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Resumo 

 

O factor neurotrófico derivado do cérebro (Brain-derived neurotrophic factor- BDNF) e 

o seu receptor de alta afinidade, TrkB-FL, desempenham um papel central no sistema nervoso, 

dado que promovem suporte trófico aos neurónios e que regulam a transmissão e plasticidade 

sinápticas. 

A sinalização mediada pelo BDNF encontra-se diminuída na doença de Alzheimer 

(Alzheimer’s disease -AD), uma doença neurodegenerativa na qual ocorre acumulação do 

péptido beta amilóide (amyloid-beta -Aβ). Apesar dos mecanismos envolvidos na redução da 

sinalização mediada pelo BDNF na AD não serem totalmente conhecidos, o restabelecimento 

das acções do BDNF tem sido considerado como uma estratégia promissora para a terapêutica 

desta doença. 

Na última década tornou-se claro que a maioria das acções sinápticas do BDNF, 

incluindo as acções na transmissão e plasticidade sinápticas e também na libertação de 

neurotransmissores, é dependente da activação dos receptores A2A da adenosina (A2AR). 

Contudo, o uso de antagonistas dos A2AR tem sido apontado como uma possível estratégia 

terapêutica para o tratamento da AD. 

Dada a falta de evidências que clarifiquem os mecanismos envolvidos nas alterações da 

sinalização mediada pelo BDNF e o conhecimento de que a activação dos A2AR facilita a 

maioria das acções sinápticas do BDNF, o objectivo principal desta tese foi estudar o impacto 

dos péptidos Aβ e dos A2AR na sinalização mediada pelo BDNF. 

Este trabalho revelou que, em culturas primárias de neurónios corticais, o Aβ aumenta 

os níveis de mRNA dos receptores TrkB truncados, TrkB-T1 e TrkB-T2, sem afectar os níveis 

de mRNA dos receptores TrkB completos, TrkB-FL. Por outro lado, verificou-se que o Aβ 

aumenta os níveis proteicos do conjunto de receptores TrkB truncados e que diminui os níveis 

proteicos dos receptores TrkB-FL, por um mecanismo independente da proliferação glial e da 

activação de caspases. Foi ainda possível concluir que o Aβ induz a clivagem, mediada por 

calpaínas, dos receptores TrkB-FL, esta clivagem dá-se após o local de ligação da Shc e antes 

do início do domínio de cinase de tirosina, pelo que origina um novo receptor TrkB truncado 

(TrkB-T’), contendo o local de ligação à Shc, e um novo fragmento intracelular (TrkB-

intracellular domain- ICD), contendo a totalidade do domínio da cinase. No entanto, a presença 

destes fragmentos, não mostrou afectar a fosforilação do receptor TrkB-FL induzida pela 

exposição ao BDNF. Interessantemente, foi possível detectar o fragmento TrkB-ICD em uma 

amostra, post-mortem, de cérebro humano. Mostrou-se também que a inibição das calpaínas 

previne as alterações dos níveis proteicos das isoformas do TrkB, induzidas pelo Aβ, sem 

afectar as alterações ao nível do mRNA do TrkB. Por outro lado, este trabalho revelou que o 
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BDNF exógeno reduz a activação da caspase-3 e das calpaínas induzida pelo Aβ, de uma forma 

independentemente dos A2AR. 

Em fatias de hipocampo de ratos adultos, este trabalho mostrou que o Aβ diminui as 

acções do BDNF na plasticidade sináptica, nomeadamente na potenciação de longa duração 

(Long-term potentiation, LTP) na área CA1 do hipocampo, bem como no seu efeito sobre 

libertação de neurotransmissores (GABA e glutamato) de sinaptosomas. Notavelmente, o 

inibidor das calpaínas, MDL28170, mostrou restabelecer os efeitos do BDNF, na presença do 

péptido Aβ, tanto na plasticidade sináptica como na libertação de neurotransmissores. 

Este trabalho permitiu ainda concluir que o bloqueio crónico dos A2AR, in-vivo, através 

da administração de um antagonista selectivo (KW-6002), previne o efeito potenciador do 

BDNF na LTP, registada ex-vivo na área CA1 do hipocampo, e que diminui os níveis de mRNA 

e de proteína do receptor TrkB-FL, no hipocampo de rato. 

Em suma, o presente trabalho revelou que o péptido Aβ induz a clivagem dos receptores 

TrkB-FL, mediada pelas calpaínas, e que bloqueia as acções mediadas pelo BDNF na 

plasticidade sináptica e na libertação de GABA e glutamato por um mecanismo dependente da 

actividade das calpaínas. Se por um lado, o efeito do BDNF na plasticidade sináptica é perdido 

aquando da inibição crónica dos A2AR, o efeito protector desta neurotrofina contra a toxicidade 

induzida pelo Aβ mostrou-se independente da activação dos A2AR.  

 

Palavras-Chave:  

Doença de Alzheimer; neurodegeneração, neurotrofinas, potenciação de longa duração, 

libertação de neurotransmissores, TrkB, KW-6002, istradefylline, neuroprotecção 
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Abstract 

 

Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length receptor, 

TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and 

by regulating synaptic transmission and plasticity. 

BDNF signalling is impaired in Alzheimer’s disease (AD), a neurodegenerative disorder 

characterized, among other features, by the accumulation of the amyloid-β (Aβ) peptide. 

Although the mechanisms implicated in the reduction of BDNF signalling in AD were not 

clarified, the reestablishment of BDNF actions is considered as a promising strategy for AD 

treatment. 

In last decade it became clear that most of synaptic actions of BDNF, including the ones 

upon synaptic transmission, plasticity or upon neurotransmitter release, are fully dependent on 

adenosine A2A receptors (A2AR) activation. However, evidences indicate that A2AR antagonists 

can prevent the deficits in AD animal models.  

Given the lack of data clarifying the mechanisms behind the changes on BDNF 

signalling, namely changes on TrkB receptors, and the knowledge that A2AR activation 

facilitates most of BDNF synaptic actions, the main goal of this project was to study the impact 

of Aβ peptides and A2AR on BDNF signalling.  

This work revealed that in rat primary neuronal cultures Aβ selectively increases 

mRNA levels for the truncated TrkB-T1 and TrkB-T2 isoforms without affecting TrkB full-

length (TrkB-FL) mRNA levels. Moreover, Aβ increases protein levels of total pool of 

truncated TrkB receptors (TrkB-Tc) and decreases TrkB-FL protein levels. This effect is 

explained by the Aβ-induced calpain-mediated cleavage on TrkB-FL receptors, downstream of 

Shc binding site, which results in the formation of a new truncated TrkB receptor (TrkB-T’) and 

a new intracellular fragment (TrkB-ICD), which is also detected in post-mortem human brain 

samples. In hippocampal slices it was observed that Aβ impairs BDNF function in a calpain-

dependent way, upon modulation of GABA and glutamate release from hippocampal nerve 

terminals, and upon modulation of long-term potentiation (LTP). Finally, the exogenous BDNF 

strongly reduces the Aβ-induced activation of caspase-3 and calpain in neuronal cultures, an 

effect not affected by A2AR agonist or antagonist. 

Moreover, for the first time it was shown that chronic in vivo blockade of A2AR by a 

selective antagonist, prevents the facilitatory action of BDNF upon ex-vivo CA1 hippocampal 

LTP and decreases both mRNA and protein levels of the TrkB-FL receptor in rat hippocampus.  

 In conclusion, the present work shows that Aβ induces a TrkB-FL cleavage mediated by 

calpain and impairs BDNF-mediated effects in synaptic plasticity and neurotransmitter release 

in a calpain-dependent way. While the BDNF action upon synaptic plasticity is abolished under 
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chronic in vivo A2AR blocking conditions, the protective actions of this neurotrophin against Aβ 

toxicity were found to be dependent on A2AR activation. 
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1. Introduction 

 

1.1. Neurotrophins 
  

 Neurotrophins (NTs) are a closely related group of secreted proteins that promote 

growth, survival and differentiation of developing neurons and provide trophic support and 

regulate synaptic plasticity in mature neurons [1]. The first neurotrophin was discovered in 

1949, by Rita Levi-Montalcini. After a transplantation of a rat sarcoma tumour into chicken 

embryos she observed an increased growth and a hypertrophy of sensory and sympathetic 

neurons [2]. This observation led to the postulation that the tumour was able to release a soluble 

factor which induced the abnormal neuronal growth and differentiation. Later, with the 

collaboration of Stanley Cohen, the soluble factor was isolated and named as nerve growth 

factor (NGF). These findings were rewarded with Nobel Prize in physiology and medicine in 

1986. After the discovery of NGF, more neurotrophins were identified in vertebrates, namely 

the Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3) and NT-4 [3-5]. 

 

1.1.1. Neurotrophin release 

  

 Neurotrophins are initially synthesised as a precursor form (pro-neurotrophin) and 

secreted as homodimeric proteins [6, 7]. Pro-neurotrophins can be subsequently cleaved 

intracellularly by furin, or extracellularly by plasmin to produce the mature form 

(neurotrophins). Intracellular pro-neurotrophins can be released after the cleavage of the pro- 

domain (released as a mature neurotrophin), or can be released as an unprocessed pro-

neurotrophin [6]. The pro-neurotrophins and mature neurotrophins preferentially activate 

different type of receptors, p75NTR and Trk, respectively, which triggers different signalling 

pathways producing opposite cellular responses. Neurotrophins can be constitutively released, 

due to the spontaneous fusing of vesicles with plasma membrane, or can be released in a 

regulated-way dependent on neuronal activity. In particular, high frequency synaptic activity, 

such as theta-burst stimulation (TBS), increases the synaptic levels of mature BDNF by either 

increasing its release and the extracellular plasmin-dependent cleavage of pro-BDNF into 

mature BDNF. In opposition, low frequency stimulation, which induces synaptic depression, 

increases the release of pro-BDNF which remains uncleaved at the synapse (see Figure 1.1) [6, 

8]. 
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Figure 1.1 – Regulation of BDNF release upon synaptic activity. 

Left: In response to theta-burst stimulation (TBS), tissue plasminogen activator (tPA) and proBDNF are 

released into synaptic cleft. 1) Then, tPA cleaves plasminogen producing the active protease plasmin. 2) 

Plasmin cleaves proBDNF producing the mature BDNF. 3) BDNF then binds to its high-affinity receptor 

(TrkB-FL) triggering multiple intracellular signalling pathways which in turn contribute to long-term 

potentiation (LTP). Right: During low-frequency stimulation (LFS) proBDNF is secreted into the synapse 

and remains uncleaved in the synapse. Uncleaved proBDNF binds to its high-affinity receptor (p75NTR) and 

facilitates the induction of long-term depression (LTD). Figure adapted from [8]. 
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1.1.2. Neurotrophin receptors  

 

 The biological actions of neurotrophins are mediated by the activation of their cognate 

tropomyosin-related kinase receptor (TrkA, TrkB or TrkC) and by the activation of the common 

p75 neurotrophin receptor (p75NTR), which has been shown to modulate the affinity and 

selectivity of Trk activation [9]. Trk receptors are members of receptor tyrosine kinase (RTK) 

superfamily and promote neuronal survival and plasticity, while p75NTR is a member of tumour 

necrosis factor (TNF) receptor superfamily and can promote neuronal death under certain 

circumstances [1]. TrkA is the cognate receptor for NGF [10, 11], while TrkB was identified as 

the receptor for BDNF and NT-4/5 [12, 13], and TrkC as the receptor for NT-3 [14].  

 The Trk receptors and p75NTR receptor can function synergistically, antagonistically or 

independently of each other [8]. The mature neurotrophins bind with high affinity to Trk 

receptors, and p75NTR may act synergistically as a co-receptor [15]. In opposition, the pro-

neurotrophins bind with high affinity to the p75NTR with Sortilin acting as a co-receptor. The 

effects of neurotrophins upon neuronal survival, differentiation and synaptic plasticity are 

mediated by the Trk receptors system [16], while the opposing effects of pro-neurotrophins, 

such as cell death and decreased synaptic function, are mediated by p75NTR and Sortilin complex 

[17-19]. 

 All Trk receptors share a significant sequence homology and a conserved domain 

organization. The extracellular region of Trk receptors are composed by a leucine rich domain 

flanked by two cysteine rich regions. Under those domains, and prior to the transmembrane 

region, there are two immunoglobulin-like domains which define the ligand binding 

specificities of the receptor [20, 21]. Intracellularly, the Trk receptors are composed by a 

juxtamembrane sequence that includes the Shc binding site, a tyrosine kinase domain and a C-

terminal tail containing the phospholipase C gamma (PLCγ) binding site [21]. 

 Considering the focus of the present thesis, henceforth only BDNF and its receptor 

TrkB will be explored in more detail. 

 

1.1.3. Truncated TrkB receptors  

 

 The TrkB gene (NTRK2) can originate a full-length TrkB receptor (TrkB-FL) and, by an 

alternative splicing mechanism, it also can originate truncated receptors (TrkB-T1, TrkB-T2 and 

TrkB-T-Shc) [22-24]. The TrkB-T1 and TrkB-T2 have a unique short C-terminal tail (T1 with 

11 aminoacid residues and T2 with 9 aminoacid residues) [22], while the TrkB-T-Shc is a 

human brain-specific isoform which lacks the tyrosine kinase domain but contains the Shc 
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binding site. The truncated TrkB receptors cannot activate the canonical signalling pathways of 

full-length receptors, since they lack the intracellular kinase domain [24]. Additionally, 

truncated TrkB receptors can inhibit the BDNF effects by acting as dominant negative inhibitors 

of the TrkB-FL receptors [23, 25-27]. Indeed, multiple studies have shown that increased levels 

of truncated TrkB receptors have a negative impact in neuronal function and survival in both 

artificial and pathological conditions [28-30].  

 While the TrkB-FL is the most abundant isoform expressed in the early developmental 

period, in the post-natal period, and throughout aging, the truncated TrkB-T1 receptor became 

the most predominant TrkB isoform expressed in forebrain [31, 32]. TrkB-T1 can be expressed 

by neurons and astrocytes depending on the brain region. Accordingly, TrkB-T1 is highly 

expressed in astrocytes from pre-frontal cortex and subcortical white matter, but it is not present 

in astrocytes of the cerebellum and motor and visual cortex [33]. 

 One possible biological role of TrkB-T1 is to regulate extracellular levels and 

localization of BDNF in the brain. When extracellular BDNF is abundant, TrkB-T1 binds and 

sequesters the available BNDF, and it is internalized along with its ligand. After BDNF and 

TrkB-T1 internalization, the BDNF can be degraded in lysosomes or can be sorted to another 

cellular location and be released by exocytosis [34, 35]. Although the in-vivo function of 

truncated receptors remains unknown, it was shown that TrkB-T1 deficient mice have increased 

anxiety in association with morphological abnormalities in dendrites of basolateral amygdale 

neurons. The same study showed that the depletion of TrkB-T1 can also partially rescue the 

BDNF haploinsufficiency phenotype, further suggesting that TrkB-T1 at physiological levels 

may regulate and attenuate TrkB-FL signalling [36]. Despite the lack of intracellular kinase 

domain, some studies have shown that TrkB-T1 receptor activates distinct signalling cascades in 

astrocytes. In fact, TrkB-T1 alone can promote Ca2+ release from the endoplasmic reticulum 

(ER) in astrocytes, through the activation of G-protein and PLCγ, with consequent inositol-

1,4,5-triphosphate (IP3) formation (see Figure 1.2) [37]. Moreover, TrkB-T1 can bind to Rho 

GDP dissociation inhibitor I (RhoGDI1) and regulate actin cytoskeleton and glial morphology 

by modulating RhoGTPase activity [38].  

  

1.1.4. TrkB-mediated signalling cascades  

  

 The binding of BDNF to TrkB receptor homodimmers, activates the intrinsic tyrosine 

kinase domain of the receptor promoting an auto-phosphorylation of specific tyrosine residues 

located in the intracellular domain of TrkB [39, 40]. In particular, the binding of BDNF to TrkB 

results in a fast phosphorylation of 5 tyrosine residues of the receptor, within seconds to 

minutes. These phosphorylated residues include 3 tyrosines in the kinase activation loop of 
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TrkB (Y701, Y705 and Y706) which regulate the kinase activity, and 2 tyrosines residues 

(Y515 and Y816) responsible for the activation of signalling cascades [41]. Phosphorylation of 

Y515 of TrkB (or equivalent residues in other Trks receptors) forms an adaptor binding site that 

couples the receptor to phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein 

kinases (MAPK) signalling pathways, while phosphorylation of Y816 recruits and initiates 

PLCγ signalling pathway (see Figure 1.2) [42]. 

 

 

PI3K / Akt signalling pathway: 

  

 When phosphorylated at Y515, TrkB receptors recruit Src homology 2 domain 

containing (Shc) adaptor protein through its phosphotyrosine-binding (PTB) domain [43]. In 

turn, Shc protein associates with Growth factor receptor-bound protein 2 (Grb2), Grb-associated 

binding protein (Gab1/2) and son of sevenless (SOS), culminating in the transient activation of 

small GTPases, such as Ras. Active Ras stimulates signalling through c-Raf/MEK/ERK (MAPK 

pathway) and class I PI3 kinase (PI3K) pathway (see Figure 1.2) [44]. Activated PI3K 

phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2), producing the second messenger 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), which in turn stimulates the serine-threonine 

kinase Akt.  

 The signalling through the PI3K and Akt pathway are necessary and sufficient for the 

survival of certain populations of neurons [45]. The Akt kinase modulates the function of 

several substrates involved in the regulation of cell survival and growth. Akt phosphorylates and 

inactivates several pro-apoptotic proteins, such as procaspase-9 and Bcl2-associated death 

promoter (BAD), as well as Forkhead 1 transcription factor [46, 47]. Activated Akt can also 

inactivate GSK-3β, a kinase which has been implicated in neuronal apoptosis and inhibition of 

axon growth [48, 49]. On the other hand, Akt activates transcription factors that regulate the 

expression of anti-apoptotic proteins, such as cyclic AMP response element-binding protein 

(CREB) and nuclear factor-κB (NFκB) [50]. 
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Ras/MAPK pathway: 

  

 As mentioned above, the binding of Shc adaptor protein to the phosphorylated Y515 of 

TrkB activates the Ras protein. Activated Ras stimulates the MAPK/ERK kinase (MEK) which 

in turn activates the extracellular signal regulated-kinases (ERK). The ERK/MAPK signalling 

cascade activates transcription factors such as CREB [51], which in turn control the expression 

of several proteins implicated in survival, growth and differentiation of neurons. ERK activates, 

by phosphorylation, the ribosomal s6 kinase (RSK), which in turn further activates transcription 

factors, such as CREB, c-Fos and NF-κB [52-54]. Additionally, BDNF enhances protein 

translation in neurons through the Erk/MAPK pathway, by phosphorylating eukaryote initiation 

factor 4E (eIF4E) and its binding protein (eIF4E-binding protein-1) [55].  

 

 

PLCy pathway: 

 

 Phosphorylated Y816 of TrkB directly recruits PLCγ1 which in turn is phosphorylated 

and activated by the TrkB kinase domain. Activated PLCγ1 hydrolyses PIP2 and generates 

inositol triphosphate (IP3) and diacylglycerol (DAG) [56]. While DAG activates DAG-

regulated protein kinase C (PKC) isoforms, the IP3 promotes the release of Ca2+ from 

intracellular stores, such as ER, through activation of IP3 receptor (IP3R). The increase in 

cytosolic Ca2+ activates diverse enzymes, including Ca2+-regulated PKC isoforms and Ca2+-

calmodulin-dependent kinases (CaMKII, CaMKK and CaMKIV). PLCγ pathway is crucial for 

synaptic plasticity, since mice with point mutations on Y816 of TrkB, but not on Y515, have 

impaired long-term potentiation. The PLCγ also promotes the activation of CREB transcription 

factor through CaMKIV, and point mutation on Y816 strongly impairs CREB activation [57]. 
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Figure 1.2 – Schematic representation of TrkB receptors signalling pathways. 

BDNF binds to the extracellular region of TrkB receptor, which is equal in both TrkB truncated T1 and full-

length (FL) receptor. After the binding of homodimeric BDNF to homodimeric TrkB-FL, the kinase domain 

of the receptor became active and trans-phosphorylates the receptor in the tyrosine 515 and 816 (also 

named as Y484 and Y785, respectively, when the TrkB signal peptide is ignored for the aminoacid 

counting). Phosphorylated tyrosine 515 recruits the binding of Shc adaptor protein, which in turn lead to 

the activation of Ras/MEK/ERK (MAPK pathway) and PI3K/Akt signalling pathway. PLCγ signalling 

pathway is triggered after the binding of PLCγ to phosphorylated tyrosine 816 of TrkB. The signalling 

mediated by TrkB-FL promotes transcriptional programs that regulate synaptic plasticity, neuronal 

differentiation, growth and survival and motility. TrkB-T1 lacks the tyrosine kinase domain, however, 

evidences show that its activation can trigger Ca2+ waves in astrocytes. Figure adapted from [58] 
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1.1.5. BDNF and long-term potentiation 

  

 Long-term potentiation (LTP) is a long-lasting increase in synaptic strength induced by 

some patterns of synaptic stimulation, such as high-frequency stimulation (HFS) or TBS, and it 

is commonly accepted as the neurophysiological basis for learning and memory [59, 60]. In 

opposition, long-term depression (LTD) is a long-lasting depression on synaptic transmission 

after a period of low-frequency stimulation of the synapse. Thus, synaptic plasticity is the 

ability of synapses to change their efficacy depending on their activity.  

 The LTP on Cornu Ammonis 1 (CA1) area in the hippocampus is dependent on 

NMDAR, a glutamate receptor permeable to Ca2+ ions, in which the pore is usually occluded by 

Mg2+ at a resting membrane potential. During high-frequency stimulation the synaptic release of 

glutamate depolarizes the post-synaptic terminal, through an AMPAR-dependent Na+ influx, 

and allows the removal of Mg2+ and the consequent activation of the NMDAR by the glutamate 

in the synapse. The NMDAR-mediated influx of Ca2+ at the post-synaptic terminal activates 

Ca2+-dependent proteins, such as CaMKII, which trigger intracellular cascades necessary for 

LTP induction. The increased cytosolic Ca2+ on post-synaptic terminal also triggers the 

AMPARs trafficking to post-synaptic density (PSD), resulting in a greater post-synaptic 

response to glutamate [61]. LTP is classically divided into early LTP (E-LTP) and late LTP (L-

LTP). E-LTP requires modifications in existing proteins, whereas L-LTP is only induced by 

strong stimulation and requires de-novo proteins synthesis and structural modifications on 

synapses [62]. Despite years of intensive investigation on hippocampal LTP induced by HFS, 

only recently it was proven that learning actually induces LTP in the hippocampus of behaving 

animals [63, 64].  

 The first evidence that neurotrophins are important for synaptic function arise in early 

1990s, when it was discovered that exogenous BDNF or NT-3, but not NGF, enhances synaptic 

activity on neuromuscular synapses [65]. Later, it was found that BDNF or NT-3, but not NGF, 

increases the basal synaptic transmission in hippocampal CA1 area [66]. The finding that BDNF 

might also have a role in hippocampal LTP came from experiments preformed in a BDNF-

deficient mice. In this mice model, a significant impairment on hippocampal LTP magnitude 

was detected [67]. Interestingly, LTP was restored after reintroduction of BDNF gene in CA1 

area by a virus-mediated gene transfer [68], or by exogenous addition of BDNF [69]. Several 

other works have been demonstrating the central role of BDNF in synaptic plasticity. 

Accordingly, intrahippocampal infusion of BDNF in living rats was shown to elicit long-term 

synaptic potentiation [70]; the application of exogenous BDNF to hippocampal slices from 

young mice enhanced the L-LTP induced by tetanic stimulation, which in the absence of BDNF 

only elicit a short-term potentiation (E-LTP) [71]; the scavenger of endogenous BDNF by 
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soluble TrkB-IgG fusion protein or by specific antibodies resulted in a reduced hippocampal 

LTP magnitude [71, 72] not seen for NT-3 or NT-4 [72]. The TrkB or BDNF null mice have 

severe phenotype and die between birth and weaning age, hampering the study of these proteins 

in LTP in an adult stage. However, a conditional TrkB knockout mouse, where the gene 

deletion was restricted to the forebrain neurons in the post-natal period, showed impaired LTP 

on CA1 hippocampal synapses, and impaired learning behaviour in the adult stage, without 

gross phenotypical aberrations [73]. Together, these evidences clearly showed that endogenous 

BDNF is required for normal LTP and learning, and that exogenous BDNF can induce or 

facilitate the LTP expression. 

