effect on NPP depending if phylogeny is accounted for or not. In ordinary
univariate regression SF and CM have a negative effect on NPP. In univariate PGLS or
multivariate models the effect on NPP is positive. Personal LOP is a good predictor for
NPP in ordinary but not phylogenetic models.

Even if two species share similar ecological conditions, they can have different evolu-
tionary strategies. Because of phylogenetic niche conservatism, samples of related species
give information about traits in animals that share similar ecology and survival strategies.
Even if similarity of traits in relatives were not result of phylogenetic inertia but selection
pressure in similar ecologies [78], the related strategies form a correlation between the
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sample species.
Whether phylogenetic comparative methods assign too much of the trait variation

on phylogeny and too little on environment is out of scope for this study. In light of
the phylogenetic signals in the bioclimatic variables, species tend to live in similar en-
vironments as their relatives. Does it matter if phylogenetic signal arises from inertia
or similarities in environment? The methods do not make assumptions about the me-
chanics of the phylogenetic signal. In causality modelling [71] phylogenetic inertia vs.
shared environment might be different situations, while statistical models do not make
this distinction.

Most procedures in machine learning contain some explicit or implicit i.i.d. as-
sumptions. These include methods, training algorithms and validation procedures. We
have presented some procedures which assume that the data comes from a phylogenetic
process. Be it i.i.d. or phylogenetic methods, in predictive modelling we aim to find
structures that stay constant in resampling. In phylogenetic comparative methods, this
is counter-intuitive because resampling would mean rerunning the evolutionary process.
For the studied herbivorous mammals, development starting from the common ancestor
has taken 166 million years, and it cannot be redone. Current phylogenetic comparative
methods have their critics, but in mainstream comparative biology they are considered to
give better generalisations of phylogenetic data than i.i.d. models.

For models based on phylogenetic data, one should look beyond individual instances
and think about information in general, for example with the concept of effective sample
size. Then one is able to build generalisations and conduct statistical learning on the
processes that generated the data.
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