Other studies have provided mechanistic clues through which BDNF and TrkB 

activation facilitates LTP at glutamatergic hippocampal synapses (see Figure 1.3). Endogenous 

BDNF is released from glutamatergic synapses, in a Ca2+-dependent way, in response to 

stimulus used to induce LTP, such as TBS (see Figure 1.1) [74, 75]. Released BDNF can 

facilitate LTP at excitatory CA1 synapses by increasing presynaptic release of glutamate, and by 

amplifying the postsynaptic response to this neurotransmitter [76]. In particular, BDNF 

increases the Ca2+-dependent release of glutamate in cortical and hippocampal nerve terminals 

(synaptosomes) [77, 78] and in cultured hippocampal neurons [79]. The presynaptic stimulation 

of glutamate release by BDNF is mediated by a MAPK-dependent phosphorylation of the 

synaptic vesicle protein synapsin-I. In mice lacking the synapsin the effect of BDNF upon 

glutamate release is strongly attenuated [80]. On the other hand, BDNF, through its post-

synaptic TrkB receptor, stimulates tyrosine kinase Fyn, which in turn phosphorylates the 

NMDAR and increases its activity [81, 82]. In cultured neurons, BDNF further modulates 

glutamatergic synapse at postsynaptic level, by increasing the levels and the trafficking of 

AMPAR to membrane [83, 84]. Moreover, exogenous BDNF, at nanomolar concentration, 

depolarizes and excites hippocampal and cortical neurons just as quickly and effective as 

glutamate at a micromolar concentration [85]. In fact, BDNF induces a fast neuronal 

depolarization, in a TrkB dependent-way, by activating Na+ channel NaV1.9 allowing the influx 

of sodium ions [85, 86]. Consequently, the BDNF-induced depolarization activates voltage-

gated Ca2+ channels (VGCC) evoking Ca2+ transients which are detectable in the dendrites and 

spines of hippocampal neurons, but not at presynaptic sites [87]. In this way, BDNF cooperates 

with NMDAR during LTP induction by promoting an additional influx of Ca2+ in the post-

synaptic terminal. Thus, pairing a brief application of BDNF in dendrites and a weak burst of 

synaptic stimulation, elicit a fast and robust induction of LTP [87]. 

Interestingly, a recent study showed that acute or gradual increases in BDNF elicit 

distinct signalling and neuronal effects. While a gradual increase in BDNF concentration (slow 

perfusion rate) selectively facilitates LTP in hippocampal slices, a rapid increase in BDNF 

concentration (fast perfusion rate) increases the synaptic basal transmission instead [88]. This 
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study highlighted the importance of the kinetics of TrkB activation, and explained, in part, some 

conflicting results in the literature, regarding the pre- and post-synaptic effects of BDNF. 

  On top of BDNF-mediated fast changes in synaptic efficacy, BDNF has also a crucial 

role in maintenance of late-phase LTP (L-LTP), synaptic consolidation and long-term memory 

storage [89, 90]. BDNF synthesis is found to be increased in hippocampal neurons 2-4 hours 

after L-LTP-inducing stimuli, such as strong TBS [91, 92]. Unlike E-LTP, the L-LTP 

expression is dependent on protein synthesis. Surprisingly, application of exogenous BDNF is 

able to rescue L-LTP in the presence of protein synthesis inhibitors [93]. This perplexing result 

was recently demonstrated to be dependent on PKMζ, an atypical PKC isoform present in brain 

[94]. Weak TBS normally induce an E-LTP, which last less than 2 hours, and fail to elicit an L-

LTP. However, when pairing BDNF perfusion and weak TBS, it produces a reliable L-LTP in 

CA1 area of hippocampus [93]. Moreover, mice lacking tissue plasminogen activator (tPA), a 

protease involved in the conversion of pro-BDNF into BDNF, have a selective deficit in L-LTP 

expression without affecting E-LTP in hippocampus [95]. Moreover, perfusion of BDNF in tPA 

null mice prevented the L-LTP impairment [93]. Indeed, evidences suggest that BDNF may 

trigger L-LTP by regulating local dendritic protein translation and concomitantly increasing 

synthesis of LTP-associated proteins, such as Arc, GluR1, CaMKII, PSD-95 among others. 

BDNF can also regulate actin cytoskeletal dynamics which are required for structural changes 

of synapses and L-LTP formation [96]. 
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Figure 1.3 – Modulation of glutamatergic synapse by BNDF. 

BDNF can enhance the transmission and plasticity of glutamatergic synapses. Presynaptic activation of 

TrkB-FL by BDNF increases the glutamate release. Postsynaptic activation of TrkB-FL increases the 

postsynaptic response to glutamate by distinct mechanisms: 1) TrkB induces the phosphorylation of 

NMDAR, through Fyn kinase, increasing its activity; 2) TrkB depolarizes the postsynaptic terminal by 

promoting the influx of cations through transient receptor potential channels (TRPC) which might facilitate 

the Ca2+ entry through NMDAR and voltage-gated channels and 3) TrkB modulates AMPAR expression 

and trafficking to the postsynaptic membrane. Figure adapted from [97]. 
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1.1.6. Facilitation of BDNF synaptic actions by adenosine 

  

 Adenosine is a ubiquitous nucleotide that acts as an extracellular signalling molecule. 

Adenosine is a neuromodulator that regulates synaptic activity, by modulating the presynaptic 

neurotransmitter release, by depolarizing or hyperpolarizing the postsynaptic neuron or even by 

regulating glial cells activity. Overall, adenosine acts as a depressant of excitatory glutamatergic 

transmission and reduces excitability [98]. Extracellular adenosine can derive from the direct 

release of intracellular adenosine by equilibrative nucleoside transporters (ENT), or from 

catabolism of extracellular adenosine triphosphate (ATP) [99]. Adenosine can be released 

constitutively, or in an active-dependent manner through a calcium-dependent presynaptic 

release [100]. Extracellular adenosine has a short half-life time, since it is quickly reuptaked or 

converted to inosine or to adenosine monophosphate (AMP) by adenosine deaminase (ADA) or 

by adenosine kinase (ADK), respectively [99].  

Extracellular adenosine exerts its actions through activation of four distinct G protein-

coupled receptors (GPCR) namely, A1, A2A, A2B and A3 receptors. Adenosine A1 receptors 

(A1R) are prevalent in the brain, being highly expressed in the cortex, cerebellum, hippocampus 

and spinal cord. A1R and A2AR are high affinity receptors, with a Kd of 70 and 150nM, 

respectively [101]. A1R are coupled to inhibitory G-proteins (G0/Gi) which inhibit synaptic 

transmission by inhibiting cyclic adenosine monophosphate (cAMP) production [102]. In 

opposition, the A2AR are coupled to stimulatory Gs-proteins and potentiate synaptic 

transmission by increasing cAMP production [101, 102]. A2AR are mainly expressed in 

olfactory bulb and striatum, being also present in hippocampus at lower levels [103, 104]. Both 

A2AR and A1R can be present in the same synapse, and activated simultaneously by adenosine 

[99]. Regarding the adenosine A2BR and A3R, both have low affinity for adenosine (Kd = 5 and 

6µM, respectively) and are weakly expressed in CNS [98]. 

 In addition to the modulatory actions of adenosine upon neurotransmitter release and 

synaptic plasticity, adenosine also modulates the actions of other modulators, such as 

neurotrophins [99]. The first direct evidence for the cross-talk between adenosine and 

neurotrophins, arose from the observation that adenosine, or a A2AR agonist, trans-activates 

TrkA or TrkB receptors in PC12 cells or hippocampal neurons, respectively, in the absence of 

neurotrophins [105]. Nevertheless, the A2AR-mediated transactivation of Trk receptors has 

different aspects when comparing to the conventional Trk activation by the respective 

neurotrophins. In particular, A2AR activation promotes the phosphorylation of an immature, 

non-glycosylated, sub-population of Trk receptors associated mainly with Golgi membranes. In 

addition, this Trk transactivation is only detectable after 3 hours of A2AR activation, while the 



1. Introduction 

13 

classical phosphorylation of Trk receptors by the cognate neurotrophin, occurs in the mature, 

fully-glycosylated, receptors within seconds to minutes [106, 107].  

 In functional experiments, multiple evidences have been shown that A2AR activation is 

necessary for synaptic effects of BDNF in hippocampus. Indeed, in hippocampal slices from 

young rats, exogenous application of BDNF increases basal synaptic transmission only when a 

previous depolarization stimulus is made, an effect blocked by an A2AR antagonist. Moreover, 

pre-synaptic stimulation, or activation of A2AR by a selective agonist or by adenosine, triggered 

the excitatory action of BDNF upon synaptic transmission, in a process dependent on PKA 

signalling [108, 109]. Thus, it is concluded that BDNF effects upon synaptic transmission 

require an activity-dependent presynaptic release of adenosine and consequent A2AR activation. 

In addition, in hippocampal slices from adult rats, where both levels and actions of A2AR are 

increased, the addition of exogenous BDNF spontaneously increases basal synaptic 

transmission, an effect fully blocked by an A2AR antagonist [109]. Interestingly, in ADK-

deficient mice, which have increased levels of extracellular adenosine, the spontaneous increase 

in hippocampal synaptic transmission induced by BDNF is observed even in young animals, an 

effect not present in age-matched wild-type mice. In opposition, the BDNF-induced 

spontaneous increase in hippocampal synaptic transmission present in adult wild-type mice, is 

not detected in age-matched ADK-overexpressing mice, which have lower adenosine levels 

[110]. Furthermore, the genetic deletion of A2AR abolished the excitatory effects of BDNF upon 

synaptic transmission in mice [111]. Similarly to hippocampus, it was also found that A2AR and 

PKA activation are required for the excitatory BDNF effects upon transmission in 

neuromuscular junction [112]. In addition to synaptic transmission, the effects of BDNF upon 

synaptic plasticity, both in LTP and LTD, are also fully dependent on A2AR activation, since 

both effects are lost when extracellular adenosine is removed or when PKA or A2AR are 

inhibited [108, 111, 113-116]. Together, these results indicate that A2AR activation, and 

subsequent PKA signalling, are essential to trigger the BDNF excitatory effects upon synaptic 

plasticity and transmission. Since that exogenous BDNF spontaneously facilitates LTP 

induction and expression in hippocampal slices from young animals, it suggests that the release 

of adenosine and its precursor ATP induced by the high-frequency stimulation is enough to 

activate A2AR and trigger the BDNF actions [99].  

 Recently, it was shown that A2AR activation promotes the translocation of TrkB-FL to 

lipid rafts domains in the membrane. Importantly, high-frequency stimulation resulted in 

increased levels of TrkB in lipid rafts, an effect abolished by the removal of endogenous 

extracellular adenosine. Thus, adenosine, through A2AR activation, promotes an activity-

dependent insertion of TrkB in lipid rafts , facilitating the phosphorylation of TrkB-FL and the 

BDNF-mediated actions [117].  
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 Furthermore, the effects of BDNF upon GABA and glutamate release in synaptosomes 

are also dependent on A2AR activation (unpublished data from our lab). Conversely, the effects 

of BDNF upon neuronal branching [118], or upon GABA uptake at nerve endings [119], do not 

depend on tonic activation of A2AR (see Figure 1.4). However, pharmacological activation of 

A2AR in synaptosomes enhances the inhibitory effect of BDNF upon GABA uptake [119]. 

 The findings that many synaptic actions of BDNF are dependent on A2AR activation 

may open new therapeutic possibilities to boost the BDNF effects in neurodegenerative diseases 

where its signalling is known to be impaired. Multiple evidences showed that BDNF 

administration into the brain produces substantial benefits in in-vitro and in-vivo models of 

neurodegeneration. However, the translation of this approach to patients has been hampered by 

difficulty of BDNF to cross the blood-brain barrier (BBB) and by the poor bioavailability and 

stability of BDNF, which has a short half-life time in biological fluids [120]. Thus, small-

molecules that modulate A2AR activity, or its signalling, might constitute a way to promote 

BDNF synaptic effects in situations where BDNF signalling is compromised. Moreover, in 

opposition to the indiscriminate administration of BDNF into the brain, the approach of A2AR 

modulation has the advantage of only stimulating BDNF effects on neuronal subpopulations 

which co-express A2AR, TrkB and BDNF, such as hippocampus or cerebral cortex, both regions 

affected in Alzheimer’s disease (AD) [105, 121]. 

 

Figure 1.4 – Cross-talk between TrkB and A2A receptors.  

BDNF actions upon synaptic transmission in hippocampus and neuromuscular junction, as well as, 

synaptic plasticity in hippocampus are fully dependent on A2AR activation. Figure adapted from [99] 



1. Introduction 

15 

1.2. Calpain system 
 

 Proteases are a class of enzymes that catalyse the hydrolysis of peptide bounds. 

Depending on mechanism of catalysis, proteases are currently classified into 6 subgroups: 

aspartic, glutamic, cysteine, metalloproteases, serine, and threonine proteases. Cysteine 

proteases, also known as thiol proteases, use a nucleophilic cysteine thiol in the active site to 

attack the carbonyl-carbon of the amide bond and hydrolyse the peptide bond [122]. In the 

protease classification system of MEROPS database [123], the pure cysteine proteases are 

currently divided into 10 clans accordingly to their evolutionary relationship, tertiary structure 

and sequence motifs around catalytic site. Each clan of proteases can be further divided into 

several families based on their sequence homology. Calpains, papain and cathepsins are all 

members of clan CA, however, papain and cathepsins belong to the C1 family and are 

synthetized as inactive proenzymes with N-terminal propeptides, while calpains belong to the 

family C2 and are not synthetized as classical proenzymes [124].  

 

1.2.1. Calpains 

 

 Calpains (EC 3.4.22.17), previously named as Ca2+-activated neutral protease, are 

cytosolic proteases ubiquitously expressed in mammals and have the peculiarity of being 

activated by a Ca2+-induced conformational change [125]. Calpains were discovered 50 years 

ago, in 1964, when a Ca2+-dependent protease activity was found in soluble fractions of rat brain 

at neutral pH [126]. The prototypical members of calpain family are the µ-calpain and m-

calpain. These proteases differ in the Ca2+ concentration required for their activation in-vitro. 

The µ-calpain requires 3-50µM of Ca2+ for half-maximal activity, while m-calpain requires 400-

800µM of Ca2+ [127]. Both proteases are heterodimers consisting in an 80 kDa catalytic large 

subunit (calpain-1 in µ-calpain and calpain-2 in m-calpain), associated with a common 30-kDa 

small regulatory subunit, CAPNS1 (see Figure 1.5). In 1984 the catalytic large subunit of µ-

calpain (calpain-1) was cloned, and its primary sequence revealed that it contained 4 domains. 

The Domain II of calpain-1 is the catalytic domain and is similar to papain-like thiol proteases, 

while the domain IV is similar to calmodulin-like Ca2+-binding proteins. These findings suggest 

that calpains are evolutionary derived from the fusion of a thiol protease with a Ca2+-binding 

protein [128].  

 Until now, it was found 15 human isoforms of calpain large subunit based on human 

genome sequence, being these homologs classified as ubiquitous or tissue-specific [129]. For 

instance, the mRNA of calpain-3a and calpain-8a are mainly found in muscle, while calpain-6 is 

found in placenta and calpain-11 in testis [127]. Although the protease domain (domain II) is 
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conserved in calpain family, there are members that lack, or have different, domains resulting in 

atypical calpains that may not dependent on Ca2+ (eg: Calpain-3) or may not have regulatory 

subunits. Moreover, there are also a calpain member (Calpain-6), that lacks the essential 

cysteine residue of the catalytic triad and may not even have proteolytic activity [129]. 

Nevertheless, atypical calpains have a biological function, and recent evidences showed that the 

non-catalytic calpain-6 regulates microtubule dynamics in cultured cells and regulates skeletal 

muscle development in mice [130].  

 The prototypical calpain-1 and calpain-2 (the large subunits of µ- and m-calpain, 

respectively) are ubiquitously expressed in mammalian cells and are the most abundant and 

characterized isoforms in the brain [131]. The calpain small regulatory subunit (CAPNS1) are 

also expressed in the brain [132]. It was shown that calpain-2 mRNA levels were 15-fold higher 

than calpain-1 levels in whole mice brain homogenate, whereas the distribution of calpain-1 

mRNA was uniform throughout the brain, calpain-2 mRNA was enriched in certain neuronal 

populations including hippocampal and cortical pyramidal neurons [133]. Subcellular 

localization of calpains is widely attributed to soluble (cytosolic) fraction; however, recent 

studies showed that calpains are also associated with different subcellular compartments. In fact, 

evidences obtained from neuroblastoma cells, neuronal cultures and rat cortex, showed that µ-

calpain is present at mitochondrial intermembrane space, placing it in proximity to its 

mitochondrial substrates and to Ca2+ released from mitochondrial stores [134]. During ischemic 

neuronal injury, the intra-mitochondrial µ-calpain can cleave and activate mitochondrial pro-

apoptotic proteins, such as apoptosis inducing factor (AIF), which in turn mediate neuronal 

death signalling [135]. The m-calpain was also found in the nucleus of cultured neurons, where 

this nuclear calpain regulates Ca2+-dependent signalling by cleaving the CaMKIV [136]. 

 The crystal structure of Ca2+-free m-calpain revealed that the catalytic site located in 

domain II (in large subunit), is not assembled in the absence of Ca2+, suggesting that Ca2+ may 

trigger conformational changes necessary to form a functional active site. Moreover, in 

opposition to classical proenzymes (eg: papain) whereas the N-terminal propeptide blocks the 

active site, the structure of calpain-2 revealed that the N-terminal anchor (Domain I) does not 

occupy the active site but inhibits its assembly. In addition, the structure indicated that the N-

terminal anchor regulates the calpain affinity to Ca2+ by interacting with the small regulatory 

subunit (CAPNS1) [137]. The N-terminus of Domain I is autolysed during initial Ca2+-induced 

calpain activation. Although calpain autolysis reduces the requirement for Ca2+, it is not a 

prerequisite for its activation [124, 127, 138]. Furthermore, the domain III of the large subunit 

contains C2 subdomains that are implicated in conformational changes during Ca2+ binding and 

may be involved in binding to membrane phospholipids [139, 140]. The carboxy-terminal 

domain IV of calpain large subunit is a calmodulin-like domain and contains five Ca2+-binding 

EF-hand motifs, in which the fifth motif promotes the dimerization and binding to the small 
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subunit CAPNS1 [141]. In addition, the 30-kDa CAPNS1 has two distinct domains. The N-

terminal domain (domain V) contains a hydrophobic sequence of aminoacids that may interact 

with plasma membrane [142, 143]. During calpain activation this domain is autolysed [144]. 

The Domain VI of CAPNS1 also contains a penta EF-hand domain and is very similar to the 

domain IV of the large subunit (see Figure 1.5). The biological function of CAPNS1 is not fully 

understood, and early evidences show that this small subunit is not required for catalytic activity 

of the large subunit [136]. Nevertheless, in-vitro experiments showed the small subunit acts as a 

chaperone and assists in the folding of the catalytic large subunit [136].  

 Either the large subunit of m-calpain (calpain-2) or the small subunit CAPNS1 are 

essential for mammalian life, since the genetic deletion of these proteins cause early embryonic 

lethality in mice [145, 146]. Interestingly, knockout mice for the large subunit of µ-calpain 

(calpain-1) are viable and fertile, despite showing a reduced platelet function [147]. 

 

 

 

Figure 1.5 – Schematic representation of µ-calpain structure. 

The 80-kDa large subunit of µ-calpain (CAPN1 or calpain-1), or m-calpain (CAPN2 or calpain-2), contains 

four domains (DI to DIV), while the 30-kDa small subunit (CAPNS1) contains two domains (DV and DVI). 

CAPNS1 associates with CAPN1, or with CAPN2, to form a heterodimer (µ-calpain and m-calpain, 

respectively). Domain I is autolysed upon calpain activation. The Domain IIa and IIb constitute the 

protease core, and contain the catalytic triad residues (shown with ovals). C2-like domain (DIII) is involved 

in binding to phospholipids and Ca2+, and influences the calcium-induced activation of calpain. The 

domain IV and VI contain five calcium-binding EF hands motifs (shown with ovals), and associate to form 

the heterodimeric calpain. Domain V is a glycine-rich domain and may interact with cell membranes. The 

m-calpain large subunit, CAPN2, is structurally similar to CAPN1. The figure was adapted from [148]. 
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1.2.2. Calpain substrates and cleavage specificity 

 

 The substrate specificities of the conventional calpains (m- and µ-calpain) are very 

similar. Calpains usually cleaves the substrates in inter-domain regions, producing large 

fragments rather than small peptides [127]. Thus, in opposition to digestive enzymes, the 

limited hydrolysis of calpains indicates their function as modulatory proteases [149]. The 

crystallography structure of Ca2+-bound m-calpain showed that the active site of this protease is 

deeper and narrower than others papain-like proteases. The constrains imposed by the cleft size 

indicate that the substrate should be in an extended conformation to fit the cleft, and may 

explain why calpains usually cleave unstructured inter-domain regions [150]. Although the 

protease domain (domain II) is highly conserved in calpain family, the substrate specificities of 

non-conventional calpains differ from the conventional µ- and m-calpain [151]. These 

differences suggest that the cleavage in the active site may depend on interactions between the 

substrate and other calpain interfaces. In opposition to other cysteine proteases, such as 

caspases, the cleavage mediated by calpains is not merely determined by the aminoacids 

sequence in the substrate. For calpains, the cleavage site is strongly determined by the 

conformation of the substrate rather than its primary aminoacid sequence [127]. Studies of 

bioinformatics have been attempted to predict calpain cleavage sites based on known cleavage 

sites determined experimentally. The most advanced predicting tool uses a machine learning 

process instead of the standard sequence analysis algorithms, such as the position-specific 

scoring-matrix method [152]. However, the accuracy of calpain cleavage site prediction still 

needs further improvements [153].  

 Calpains cleave a wide range of substrates. Accordingly to Calpain for Modulatory 

Proteolysis Database (CaMPDB – www.calpain.org) there are currently 97 experimentally 

confirmed mammalian calpain substrates and more than 1.000 computationally predicted 

mammalian substrates [154]. The confirmed calpain substrates include several proteins, such as: 

1) cytoskeletal proteins (eg: integrins, cadherin, microtubule-associated proteins MAP1 and 

MAP2, neurofilament 1 and 2, glial fibrillary acidic protein - GFAP, spectrin, tau); 2) signal 

transduction proteins (CaMKIV, epidermal growth factor receptor kinase, protein kinase A and 

C, GSK3β, IP3R, calcineurin, IκB, protein tyrosine phosphatase 1B); 3) apoptotic controllers 

(Apaf-1, AIF, Bax, Bid, Bcl-XL, BAK, caspase-3, 7, 8, 9, 12 and 14); 4) transcription factors 

(p53, c-jun, c-fos) and 5) synaptic proteins (APP, metabotropic and ionotropic glutamate 

receptors, dynamin-1, GAP-43, PSD-95), among others [155]. Interestingly, calpains often 

produce fragments with a reduced, enhanced or even different activity than the original 

substrate. For instance, a recent study showed that, in hippocampal neurons, an NMDAR-
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dependent activation of calpain induces a cleavage in β-catenin at the membrane, producing a 

stable fragment that translocates to the nucleus and induces gene transcription [156]. 

 The prototypical substrate of calpains is the αII-spectrin, a structural protein that 

maintains cell shape and links the cytoskeleton to plasma membrane. The cleavage of αII-

spectrin by calpain was firstly described in neurons. Calpain initially cleaves αII-spectrin 

(280kDa) producing two products with identical electrophoretic mobility (150kDa), and then it 

subsequently cleaves one product producing a 145 kDa spectrin breakdown product (SBDP 

145). In addition, caspase-3 cleaves the full-length αII-spectrin or the SBDP145, to produce an 

apoptosis-specific SBDP120 [157].  

 

1.2.3. Regulation of calpain activity 

 

 Calpain activity is regulated by its endogenous inhibitor calpastatin, and by other 

mechanisms including phosphorylation, Ca2+ requirements modifications and most likely 

subcellular localization [127].  

 

Calpastatin 

 

 Calpastatin is a ubiquitous endogenous protein that specifically inhibits the activity of 

µ-calpain and m-calpain. Calpastatin is encoded by CAST gene in humans, and due to multiple 

promoter usage and alternative splicing, it can originate distinct isoforms with N-terminal 

variation [148]. 

 The prototypical calpastatin (~80kDa) contains an N-terminal domain (L Domain), 

which function is not completely known, and four repetitive inhibitory domains (I-IV) in which 

all four domains have a similar and very high inhibitory activity against µ- and m-calpain [158]. 

Calpastatin is an intrinsically unstructured protein capable of simultaneously binding to four 

molecules of calpain, in the presence of Ca2+ [159]. Each inhibitory domain of calpastatin 

contains three conserved subdomains (A, B and C). In the presence of Ca2+, subdomain A and C 

binds to the calmodulin-like domains of calpain (to domain IV in the large subunit and to 

domain VI in the small subunit, respectively) [160], while a peptide derived from subdomain B 

inhibits the catalytic activity, indicating that this region interacts with domain II [161]. 

Recently, two groups simultaneously resolved the crystallographic structure of calpastatin 

bonded to m-calpain in the presence of Ca2+ [139, 162]. This structure showed that m-calpain 

binds to ten Ca2+ atoms, and that the inhibitory domains of calpastatin recognize the Ca2+-bound 

m-calpain conformation wrapping around the protease in a tight and specific way. The 

subdomain B of calpastatin inhibitory domain occludes the catalytic cleft, but it avoids its own 
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cleavage by looping out and around the active cysteine residue (see Figure 1.6) [139, 162]. 

Taken together, multiple crystallographic structures of calpains have been shown that Ca2+ 

switches calpain from the inactive to the active state, allowing the binding of calpastatin and 

consequent calpain inhibition [137, 139, 162].  

 Calpastatin can be cleaved by calpains in its inter-domains regions, but the proteolytic 

fragments retain their inhibitory activity [163]. Nevertheless, calpastatin is cleaved by caspases 

during apoptosis, and in this case, it loses its inhibitory activity allowing the activation of 

calpains [164-166]. Studies have shown that calpastatin is usually found in an aggregated and 

phosphorylated state inside the cell, and upon an increase in intracellular Ca2+, calpastatin is 

dephosphorylated and becomes progressively soluble. The aggregation of calpastatin is 

regulated by a PKA-mediated phosphorylation [167, 168]. In addition, PKC phosphorylates 

calpastatin, in a different site than PKA, reducing its inhibitory activity [169]. The regulation of 

calpastatin availability and activity through PKA and PKC-mediated phosphorylation, 

respectively, can constitute a way in which active calpains escape from the endogenous 

calpastatin inhibition. 

 Interestingly, mice deficient for calpastatin are fertile and viable, and do not show 

detectable calpain activation during normal conditions. Similarly, mice overexpressing 

calpastatin display no adverse phenotype. However, the degenerative changes upon neurotoxic 

and traumatic brain insults were limited in the calpastatin overexpressing mice and exacerbated 

in calpastatin-deficient mice [170-172]. 

 

Calcium requirements 

 

 Probably the major unresolved question in the calpain field is how calpains are activated 

intracellularly. Calpains in in-vitro conditions require high Ca2+ concentration to become active 

(~30µM or ~500µM of Ca2+ for half-maximal activity for µ-calpain and m-calpain, 

respectively). However, physiological intracellular Ca2+ levels is within nanomolar range, and 

reaches, at most, very low micromolar concentrations in stimulated cells [173]. This non-

physiological high Ca2+ demand raised questions regarding the conditions under calpains could 

be activated in-vivo. Thus, it has been suggested several mechanisms that lowers the Ca2+ 

requirement of calpains, in particular the m-calpain, inside the cell. These include autolysis 

[138], phosphorylation [174], interaction with plasma membrane phospholipids [138, 175] or 

binding to an activator protein [176].  

 Interestingly a study has shown that m-calpain can be activated independently of Ca2+, 

by a Erk/MAPK-mediated phosphorylation [177]. Recently it was showed that BDNF and EGF 

rapidly activate m-calpain in cultured neurons, via a MAPK-dependent phosphorylation, 

confirming the previous observations [178]. In addition, m-calpain is inhibited by PKA 
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phosphorylation [179]. Recent evidences showed that PKA-mediated phosphorylation on m-

calpain reduces the binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the domain III of 

m-calpain. In opposition, ERK-mediated phosphorylation increases the binding of PIP2 to m-

calpain. The PIP2 acts as a co-factor to m-calpain and it promotes anchorage of m-calpain to the 

plasma membrane. In this way, PKA or ERK control the activity and cellular distribution of m-

calpain by regulating its anchorage to the membranes [180, 181].  

 

Figure 1.6 – Crystallographic structure of calcium-bound m-calpain enclosed by calpastatin.  

Overall 2.4 Å-resolution crystal structure of calcium-bound m-calpain (composed by domains DI to DIV) 

associated with the inhibitory domain IV of calpastatin (CAST4). CAST4 (in purple) contains the 

subdomains A, B and C (as shown in the figure). CAST4 is unstructured in the absence of calpain, 

however, the subdomains of CAST4 form α-helices when associated with calcium-bound m-calpain. 

Helices of subdomain A and C interact with calpain domain DIV (yellow) and DVI (orange), respectively. 

The helix of the subdomain B, which is essential for the inhibitory activity of CAST, contacts with the 

protease core DII (light blue), but escapes from cleavage by looping out and around the catalytic site (red 

circle).Gaps in the structure of CAST4 are indicated by missing residues. Figure was adapted from [139].  
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1.2.4.  Function in physiology and pathophysiology  

 

At physiological conditions, calpains are involved in multiple biological functions 

including cell development, proliferation, differentiation, motility, apoptosis, growth cone 

guidance, LTP and memory [127]. Dysregulation of calpain activity is implicated in several 

diseases, including acute and chronic neurological disorders, muscle disorders, diabetes, cancer, 

among others [127, 150, 182]. For instance, calpain activity is increased in many types of 

cancer, and it contributes to survival, migration and invasion of tumor cells by cleaving 

oncogenes (eg: c-Fos, c-Jun, Myc), tumor suppressor genes (p53) and focal adhesion proteins 

[148]. In neurons, when Ca2+ homeostasis is disrupted, for example during excitotoxicity, 

epileptic seizures and acute ischemic and hypoxia injury, the overactivation of µ-calpain and m-

calpain may occur, leading to neuronal damage and death [182, 183]. Altered calpain activity 

has also been found in chronic neurodegenerative disorders such as Alzheimer's, Huntington's 

and Parkinson's diseases and multiple sclerosis [184]. While physiological calpain activation 

seems to be essential in many biological processes, the excessive calpain activation contributes 

to disease and pathology. Considering the focus of this work, here it will be discussed in more 

detail the importance of calpains on physiology, in particular upon LTP and memory, and in 

pathology, in particular upon AD. 

 

Calpains in LTP 

 

The hypothesis that calpains are implicated in memory started in 1984. This hypothesis 

postulated that calpains contribute to LTP by promoting synaptic remodeling through cleavage 

of structural proteins, including spectrin, and by increasing the number of glutamate receptors in 

the post-synaptic membrane [185, 186]. Multiple evidences collected until now have reinforced 

this initial hypothesis. Indeed, TBS in CA1 hippocampal area, induces Ca2+ influx and calpain 

activation in PSDs as determined by the formation of calpain-specific spectrin breakdown 

products [187]. Additionally, multiple studies have shown that the inhibition or downregulation 

of calpains, by synthetic inhibitors or siRNA, respectively, greatly reduced the induction and 

magnitude of hippocampal LTP [188-190]. Recently, a study showed that conditional deletion 

of calpain-1 and calpain-2 in the CNS does not critically impair brain development, but reduces 

spine density and dendritic branching complexity of CA1 pyramidal neurons and impairs 

hippocampal LTP and spatial memory of the mice [191]. Interestingly, BDNF, which it is 

released during TBS and importantly contributes to LTP induction and memory encoding, 

promotes m-calpain activation through ERK activation [178]. On the other hand, genetic 

deficiency of calpastatin enhances hippocampal LTP [192]. Another recent study showed that µ-
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calpain is necessary for synaptic potentiation during E-LTP, while m-calpain activation limits 

the magnitude of the potentiation during L-LTP consolidation [193]. 

 

Calpains in Alzheimer’s disease 

 

Growing evidence has shown that calpains are overactivated in AD, and this excessive 

activation may contribute to the progression of the disease [194-199]. In association to calpain 

overactivation, in AD brains, there is a markedly depletion on calpastatin. The depletion of 

calpastatin in the dendrites of AD neurons is mediated by caspase-1 and 3 cleavages, and 

coincides topographically with m-calpain activation and tau phosphorylation [200]. Another 

recent study also observed a correlation between calpain activation and tau phosphorylation in 

close proximity to amyloid plaques in post-mortem AD brain and in APP transgenic mice (an 

AD mice model) [199]. The same study showed that genetic deficiency of calpastatin increased 

Aβ amyloidosis, tau phosphorylation, microgliosis, neuronal dystrophy and increased mortality 

in APP transgenic mice. In opposition, the overexpression of calpastatin in APP mice had the 

opposite effect [199]. A similar conclusion was obtained in another study, using transgenic APP 

mice and a synthetic calpain inhibitor [201]. Furthermore, a third study showed that calpain 

inhibition reestablishes normal synaptic function and plasticity, and improves spatial-working 

memory in the APP transgenic mice [202]. Together, these findings highlighted the importance 

of the calpain-calpastatin system in AD. 

 

 

1.3. Alzheimer’s disease 
 

 AD is the most common chronic progressive neurodegenerative disease which affects 

about 24 million people worldwide and it increases in incidence with age [203]. In an early 

stage of AD the symptoms may begin as a short term memory loss and incapacity to make new 

memories, a process which depends on hippocampus and its cholinergic inputs from basal 

forebrain nuclei [204]. As the disease progresses other symptoms may occur, such as cognitive 

dysfunction, psychiatric symptoms, behavioural disturbances and long-term memory loss. 

 AD was firstly described in 1906 by Alois Alzheimer, a German psychiatrist, who 

examined the brain tissues of a woman who died from an unusual mental illness. He described a 

general atrophy and neuronal loss in cortical regions, and the presence of extracellular amyloid 

plaques and intracellular neurofibrillary tangles in about 1/4 to 1/3 of all cortical neurons [205]. 

In fact, in AD there is a widespread loss of neurons and synapses in cortical areas, being the 

temporal lobes (hippocampus, parahippocampus and amygdala) the most affected areas [206]. 
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For instance, while the number of neurons in temporal lobe remains constant between non-

demented subjects, in AD patients more than 50% of these neurons are lost [207]. As a 

consequence of the substantial neuronal loss, the grey matter thickness in cerebral cortex is 

diminished and ventricles are enlarged (see Figure 1.7). In addition, multiple evidences indicate 

that synapse loss in AD is an early event that precedes neuronal loss [208], and is a major 

correlate of cognitive impairment [209, 210]. 

 After 80 years of the initial description of AD, it was discovered that Aβ peptides are 

the main component of amyloid plaques [211] and that neurofibrillary tangles are composed by 

hyperphosphorylated tau (p-Tau) protein [212]. While the distribution pattern of amyloid 

plaques varies throughout the brain between AD patients, the tau pathology progresses in a 

highly regular pattern. Indeed, the neurofibrillary tangles occur first in the transentorhinal 

cortex, spreading sequentially to entorhinal cortex, to hippocampus and then to cerebral cortex 

[213].  

 Currently, several evidences obtained with biomarkers in AD patients, indicate that the 

initiating event in AD disease is the abnormal processing of Aβ and accumulation of amyloid 

plaques, which occurs while the individuals are still cognitively normal. Indeed, the first 

alterations in biomarkers detected are the decrease of Aβ42 levels in cerebrospinal fluid (CSF) 

and shortly after, amyloid accumulation in the brain measured by PET amyloid imaging. After a 

latency period that varies between individuals, markers of taupathology appear, with increased 

levels of total and phosphorylated tau detected in CSF. Alterations in tau biomarkers precede 

synaptic dysfunction and brain atrophy, which are indicated, respectively, by decreased 18F-

fluorodeoxyglucose uptake in PET and structural alterations in magnetic resonance imaging 

(MRI). Initial brain atrophy correlates with neuronal loss, and initiates the early memory 

symptoms present in mild-cognitive impairment (MCI) stage. Acceleration in hippocampal 

atrophy rates in MCI stage lead to the progression to clinical AD stage (see Figure 1.7A and B) 

[214-216]. 
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Figure 1.7 – Brain atrophy and hypothetical progression model in AD. 

 (A) Severe atrophy of human brain in late stage of AD (right), compared with normal brain (left). In 

advanced stage of AD, the neuronal loss results in the enlargement of lateral ventricles, hippocampal 

shrinkage and thinning of cortical gyrus. (B) Hypothetical model of AD progression showing the temporal 

order of biomarkers abnormalities across the progression of the disease. In this model, biomarkers of Aβ 

accumulation become abnormal early before tau accumulation, neurodegeneration and clinical symptoms 

occur. Aβ accumulation biomarkers include with decreased levels of Aβ in CSF and increased Aβ levels in 

brain measured by PiB-PET. Tauopathy is indicated by increased levels of total and phosphorylated tau in 

CSF. Neurodegeneration is measured by FDG-PET and structural MRI. MCI=mild cognitive impairment. 

Figure adapted from [217] and [215] 
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1.3.1. Amyloid-β peptides 

 

 Based on Aβ peptide sequence, it was found that Aβ derived from another protein, the 

amyloid-precursor protein (APP) [218]. Shortly after APP identification, it was detected an 

autosomal dominant mutation in the APP gene in some families with early-onset familial AD 

[219]. This point mutation, which was closely located to the carboxy-terminus of Aβ peptide, 

provided an important support to the amyloid cascade hypothesis of AD. Then, new findings 

showed that familial AD could also be caused by mutations in presenilin-1 (PSEN1) [220] and 

presenilin-2 (PSEN2) genes [221]. Both presenilins are members of the γ-secretase protease 

complex. The sequential cleavage of APP by β-secretase (BACE1) and γ-secretase produces the 

Aβ peptide (see Figure 1.8A and B) [222, 223]. Until now, dozens mutations were found to be 

associated with early-onset familial AD in the APP, PSEN1 and PSEN2 genes [224]. The 

majority of those mutations are associated with increased Aβ production or with increased 

Aβ42/Aβ40 peptides ratio [225-227]. For instance, some mutations in APP near γ-secretase 

cleavage site affect the cleavage by γ-secretase and shift the amyloid production to Aβ42, 

instead of Aβ40 [228]. The critical factor for the rate of amyloidogenesis is the relative 

concentration of Aβ42 rather than the total Aβ concentration [227, 229, 230]. Aβ42 is the most 

hydrophobic and amyloidogenic form of the peptide, and it is also more neurotoxic than Aβ40 

[231, 232]. Aβ is present in plasma, CSF and brain interstitial fluid (ISF) mainly as soluble 

Aβ40 peptide [233], however, the major form present in the parenchymal amyloid plaques in 

AD is the Aβ42 [234, 235].  

 In sporadic AD, which constitutes more than 95% of all AD cases, there is no known 

associated mutation in APP or presenilins [236]. Unlike APP and presenilins, no known 

mutations in BACE are linked to familial early-onset AD. Interestingly, a recent work identified 

a mutation in APP gene that protects against AD and against cognitive decline in non-demented 

elderly subjects. This mutation (A673T) is located close to β-secretase cleavage site and reduces 

cleavage efficacy, lowering Aβ production up to 40% in-vitro [237]. In opposition, in the AD 

brain the β-secretase activity and protein levels were found to be increased [238, 239]. Thus, all 

the above evidences imply a crucial role of Aβ in AD, and sustain the hypothesis that Aβ is the 

leading cause of AD.  

 



1. Introduction 

27 

 

Figure 1.8 – APP processing and Aβ formation.  

(A) APP is a transmembrane protein composed by 770 aminoacid residues. APP can be processed by the 

non-amyloidogenic α-secretase pathway, or by the amyloidogenic β-secretase pathway. In the non-

amyloidogenic pathway, α-secretase cleaves APP in an extracellular (EC) position (aa. 687), releasing a 

large extracellular soluble fragment (sAPP-α). The remaining c-terminal membrane-bound APP fragment 

(named APP-CTFα, or C83) is subsequently cleaved by γ-secretase complex in the transmembrane 

region (TM), producing the p3 fragment and the AICD. In the amyloidogenic pathway, APP is firstly 

cleaved by β-secretase (BACE1) in the extracellular portion (aa. 671) generating the sAPP-β fragment and 

the membrane-bound APP-CTFβ (also named as C99). The APP-CTFβ is then cleaved by γ-secretase 

complex generating the AICD and the Aβ peptide. The γ-secretase complex, which is composed by 

presenilin 1 and 2, nicastrin, APH1 and PEN2, cleaves APP in distinct positions, producing Aβ peptides 

ranging from 38 to 43 aminoacids length, being the longer peptides (Aβ-42 and Aβ-43) the main 

pathogenic species. (B) Aminoacid sequence of Aβ region within APP, showing some APP point 

mutations associated with familial AD. The transmembrane region of APP is highlighted in orange and the 

secretase cleavage sites are indicated. The figure was adapted from [240, 241]. 
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1.3.2. Neurotoxicity mediated by Amyloid-β peptides  

 

 After the discovery of Aβ peptide as the main component of amyloid plaques in AD, 

soon it was discovered that the peptide had neurotoxic properties. Indeed, the incubation of 

neuronal cells with synthetic Aβ produces significant neuronal death [30, 242, 243]. Moreover 

the in-vivo administration of Aβ into the mice brain also produces significant neurodegeneration 

and cognitive deficits [244, 245]. In addition, genetically engineered mice that over produce Aβ, 

either by overexpression of APP and/or presenilin containing mutations linked to familial AD, 

also recapitulate some key features of AD, including synaptic loss and cognitive impairments 

[236]. Nevertheless, many AD mice models fail to recapitulate a robust neuronal loss and an 

evident presence of neurofibrillary tangles [236].  

 Mechanisms underlying the neurotoxic actions of Aβ peptides are not fully understood, 

but the existing data suggests the involvement of multiple mechanisms such as oxidative stress, 

interaction of Aβ with receptors and ion channels, excitotoxicity, synaptic dysfunction, 

inflammation, mitochondrial dysregulation, membrane permeability alterations and activation of 

caspases and calpains (Figure 1.9) [246-256]. Here, it will be discussed in more detail the main 

molecular mechanisms that may contribute for Aβ toxicity. 

 

Oxidative stress 

 

 An increase in markers for DNA, RNA, lipids and protein oxidation have been found in 

AD brain, suggesting an involvement of oxidative stress is the disease [246]. The Aβ peptide 

found in amyloid plaques, can itself bind to transition metals with high affinity, such as iron, 

zinc or cupper, and possess the ability to reduce them to a lower oxidation state. This redox 

reaction produces reactive oxygen species (ROS) which will react and damage cellular 

components contributing to Aβ neurotoxicity [241].  

 

Calcium homeostasis disruption 

 

 Aβ disrupts Ca2+ homeostasis and synaptic function by interacting with several 

neurotransmitters receptors and ion channels. For instance, Aβ binds with high affinity to the 

nicotinic receptor α7-nAChR, and this interaction leads to an inhibition in acetylcholine release 

and in α7-nAChR-dependent Ca2+ influx, leading to neuronal demise [257]. In addition, Aβ 

peptide affect glutamatergic synapses by interacting with AMPA and NMDA glutamate 

receptors, two major players involved in synaptic plasticity and memory formation. In 

particular, studies have shown that Aβ alters the kinetics of AMPAR and it reduces its surface 
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membrane expression by increasing intracellular Ca2+ and phosphorylation of GluR2 subunit 

[258]. However, one of the most studied targets of Aβ is the Ca2+-permeable NMDA receptor. 

 The ionotropic receptor NMDAR plays a central role in synaptic plasticity, however 

when over-activated it contributes to excitotoxic cell-death by causing a persistent influx of 

Ca2+. Studies have shown that Aβ oligomers can trigger an increase of Ca2+ influx mediated by 

NMDAR, resulting in mitochondrial and synaptic dysfunction, excitotoxicity and ROS 

production [259-262]. Aβ can also inhibit astrocytic glutamate uptake, leading to an 

accumulation of extracellular glutamate and an enhanced NMDAR activation [261, 263]. By 

exacerbating the influx of Ca2+, Aβ leads to an exacerbated calpain activation, which in turn 

mediates pathogenic effects by cleaving synaptic substrates. Calpain modulates synaptic 

function by cleavage of membrane receptors (such as NMDAR), kinases, cytoskeletal proteins 

and post-synaptic density (PSD) proteins, leading to changes in synaptic organization and 

stability [264]. By increasing Ca2+ influx through NMDAR, Aβ also induces a calpain-mediated 

cleavage of dynamin-1, a protein essential for recycling of synaptic vesicles [265]. Calpain 

over-activation also reduces the activity of protein kinase A (PKA), which in turn contributes to 

a down-regulation of cAMP response element-binding protein (CREB), a key molecule for 

synaptic plasticity, learning and memory [266]. Additionally, the toxic effects of Aβ are 

attenuated by NMDAR antagonists further supporting the role of NMDAR in Aβ toxicity [261, 

267, 268]. Besides the ionotropic receptors, Aβ can also disturb intracellular Ca2+ homeostasis 

by changing the activity of VGCCs [269] and by evoking the release of Ca2+ from intracellular 

stores, such as ER [270, 271]. Moreover, studies have shown that Aβ can associate with lipid 

bilayers and spontaneously form novel Ca2+-permeable pores by which uncontrolled Ca2+ influx 

may perturb intracellular Ca2+ homeostasis [272]. Although it has been difficult to observe this 

pores in cell membranes, a recent study used a new single-channel Ca2+ imaging technique and 

provided evidences for an intrinsic Ca2+-permeable pore formed by Aβ oligomers in cell 

membrane [273]. Membrane permeabilization and pores formation are features also observed in 

many antimicrobial peptides, such as human LL-37 [274]. Interestingly, a recent study showed 

that Aβ42 binds to bacterial membranes and has high antimicrobial activity against several 

microorganisms, suggesting that Aβ belongs to innate immune system and may be a defence 

mechanism to infections in CNS [275].  
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Calpain activation 

 

 As briefly mentioned above, Aβ perturbs Ca2+ homeostasis in neurons and promotes 

calpain activation [199, 276, 277], an outcome also observed in post-mortem human AD brains 

[194, 195, 197-199, 266, 278]. Interestingly, recent data have suggested a bidirectional link 

between calpain activation and Aβ deposition. Particularly, in APP overexpressing mice, the 

genetic deficiency in calpastatin (an endogenous calpain-specific inhibitor) not only increased 

calpain activity, but it also increased Aβ amyloidosis and Tau phosphorylation, with additional 

increased somatodendritic dystrophy and mice mortality [199]. This study suggested that 

calpain activation can also contribute to Aβ production and Tau phosphorylation (two major 

hallmarks of AD). Actually, both Aβ peptides and calpain activation have already been linked 

with tau hyperphosphorylation. In one hand, it has been shown that aggregated Aβ peptides can 

significantly increase tau phosphorylation levels in primary septal neuronal cultures [279]. This 

study also showed that Aβ activates kinases involved in phosphorylation of tau, such as GSK3 

and MAPK [279]. On the other hand, it has been shown that calpain activation enhances the 

activity of several kinases that mediate tau phosphorylation. For instance, calpains can cleave 

the inhibitory domain of GSK3, enhancing the kinase activity [280]. Calpain also cleave the 

CDK5-regulator p35, generating a truncated product, the p25, which causes a constitutive 

activation of CDK5 and a consequent hyperphosphorylation of Tau [196, 281-283]. The p25 

fragment was also detected in higher levels in AD brains than age-matched controls [196, 284]. 

To evaluate the role of the calpain cleavage fragment p25, it was developed a transgenic mouse 

that overexpresses the p25 protein under the CaMKII promoter. The overexpression of this 

single fragment was able to recapitulate many hallmarks of AD, such as progressive neuronal 

loss in cortex and hippocampus, forebrain atrophy, tau pathology, amyloid plaques, 

intraneuronal Aβ accumulation, impaired synaptic plasticity and cognitive dysfunction [285-

287]. Inhibition of CDK5, as well as inhibition of c-Jun N-terminal Kinase (JNK) and p38 

mitogen-protein activated kinase (p38 MAPK), is sufficient to prevent the impairment of LTP 

induced by Aβ [288]. Moreover, inhibition of CDK5 by a synthetic inhibitor, or an antisense 

oligonucleotide, prevents Aβ-induced death in cultured hippocampal neurons [289]. Recently, it 

was shown that calpain-deficient neurons do not convert p35 to p25 and are more resistant to 

excitotoxicity and mitochondrial toxicity. Interestingly, these calpain-deficient neurons became 

sensitive to the same toxic stimulus after the infection with a p25 expressing adeno-associated 

virus [191].  

 In addition, calpain can also cleave tau protein generating a neurotoxic ~17kDa 

fragment which has been detected in hippocampal neurons treated with Aβ oligomers [290] and 

in cortex of AD brain [195]. The expression of this toxic fragment induces neuronal death in 

hippocampal cultures [290]. Taken together, the evidences suggest that Aβ triggers calpain 
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activation, by perturbing Ca2+ homeostasis, and consequently it activates several kinases, such 

as CDK5, which can mediate hyperphosphorylation of Tau, Aβ production and 

neurodegeneration (Figure 1.9). 

 

Receptors interaction 

 

 Several studies have shown that Aβ can interact with many receptors. There is evidence 

that Aβ oligomers can bind to cellular prion protein (PrPc) and Ephrin type B receptor 2 

(EphB2) and the downstream signalling from both receptors alters NMDAR function 

contributing to decreased synaptic plasticity [291, 292]. Aβ oligomers can also interact with 

human leukocyte immunoglobulin-like receptor B2 (LilrB2) engaging signalling pathways for 

neuronal actin organization that results in synapse elimination [293]. Additionally, it has been 

shown that the neurotrophin receptor p75NTR is a receptor for Aβ and it is required for Aβ-

induced neuronal death [294]. Aβ oligomers also compete with insulin for binding to insulin 

receptor [295] and disrupt insulin signalling, which suggests that Aβ may contribute to insulin 

resistance observed in AD brain [296]. Previous experiments shown that the receptor for 

advanced glycation end products (RAGE) also binds to Aβ [297] and mediates Aβ-induced 

neuronal toxicity [298, 299]. Additionally, aggregated Aβ42 can trigger neuroinflammatory 

activation in microglia by binding and activating the innate immune receptor Toll-like receptor 

2 (TLR2) [300]. 

 

Mitochondrial dysfunction 

 

 Challenging the classical view that Aβ accumulates extracellularly, emerging evidence 

have shown that Aβ also accumulates intracellularly, further contributing to AD progression 

[301]. In fact, the amyloidogenic cleavage of APP also occurs in intracellular membranes of 

Golgi and ER, whereas the Aβ peptide is released to the intracellular space (cytosol). In 

addition, extracellular Aβ can bind to several receptors, producing Aβ-receptor complexes that 

can also be internalized into early endosomes [301-303].  

 It has been shown that intracellular Aβ accumulates in mitochondria from the brain of 

transgenic mice expressing mutant human APP and also accumulates in mitochondria from 

cultured cortical neurons from the transgenic mice, and most importantly, in the brains of AD 

patients [304, 305]. Interestingly, exogenous Aβ applied to human neuroblastoma cells can be 

internalized and accumulate within mitochondria [306]. The accumulation of Aβ within 

mitochondria correlates with lower enzymatic activity of respiratory chain complexes III and 

IV, lower oxygen consumption and higher levels of hydrogen peroxide and oxidative damage 
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[304, 305, 307]. In addition to the increased ROS production, mitochondrial Aβ also promotes 

the opening of the mitochondrial permeability transition pore (mPTP) by directly interacting 

with Cyclophilin D (CypD), a modulator of mPTP formation [308]. Genetic deficiency of CypD 

reduces Aβ-induced mitochondrial stress as well as it improves behavioural and synaptic 

function in the transgenic APP mice [308]. The opening of the mPTP releases pro-apoptotic 

proteins, such as Cytochrome c, which activates caspase-3 and triggers the intrinsic apoptotic 

pathway. Activation of caspase-3 in synapses promotes early synaptic dysfunction and 

behavioural impairment in transgenic APP mice [309]. 

 

Complexity of Aβ effects 

 

 Aβ toxicity is a complex process, involving multiple and distinct mechanisms. The 

study of Aβ toxicity mechanisms is further hampered by the fact that distinct Aβ preparations 

(monomers, oligomers or fibrils) evoke different pathways. For instance, naturally secreted Aβ 

oligomers, but not fibrils or monomers, potently inhibit in-vivo hippocampal LTP [310]. 

Although initial studies described insoluble Aβ fibrils as neurotoxic, most recent evidences have 

shown that soluble Aβ oligomers are also neurotoxic and most probably are the main 

responsible for neurodegeneration, and particularly for synaptic failure in AD [311].  

 In top of Aβ species complexity, Aβ may also trigger different effects depending on its 

concentration. For example, it has been shown that oligomeric and monomeric Aβ preparations 

can markedly increase hippocampal LTP at low picomolar concentration, while at high 

nanomolar concentrations the same preparations lead to the well-established reduction in LTP 

[312]. These evidences suggest a dual role for Aβ, whereas at sub or low-nanomolar levels it 

may have a physiological role and beneficial effects, while at high nanomolar or micromolar 

concentration it can trigger synaptic dysfunction and neurodegeneration. 

 The effects of Aβ may also differ depending on the length of the peptide. For instance, 

the Aβ25-35 peptide, which is the shortest peptide sequence that retains the biological activity 

of Aβ42, showed enhanced toxicity and enhanced aggregation rate in aqueous solution, when 

compared to Aβ42 [243, 313]. 
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Figure 1.9 – Simplified schematic representation of Aβ toxicity mechanisms.  

Extracellular Aβ peptides induce synaptic dysfunction and neurodegeneration by multiple mechanisms. 

Evidences indicate that Aβ dysregulates signalling pathways by interacting with several receptors (eg: 

p75NTR, RAGE, PrPc, α7-nAChR, mGluR, insulin receptor, among others) and induces a sustained Ca2+ 

influx by either interacting with ionic receptors, such as NMDA receptor, or by promoting cell membrane 

leakage through a pore formation or reactive oxygen species (ROS) production. The prolonged Ca2+ influx 

induces calpain overactivation and mitochondrial calcium overload. Intracellular Aβ (iAβ) further impairs 

mitochondrial function by interacting with mitochondrial respiratory chain complexes, which decreases 

ATP production and increased ROS formation. In addition, the iAβ triggers mitochondrial permeability 

transition pore (mPTP) formation, with consequent release of pro-apoptotic proteins, and caspase-3 

activation. On the other hand, calpain overactivation cleaves and changes the function of several proteins 

(eg: synaptic proteins, structural proteins, signalling proteins, among others). Importantly, calpains activate 

cyclin-dependent kinase 5 (CDK5) by cleaving the CDK5-modulator p35 into p25. Increased CDK5 activity 

leads to neurogeneration, Aβ formation, and tau hyperphosphorylation.  
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1.3.3. BDNF signalling in AD  

 

 The neurotrophin BDNF prevents the neuronal death induced by a wide variety of in-

vitro insults, including serum-deprivation, oxidative stress, glutamate excitotoxicity, ischemia, 

and Aβ peptides [120, 243]. BDNF is required for the maintenance of dopaminergic neurons 

and it confers protection against neurotoxins, such as MPTP and 6-OHDA, in both in-vitro and 

in-vivo Parkinson’s disease models [314]. In addition, BDNF delivery into entorhinal cortex or 

hippocampus reverses the neurodegeneration and improves cognitive performance in rodent and 

primate models of AD [243, 315-317]. Notably, the BDNF administration does not reduce 

amyloid plaques number in transgenic AD models, indicating that amyloid load reduction is not 

necessary to achieve neuroprotective effects [315-317]. In addition to neuroprotective effects, 

BDNF also rescues the impairment in the HFS-induced LTP in hippocampal slices treated with 

oligomeric Aβ [318].  

 In addition to the benefits of increasing BDNF actions in AD models, it is noteworthy 

that multiple evidences support that BDNF signalling is reduced in AD patients. In fact, it was 

reported that in post-mortem brain samples from end-stage AD patients, the mRNA levels of 

BDNF are substantially reduced in hippocampus and parietal cortex [319-321], whereas the 

levels of BDNF protein are reduced in hippocampus and in multiple areas of cortex [322-324]. 

In addition, in pre-clinical stages of AD it was also detected, in parietal cortex, a reduction in 

protein levels of both BDNF and its precursor pro-BDNF [325, 326]. This reduction of BDNF 

and pro-BDNF levels positively correlates with disease progression and the loss of cognitive 

function [325]. The importance of BDNF in AD is further enhanced by a number of studies that 

associated BDNF polymorphisms with the disease. The BDNF Val66Met polymorphism is 

probably the most investigated one, and influences intracellular trafficking and activity-

dependent secretion of BDNF [327]. Multiple studies have shown that the synergetic interaction 

between APOE ε4 and BDNF Val66Met polymorphisms is associated with increased risk and 

progression to AD [328-331]. Interestingly, in non-demented elderly individuals, BDNF 

Val66Met polymorphism increases amyloid load in brains from the APOE ε4 carriers, but not in 

APOE ε4 noncarriers, and this Aβ deposition negatively correlates with episodic memory 

encoding [332].  

 Beyond the reduction on BDNF levels, alterations in the levels of TrkB receptors have 

also been found in AD brain. In particular, it was reported that TrkB-FL is decreased in 

hippocampus and in temporal and frontal cortex of patients with advanced AD [322, 333]. A 

substantial decrease in TrkB, but also in TrkA and TrkC, was also found in AD patients in the 

cholinergic neurons from the nucleus basalis, an area severely affected during the disease [334, 

335]. Similarly to what was observed for BDNF, the downregulation in Trk receptors levels is 
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progressive, starting in pre-clinical stages, and it correlates with the cognitive decline of patients 

[335]. Conversely, the levels of truncated TrkB receptor, a negative regulator of the full-length 

isoform, have been found to be increased in association with senile plaques in frontal cortex 

[322] and hippocampus [336] of AD patients. Moreover, in a recent study, it was reported an 

increase in protein levels of truncated TrkB receptors in hippocampus and temporal cortex of 

AD brains. The same study also found a selective increase in the mRNA levels of the neuron-

specific TrkB-T-Shc isoform, without detecting differences in TrkB-T1 and TrkB-FL transcripts 

[337]. Although the overall evidences suggest that levels of truncated TrkB are increased in AD, 

in a previous study, no alterations on truncated TrkB levels were detected in temporal and 

frontal cortex of AD brain [333]. On the other hand, it was found that TrkB-T1 expression is 

increased in the APP/PS1 mice model, and its expression increases with age and amyloid load 

in frontal and parietal cortex, but not in hippocampus [30]. Interestingly, overexpression of 

TrkB-T1 in the APP/PS1 mice exacerbated their spatial memory deficits, while the 

overexpression of TrkB-FL ameliorates the deficits [30]. Finally, a recent family-based study 

observed a genetic association between polymorphisms in NTRK2 (TrkB gene) and AD, 

enhancing the importance of TrkB in the susceptibility to this disease [338]. 

 Interestingly, recent works suggested that BDNF and TrkB may be mechanistically 

involved in the pathogenesis of AD. Indeed, in a neuroblastoma cell line, it was shown that 

BDNF increases APP transcription and shifts the APP processing towards the non-

amyloidogenic α-secretase cleavage, promoting the accumulation of AICD and sAPP-α [339, 

340]. Conversely, blockade of BDNF signalling rapidly activates the amyloidogenic pathway 

and causes apoptotic death in cultured hippocampal neurons [341]. The role of BDNF in APP 

processing might be related with the observation that certain BDNF polymorphisms are 

associated with increased Aβ production in the brain [332]. In addition to the effects of BDNF 

in APP processing, it has been showed that acute activation of TrkB, by BDNF stimulation, 

induces a rapid decrease in levels of phosphorylated tau in cultured neurons, by a mechanism 

dependent on PI3K and GSK3 activity [342]. However, recent evidences showed that genetic 

reduction in BDNF levels (heterozygous BDNF knockout) did not exacerbate the amyloid load 

and tau pathology in aged transgenic AD mice models [343, 344]. Nevertheless, similarly to 

what was described for TrkB-FL, the genetic down-regulation of BDNF also exacerbated the 

spatial learning impairment in the APP/PS1 AD mice model [344]. 

 In summary, the observations that 1) BDNF and TrkB-FL receptor are required for 

synaptic plasticity and neuronal survival on CNS [345], 2) Increased TrkB and BDNF signalling 

ameliorate the neurodegeneration and cognitive impairment in multiple AD models and 3) 

BDNF and TrkB levels are reduced in AD brain; raised the hypothesis that the loss of BDNF 

signalling contribute to the progression of AD. Whether the loss of neurotrophic support is a 

cause or a consequence of the disease, is a question far from being resolved. 
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2. Aims 

 

 

  The main goal of this project was to study the impact of Aβ peptides and adenosine A2A 

receptors on BDNF signalling.  

 

Multiple evidences suggest that BDNF signalling is impaired in Alzheimer´s disease 

(AD). Indeed, both BDNF and its TrkB-FL receptor levels are decreased in AD post-mortem 

brain samples, while the truncated TrkB-T1 levels are increased. In the first part of this work, 

we aimed to test whether Aβ peptide, by itself, could induce similar alterations on TrkB receptor 

isoforms, and to study the mechanisms involved and the functional impact (Chapter 4). 

 

 BDNF synaptic actions are dependent or potentiated by adenosine A2A receptors (A2AR) 

activation. Therefore, in the second part of the work, we evaluated whether the in-vivo chronic 

blockade of A2AR receptors, a therapeutic strategy already stated for AD, would affect BDNF 

effect upon CA1 hippocampal LTP (Chapter 5) and whether A2AR inhibition would also affect 

the neuroprotective effects of BDNF upon Aβ-induced toxicity (Chapter 6).  
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3. Methods 

 

The methods presented in this chapter were published in Kemppainen et al., 2012 [30], Jerónimo-Santos 

et al., 2014a [116] and Jerónimo-Santos et al., 2014b [346]. Experiments in Figure 3.1 were performed by 

H.V. Miranda. The methods described in chapters 3.14, 3.15 and 3.16 were used by S.H. Vaz, S. Parreira 

and S. Rapaz-Lérias to perform the experiments in chapter 4.8. The KW-6002 administration to animals 

(chapter 3.17) was in part performed by V.Batalha. 

 

3.1. Materials 
 

 Unless stated otherwise all reagents were purchased from Sigma (St. Louis, MO, USA). 

Culture reagents and supplements were from Gibco (Paisley, UK). Recombinant human BDNF 

was a gift from Regeneron Pharm. (Tarrytown, NY). Rat recombinant m-calpain was from 

Calbiochem (MA, USA) and the N-terminal His6 tagged recombinant human TrkB active 

(aa.455-end) was from Millipore (Billerica, MA, USA). MG132, ALLN, MDL28170 and 

Pepstatin A were from Tocris Bioscience (Bristol, UK). Aβ25-35 and Aβ35-25 peptide and 

zVAD(OMe)-FMK were purchased from Bachem (Bubendorf, Switzerland), and Aβ1-42 peptide 

was purchased from rPeptide (Georgia, USA). [3H]GABA (4-amino-n-[2,3–3H]butyric acid, 

specific activity 92.0 Ci/mmol) and [3H]glutamic acid (L-[3,4-3H] glutamic acid, specific 

activity 49.6Ci/mmol) were purchased from PerkinElmer Life Sciences. 

 

3.2. Amyloid- β peptides 
 

 Most of the experiments with Aβ were performed using the truncated Aβ25–35 form, and 

in selected key experiments also the full-length Aβ1-42 and the reverse Aβ35–25 peptide were used. 

Stock solutions of Aβ25–35, Aβ1-42 and Aβ35–25 peptides were performed in MilliQ water to a final 

concentration of 1mg/mL. To analyse the structural properties of the different species applied to 

neuronal cultures, both ThT binding assays and atomic force microscopy (AFM) were 

performed. Both Aβ1-42 and Aβ25-35 peptides showed a ThT emission wavelength shift followed 

by a fluorescence intensity enhancement, typical of β-sheet amyloid structures interaction 

(Figure 3.1A). By AFM the Aβ1-42 and Aβ25-35 peptides show similar structures as a 

heterogeneous population exhibiting protofibrilar and fibrilar ones (Figure 3.1B) [30]. 

 The concentration of Aβ42 present in interstitial fluid (ISF) of human AD brain 

parenchyma is not known and difficult to predict. Nevertheless, it is estimated that Aβ42 is 
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present in ISF at a concentration within nanomolar range [230]. Aβ toxicity may differ 

according to the duration of Aβ exposure, the species present (monomeric, oligomeric or 

fibrillar ones) and the length of Aβ peptide (e.g. 25-35, 1-42). It is, therefore, difficult to use 

conditions that mimic exactly what happen in human AD patients. The concentrations of Aβ 

used in our work were 25µM for Aβ25–35 and 20µM for Aβ1–42, similar to used by others [243]. It 

is worthwhile to note that, although the Aβ concentration used is relatively high, the exposure 

period to the peptide was much smaller (24 hours for the cultures, 3 hours in the acute slice 

preparations) than what happen in human AD patients (several years). Importantly, as a control, 

reverse Aβ35–25 peptide was used, also at a concentration of 25µM. 
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Figure 3.1 – Aβ1-42 and Aβ25-35 peptides have fibrillary structures. 

(A) ThT fluorescence assay with excitation and emission wavelengths of 450 nm and 490 nm, 

respectively. Both peptides interacted with ThT, suggesting that they display an increased β-sheet 

structure, typical of fibrillary species. (B) AFM analysis of the Aβ1-42 and Aβ25-35. Both peptides appear as 

heterogeneous population with protofibrillar and fibrilar structures.  

 

 

3.3. BDNF 
 

 BDNF used was a recombinant human-met-BDNF (supplied by Regeneron 

pharmaceuticals and manufactured by Amgen Inc.). The stock formulation of BDNF was: 

recombinant Human-met-BDNF 1.0mg/ml diluted in 150mM NaCl, 10mM sodium phosphate 

buffer, pH 7.2 and 0.004% Tween-20. The stock solution was diluted by a factor of 50.000, to 

achieve a final concentration of BDNF 20ng/ml (corresponding to 750 pM). To confirm the 

purity, a western-blot using 20ng of supplied BDNF was performed and probed with an 

antibody selective for BDNF (Abcam ab46176). It was only detected a band at ~14kDa, 

corresponding to mature BDNF (Figure 3.2). 

 

Figure 3.2 – Recombinant BDNF purity. 

Western-blot probed with the anti-BDNF (Abcam ab46176) antibody (raised against N-terminal of mature 

BDNF) with [lane 1] 70µg of protein from rat hippocampal homogenate (8week-old) and [lane 2] 20ng of 

recombinant Human-Met-BDNF. Pro-BDNF (~32kDa) was detected only on hippocampal homogenate.  
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3.4. Animals and brain areas used 
 

 Sprague-Dawley and Wistar rats were purchased from Harlan Interfauna Iberica, SL 

(Barcelona, Spain) and were housed in a temperature (21 ± 1ºC) and humidity-controlled (55 ± 

10%) room with a 12:12 hour light/dark cycle with food and water ad libitum. All animals were 

handled according with the current Portuguese Laws and with the European Union Directive 

(86/609/EEC) on the protection of Animals used for Experimental and other scientific purposes. 

All efforts were made to minimize animal suffering. Rats were deeply anesthetized with 

halothane before decapitation and tissue preparation. For functional studies we used the 

hippocampus, which is a brain area severely affected in AD, and where the effects of BDNF are 

extensively caracterized. Since Aβ-induced TrkB alterations are similar in cortical and 

hippocampal cultures [30], we used cortical cultures for the molecular studies in order to 

increase the culture yeld and reduce the number of animals.  

 

3.5. Primary Neuronal cultures and drug treatments 
 

 Neurons were isolated from foetuses of 18-day pregnant females. The foetuses were 

collected in Hanks’ balanced salt solution (HBSS-1) and brains were rapidly removed. The 

cerebral cortices were isolated and mechanically fragmented. Further tissue digestion was 

performed with 0.025% (wt/vol) trypsin solution in HBSS without Ca2+ and Mg2+ (HBSS-2) for 

15 min at 37°C. After trypsinization, cells were washed and resuspended in Neurobasal medium 

supplemented with 0.5mM L-glutamine, 25mM glutamic acid, 2% B-27 and 25U/mL 

penicillin/streptomycin. Cells were plated at a density of 7x104 cells/cm2, on 10µg/ml poly-D-

lysine-coated dishes, and maintained at 37°C in a humidified atmosphere of 5% CO2. 

Incubations with Aβ peptides were performed at 7 or 14 DIV for 24 hours. In the experiments 

where protease inhibitors were used, the inhibitors were incubated 20 min before Aβ treatment. 

 

3.6. Human brain sample 
 

 Frontal cortex from a control case was obtained from the Lille Neurobank, France 

(Male, 41 years old, Post-mortem Interval: 11hours) after scientific committee agreement. 

 

 



3. Methods 

43 

3.7. Western-blot 
 

 For neuronal cultures, cells were washed with ice cold phosphate buffered saline (PBS) 

(137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4.2H2O and 1.5 mM KH2PO4, pH 7.4) and lysed 

with 1% NP-40 lysis buffer containing (in mM): 50 Tris-HCl (pH 7.5), 150 NaCl, 5 

ethylenediamine tetra-acetic acid (EDTA), 2 dithiothreitol (DTT) and protease inhibitors 

(Roche, Penzberg, Germany). In experiments were rat hippocampi were homogenized, it was 

used a Radio-Immunoprecipitation Assay (RIPA) buffer containing: 50mM Tris-HCl (pH 7.5), 

150mM NaCl, 5mM ethylenediamine tetra-acetic acid (EDTA), 0.1% SDS and 1%Triton X-100 

and protease inhibitors cocktail (Roche, Penzberg, Germany). Cell lysates or homogenates were 

clarified by centrifugation (16.000g, 10min) and the amount of protein in the supernatant was 

determined by Bio-Rad DC reagent. All samples were applied with same amount of total protein 

and separated on 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred onto PVDF membranes (GE Healthcare, Buckinghamshire, UK). 

Membranes were stained with Ponceau S solution to check for protein transference efficacy. 

After blocking with a 5% non-fat dry milk solution in TBS-T (20 mM Tris base, 137 mM NaCl 

and 0.1% Tween-20), membranes were incubated with the primary (overnight at 4ºC) and 

secondary antibodies (1hour at room temperature). Finally, immunoreactivity was visualized 

using ECL chemiluminescence detection system (Amersham-ECL Western Blotting Detection 

Reagents from GE Healthcare, Buckinghamshire, UK) and bands intensities were quantified by 

digital densitometry (ImageJ 1.45 software). The intensities of α-tubulin or Ponceau S bands 

were used as loading control. 

 The pan-TrkB mouse monoclonal antibody (1:1500), raised against the extracellular 

domain of human TrkB (aa. 156-322), was purchased from BD Bioscience (Franklin Lakes, NJ, 

USA) and its specificity was confirmed in Figure 3.3. The C-terminal of Trk-FL rabbit 

polyclonal antibody (1:2000), raised against the C-terminus (C-14), the αII-spectrin (C-3) 

mouse monoclonal antibody (1:2500), raised against human αII-spectrin (aa. 2368-2472), and 

the pan-Caspase-3 (H-277) rabbit polyclonal antibody (1:1000) were purchased from Santa 

Cruz, inc (CA, USA). The phospho-TrkA (Tyr 490) rabbit polyclonal antibody (1:1500), which 

detects TrkB receptor when phosphorylated on the corresponding residue (Tyr515), was from 

Cell Signaling Technology (MA, USA). Phospho-TrkB (Tyr 816) antibody (1:1500) specifically 

detects TrkB when phosphorylated on Tyr816. Anti-BDNF [ab46176] antibody (1:1000) and α-

tubulin rabbit polyclonal antibody (1:5000) were purchased from Abcam (Cambridge, UK). The 

specificity of anti-BDNF antibody was confirmed (Figure 3.2). The IgG-horseradish peroxidase 

conjugated secondary antibodies used were goat anti-mouse and goat anti-rabbit (Santa Cruz, 
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CA, USA). Mouse anti-rabbit IgG light chain specific (Jackson ImmunoResearch Laboratories, 

West Grove, PA, USA) was used in immunoprecipitation experiment. 

 

 

Figure 3.3 – Anti-TrkB antibody specificity 

Western-blot probed with the anti-TrkB antibody (raised against extracellular portion of TrkB receptor) 

using non-treated neuronal cultures (7 days in-vitro) [lane 1] or treated with 20ng/mL of BDNF for 24hours 

[lane 2]. BDNF exposure leads to a selective down-regulation of TrkB-FL receptors without affecting TrkB-

T1 levels as described in [347].  

 

 

3.8. Cell death evaluation 
 

 Global cell death in neuronal cultures was evaluated by the lactate dehydrogenase 

(LDH) assay (Sigma) according to the manufacturer’s instructions and using 120 µl of the 

incubation medium. To specifically evaluate the degree of cell death induced by apoptosis, 

caspase-3 activation was measured in 50 µg of total protein from cell lysates. General caspase-

3-like activity was evaluated by enzymatic cleavage of p-nitroanilide chromophore (pNA) from 

the substrate N-acetyl-Asp-Glu-Val-Asp (DEVD)-pNA (Sigma). The proteolytic reaction was 

preceded in lysis buffer containing 50 µM DEVD-pNA. The reaction mixtures were incubated 

at 37º C for 1 hour, and the release of pNA was determined by measuring absorbance at 405 nm 

using a 96-well plate reader. Active caspase-3 (17-kDa) levels were also evaluated by western-

blot using a pan-caspase3 antibody (Santa Cruz Biotech.). Extension of neuronal degeneration 

was also evaluated by the breakdown of αII-spectrin, a cytoskeletal protein that is cleaved by 

caspase-3 and calpain. 
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3.9. N-sequencing 
 

 Five micrograms of TrkB active (Millipore) were incubated with purified m-calpain 

(2.5U) and CaCl2 (2mM) in a final volume of 30µl for 30min at 25ºC. The mixture was resolved 

by SDS-PAGE with 2mM of thioglycolic acid in upper running buffer and transferred to a 

PVDF membrane. After Ponceau S staining, the band of interest (TrkB-ICD) was cut with a 

sharp clean blade. The data was provided by the protein sequencing service of Instituto de 

Tecnologia Química e Biológica, Universidade Nova de Lisboa. Note that the proline residue is 

not detected by N-sequencing. 

 

3.10. RNA extraction and qPCR 
 

 RNA isolation and qPCR were performed as previously described [348]. Briefly, total 

RNA was extracted from rat neuronal cultures or hippocampus (GE Healthcare RNAspin Mini 

RNA Isolation Kit). First-strand cDNA were synthesised from 1µg of total RNA (in 20µL) 

according to the manufacturer’s recommendations (SuperScript First Strand Synthesis Systems 

for RT-PCR from Invitrogen, NY, USA). cDNA was amplified in Rotor-Gene 6000 real-time 

rotary analyser thermocycler (Corbett Life Science, Hilden, Germany) in the presence of SYBR 

Green Master Mix (Applied Biosystems, Foster City, CA, USA) and each specific gene primer 

(0.2µM for TrkB-FL and TrkB-T2 and 0.5µM for TrkB-T1). Primers specificity was confirmed 

by melting curves (Figure 3.4A). The threshold cycle (Ct) (Figure 3.4B) and the melting curves 

required for the relative quantification [349] were acquired with Rotor-Gene 6000 Software 1.7 

(Corbett Life Science). β-actin was used as reference internal standard. Replica reactions were 

always performed. The primers used were: 5´-GTGATGCTGCTTCTGCTCAA-3’ and 5´-

CCTCCGAAG AAGACGGAGTG-3’ for TrkB FL; 5´-TAAGATCCCCCTGGATGGGTAG-3’ 

and 5´-AAGCAGCACTTCCTGGGATA-3’ for TrkB T1; 5’-CGGGAGCATCTCTCGGTCT-3’ 

and 5’-TCCACTTAAGAAGCAAAATAAGC-3’ for TrkB T2; 5’-AGCCATGTACGTAGC 

CATCC-3’ and 5’-CTCTCAGCTGTGGTGGTGAA-3’ for β-actin. The primers for TrkB-T2 

were designed using the OligoAnalyzer 3.1 tool, provided by Integrated DNA Technologies 

(Coralville, IA, USA). The TrkB-T2 mRNA sequence from Rattus norvegicus was obtained 

from the GenBank sequence database of the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/). The primers were synthesized by Invitrogen. 
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Figure 3.4 – Melting curves, amplification curves and Ct numbers from qPCR.  

(A) Melting curves of TrkB isoforms (FL, T1 and T2) and β-actin transcripts obtained by qPCR in a control 

8 DIV culture. The graph represents the first derivate of raw fluorescence plotted against the temperature. 

The single melting peak obtained for each curve indicates that a single PCR product is being amplified. 

(B) Raw data obtained in a representative qPCR from a 8 DIV control neuronal culture for TrkB-FL, T1, T2 

and β-actin transcripts. The graph represents raw fluorescence plotted against cycle number. The table 

represents the cycle threshold (Ct) values for TrkB-FL, T1, T2 and β-actin (values are mean ± SEM of 8 

independent control cultures). 
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3.11. Immunoprecipitation 
 

 Trk-FL receptors were immunoprecipitated from 500µl of neuronal cultures lysates 

(~1mg total protein) using 2µg of C-terminal Trk-FL (sc14) antibody. After overnight 

incubation at 4ºC, 30µl of packed G-protein agarose beads were added for 24 hours at 4ºC and 

then the tube was centrifuged and the supernatant (wash-flow) was collected. The remaining 

pellet of beads was washed 5 times with lysis buffer and resuspended in 100µL of calpain lysis 

buffer containing purified m-calpain and CaCl2 (30min at 25ºC, as described above). The 

reactions were boiled at 95ºC in the presence of denaturing SDS-sample buffer. 

 

3.12. Calpain in-vitro digestion 
 

 In calpain digestion assays, the cultured cells or brain tissue were homogenized on ice 

in 1% NP-40 buffer containing in (mM): 50 Tris-HCl (pH 7.5), 150 NaCl, 0.1 EDTA, 2 DTT, 1 

phenylmethylsulfonyl fluoride (PMSF) and Aprotinin 5µg/ml. The homogenates were clarified 

by centrifugation (16.000g, 10min) and protein concentration was determined. In exogenous 

calpain digestion assays, the purified rat m-calpain (Calbiochem) was incubated for 30min at 

25ºC in a 100µl final volume of lysis buffer containing 100µg of homogenate protein and 2mM 

of CaCl2 (unless stated otherwise). In endogenous calpain digestion assays, 5mM of CaCl2 

and/or MDL28170 were added to the homogenates for 4 hours at 25ºC. In calpain digestion 

assays (exogenous or endogenous), each condition have the same amount of protein and total 

volume. For endogenous calpain activation in synaptosomes, CaCl2 and/or MDL28170 (20µM) 

were added to the intact isolated synaptosomes suspended in KHR buffer, for 30min at 37ºC. 

All reactions were stopped by boiling the samples at 95ºC in the presence of the denaturing 

SDS-sample buffer. 

 

3.13. Acutely prepared hippocampal slices  
 

 Male Wistar rats (8-10 weeks old) were deeply anesthetized with halothane before 

decapitation. The brain was quickly removed into ice-cold continuously oxygenated (O2/CO2: 

95%/5%) artificial cerebrospinal fluid (aCSF) (124 mM NaCl, 3 mM KCl, 1.2 mM NaH2PO4, 

25 mM NaHCO3, 2 mM CaCl2, 1 mM MgSO4 and 10 mM glucose, pH 7.40) and the 

hippocampi were dissected out. The hippocampal slices were cut perpendicularly to the long 

axis of the hippocampus (400µm thick) and were allowed to recover functionally and 

energetically for at least 1 hour in a resting chamber filled with continuously oxygenated aCSF, 
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at room temperature (22–25°C). In the experiments were the effects of KW-6002 were tested, 

the slices were used for electrophysiology recordings after the resting period. In the experiments 

where the effects of Aβ were tested, the slices were then incubated for 3 hours (the minimum 

time required to observe initial Aβ-induced changes in TrkB receptor) with oxygenated aCSF 

(control), or with aCSF containing Aβ25-35 peptide (25µM) or with aCSF containing Aβ25-35 and 

MDL28170 (calpain inhibitor, 20µM), or with Aβ1-42 (20µM), or with the inverted Aβ35-25. After 

the incubation period the slices were used for electrophysiology recordings or for synaptosomal 

isolation to evaluate GABA and glutamate release.  

 

3.14. Isolation of synaptosomes 
 

 Hippocampal slices were homogenized in ice-cold isosmotic sucrose solution (0.32 M, 

containing 1mM EDTA, 1 mg/ml bovine serum albumin, and 10 mM HEPES, pH 7.4), and 

centrifuged at 3,000g for 10 min; the supernatant was centrifuged again at 14,000g for 12 min. 

The whole procedure was conducted at 4°C. The pellet was resuspended in 45% Percoll in KHR 

solution consisting of (in mM) NaCl 140, EDTA 1, HEPES 10, KCl 5, and glucose 5, and was 

centrifuged at 14,000g for 2 min. The synaptosomal fraction corresponds to the top buoyant 

layer and was collected from the tube. Percoll was removed by two washes with a KHR 

solution; synaptosomes were then kept on ice and used within 3 hours.  

 

3.15. [3H] Neurotransmitter release from hippocampal 
synaptosomes 

 

 The [3H]GABA release experiments were performed as previously [350]. For each 

experiment, synaptosomes were prepared from approximately 60 hippocampal slices (30 per 

condition) from 6 hippocampi of 3 animals. Synaptosomes (protein concentration 1-2mg/ml) 

were resuspended in 2ml of oxygenated Krebs medium (in mM: NaCl 125, KCl 3, NaH2PO4 1, 

glucose 10 NaHCO3 25, CaCl2 1.5 and MgSO4 1.2) and allowed to equilibrate for 5 min at 

37°C. From this time onward, all solutions applied to the synaptosomes were kept at 37°C and 

continuously gassed with O2/CO2 (95%/5%). Aminooxyacetic acid (AOAA, 0.1 mM) was 

present in all solutions up the end of the experiments to prevent GABA catabolism by inhibition 

of GABA transaminase. The synaptosomes were loaded for 20 min at 37ºC, with [3H]GABA 

(1.5 µCi/ml, 18.5 nM), together with 0.625 µM unlabelled GABA to decrease specific activity 

of the [3H]GABA solutions to 2.3 µCi/nmol) and equally layered onto perfusion chambers over 

Whatman GF/C filters (flow rate, 0.8 ml/min; chamber volume, 90 µl).  
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 The [3H]glutamate release assays were performed as routinely in our laboratory [350]. 

All procedures were similar to [3H]GABA release experiments with the necessary 

modifications. Synaptosomes were loaded with 0.2 µM [3H]glutamate (specific activity was 30–

60 Ci/mmol) for 5 min and equally layered onto perfusion chambers over Whatman GF/C filters 

(flow rate, 0.6 ml/min; chamber volume, 90µl). 

 After a 20 min washout period, the effluent was collected for 40 min in 2 min intervals. 

The GABA or glutamate release from synaptosomes was stimulated during 2 min with a high-

K+ solution (15 mM, isomolar substitution of Na+ with K+ in the perfusion buffer) at the 5th [first 

stimulation period (S1)] and 29th [second stimulation period (S2)] minute after starting sample 

collection. BDNF (30ng/ml) was added to the superfusion medium at the 9th minute, therefore 

before S2, and remained in the bath up to the end of the experiments, and its effect was 

quantified as percentage changes of the S2/S1 ratio compared with the S2/S1 ratio in the absence 

of BDNF in the same synaptosomal batch and under similar drug conditions. Thus BDNF effect 

upon S2/S1 ratio was determined from synaptosomes prepared from slices incubated without any 

drug, incubated with Aβ or incubated with both Aβ and MDL28170. 

 

3.16. Calculation of drug effects on GABA and gluta mate 
release 

 

 At the end of each experiment, aliquots (500 µl) of each sample as well as the filters 

from each superfusion chamber were analysed by liquid scintillation counting. The fractional 

release was expressed in terms of the percentage of total radioactivity present in the preparation 

at the beginning of the collection of each sample. The amount of radioactivity released by each 

pulse of K+ (S1 and S2) was calculated by integration of the area of the peak upon subtraction of 

the estimated basal tritium release. In each experiment, two synaptosome-loaded chambers were 

used as control chambers, the others being used as test chambers. In the test chambers, the test 

drug was added to the perfusion solution before S2 and the S2/S1 ratios in control and test 

conditions were calculated. The effect of the drug on the K+-evoked tritium release was 

expressed as percentage of change of the S2/ S1 ratios in test conditions compared to the S2/S1 

ratios in control conditions, in the same experiments (i.e., with the same pool of synaptosomes).  

 

3.17. KW-6002 treatment 
 

 KW-6002 was synthesized according to described procedures [351]. The drug and the 

dose were selected according to described in [352]. Four to six week-old male rats were treated 

with an orally active A2AR antagonist, istradefylline (KW-6002), 3 mg/kg/day for 30 days in 
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drinking water available ad libitum in light protected bottles. The vehicle (control) group were 

treated only with vehicle (0.025% methylcellulose in water) as described before [353]. The 

weight of the animals and the volume intake were assessed twice a week in both control and 

treated animals and the concentration of the solution adjusted so that the drug intake was 

constant. No differences in body weight or water intake were detected between the KW-6002 

and vehicle group. The animals were sacrificed either immediately or after 24 h of KW-6002 

withdrawal. 

 

3.18. Ex-vivo electrophysiology recordings 
 

 Long-term potentiation (LTP) induction and quantification were performed as described 

previously [114]. Briefly, the hippocampal slices from 8-10 week-old Wistar rats were 

transferred to a recording chamber continuously superfused with oxygenated aCSF at 32°C 

(flow rate of 3ml/min in open system). The stimulation pulses were delivered every 10s 

alternately to two independent pathways through electrodes placed on Shaffer 

collateral/commissural fibres in stratum radiatum, and the fEPSPs were recorded in stratum 

radiatum of CA1 area (Figure 3.5A). LTP was induced by theta-burst protocol consisting of four 

trains of 100Hz, 4 stimuli, separated by 200ms (Figure 3.5B). We used theta-burst stimulation 

to induce LTP, since this pattern of stimulation is considered closer to what occurs 

physiologically in the hippocampus during episodes of learning and memory in living animals 

[354]. Furthermore, the facilitatory action of BDNF upon LTP is mostly seen under θ-burst 

[72]. In addition, we previously showed that the effect of BDNF upon CA1 LTP is more evident 

under weak (as the used in this work) than under strong θ-burst paradigms [113]. Therefore, we 

selected the optimal stimulation paradigm to observe an effect of BDNF upon LTP, so that we 

could evaluate the influence of Aβ upon the effect of BDNF. 

 One hour after LTP induction in one group of synapses, BDNF (20ng/ml) was added to 

the superfusion solution and LTP was induced in the other group of synapses, no less than 

20min after BDNF perfusion. In experiments where CGS21680 was used, it was applied 15min 

before BDNF (which corresponds to 35min prior to LTP induction). Whenever an increase on 

the slope of fEPSP was detected in the presence of BDNF, the intensity of stimulation was 

adjusted before LTP induction for similar values recorded before BDNF application. LTP was 

quantified as percentual change in the average slope of the fEPSP taken from 46-60min after 

LTP induction in relation to the average slope of the fEPSP measured during the 14min before 

the induction of LTP. The effect of BDNF upon LTP was evaluated by comparing the 

magnitude of LTP in the first pathway in the absence of BDNF (control pathway), with the 

magnitude of LTP in the second pathway in the presence of BDNF (test pathway). The 
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independence of the two pathways was tested in the end of experiments by studying the pair-

pulse facilitation (PPF) across both pathways, less than 10% facilitation being usually observed. 

In the absence of drugs, the LTP magnitude was similar in both independent pathways (Figure 

3.5C). 

 

 

Figure 3.5 – Electrophysiology recording configuration and LTP magnitude on both pathways. 

(A) Schematic representation of a hippocampal transverse slice showing the recording configuration used 

to obtain extracellular responses in the CA1 dendritic layer (stratum radiatum) evoked by stimulation of 

two separate sets of the Schaffer pathway (S1 and S2). (B) Schematic representation of the θ-burst 

stimulus paradigm used to induce LTP. (C) Left: Averaged time course changes in fEPSP slope on both 

independent pathways upon sequential θ-Burst stimulation in the first pathway (○) and 60 min after in the 

second pathway (●) in rat hippocampal slices (n=5). Right: LTP magnitude (change in fEPSP slope at 46-

60 minutes after θ-Burst stimulation) in relation to pre-θ-Burst values (0%) (n=5).  
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3.19. Input / Output curves 
 

 Input/output curves were performed after a stable baseline of at least 15 min. The 

stimulus delivered to the slice was decreased until no fEPSPs evoked and subsequently 

increased by steps of 20 µA. Data from three consecutive fEPSPs were collected for each 

stimulation intensity. The range of all input delivered to the slice was typically from 60 µA to a 

supramaximum stimulation amplitude of 360 µA. The input/output curve was plotted as the 

relationship of fEPSP slope versus stimulus intensity.  

 

3.20. Statistical analysis 
 

 The data are expressed as mean ± SEM of the n number of independent experiments. 

The significance of differences between the means of two conditions was evaluated by 

Student’s t-test. To perform multiple comparisons between the means of more than two 

conditions a one-way ANOVA followed by a Bonferroni post-test was performed. To perform 

comparisons on LTP magnitude in the presence or absence of BDNF between different slice 

treatments, a two-way ANOVA followed by a Bonferroni post-test was performed. Values of 

p<0.05 were considered to represent statistically significant differences. Prism GraphPad 

software was used for statistical analysis. 
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4. Dysregulation of TrkB receptors and BDNF function 

by Aβ peptide is mediated by calpain 

 

The work presented in subchapter 4.3 was published in Kemppainen et al., 2012 [30]. 

The remaining work described in chapter 4 was published in Jerónimo-Santos et al., 2014b [346].  

The experiments described in subchapter 4.8 were performed by S. Vaz, S. Parreira and S.Rapaz-Lerias. 

 

4.1. Summary  
 

 Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length receptor, 

TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and 

regulating synaptic plasticity and memory. TrkB and BDNF signalling are impaired in 

Alzheimer’s disease (AD), a neurodegenerative disease involving accumulation of amyloid-β 

(Aβ) peptide. In the present study, we found that 1) Aβ selectively increases mRNA and protein 

levels of truncated TrkB isoforms, and strongly decreases TrkB-FL protein levels without 

affecting its mRNA levels; 2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, 

downstream of Shc binding site, originating a new truncated TrkB receptor (TrkB-T’) and an 

intracellular fragment (TrkB-ICD), which is also detected in post-mortem human brain samples; 

3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF 

to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, 

and long-term potentiation (LTP) in hippocampal slices. It is concluded that Aβ-induced calpain 

activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions. 

 

4.2. Rational  
 

 Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal 

survival, differentiation and synaptic plasticity through activation of its full-length receptor, 

TrkB-FL. Besides encoding for this receptor, the TrkB gene (NTRK2) also encodes for truncated 

isoforms [355], which may act as negative modulators of TrkB-FL signalling [25, 29]. Both 

decreases in the ratio between full-length (FL) and truncated (Tc) receptors and reduced BDNF 

signaling have been detected in several neurodegenerative disorders. Particularly, hippocampal 

and cortical post-mortem samples from AD patients revealed a decrease in both BDNF and 

TrkB-FL and an increase in TrkB-Tc levels [319, 321-323, 333]. These changes are thought to 
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be involved in spatial memory impairments and, accordingly, the activation or overexpression 

of TrkB-FL has been associated to spatial memory improvements [30, 316, 356]. 

 AD is characterized not only by the accumulation of intracellular neurofibrillary tangles 

made of hyperphosphorylated tau proteins, but also of extracellular plaques composed by 

amyloid-β peptides (Aβ). Aβ plaques are largely composed by Aβ40 and Aβ42, but also by Aβ 

fragments including the Aβ25–35 [357], which has been proposed to be the active region of the 

full-length Aβ peptide responsible for its neurotoxic effects [242]. Mechanisms underlying the 

neurotoxic actions of Aβ peptides are not fully understood, but the existing data suggests that 

oxidative stress, perturbation of Ca2+ homeostasis, mitochondrial dysfunction, synaptic loss and 

caspases and calpains activation are strongly involved [253-256]. Calpains are Ca2+-dependent 

proteases that play a physiologic role by the cleavage of several substrates, changing their 

function or localization. Abnormal activation of calpains and downregulation of its endogenous 

inhibitor (calpastatin) have been linked to AD [194, 358, 359]. In addition, calpain 

overactivation contributes to tau hyperphosphorylation, a hallmark of AD, through the 

activation of cyclin-dependent kinase 5 (CDK5), followed by the cleavage of its regulatory 

protein – p35 [282, 360, 361]. Moreover, calpain also contributes to the formation and 

accumulation of Aβ peptides and its inhibition prevents neurodegeneration and restores normal 

synaptic function and spatial memory in AD animal models [201, 202, 362]. 
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4.3. Aβ increases truncated TrkB protein levels 
  

 Since in AD brain decreased TrkB-FL and increased truncated TrkB receptor levels 

have been reported, we hypothesized that amyloid-beta peptide (Aβ), by itself, could induce 

similar changes in TrkB receptor isoforms. To test this hypothesis, cortical and hippocampal 

cells were cultured for 7 DIV and treated with Aβ peptides and TrkB receptor immunoreactivity 

was evaluated by western-blotting. Incubation of cortical cells with Aβ25-35 (25µM) induced a 

dramatic increase in truncated TrkB receptor levels compared to control cells (100 ± 2.3 % vs. 

223 ± 19.9 %; n = 8, p<0.01, Student’s-test, Figure 4.1A), whereas TrkB-FL receptor levels 

decreased (100 ± 1.7% vs. 61 ± 6.3%; n=8, p<0.01, Student’s-test, Figure 4.1A). The same 

pattern of alteration in TrkB receptor isoforms was also observed in hippocampal cultures 

(Figure 4.1A). The effects on TrkB receptors upon Aβ25-35 exposure were time and 

concentration-dependent (Figure 4.1B and C), so that longer incubation times with Aβ or higher 

concentrations of Aβ produced a more robust effect, with increasing changes on TrkB isoforms 

levels.  

 Since glial cells are enriched in truncated TrkB.T1 isoform [37], we tested the effect of 

the Aβ25-35 peptide on truncated TrkB in neuronal cultures previously treated with the 

antimitotic drug 5-Fluorouracil (5-FU). In spite of the marked reduction in the astrocytic 

marker, the glial fibrillary acidic protein (GFAP), observed in the cultures treated with 5-FU 

(Figure 4.2A, lower left panel), Aβ25-35 treatment still increased truncated TrkB receptor levels 

in a similar magnitude as that observed in cells from the same culture but not treated with 5-FU 

(Figure 4.2A, right panel). In cortical cultures (7 DIV) treated with the most frequent Aβ 

peptide in AD, the Aβ1-42 (10-20µM for 24h), also caused a concentration-dependent increase 

(≈28% for 20µM) of the truncated TrkB and a concentration-dependent decrease (≈40% for 

20µM) in TrkB-FL levels (Figure 4.2B). We can therefore conclude that in primary neuronal 

cultures the Aβ peptide simultaneously increases the levels of truncated TrkB receptors and 

decreases levels of full-length TrkB receptors, producing a similar pattern of alterations as 

reported in the brain of AD patients.  
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Figure 4.1 – Effect of Aβ 25-35 upon truncated and full-length TrkB receptors protein levels. 

(A) Primary cultures of cortical cells (upper left panel) and hippocampal cells (lower left panel) were 

incubated at 7 DIV with Aβ25-35 (25µM) for 24h and levels of full-length (TrkB-FL) and truncated TrkB 

(TrkB-Tc) were determined by western-blotting. Average data from 8 independent cortical cultures is 

shown in right panel (**p<0.01 compared to control (Ctrl), Student’s t-test). (B) Time-dependent changes 

in TrkB-FL and TrkB-Tc densities after 3, 8, 24 and 48 hours of incubation of 7 DIV cortical cultures with 

Aβ25-35 (25µM). (C) Dose-dependent changes in TrkB-FL and TrkB-Tc levels after 24 hours of incubation of 

7 DIV cortical cultures with Aβ25-35. 
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Figure 4.2 – Effect of glial cells upon Aβ-induced changes in TrkB isoforms levels. 

(A) Comparison of the influence of Aβ25-35 (25µM) exposure in non-treated cortical cultures and in cultures 

treated with 5-Fluorouracil (5-FU) to markedly decrease glial cells number as confirmed by glial fibrillary 

acidic protein levels (GFAP). Average effect of Aβ25-35 (25µM) on truncated TrkB levels in 3 independent 

cultures both conditions were shown in left graph (*p<0.05 as compared with non-treated control, 

Student’s t-test). (B) Dose-dependent changes on TrkB-FL and TrkB-Tc levels on 7 DIV cortical cultures 

exposed for 24 hours to Aβ1-42 peptide.  

 

 

 Moderate cell death is expected to occur after Aβ peptide incubation. Indeed, 24h after 

incubating the neurons with Aβ25-35 (25µM) there was an increase (21±5%, p<0.05, n=6) in 

activity of lactate dehydrogenase (LDH), a soluble cytosolic enzyme that is released following 

loss of membrane integrity resulting from either apoptosis or necrosis [363], into incubation 

medium. The intracellular caspase-3 activity, a central mediator of apoptotic cell death, was 

even more markedly increased (3 fold increase, Figure 4.3B, p<0.01, n=4). The cell-permeable 

pan-caspase inhibitor, Z-VAD(OMe)-FMK, which is known to inhibit apoptotic cellular death 

[364], fully blocked the Aβ25-35-induced activation of caspase-3 (Figure 4.3B, p<0.01, n=4). 
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However, the pan-caspase inhibitor failed to influence the Aβ25-35-induced increase in TrkB-Tc 

and decrease in TrkB-FL levels (Figure 4.3C and D, p<0.05, n=4). These results indicate that 

Aβ-induced alterations on TrkB receptors isoforms are not a direct consequence of apoptotic 

cellular death. 

 

 

 

Figure 4.3 – Effect of caspases inhibition upon Aβ-induced changes in TrkB isoforms levels. 

(A) Primary cultures of cortical cells were incubated at 7 DIV with Aβ25-35 (25µM) for 24h and levels of 

released lactate dehydrogenase (LDH) were measured. Average data from 6 independent cortical cultures 

is represented (*p<0.05 compared to control (Ctrl), Student’s t-test). (B) Caspase3-like activity of cell 

lysates measured after 24hours of Aβ25-35 (25µM) incubation of 7 DIV cortical cultures, in the presence and 

absence of the pan-caspase inhibitor Z-VAD(OMe)-FMK (20µM). (**p<0.01 compared to control (Ctrl); 

§p<0.01 compared to Aβ25-35 alone; ANOVA with Bonferroni’s correction). (C) Representative western-blot 

image of TrkB-FL and TrkB-Tc levels detected in neuronal cultures from 7 DIV with Aβ25-35 (25µM) in 

presence or absence of Z-VAD(OMe)-FMK (20µM). (D) Average data from densitometry quantification of 

TrkB-FL (left) and TrkB-Tc (right) immunoreactivity (C) of 4 independent cortical cultures (*p<0.05, 

Student’s t-test).  
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4.4. Aβ up-regulates TrkB-T1 mRNA levels  
 

 To evaluate the effects of Aβ upon TrkB receptors expression, we determined the 

mRNA levels of the main TrkB isoforms produced by alternative splicing (FL, T1 and T2). 

qPCR data showed that neuronal cultures incubated with Aβ25-35 (25µM) for 24 hours displayed 

a significant increase of truncated TrkB-T1 (45 ± 19%, n=8, p<0.05, Figure 4.4) and truncated 

TrkB-T2 (58 ± 17%, n=8, p<0.05, Figure 4.4) mRNA levels as compared to non-treated control 

cultures. Conversely, no significant change of TrkB-FL mRNA levels was detected upon Aβ25-35 

incubation (Figure 4.4, n=8). As shown in Figure 3.4B, the TrkB-FL and TrkB-T1 are the main 

TrkB isoforms present in the cultures, while TrkB-T2 was expressed at lower levels. Thus, only 

TrkB-T1 will be mentioned henceforward, since it is the main spliced truncated isoform. 

 

 

 

 

Figure 4.4 – Aβ peptide up-regulates mRNA levels of truncated TrkB-T1 and T2. 

 (A) Analysis of mRNA levels by relative qPCR of TrkB full-length (TrkB-FL) and truncated isoforms (TrkB-

T1 and TrkB-T2) on 8 DIV cortical cultures treated with (black bars) or without (white bars-CTR) Aβ25-35 

(25µM) for 24hours. β-actin was used as an internal loading control. *p<0.05 comparing to control (CTR) 

of the respective isoform (n=8, student’s t-test). Values presented are mean ± SEM. 
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4.5. Aβ induces a cleavage on TrkB-FL receptors 
 

 Although the above results clearly show that TrkB-FL mRNA levels were not 

significantly affected by Aβ25-35, a strong decrease of 40 ± 5% in TrkB-FL protein levels was 

observed in Aβ25-35-treated cells when compared to control (Figure 4.5A, n=10, p<0.01), as we 

previously observed for both Aβ25-35 and Aβ1-42 (Figure 4.1) [30]. Thus, in order to assess 

whether Aβ could also promote TrkB-FL cleavage, an antibody recognizing the intracellular C-

terminal of TrkB-FL was used to detect a possible product of such cleavage. The results show 

that the decrease on TrkB-FL receptors, in Aβ25-35-treated cultures, is concomitant with the 

formation of a ~32kDa band (Figure 4.5A, n=10, p<0.01 compared to control), indicating that 

Aβ induces a cleavage of TrkB-FL receptor, whereby it generates an intracellular domain (ICD) 

fragment (designated for now on as TrkB-ICD). Moreover, in cells treated with the full-length 

Aβ1-42 (20 µM) there is also an increase in the formation of TrkB-ICD (Figure 4.6C). 

 Given that the cytosolic domain of rat TrkB-FL (starting at Lys454 until Gly821) has a 

predicted molecular weight of 41.6 kDa, and since TrkB-ICD fragment migrates in SDS-PAGE 

with a relative molecular weight of ~32kDa, the cleavage site might be located ~10kDa 

downstream the transmembrane domain of the receptor. We thus anticipated that the Aβ-

induced cleavage would lead to the generation of a new membrane-bound truncated TrkB 

receptor ~10kDa heavier than the natural truncated TrkB-T1 (which lacks the whole 

intracellular domain). To directly evaluate this possibility, we used a pan-TrkB antibody that 

recognizes an extracellular epitope and we increased the separation in SDS-PAGE 

electrophoresis, which allowed us to identify two distinct truncated TrkB bands: one broad band 

at ~90kDa corresponding to the natural truncated TrkB-T1 receptor, and another broad band 

around ~100kDa band corresponding to the new truncated receptor produced by the cleavage of 

TrkB-FL (henceforth designated as TrkB-T’, Figure 4.5B). The TrkB-T’ levels were very low in 

control neuronal cultures (Figure 4.5B and Figure 4.7C), being also negligible in control rat 

brain homogenates (Figure 4.7E), indicating that this fragment is only formed under conditions 

that trigger robust cleavage of TrkB-FL receptor. 

 Taken together, the data show that Aβ induces a selective up-regulation of truncated 

TrkB-T1 and T2 transcripts, while it simultaneously promotes TrkB-FL protein cleavage, thus 

producing a new truncated receptor (TrkB-T’) and an intracellular fragment containing the C-

terminal of the receptor (TrkB-ICD). The natural truncated receptors produced by alternative 

splicing (TrkB-T1 and -T2) and the cleavage-generated truncated receptor (TrkB-T’), all 

contribute to the total pool of truncated TrkB receptors, which will be referred in this work as 

TrkB-Tc. 
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Figure 4.5 – Aβ peptide induces a TrkB-FL receptor cleavage. 

(A) In left panel is a representative western-blot of 8 DIV neuronal cultures showing TrkB-FL receptor 

levels and the TrkB cleavage fragment (TrkB-ICD: ~32 kDa) after 24hours of Aβ25-35 incubation. The 

primary antibody used recognizes the C-terminal of Trk-FL. Right panels show the average band intensity 

of TrkB-FL (upper histogram) and TrkB-ICD (lower histogram). **p<0.01 comparing to control (n=10, 

student’s t-test). (B) Western-blot using a pan-TrkB antibody (extracellular TrkB epitope), which 

recognizes simultaneously the full-length (~145 kDa) and the truncated TrkB species: TrkB-T’ (TrkB-FL 

cleavage product, ~100 kDa) and TrkB-T1 (natural truncated TrkB originated by alternative splicing, ~90 

kDa). These bands were detected in neuronal cultures extracts prepared after the exposure to Aβ25-35 

(25µM) for 3, 8, 24 and 48 hours or from control cultures (CTR) as indicated above each lane. All values 

presented are mean ± SEM.  

 

 

4.6. Calpain mediates the A β-induced TrkB-FL cleavage 
 

 The next series of experiments were designed to identify the enzyme involved in the 

cleavage of TrkB-FL by Aβ. The cell-permeable thiol proteases inhibitor, E-64d, caused a 

concentration-dependent inhibition of the TrkB-FL cleavage induced by Aβ25-35, with a maximal 

effect achieved at the concentration of 100µM (Figure 4.6A). To identify which thiol proteases 

were involved in the cleavage, several inhibitors were tested, including the inhibitors of 

proteases with calpain-like activity, N-acetyl-Leu-Leu-norleucinal (ALLN 20µM), N-acetyl-

Leu-Leu-methional (MG132 2µM) and MDL28170 (20µM), and the cell permeable pan-

caspases inhibitor (z-VAD-FMK 20µM). In addition, a potent aspartyl proteases inhibitor, 

pepstatin A (1µM) was also tested. Neither the caspase inhibitor zVAD-FMK, nor pepstatin A, 
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mitigated Aβ-induced cleavage of TrkB-FL receptors (Figure 4.6B). Conversely, the inhibitors 

of calpain-like activity ALLN, MG132 and MDL28170 significantly prevented Aβ-induced 

cleavage of TrkB-FL and the subsequent formation of TrkB-T’ and TrkB-ICD fragments 

(Figure 4.6B, n=5, p<0.01).  

 In parallel, we observed that the exposure of neuronal cultures to Aβ25-35 resulted in a 

strong activation of calpain, as confirmed by the 6-fold increase (Figure 4.6C, n=4, p<0.001) in 

the formation of the calpain-specific αII-Spectrin breakdown products (SBDP 150/145kDa), a 

standard assay for monitoring calpain activity. The Aβ1-42 peptide (20µM) also induced robust 

calpain activation on neuronal cultures (see Figure 4.6C).  

Since calpains are calcium-dependent proteases, we next evaluated whether the 

activation of endogenous calpains by Ca2+ would induce TrkB-FL cleavage by itself, in the 

absence of Aβ. Therefore, cell lysates of neuronal cultures were incubated with 5mM of CaCl2 

for 4 hours at 25ºC and, in these conditions, the characteristic TrkB-ICD band was detected, an 

effect fully blocked by the calpain inhibitor MDL28170 (Figure 4.7A, n=3, p<0.05). The 

cleavage of TrkB-FL by endogenous calpains was also detected in isolated nerve terminals 

(synaptosomes) prepared from adult rat hippocampus (Figure 4.7B). In addition, the cleavage of 

TrkB-FL and subsequent production of TrkB fragments was observed following the incubation 

of neuronal cell lysates, or cortical homogenates from adult rat, with purified recombinant rat 

m-calpain in presence of 2mM Ca2+ (~100kDa TrkB-T’ and ~32kDa TrkB-ICD; Figure 4.7C). 

To confirm the specificity of the fragments detected, the full-length TrkB receptors were 

immunopurified from neuronal cultures and incubated with purified rat m-calpain. The results 

showed that rat m-calpain cleaved the immunopurified receptors producing the characteristic 

TrkB-T’ and TrkB-ICD fragments, allowing to conclude that the fragments detected arise 

specifically from TrkB-FL receptors (Figure 4.7D). 

 Human TrkB-FL and rat TrkB-FL share the same amino-acid sequence in the region of 

the calpain-cleavage site (Fig.3B). Thus, it is expected that human TrkB-FL could also be 

cleaved by human calpains. Indeed, basal levels of TrkB-ICD were detected in a parietal cortex 

homogenate from a human control case (Figure 4.7E). Addition of purified m-calpain 

completely cleaved human TrkB-FL, further enhancing the levels of TrkB-ICD fragment 

(Figure 4.7E). This result clearly showed that human TrkB-FL is also prone to be cleaved by 

calpains, leading to the production of TrkB-ICD. Contrary to the toxic Aβ25-35, the reverse 

peptide Aβ35-25 (25µM) did not induce calpain activation and TrkB cleavage on neuronal 

cultures (Figure 4.8A and B, n=3). 

 As previously shown, Aβ selectively up-regulates TrkB-T1 mRNA levels (Figure 4.4). 

However, in opposition to what was observed for protein levels, the inhibition of calpains by 

MDL28170 did not affect the Aβ25-35-induced changes upon mRNA levels of TrkB receptors 

(Figure 4.8, n=4). 
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Figure 4.6 – Aβ-induced cleavage of TrkB-FL is repressed by inhibitors of calpain-like activity. 

(A) Western-blot of 8 DIV neuronal cultures showing a concentration-dependent inhibition of Aβ25-35-

induced TrkB-FL cleavage and TrkB fragments production by E64-d (a general thiol proteases inhibitor). 

(B) Upper image: Representative western-blot of 8 DIV neuronal cultures showing the impact of several 

protease inhibitors on the Aβ-induced TrkB-FL cleavage and TrkB fragments production. The protease 

inhibitors tested were: zVAD-FMK 20µM (pan-caspase inhibitor); MG132 2µM, ALLN 20µM, MDL28170 

20µM (inhibitors of calpain-like activity) and Pepstatin A 1µM (aspartyl protease inhibitor). All bands 

represented in the image are from the same gel and the order of the first two lanes was rearranged. Lower 

panel: Average immunoreactive band intensity of TrkB-FL, TrkB-Tc and TrkB-ICD bands (upper, center 

and lower histogram, respectively). The order of the histogram bars is the same as the above lanes of the 

western-blot (**p<0.01 compared to CTR, #p<0.05 compared to Aβ25-35, n=5, one-way ANOVA with 

Bonferroni’s multiple comparison test). (C) Left image: Representative western-blot showing the effect of 

24 hours of Aβ25-35 (25µM) and Aβ1-42 (20µM) incubation on 8 DIV neuronal cultures upon brain αII-

Spectrin levels and the formation of the calpain-specific spectrin breakdown products (SBDPs 145/150), 

caspase-3 specific SBDP (120) and TrkB-ICD fragment. Right histogram: Analysis of calpain-specific 

SBDPs (145/150) immunoreactive band intensity of control (white bar) and Aβ25-35 treatment (black bar), 

***p<0.001 comparing to control (n=4, student´s t-Test). All values presented are mean ± SEM. 
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Figure 4.7 – Calpain cleaves rat and human TrkB-FL receptor.  

(A) Left: Representative western-blot showing the production of TrkB-ICD upon CaCl2 (5mM) incubation 

on cell lysates for 4h at 25ºC. Right: Analysis of TrkB-ICD immunoreactive band intensity (**p<0.01, n=3, 

ANOVA). (B) Western-blot showing levels of TrkB-FL, truncated TrkB-Tc and TrkB-ICD fragment of 

isolated synaptosomes incubated in the absence or presence of CaCl2 (5mM) or CaCl2 with calpain 

inhibitor MDL28170 (20µM). (C) Cleavage of rat TrkB by exogenous m-calpain, with consequent 

production of TrkB-T’ and TrkB-ICD in neuronal cultures lysates (left) and in adult rat brain homogenates 

(right). (D) Western-blot performed using anti- C-terminal of Trk-FL antibody (upper panel) and the pan-

TrkB antibody (lower panel). First lane: Immunopurified TrkB-FL receptors from neuronal culture lysates 

using the anti- C-terminal TrkB-FL antibody. Second lane: immunopurified TrkB-FL after an In-vitro 

digestion with m-calpain. IgGHC (50kDa) and IgGlC (20-30kDa) bands correspond, respectively, to the 

Heavy and Light chain of Immunoglobulin G of the antibody used for the immunoprecipitation. (E) 

Western-blot of post-mortem human cortical sample, showing endogenous levels of TrkB and TrkB-ICD (in 

control condition) and depletion of TrkB-FL with concomitant formation of TrkB-ICD when both exogenous 

m-calpain and Ca2+ were added in the absence of calpain inhibitor MDL28170. Ponceau S staining was 

used for loading control. All values presented are mean ± SEM. 

 

 

4.7. TrkB-FL calpain cleavage site is located downs tream 
the Shc binding site 

 

 Given the molecular weight (~32kDa) of the TrkB-ICD band detected by western-blot, 

we hypothesized that the calpain cleavage site would be located close to the Shc binding site 

(Tyr515). To clarify this possibility, 5µg of recombinant cytosolic domain of TrkB-FL (Human 

TrkB active, aa.455-end, Millipore) were digested by purified m-calpain. Following membrane 

staining after SDS-PAGE electrophoresis, we observed that the recombinant cytosolic domain 

of human TrkB-FL (~42kDa) were cleaved by m-calpain producing the same characteristic 

~32kDa TrkB-ICD fragment band (Figure 4.9A), as detected in neuronal cultures exposed to 

Aβ. The TrkB-ICD band was then cut (as depicted in Figure 4.9A) and analysed by N-terminal 

sequencing (Edman degradation) in order to identify the first five N-terminal aminoacids, hence 

revealing the calpain cleavage site position. The five N-terminal aminoacids detected were Ser-

Gln-Leu-Lys-Asp (S-Q-L-K-D), which allows to conclude that the TrkB-FL is cleaved between 

the Asn(N)520 and Ser(S)521 residues, considering the rat TrkB sequence (Figure 4.9B). This 

cleavage site is located between the Shc binding site (Tyr515) and the TrkB kinase domain 

(Figure 4.9B and C). Therefore, these data indicate that the truncated TrkB-T’ receptor contains 

the Shc binding site (Tyr515), whereas the TrkB-ICD fragment contains the complete tyrosine 
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kinase domain of TrkB-FL receptor (Ile537-Leu806), as well as the C-terminal tail of TrkB 

(Gln807-Gly821), since the fragment is recognized by the antibody specific for the C-terminal tail 

of Trk-FL, as shown above (Figure 4.5A). 

 

Figure 4.8 – Calpain inhibition does not block the Aβ-induced changes on TrkB mRNA levels. 

(A) Western-blot showing the effect of Aβ25-35 and reverse Aβ35-25 peptide (both at 25µM) upon the levels 

of TrkB-FL, TrkB-Tc, TrkB-ICD and αII-spectrin along with its fragments (SBDP150 and 120), on 8DIV 

cortical neurons. (B) Analysis of bands intensities represented in (A) (*p<0.05, **p<0.01, n=3, ANOVA). 

(C) mRNA levels obtained by qPCR of TrkB-FL, TrkB-T1 and TrkB-T2 on 8DIV cortical cultures treated 

with Aβ25-35 (25µM) (black bars) or with both Aβ25-35 (25µM) and MDL28170 (20µM) (gray bars) for 

24hours. β-actin was used as an internal loading control. *p<0.05 comparing to control (white bars) of the 

respective isoform (n=4, ANOVA with Bonferroni’s multiple comparison test). 
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Figure 4.9 – Calpain cleaves TrkB downstream Shc binding site (Tyr 515). 

(A) Ponceau S staining of a PVDF membrane after transfer from SDS-PAGE. Purified cytosolic domain of 

human TrkB (TrkB-active aa.450-end, Millipore) was digested with purified m-calpain, producing TrkB-ICD. 

TrkB-ICD band was cut (dashed square) and submitted for N-terminal sequencing (Edman degradation). 

CaCl2 (2mM) was present in all conditions. (B) Multiple alignment of TrkA, TrkB and TrkC protein 

sequences for different species. The Shc binding motif, the Trk kinase domain, and the calpain-cleavage 

site identified by N-sequencing are identified in the sequence. Protein sequences were obtained in 

UniProtKD, and the multiple alignments were performed using the Clustal Omega tool. The proline residue 

(P) present in the TrkB sequence (*) was not detected by N-sequencing. (C) Schematic representation of 

mature rat TrkB-FL, TrkB-T1, T2, and human TrkB-T-Shc isoforms showing the relevant domains and 

aminoacid residues positions. Calpain-cleavage site (aa. 520) is represented based on N-sequencing 

data. Y515 and Y816 represent the phospho-tyrosine residues able to recruit Shc and PLCγ, respectively. 

Note that the first 31 aminoacid residues of TrkB compose the signal peptide and are not present in the 

mature protein. Protein sequences were obtained from UniProtKD database (Accession number: Q63604 

for Rat and Q16620 for Human).  
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 Upon BDNF binding to TrkB-FL receptor, both Tyr515 and Tyr816 residues of the 

receptor are phosphorylated, allowing the binding of Shc adaptor protein and Phospholipase C-γ 

(PLCγ), respectively, with subsequent activation of signalling cascades [see 365]. By using 

specific antibodies against phosphorylated Tyr515 and Tyr816 of TrkB, we evaluated whether 

TrkB-T’ or TrkB-ICD fragments could undergo phosphorylation on Tyr515 or Tyr816, 

respectively. In a first attempt, neurons were incubated with Aβ for 24hours to produce the 

TrkB fragments, and then, BDNF (20ng/mL) was briefly applied (10 min) to induce TrkB 

phosphorylation. Whereas BDNF incubation induced robust phosphorylation in Tyr515 of TrkB-

FL, such phosphorylation was not detected in the truncated TrkB-T’ fragment (Figure 4.10A). 

The levels of phosphorylated (Tyr515) TrkB-FL upon BDNF exposure were 40 ± 9% lower in 

the Aβ-treated cultures than in control cultures (Figure 4.10A, n=4, p<0.01), a reduction similar 

to that observed in total levels of TrkB-FL induced by Aβ (Figure 4.5A). Thus, the ratio 

between the levels of total TrkB-FL and BDNF-induced phosphorylated TrkB-FL does not 

differ when comparing control cultures with Aβ-treated cultures (Figure 4.10A, n=4), 

suggesting that TrkB-FL phosphorylation efficacy remained similar regardless Aβ treatment. A 

similar result was also obtained in more mature cortical cultures with 15 DIV (Figure 4.10B).  
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Figure 4.10 – Effect of Aβ upon BDNF-induced TrkB phosphorylation on Tyr 515. 

(A) Left: Representative western-blot showing phosphorylated Tyr515 of TrkB-FL (upper image), pan-TrkB 

(middle image) and α-tubulin (lower image) on 8 DIV neurons incubated firstly with (or without) 24hours of 

Aβ25-35 (25µM) and with (or without) 10min of BDNF (20ng/ml). Right: Levels of phosphorylated TrkB-FL 

(Tyr515) normalized for α-tubulin (upper histogram) and ratio between phosphorylated and total TrkB-FL 

levels (lower graph) for control (white bars) and Aβ25-35 treatment (black bars). Values are mean ± SEM 

(**p<0.01, n=4, student´s t-Test, compared to CTR). (B) Western-blot showing phosphorylated Tyr515 of 

TrkB-FL, pan-TrkB, TrkB-ICD and α-tubulin on a 15 DIV cortical culture incubated firstly with (or without) 

Aβ25-35 (25µM, 24hours) and then incubated with (or without) BDNF (20ng/ml) for 10min. 

 

 

   

 

Figure 4.11 – Effect of Aβ upon BDNF-induced TrkB phosphorylation on Tyr 816. 

Western-blot of 8 DIV neuronal cultures showing the levels of phosphorylated Tyr816 of TrkB-FL; the total 

TrkB-FL; and total TrkB-ICD. The neurons were firstly incubated with or without Aβ (25µM) during 

24hours, and then, briefly exposed for 10 min to vehicle or BDNF (20ng/ml) to induce TrkB 

phosphorylation. Ponceau S staining is shown as a protein loading control. 



4. Dysregulation of BDNF signalling by Aβ peptide 

71 

4.8. Calpain mediates detrimental effects of A β upon 
BDNF actions on GABA and Glutamate release. 

 

 The influence of Aβ upon the modulatory action of BDNF on glutamate and GABA 

release was evaluated on synaptosomes, which were prepared from rat hippocampal slices pre-

treated with Aβ25-35 (25µM) or Aβ1-42 (20µM) for 3hours. The hippocampal synaptosomes were 

loaded with [3H]GABA or [3H]glutamate as previously described [350] and neurotransmitter 

release was evoked twice (S1 and S2) by perfusion with 15 mM KCl for 2 min. 

 In [3H]glutamate release assays, the S2/S1 ratio in control conditions was 0.75 ± 0.03 

and it was increased up to 0.93 ± 0.04 when BDNF (20 ng/mL) was added before S2, 

corresponding to an enhancement of 27 ± 7 % in the evoked release of glutamate (Figure 4.12A, 

n=5, p<0.05). In [3H]GABA release assays, the S2/S1 ratio was, in control conditions, 

1.06±0.03 and it was significantly decreased to 0.82±0.07 when BDNF (20ng/ml) was added 

before S2, corresponding to a decrease of 26 ± 6 % in the evoked release of GABA (Figure 

4.12B, n=7, p<0.05). BDNF-induced inhibition of GABA and facilitation of glutamate release 

from hippocampal synaptosomes was expected based on our previous studies [77]. When 

synaptosomes were prepared from hippocampal slices that had been exposed for 3 hours to 

Aβ25-35 (25µM) or to Aβ1-42 (20µM), the S2/S1 ratios in GABA release assays (S2/S1 Aβ25-35: 

1.04 ± 0.06, n=13; S2/S1 Aβ1-42: 1.16 ± 0.02, n=3, Figure 4.13A, E and Figure 4.12D) or 

glutamate release assays (S2/S1 Aβ25-35: 0.85±0.08, n=10; S2/S1 Aβ1-42: 0.85 ± 0.03, n=3, 

Figure 4.13B, F and Figure 4.12C) were not significantly altered (p>0.05) as compared with 

control conditions. However, in synaptosomes prepared from Aβ25-35- and Aβ1-42-treated slices, 

BDNF lost its ability to decrease GABA release (S2/S1 Aβ25-35+BDNF 0.96 ± 0.06, n=13; S2/S1 

Aβ1-42+BDNF: 0.95 ± 0.17, n=3 Figure 4.13A, E and Figure 4.12D) and to increase glutamate 

release (S2/S1Aβ25-35+BDNF: 0.78 ± 0.07, n=10; S2/S1Aβ1-42+BDNF: 0.86 ± 0.07, n=3 Figure 

4.13B, F and Figure 4.12C). These results suggest that Aβ causes a functional impairment of 

BDNF modulatory actions upon glutamate and GABA release in the hippocampus. 
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Figure 4.12 – Modulation of GABA and glutamate release by BDNF, Aβ1-42 and MDL28170.  

Fractional release of [3H]glutamate (A, C and E) and [3H]GABA (B, D and F) evoked by two 15mM K+ 

stimuli of 2-minuts duration, at 5–7 min (S1) and 29–31 min (S2). BDNF (30 ng/ml) was added at 9 min 

and remained in the perfusion solution until the end of the experiments (closed circles), as indicated by the 

horizontal bar. Control curves in absence or in presence of Aβ1-42 (20 µM) and in the presence of MDL 

(20µM), performed in parallel with the same synaptosomal batch, are represented by the open circles. 

BDNF effect upon [3H]glutamate fractional release (A), modulation of BDNF (30ng/ml) effect upon 

fractional release of [3H] glutamate by Aβ1-42 (20 µM) (C) and by MDL (20 µM) (E). BDNF effect upon 

[3H]GABA fractional release (B), and modulation of BDNF (30ng/ml) effect upon fractional release of [3H] 

GABA by Aβ1-42 (20 µM) (D) and by MDL(20 µM) (F). In each experiment, the S2/S1 ratio obtained while 

BDNF was present during S2 was normalized, taking as 100% the S2/S1 ratio obtained in parallel 

chambers under the same drug conditions but in the absence of BDNF. Data are represented as mean ± 

SEM of three to ten independent experiments. 

 

 

In order to determine the contribution of calpains towards the Aβ-dependent impairment 

of BDNF modulation of neurotransmitters release, hippocampal slices were incubated 

simultaneously with both Aβ25-35 (25µM) and MDL28170 (20µM) for 3 hours. In the absence of 

BDNF, MDL28170 did not impact S2/S1 ratios for both GABA (S2/S1Aβ25-35+MDL: 1.13 ± 

0.05, n=4, Figure 4.13C,E) and glutamate release (S2/S1Aβ25-35+MDL: 0.78 ± 0.07, n=4, Figure 

4.13D,F). On the contrary, in synaptosomes prepared from hippocampal slices incubated under 

similar conditions (Aβ25-35 and MDL28170), the addition of BDNF before S2 affected the S2/S1 

ratio of GABA (S2/S1 Aβ25-35+MDL+BDNF: 0.78 ± 0.15, p<0.05 vs S2/S1 Aβ25-35+MDL, n=4, 

Figure 4.13C,E) and glutamate (S2/S1 Aβ25-35+MDL+BDNF 0.96 ± 0.08, p<0.05, vs S2/S1 

Aβ25-35+MDL, n=4, Figure 4.13D,F) release similar to what had been observed when BDNF was 

added alone (Figure 4.13D,F and Figure 4.12A,B). The incubation of hippocampal slices with 

MDL28170 alone for 3 hours did not affect BDNF actions upon glutamate and GABA release 

(for glutamate: S2/S1 MDL+BDNF: 0.95 ± 0.01, n=3, Figure 4.12E; for GABA: S2/S1 

MDL+BDNF: 0.69 ± 0.28, n=3, Figure 4.12F). These results strongly suggest that the 

impairment caused by Aβ upon the modulatory action of BDNF on neurotransmitter release is 

rescued by calpain inhibition. 
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Figure 4.13 – Aβ inhibits BDNF effect upon neurotransmitter release in a calpain-dependent way. 

Fractional release of [3H] GABA (A and C) and [3H] glutamate (B and D) evoked by two 15mM K+ stimuli of 

2min duration, at 5–7 min (S1) and 29–31 min (S2). BDNF (30 ng/ml) was added at 9 min and remained in 

the perfusion solution until the end of the experiments (closed circles), as indicated by the horizontal bar. 

Control curves in the presence of Aβ25-35 (25µM) or Aβ25-35 (25µM) and MDL28170 (20µM), performed in 

parallel with the same synaptosomal batch, are represented by the open circles. Modulation of BDNF 

(30ng/ml) effect upon fractional release of [3H] GABA by Aβ25-35 (25µM) (A), or by simultaneous treatment 

with Aβ25-35 (25µM) and MDL28170 (20µM) (C). Modulation of BDNF (30ng/ml) effect upon fractional 

release of [3H]glutamate by Aβ25-35 (25µM) (B), or by simultaneous treatment with Aβ25-35 (25µM) and 

MDL28170 (20µM) (D). E and F, S2/S1 ratios (%), calculated in each experiment from the fractional 

release curves, as described in Materials and Methods. BDNF (30 ng/ml) was tested in synaptosomes 

prepared from hippocampal slices treated or non-treated with Aβ25-35 (25µM) or Aβ1-42 (20µM), or treated 

simultaneously with Aβ25-35 (25µM) and MDL28170 (20µM), as indicated below each bar. In each 

experiment, the S2/S1 ratio obtained while BDNF was present during S2 was normalized, taking as 100% 

the S2/S1 ratio obtained in parallel chambers under the same drug conditions but in the absence of BDNF. 

Data are represented as mean ± SEM of five to ten independent experiments. *p<0.05, compared with 

100%, except when otherwise indicated (one-way ANOVA followed by Bonferroni’s multiple comparison 

test). 

 

 

4.9. Calpain mediates detrimental effects of A β upon 
BDNF actions on CA1 long-term potentiation 

 

 BDNF has a well-documented ability to increase LTP on hippocampal CA1 area 

through TrkB-FL activation [67, 71]. To evaluate the impact of Aβ upon BDNF effects on LTP, 

hippocampal slices were exposed for 3 hours to oxygenated aCSF with or without Aβ25-35 

(25µM) or Aβ1-40 (20µM) or even the inverted Aβ35-25 (25µM) peptide. As mentioned in the 

methods section, the experiments were conducted using two independent stimulation pathways, 

being each pathway used as control or test in alternate days, in order to compare LTP magnitude 

in the absence and in the presence of BDNF, within the same slice. The LTP was firstly induced 

by θ-burst stimulation in one pathway and its magnitude quantified 60 min after LTP induction. 

BDNF was then added to the perfusing aCSF and allowed to equilibrate for at least 20 min 

before inducing LTP in the second pathway.  

 As expected [113], the θ-burst stimulus applied in the presence of BDNF (20 ng/mL) 

induced a robust LTP (LTPBDNF: 40.0±1.7% increase in fEPSP slope), which was significantly 
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higher (P<0.01) than that obtained in the absence of BDNF (LTPCTR: 22.1±3.9% increase in 

fEPSP slope; n= 11, Figure 4.14A, E). Pre-treatment of hippocampal slices with Aβ for 3 hours 

did not affect LTP magnitude when compared to untreated slices (LTPAβ25-35: 23.5±3.5%, n=10 

or LTPAβ1-42: 17.6±7%, n=5 vs LTPCTR: 22.1±3.9%, n= 11, Figure 4.14E). However, in Aβ-

treated slices, BDNF (20ng/mL) failed to enhance LTP magnitude (LTPAβ25-35: 23.5±3.5% vs 

LTP Aβ25-35+BDNF: 24.3 ±4.7%, n= 10, p>0.05, Figure 4.14B, E and LTPAβ1-42: 17.6±7% vs LTP 

Aβ1-42+BDNF: 21.4 ±4.0%, n= 5, p>0.05, Figure 4.14C, E). 

In slices treated with 25µM of inverted Aβ35-25 (control peptide), the facilitation of 

BDNF upon LTP was not lost (n=4, p<0.05; Figure 4.15). To evaluate whether Aβ peptides 

could affect basal synaptic efficiency, input/output curves were performed and no significant 

differences were detected between control slices, and Aβ25-35 or Aβ1-42-treated slices (n=4, 

Figure 4.14F). 

 To explore if calpains played a role in the Aβ-induced loss of BDNF effect upon LTP, 

hippocampal slices were pre-treated simultaneously with the Aβ25-35 and the calpain inhibitor 

MDL28170 (20µM), for 3 hours. As shown in Figure 4.14D, pre-treatment with MDL28170 

rescued the facilitatory effect of BDNF upon LTP (LTPAβ25-35+MDL: 15.6±3.9% vs LTPAβ25-

35+MDL+BDNF: 32.5±3.3%, n=6, p<0.05, Figure 4.14D, E). MDL28170 by itself did not 

significantly affect LTP magnitude in slices treated with Aβ25-35 (Figure 4.14D).  

 Taken together, these data demonstrate that Aβ severely hampers BDNF action on 

hippocampal LTP and neurotransmitter (GABA and glutamate) release and that these 

impairments are dependent on calpain activation. These functional results correlate with the 

results obtained in neuronal cultures treated with Aβ showing a calpain-mediated cleavage of 

the TrkB-FL BDNF receptor. Therefore, the data strongly suggest that Aβ impairs BDNF/TrkB 

mediated actions in hippocampal slices through a mechanism that involves calpain activation. 
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Figure 4.14 – Aβ decreases the effect of BDNF upon LTP, in a calpain-dependent way. 

Panels (A-D) show the averaged time courses changes in field excitatory post-synaptic potential (fEPSP) 

slope induced by a θ-Burst stimulation in the absence (○) or in the presence of BDNF 20ng/ml (●) in the 

second stimulation pathway in rat hippocampal slices without (A, n=11) or with a pre-exposure for 3 hours 

to aCSF solution containing 25µM Aβ25-35 (B, n=10); 20µM Aβ1-42 (C, n=5); or 25µM Aβ25-35 in the 

presence of 20µM MDL28170 (D, n=6). The traces from representative experiments are shown below 

panels (A-D); each trace is the average of eight consecutive responses obtained before (1 and 3) and 46–

60 min after (2 and 4) LTP induction. The traces are composed by the stimulus artifact, followed by the 

pre-synaptic volley and the fEPSP. The traces (1 and 2) and traces (3 and 4) were obtained in the 

absence and presence of BDNF, respectively. (E) LTP magnitude (change in fEPSP slope at 46-60min) 

induced by θ-Burst stimulation in relation to pre-θ-Burst values (0%), for each group of pre-treated slices 

(Control, Aβ25-35, Aβ25-35 + MDL28170, and Aβ1-42). *p<0.05; **p<0.01, one-way ANOVA followed by 

Bonferroni’s multiple comparison test. Data are represented as mean ± SEM. (F) Input/output curves 

corresponding to fEPSP slope evoked by various stimulation intensities (100–360 µA) in non-treated 

hippocampal slices or treated for 3hours with Aβ25-35 (25µM) or Aβ1-42 (20µM) (n=4).  

 

 

 

 

Figure 4.15 – Reverse Aβ35-25 peptide does not affect BDNF effect upon LTP 

Left: averaged time courses changes in field excitatory post-synaptic potential (fEPSP) slope induced by a 

θ-Burst stimulation in the absence (○) or in the presence of BDNF 20ng/ml (●) in the second stimulation 

pathway in rat hippocampal slices pre-exposed for 3hours to inverted Aβ35-25 peptide (25µM) (n=4). Right: 

LTP magnitude (change in fEPSP slope at 46-60 minutes after θ-Burst stimulation) in relation to pre-θ-

Burst values (0%) (n=4, *p<0.05, student’s t-test). Data are represented as mean ± SEM. 
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4.10. Discussion 
 

 In this chapter, it was demonstrated that Aβ promotes a calpain-mediated cleavage of 

TrkB-FL receptor and that impairs, in a calpain-dependent manner, BDNF modulation of 

neurotransmitter release and synaptic plasticity. Moreover, we found that, in primary cortical 

cultures, Aβ significantly increases mRNA levels of truncated TrkB isoforms without affecting 

mRNA levels of TrkB-FL, in a mechanism independent of calpains.  

 The alterations at the transcriptional level, namely the increase in mRNA levels of 

truncated TrkB isoforms is in line with previous data showing a correlation between amyloid-

load and up-regulation of TrkB-T1 mRNA levels in cortical regions of a transgenic AD mice 

model without affecting TrkB-FL mRNA levels [30]. A selective up-regulation of truncated 

TrkB mRNA levels (TrkB-T1 and TrkB-T-Shc), without changes in TrkB-FL mRNA levels, 

was also reported in the hippocampus of AD post-mortem human brain [337]. As we now 

clearly show, the influence of Aβ upon TrkB-FL occurs at the post-translational level, rather 

than at the transcriptional level since Aβ strongly reduces TrkB-FL protein levels. Remarkably 

this occurs through calpain-mediated cleavage of TrkB-FL receptor protein, leading to a 

truncated receptor with a different molecular weight than the known isoforms of the truncated 

TrkB receptors that we named as TrkB-T’. Interestingly, Aβ did not affect the proportion of 

BDNF-induced phosphorylated TrkB-FL over total TrkB-FL levels, in accordance with 

previous data showing that sub-lethal Aβ concentrations do not interfere with BDNF-induced 

phosphorylation of TrkB-FL [366]. Thus, Aβ may impair BDNF signalling through a decrease 

in the TrkB-FL/TrkB-Tc ratio (Tc referring to all isoforms of truncated receptors), rather than 

by affecting the phosphorylation of the remaining TrkB-FL. In addition, Aβ could also affect 

downstream mediators of TrkB signalling, such as the docking proteins of TrkB, as already 

described for sub-lethal concentrations of Aβ [366]. 

 By performing a detailed characterization of TrkB-FL cleavage, it was possible to show 

that calpain cleavage of TrkB-FL occurs between the Asn520 and Ser521 residues, producing two 

TrkB cleavage products: 1) the new truncated TrkB receptor (TrkB-T’) which is heavier than 

the natural truncated TrkB-T1 and -T2 splicing products and 2) a fragment of ~32kDa which 

corresponds to the intracellular domain of TrkB-FL (TrkB-ICD). Moreover, we found that the 

calpain cleavage site of TrkB-FL is located downstream to the Shc binding site (Tyr515), 

indicating that the new truncated TrkB-T’ generated by calpain contains the Shc-binding site 

(Tyr515). Thus, the TrkB-T’ is only 16 aminoacid residues shorter than the described truncated 

TrkB-T-Shc isoform, a neuron-specific alternative splicing product of human TrkB gene [23]. 

Although TrkB-T-Shc function is poorly understood, it cannot be tyrosine phosphorylated [23], 

as the now described TrkB-T’, and it could act as a negative regulator of BDNF function. Our 

results suggest that TrkB-T’ may not act as a negative modulator of BDNF signalling since, in 
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spite of its presence, the efficiency of TrkB-FL phosphorylation by BDNF, assessed as the ratio 

between pTrkB-FL/TrkB-FL, was not appreciably affected. 

 The second Aβ-induced TrkB-FL cleavage product, the TrkB-ICD, corresponds to the 

remaining intracellular domain (ICD) of TrkB-FL upstream to the cleavage site (Ser521-Gly821). 

The theoretical molecular weight of TrkB-ICD is 34.6kDa, which is similar to the relative 

molecular weight observed in SDS-PAGE (~32kDa). TrkB-ICD was also detected in post-

mortem human brain samples showing that human endogenous calpains could also cleave 

human TrkB-FL receptor. However, we cannot exclude the possibility that the presence of basal 

levels of TrkB-ICD detected in the human brain sample could be exacerbated due to calpain 

activation during the post-mortem period. Nevertheless, in freshly prepared rat cortex 

homogenates, and therefore without a significant post-mortem delay, it was also possible to 

detect small amounts of TrkB-ICD, suggesting that TrkB-FL cleavage could also occur in the 

alive healthy brain. 

 It is known that some members of the receptor tyrosine kinase family can undergo 

proteolytic cleavage by caspases, metalloproteases or secretases, producing intracellular domain 

(ICDs) fragments that may possess a biological function [see 367], as it is the case of the pro-

apoptotic fragment that results from caspase-mediated TrkC cleavage upon NT-3 deprivation 

[368]. Calpain-mediated proteolytic cleavage usually occurs between two domains of the 

substrate, releasing big stable fragments that can also have biological activity [see 127]. As an 

example, the calpain-generated fragment p25 from p35 cleavage constitutively activates the 

cyclin-dependent kinase 5 (CDK5), contributing to tau hyperphosphorylation, morphological 

degeneration and neuronal death [196]. Indeed, overexpression of p25 fragment in mice 

forebrain is sufficient to recapitulate the major hallmarks of AD, including hippocampal 

neuronal loss, aggregation of hyperphosphorylated tau, accumulation of Aβ and impairments on 

synaptic plasticity and cognition [285, 286]. Therefore, one may propose that calpains are a key 

element of a vicious cycle, since its activation leads to β-amyloid generation [361], which in 

turn leads to enhanced calpain activity with subsequent impaired signalling of key neurotrophic 

molecules such as BDNF (present work). Whether the resulting fragment, TrkB-ICD, also 

contributes to exacerbate neuronal damage, awaits further investigation.  

 The present work clearly demonstrates that Aβ impairs the facilitatory effects of BDNF 

upon glutamate release and the inhibitory effect of BDNF upon GABA release from isolated 

nerve terminals (synaptosomes). GABAergic and Glutamatergic hippocampal synaptosomes 

represent each one approximately 40% of total synaptophysin-positive nerve terminals, less than 

5% of nerve terminals being cholinergic [369]. Interestingly, in spite of the greater vulnerability 

of the glutamatergic terminals to Aβ toxicity, as compared with the GABAergic ones [369, 

370], the effect BDNF upon GABA release was also impaired by Aβ. Moreover, Aβ impairs 

BDNF-mediated effects upon LTP. In all cases it was possible to rescue the effect of BDNF by 
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adding a calpain inhibitor (MDL28170), indicating that the Aβ-induced loss of function of 

BDNF at the synapses is mediated by calpains. The finding that the calpain inhibitor prevents 

the molecular changes in TrkB receptors as well as prevents the loss of synaptic BDNF 

modulatory action, strongly suggests that a single mechanism underlies both phenomena, 

highlighting the functional consequence of the Aβ-induced cleavage of TrkB receptors. 

 Interestingly, Aβ did not affect LTP magnitude (without BDNF), or basal synaptic 

transmission, as evaluated by input/output curves. This provides evidence that Aβ may impair 

BDNF signalling, even before impairment of synaptic transmission and plasticity, suggesting 

that loss of neuromodulation by neurotrophins is a very early sign of synaptic impairments 

induced by Aβ. Nevertheless, there are evidences that Aβ peptides could impair LTP [eg: 371]. 

In our experimental conditions, we did not detect any significant change in LTP magnitude 

induced by a very-weak θ-burst in hippocampal slices exposed to Aβ. This absence of Aβ effect 

upon LTP, already seen by others [372], could be due to several factors such as the stimulation 

protocol, the Aβ preparation, the developmental age or genetic background of the animals used 

[372]. Interestingly, Smith and collaborators (2009) showed that soluble oligomeric Aβ1-42 

significantly blocked hippocampal LTP when induced by high-frequency stimulation but not by 

θ-burst, the type of stimulation used in this work.  

 Our findings provide a possible biochemical mechanism for previous observations that 

TrkB-FL receptors are decreased in pathological situations, including AD [322, 333], where 

calpains are found overactivated [194]. Calpain-dependent down-regulation of TrkB-FL protein 

also occurs after acute insults, such as excitotoxicity and ischemia [373, 374]. It is not known 

whether calpains can also cleave other Trk receptors, such as TrkA or TrkC. However, by 

comparing the sequences of Trk receptors, we can predict that TrkA and TrkC are probably not 

cleaved by calpains, since they both lack the calpain cleavage site present in TrkB, which is 

conserved within species. Calpain overactivation has been associated with several 

neuropathological conditions, including prion-like diseases, muscular dystrophies, Huntington’s 

disease, Parkinson's disease, Alzheimer’s disease, multiple sclerosis, ischemia, stroke, and brain 

trauma. Calpain inhibition is therefore a promising therapeutic strategy with demonstrated 

efficacy in animal models. However, translation to clinical trials waits for the development of 

selective inhibitors of calpains to be used in humans [see 184]. 

 In summary we highlighted the mechanisms responsible for Aβ-induced TrkB receptor 

dysregulation. Namely, we found that Aβ selectively increases the mRNA levels of truncated 

TrkB-T1 and T2 receptors and it induces a calpain-mediated cleavage of TrkB-FL protein. The 

cleavage of TrkB-FL occurs between Asn520 and Ser521 and produces a new truncated receptor, 

containing the Shc-binding site (TrkB-T’), and a new intracellular cleavage product (TrkB-

ICD), containing the complete kinase domain of TrkB-FL (see Figure 4.16). At a functional 

level, Aβ severely impairs BDNF effects upon GABA and glutamate release and upon synaptic 
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plasticity, in a calpain-dependent way. Taken together, the data demonstrate that calpain 

overactivation induced by Aβ severely impairs BDNF/TrkB-FL signalling, affecting the 

synaptic actions of BDNF. By detailing the mechanisms involved in the endogenous 

dysregulation of TrkB receptors induced by Aβ, as well as the early functional consequences of 

this dysregulation, this work reinforces the rational for the use of calpain inhibitors as a 

therapeutic tool in AD. 

 

 

Figure 4.16 – Schematic representation of Aβ-induced dysregulation of TrkB receptors. 

Aβ peptide selectively increases TrkB-T1 mRNA levels by an unknown mechanism and activates calpains 

by perturbing the intracellular Ca2+ homeostasis. Activated calpain cleaves TrkB-FL receptor in the 

intracellular domain (in the Asn520-Ser521 peptide bond), producing a membrane-bound truncated TrkB-T’ 

receptor and an intracellular fragment (TrkB-ICD). TrkB-ICD may have a putative biological function and 

may have a different structure when comparing to the original intracellular domain of TrkB-FL. The calpain 

inhibitor, MDL28170, inhibits calpain-mediated cleavage of TrkB-FL, and restores BDNF function upon 

synaptic plasticity and neurotransmitter release in Aβ-treated hippocampal slices (not shown). 
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5. Impact of in-vivo  chronic blockade of A2AR upon 

BDNF-mediated facilitation on LTP 

 

The work presented in this chapter was published in Jerónimo-Santos et al., 2014a [116]. 

 

5.1. Summary  
 

 Brain-derived neurotrophic factor (BDNF) through the activation of its receptor (TrkB-

FL) exert well-described neuroprotective effects playing a major role in hippocampal synaptic 

transmission and plasticity such as long-term potentiation (LTP), a molecular surrogate for 

learning and memory. Impairments in BDNF signalling have been associated to several 

neurodegenerative disorders such as Alzheimer disease (AD). Therefore, the reestablishment of 

BDNF actions is considered a promising strategy for AD treatment. While, most of BDNF 

synaptic actions, namely on LTP, require the activation of adenosine A2A receptor (A2AR), the 

antagonists of A2AR have been proven to prevent AD induced deficits in several animal models. 

Therefore in this work we aimed to evaluate the impact of the chronic in vivo oral 

administration of the A2AR antagonist, KW-6002, in the BDNF actions upon hippocampal CA1 

LTP. The results showed that chronic blockade of A2AR in male Wistar rats inhibits the 

facilitatory action of BDNF upon LTP and decreases both mRNA and protein levels of the 

TrkB-FL receptor in hippocampus. These findings imply that BDNF signalling may be affected 

in chronic A2AR blocking conditions. 

 

5.2. Rational 
 

 Brain-derived neurotrophic factor (BDNF) is a neurotrophin that, through activation of 

it high affinity full-length TrkB receptor (TrkB-FL), exerts well-described neuroprotective 

effects and plays major roles in hippocampal synaptic transmission and plasticity, such as LTP. 

LTP is a form of synaptic plasticity classically accepted as the neurophysiological correlate of 

learning and memory encoding [59]. In fact, in TrkB-FL or BDNF knockout mice, LTP 

induction is severely compromised [57, 67, 69, 71].  

 There are evidences that, in neurodegenerative disorders such as in AD, BDNF 

signalling is drastically impaired. In several regions of AD patient post-mortem brains, both 

BDNF and TrkB-FL receptor levels are decreased while the dominant-negative truncated TrkB 

receptors are increased [319, 321-323, 333]. Indeed, in AD animal models, where LTP 
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induction is strongly impaired [see 375], the potentiation of BDNF actions ameliorate the 

observed LTP deficits [356]. The loss of endogenous BDNF neuroprotection in AD has been 

seen as part of the pathophysiology of AD. In fact, the administration of BDNF exerts 

neuroprotective actions in rodent and primate models of AD [315]. However the clinical use of 

BDNF has been hampered due to its inability to reach the brain and to its short half-life [120]. 

Therefore, the identification of molecules able to potentiate endogenous BDNF actions gained 

emphasis in recent years. One of the drugs attracting much attention is adenosine due to its 

ability to modulate the actions of BDNF [see 99]. Indeed, evidence has been accumulating that 

A2AR activation is required for BDNF effects upon hippocampal synaptic transmission [108] 

and plasticity, namely facilitation of LTP [113, 114]. Moreover, it has been shown that A2AR 

activation can induce phosphorylation of an intracellular pool of TrkB receptors (associated 

with Golgi membranes) without the involvement of neurotrophins [105, 107].  

 However, despite the requirement of A2AR activation to promote BDNF actions upon 

LTP [113, 114], the administration of A2AR antagonists has been proven to prevent AD induced 

deficits in different animal models [376-378]. Given this apparent paradox, it is crucial to 

understand whether in vivo A2AR blockade impacts on BNDF effects upon synaptic plasticity. 

Therefore, in the present study we chronically administered an orally active A2AR antagonist 

(istradefylline; KW-6002; 3mg/kg/day) for one month to 4-6 week-old male Wistar rats and 

assessed the impact on BDNF action upon hippocampal CA1 LTP. 

  

5.3. Chronic blockade of adenosine A 2AR prevents BDNF-
induced facilitation of CA1 LTP which is not restor ed by 
acute A 2AR activation 

 

 The θ-burst stimulation delivered to CA1 area of hippocampal acute slices prepared 

from hippocampus taken from 8-10 week old rats induced a statistically significant LTP 

(LTPCTR: 22±3%, n=5; p<0.01 as compared with baseline, Student’s t-test, Figure 5.1A, C). As 

expected [113], the θ-burst stimulus applied in the presence of BDNF (20 ng/mL) caused a 

marked facilitation of LTP which was significantly higher than that obtained in the absence of 

BDNF (LTPBDNF: 42.0± 2%, n=5, p<0.01, Student’s t-test, Figure 5.1A, C). To evaluate the 

ability of BDNF to potentiate LTP in hippocampal slices taken from rats under chronic A2AR 

blockade, KW-6002, an A2AR oral antagonist, was administered for 1 month (3 mg/kg/day). In 

the KW-6002 treated group, the θ-burst stimulation increased the slope of the fEPSP by 24± 2% 

(n=5, Figure 5.1B, C), which was not different from the LTP magnitude obtained in 

hippocampal slices of animals not treated with the A2AR antagonist (LTPCTR: 22± 3%, n=5, 

p>0.05, 2-way ANOVA, Figure 5.1A, C). However, in KW-6002 group, BDNF (20 ng/ml) lost 
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its ability to further increase LTP magnitude (LTPKW+BDNF: 26± 3%; p<0.05 when compared 

with LTPCTR+BDNF: 42± 2%, n=5, 2-way ANOVA, Figure 5.1B, C). No differences were 

observed in input-output curves obtained in slices from vehicle or KW-6002 treated group (n=4 

and n=6, respectively, p>0.05, 2-Way ANOVA, Figure 5.1D, E), indicating that KW-6002 

treatment does not account for significant differences in basal synaptic efficiency. 

 To test if the loss of BDNF effect upon KW-6002 treatment was due to the presence of 

the A2AR antagonist in the tissues, the animals were withdrawn from the drug prior to the 

experiment. Given that the maximum plasmatic concentration of KW-6002 decreases to half in 

around 2 hours [352] the treatment was interrupted 24 hours before sacrificing the animals to 

assure minimum plasmatic concentration of KW-6002. In these conditions BDNF was still not 

able to enhance LTP (LTPKW(-24h): 28± 6% ; LTPKW(-24h)+BDNF: 18± 6%, n=3, Student’s t-test, 

p>0.05, Figure 5.2A, C).  

 Given that A2AR activation is required for the BDNF facilitatory actions on synaptic 

transmission [108, 109, 111] and synaptic plasticity [113, 114] we tested if acute A2AR 

activation could rescue the BDNF facilitatory effect upon LTP, in the KW-6002 treated animals. 

Acute ex-vivo activation of A2AR with the selective agonist, CGS21680 [379, 380] added 35 

min before θ-burst stimulation, did not unravel the facilitatory effect of BDNF (20ng/ml) upon 

LTP (LTPKW: 29± 8% vs LTPKW+BDNF+CGS: 34± 7%, n=5, Student’s t-test, p>0.05, Figure 5.2B, 

D). When applied alone, CGS21680 (30µM) was virtually devoid of effect upon LTP magnitude 

on KW-6002 treated animals (LTPKW: 30± 11% vs LTPKW+CGS: 30± 7%, n=3, Student’s t-test, 

p>0.05, not shown).  

 Together these data show that chronic administration of KW-6002 per se did not affect 

the magnitude of θ-burst induced LTP comparing to vehicle animals, however, it prevented the 

facilitatory effect of BDNF upon LTP even if the pharmacological treatment had been stopped 

for 24 hours or if acute activation of A2AR had been provided. Therefore, the result suggests that 

chronic blockade of A2AR could induce irreversible or long-lasting changes in molecules 

involved in BDNF signaling.  
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Figure 5.1 – Chronic treatment with KW-6002 abolishes the facilitatory effect of BDNF upon LTP. 

Panels (A, B) show the averaged time courses changes in field excitatory post-synaptic potential (fEPSP) 

slope induced by a θ-burst stimulation in the absence (○) or in the presence of BDNF 20ng/ml (●) in 

hippocampal slices obtained from: (A) animals treated with vehicle for 1 month (n=5); (B) animals treated 

with KW-6002 (3mg/kg/day) for 1 month (n=5). The traces from representative experiments are shown 

below the respective panels (A, B); each trace is the average of eight consecutive responses obtained 

before (1 and 3) and 46–60 min after (2 and 4) LTP induction. The traces are composed by the stimulus 

artifact, followed by the pre-synaptic volley and the fEPSP. The left traces (1 and 2) and right traces (3 and 

4) were obtained in the absence or in the presence of BDNF, respectively. (C) LTP magnitudes (change in 

fEPSP slope at 46-60min) induced by θ-burst stimulation in relation to pre-θ-burst values (0%), for the 

panels A-D. **p<0.01 compared to vehicle-control, #p<0.05 compared to vehicle-BDNF (ANOVA followed 

by Bonferroni post-test). (D) Input/output curves corresponding to responses generated between 

amplitude of pre-synaptic fibre volley and (E) fEPSP slope evoked by various stimulation intensities (60–

300 µA) in hippocampal slices taken from vehicle group (○, n=6) and KW-6002 treated group (●, n=4). All 

values in the figure are represented as the mean ± SEM of n independent experiments with different 

animals. 

 

 

5.4. Chronic A 2AR blockade reduces protein and mRNA 
levels of TrkB-FL receptor without affecting BDNF l evels. 

 

 Since the prolonged administration of KW-6002 compromised BDNF effects upon LTP, 

which are known to be mediated by TrkB-FL receptor activation, we evaluated if the lack of 

effect observed after the pharmacologic treatment could be related to changes in the levels of 

TrkB-FL receptors. Using a specific pan-TrkB antibody that recognizes the extracellular portion 

of TrkB receptor, a significant reduction in protein levels of TrkB-FL in the hippocampus of 

KW-6002 treated rats was observed (68 ± 12% vs 100%, n=5, Student’s t-test, p<0.05, Figure 

5.3A, B). Moreover, by relative qPCR, we found a significant reduction on TrkB-FL mRNA 

levels in hippocampus (64 ± 7% vs 100%, n=4, Student’s t-test, p<0.05, Figure 5.3C). No 

significant differences were observed on truncated TrkB-T1 mRNA and protein levels between 

vehicle and KW-6002 treated rats (n=4 and 5, respectively, p>0.05, Student’s t-test, Figure 

5.3B, C). Moreover, total levels of mature BDNF and Pro-BDNF were also analyzed by 

western-blot, using an antibody raised against BDNF, and no significant differences were 

detected between vehicle and KW-6002 treated group (Figure 5.3A and D, n=5, Student’s t-

test). 
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Figure 5.2 – Effects of KW-6002 are not reverted by treatment withdrawn or acute A2AR activation. 

Panels (A, B) show the averaged time courses changes in field excitatory post-synaptic potential (fEPSP) 

slope induced by a θ-burst stimulation in the absence (○) or in the presence of BDNF 20ng/ml (●, A) or in 

the presence of BDNF (20ng/mL) and CGS21680 (30nM) (●, B) in hippocampal slices obtained from 

animals: (B) treated with KW-6002 (3mg/kg/day) for 1 month (n=5); or (A) animals treated with KW-6002 

(3mg/kg/day) for 1 month and withdrawn from the drug 24 hours prior to the experiment (n=3). (C, D) LTP 

magnitudes (change in fEPSP slope at 46-60min) induced by θ-burst stimulation in relation to pre-θ-burst 

values (0%), for the panels A and B, respectively. All values in the figure are represented as the mean ± 

SEM of n independent experiments. 
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Figure 5.3 – Protein and mRNA levels of TrkB-FL receptor are decreased in KW-6002 treated rats. 

(A) Representative western-blot comparing TrkB-FL, TrkB-T1, Pro-BDNF and mature BDNF levels in 

vehicle- and KW-6002-treated rats. The pan-TrkB antibody used recognizes both the TrkB-FL (~145 kDa) 

and truncated TrkB (TrkB-T1: ~95 kDa). The anti-BDNF antibody used in middle panel recognizes both 

pro-BDNF (~32kDa) and mature BDNF (~14kDa). α-tubulin was used as a loading control. (B) 

Quantification of TrkB-FL and TrkB-T1 band intensities obtained in western-blot for vehicle-treated (white 

bars) and KW-6002-treated (black bars) animals. Values were normalised with α-tubulin levels and 

represented as fold-change of vehicle (n=5). (C) Relative qPCR data showing mRNA levels of TrkB-FL 

and truncated TrkB-T1 from vehicle-treated animals (white bars) and KW-6002 treated animals (black 

bars). β-actin was used as an internal loading control. (D) Quantification of pro-BDNF and mature BDNF 

band intensities obtained by western-blot for vehicle-treated (white bars) and KW-6002 treated (black 

bars) animals. Values were normalised with α-tubulin levels and represented as fold-change of vehicle 

(n=5). Data are represented as the mean ± SEM of n independent experiments. *p<0.05 when compared 

to vehicle (Student’s t-test). 
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5.5. Discussion 
 

 The results presented in this work reveal that in vivo chronic treatment with the A2AR 

antagonist, KW-6002, impairs BDNF actions upon LTP. Moreover, the data shows that this loss 

of BDNF effect is probably a consequence of the down-regulation of its full-length receptor 

(TrkB-FL) detected after the treatment with KW-6002.  

 Evidences show that the levels of BDNF and TrkB-FL are both decreased in several 

neurodegenerative disorders, particularly in AD [319, 321-323, 333]. Moreover, activation or 

overexpression of TrkB-FL in AD mice models improves cognitive function, suggesting that 

BDNF signalling deficits are an important contributor to the pathogenesis of AD [30, 316, 356]. 

Previous studies showed that the facilitatory effects mediated by BDNF upon synaptic 

transmission and plasticity are dependent or potentiated by A2AR activation [108, 113, 114]. 

However evidence is accumulating towards the beneficial effects of A2AR antagonists as a 

chronic pharmacologic treatment for neurodegenerative disorders such as AD [see 381]. Indeed, 

the neuronal death and memory impairments induced by amyloid-β peptide are prevented by 

A2AR antagonists and in the A2AR knock-out mice [382, 383]. Nevertheless A2AR activation or 

its downstream molecules such as cAMP were shown to also have putative beneficial effects on 

AD. Actually, the activation of A2AR is known to facilitate acetylcholine release [384, 385] 

promoting cholinergic transmission which is decreased in AD. Moreover, adenosine, acting at 

A2AR, is an effective endogenous anti-inflammatory agent that can modulate inflammation both 

in the periphery and in the brain [386]. Neuronal maturation mediated by BDNF [see 387], is 

regulated by cAMP [388]; therefore, one could anticipate that this action of BDNF could also be 

influenced by activation of A2AR. In addition, A2ARs activation can rescue neurite outgrowth 

impairment caused by interference with the NGF signalling cascade in PC12 cells [389] as well 

as to promote PC12 cell survival upon NGF withdrawal [105]. All this data together with the 

fact that synaptic actions of BDNF are fully dependent on A2AR activation [108, 109, 111-113] 

highlighted the need for cautious blockade of A2AR whenever aiming to protect neurons from 

excitotoxicity while aiming to exacerbate neuroprotection of BDNF. 

 In the present study we evaluated the effect of the chronic administration of KW-6002 

for 1 month, which is known to be effective in blocking A2AR mediated actions [353], in the 

BDNF action upon CA1 hippocampal LTP. In previous studies the same dose regimen was used 

and it had no impact in behavioural tasks and in synaptic plasticity or neuronal branching in 

healthy animals [353]. However the consequences of this treatment for BDNF signalling were 

not evaluated. Here we show that chronic blockade of A2AR in living animals, avoids exogenous 

BDNF facilitatory effect upon CA1 hippocampal LTP, without affecting the magnitude of LTP 

in absence of BDNF. As previously reported [353] the KW-6002 treatment induces an up-
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regulation on A2AR, which could suggest that KW-6002 treatment may potentiate the 

A2AR/TrkB crosstalk. However the consequences of the pharmacological activation of A2AR 

upon synaptic transmission are similar between control and KW-6002 treated animals, 

suggesting that the increased levels of A2AR do not result in a gain of function at the synaptic 

level [390]. In addition, KW-6002 treated animals preserve hippocampal adenosine levels [390]. 

This implies that chronic KW-6002 treatment may not affect the expression of synaptic A2AR, 

therefore explaining why the increase in A2AR levels does not impact into amplification of 

BDNF signalling in plasticity. Indeed it was already reported that different A2AR antagonists 

have different pharmacological profiles for specific populations of adenosine A2AR receptors 

[391, 392]. This would explain the increase in A2AR levels with no effect in their ability to 

modulate BDNF actions as well as the differential effect of the drug depending on the readout. 

 We previously reported [114] that θ-burst induced-LTP in hippocampal slices taken 

from young animals (the same age as that used in the present work), is independent on the 

endogenous BDNF since it is not altered by the prevention of TrkB-FL signaling. This might 

explain why KW-6002 treatment did not affect the basal LTP per se, in comparison with control 

slices. However one cannot preclude that KW-6002 treatment may reduce endogenous BDNF 

dependent LTP upon ageing [114]. 

 The loss of BDNF effect upon CA1 hippocampal LTP in KW-6002 treated animals, 

even after 24hours of KW-6002 withdrawal, might be related to the decreased levels of TrkB-

FL observed in these animals. One might speculate that the levels of TrkB-FL receptor could be 

decreased due to increased levels of endogenous BDNF, with the consequent over-activation 

and downregulation of TrkB-FL receptor as previously observed in [347] and Figure 3.3. 

However, our data do not support this hypothesis since no significant difference was detected on 

total BDNF or pro-BDNF levels in hippocampus from vehicle or KW-6002 treated animals. 

Moreover, it is known that cAMP regulates TrkB gene transcription because of its CRE 

promoter [393, 394]. Accordingly, since A2AR activation leads to cAMP formation [395], the 

chronic treatment with KW-6002 could result in a decrease of cAMP levels and a concomitant 

decrease in TrkB expression. This may explain the down-regulation of TrkB-FL receptors 

detected after A2AR antagonist treatment. Although the levels of the truncated TrkB-T1 receptor 

are not affected by KW-6002 treatment, the ratio TrkB-FL/TrkB-T1 is decreased given the 

significant decrease of TrkB-FL receptor levels. Given that TrkB-T1 receptors are dominant 

negative modulators of TrkB-FL receptors [25, 29], the decrease on TrkB-FL/TrkB-T1 ratio 

might aggravate the loss TrkB-FL signalling.  

 It is classically established that this particular type of synaptic plasticity, LTP, in the 

hippocampus is a prototypical experimental model that translates into forms of learning and 

memory associated with that brain area [396]. Although hippocampal dependent spatial memory 

was not affected in KW-6002 treated animals [353], which do not have any neurodegenerative 
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disorder. The question remains whether in AD mice models, in which BDNF and TrkB-FL 

receptors are severely decreased, other forms of hippocampal dependent memory that require 

BDNF signalling [397, 398] could be affected.  

 The present work shows that in-vivo chronic blockade of A2AR, by an orally active 

antagonist (KW-6002), ablated the facilitatory effect of exogenous BDNF upon hippocampal 

CA1 LTP and it promotes a reduction on mRNA and protein levels of the BDNF receptor (TrkB 

full-length). 
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6. BDNF mediates neuroprotection against Aβ-induced 

toxicity in a mechanism independent on A2AR 

activation 

 

The work presented in this chapter is in preparation for submission. 

 

6.1. Summary  
 

 Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through the 

activation of its TrkB-FL receptor.  

 Evidences have shown that activation of adenosine A2A receptors (A2AR) is essential for 

most of BDNF-mediated synaptic actions, such upon synaptic plasticity, transmission and 

neurotransmitter release. In this chapter we evaluated the influence of A2AR upon BDNF-

mediated neuroprotection against neuronal death induced by Aβ25-35 (25µM) peptide. By 

measuring caspase-3 activity and protein levels, and αII-spectrin breakdown, we showed that 

BDNF reduces the activation of caspase-3 and calpain induced by Aβ peptide, in cortical 

cultures. This BNDF-mediated neuroprotection was not affected by A2AR activation or 

inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced 

the Aβ-induced neuronal death and the calpain-mediated cleavage of TrkB induced by Aβ. In 

conclusion, these results suggest that, in opposition to the fast synaptic actions mediated by 

BDNF, the neuroprotection mediated by this neurotrophin against a strong Aβ insult, does not 

require A2AR activation. 
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6.2. Rational 
 

Since the identification of Aβ peptide as the main component of amyloid plaques present 

in the brain of AD patients, multiple studies were developed in order to clarify the involvement 

of Aβ in the AD neurodegenerative process. Indeed, data show that Aβ is neurotoxic and 

promotes cell death and synaptic dysfunction.  

In the brain of AD patients, BDNF and TrkB-FL levels are decreased comparing to age 

matched controls, and in opposition, the truncated TrkB, which is a dominant-negative 

modulator of TrkB-FL, is increased. Given the impairment on BDNF signalling in AD, the 

administration of this neurotrophin direct into the brain was considered a possible therapeutic 

approach. Indeed, in-vivo administration of BDNF to animals models of AD and also 

Parkinson´s disease (PD), produced beneficial effects with improved synaptic and cognitive 

function and reduced neurodegeneration [120, 314]. However, despite the encouraging results 

from pre-clinical studies, the results from the BDNF-based clinical trials conducted so far (four 

in amyotrophic lateral sclerosis and one in diabetic neuropathy) have shown inconclusive 

results. However, there are no evidence that BDNF reached its target during the treatment [120]. 

Indeed, BDNF-based therapies have been hampered by multiple technical difficulties, such as 

the low penetrance of BDNF through blood-brain barrier and its rapid in-vivo clearance with 

consequent low half-life time in plasma or CSF [120]. Given these issues, an effort has been 

made to find small molecules that can activate directly the TrkB-FL, or that can boost BDNF 

actions in the brain, by an indirect mechanism. Molecularly, it has been shown that activation of 

A2AR is able to transactivate a pool of immature TrkB receptors in the absence of BNDF [105, 

107], and to induce the translocation of TrkB into lipid rafts microdomains in the membrane 

[117]. Functionally, it has been shown that most BDNF-mediated synaptic actions, such as in 

synaptic plasticity, transmission and neurotransmitter release, are fully dependent on A2AR 

activation. However, some BDNF-mediated actions, such as in neuronal branching and GABA 

uptake, are not dependent on A2AR activation [99]. 

Thus, agonists of A2AR or activators of A2AR-signalling pathways might be 

therapeutically relevant in neurodegenerative diseases where BDNF actions are decreased. In 

this chapter it was evaluated whether the neuroprotective effect of BDNF upon Aβ-induced 

neuronal death was also dependent, or potentiated, on A2AR activation.  
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6.3. BDNF reduces cellular death induced by A β 
 

 It has been shown, in general cell viability assays, that BDNF protects neurons from Aβ 

toxicity [243]. Therefore, to reproduce this, 8 DIV neuronal cultures were incubated with Aβ25-35 

peptide (25µM) and BDNF (20ng/mL), and neuronal death was evaluated by analysing caspase-

3 and calpain activation. Caspase-3 is a central mediator of apoptotic cell death, while calpains 

have been seen as a central player in necrotic cell death [399].Indeed, calpains rather than 

caspases have a prominent role in in-vivo excitotoxic neuronal death [171]. However, evidences 

indicate that calpains also play a central role in the execution of apoptosis [400, 401]. 

Accordingly, the calpain inhibition has shown protective effects in several models, including the 

in-vivo Aβ-induced neurodegeneration in rats [362]. Thus, both proteases, caspases and 

calpains, contribute to cellular architecture derangement and functional loss in neurons under 

degenerative conditions [399]. 

 Incubation of 8 DIV cortical neurons with Aβ25-35 (25µM) for 24 hours induced robust 

caspase-3 activation, as evaluated by enzymatic activity assay and active caspase-3 formation 

by western blot (2.5-fold increase in caspase-3 activity and 5-fold increase in active 17-kDa 

caspase-3 protein levels, when compared to control, p<0.001, n=5, Figure 6.1). Conversely, 

Aβ25-35 induced a 4-fold increase in the levels of the caspase-3 specific αII-spectrin breakdown 

product SBDP120 (p<0.001, n=6, Figure 6.2C and D). As expected, Aβ also induced a very 

robust increase in SBDP150 levels indicating the activation of calpains (p<0.001, n=6, Figure 

6.2B and D). When BDNF (20ng/mL) was simultaneously incubated with Aβ25-35 (25µM), the 

levels of caspase-3 activity and 17-kDa caspase-3 formation were significantly reduced by 39 

±7% and 41 ±8%, respectively, when compared to Aβ25-35 (p<0.01, n=5, Figure 6.1). Moreover, 

BDNF reduced the Aβ-induced formation of SBDP120 and SBDP150, by 61 ±18% and 58 

±26%, respectively (p<0.01 when compared to Aβ, n=6, Figure 6.2B-D). As a consequence of 

the inhibition of both calpain and caspase-3, BDNF also reduced the Aβ-induced cleavage of 

αII-spectrin by 59 ± 11% (p<0.01, n=6, Figure 6.2A and D). 

 Taken together this data show that BDNF significantly reduces the Aβ-induced 

activation of caspase-3 and calpain. 
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Figure 6.1 – BDNF reduces the caspase-3 activation induced by Aβ. 

(A) Quantification of active Caspase-3 protein levels and (B) Caspase-3 activity, in 8 DIV cortical neurons 

non-treated or treated with Aβ25-35 (25µM) for 24hours in the absence or presence of BDNF (20ng/mL). 

Data is normalized to Aβ condition given the very low, almost undetectable, caspase activation in control 

condition. ***p<0.001, **p<0.01, n.s (not significant) when comparing to control and ###p<0.001 when 

compared to Aβ (n=5, ANOVA followed by Bonferroni post-test) (C) Representative western-blot used in 

(A), showing the protein levels of active Caspase-3 (17-kDa). α-tubulin was used as a loading control. 

Data represented are mean ± SEM of n independent experiments. 
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Figure 6.2 – BDNF reduces the αII-spectrin breakdown induced by Aβ. 

(A) Quantification of αII-spectrin breakdown with consequent formation of (B) SBDP150 and (C) SBDP120 

breakdown products. SBDP150 and SBDP120 levels are normalized to Aβ condition given their almost 

undetectable amount in control conditions. ***p<0.001, *p<0.05, n.s (not significant) when comparing to 

control and #p<0.05 and ##p<0.01 when comparing to Aβ (n=6, ANOVA followed by Bonferroni post-test) 

(D) Representative western-blot used in (A-C), showing the protein levels of αII-spectrin, SBDP150 and 

SBDP120. GAPDH was used as a loading control. Data represented are mean ± SEM of n independent 

experiments. 

 

 



6. BDNF-mediated neuroprotection is A2AR-independent 

98 

6.4. Cellular death prevented by BDNF does not requ ire 
A2AR activation 

 

 To address if the activation of A2AR was required for BDNF-mediated neuroprotection, 

as it is verified for most synaptic actions mediated by this neurotrophin, 8 DIV cortical cells 

were incubated with Aβ25-35 (25µM) and BDNF (20ng/ml) for 24 hours, in the presence or in the 

absence of the A2AR antagonist, SCH58261 (100nM), or the A2AR agonist, CGS21680 (10nM). 

Neither SCH58261 nor CGS21680, added 30 min prior of Aβ and BDNF, influenced the 

BDNF-mediated reduction of caspase-3 levels (Figure 6.3A, n=6) and activity (Figure 6.3B, 

n=6) upon Aβ toxicity. Regarding the data from αII-spectrin breakdown, similar results were 

obtained. Indeed, the reduction of αII-spectrin cleavage (Figure 6.4A) and correspondent 

reduction on SBDP150 (Figure 6.4B) and SBDP120 (Figure 6.4C) formation (cleavage product 

mediated by calpains and caspases, respectively) induced by BDNF, in cells incubated 

simultaneously with Aβ, was not influenced by the presence of both A2AR antagonist and 

agonist (n=6). Per se, the incubation with SCH58261 (100nM) or CGS21680 (10nM), 30 

minutes prior Aβ incubation, did not influenced the Aβ-induced activation of both caspase-3 

(n=4, p>0.05, Figure 6.3 and Figure 6.4C) and calpain (n=6, Figure 6.4A, B and D). 
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Figure 6.3 – A2AR does not influence BDNF-mediated reduction in Aβ-induced Caspase-3 activation 

(A) Quantification of active Caspase-3 protein levels and (B) Caspase-3 activity, in 8 DIV cortical neurons 

non-treated or treated with Aβ25-35 (25µM) for 24hours in the absence or presence of BDNF (20ng/mL) 

and SCH58261 (100nM) or CGS21680 (10nM). Data is normalized to Aβ condition given the very low, 

almost undetectable, caspase activation in control condition. ***p<0.001, *p<0.05, when comparing to 

control and n.s (not significant) when compared between the conditions indicated by the horizontal line 

(n=6, ANOVA followed by Bonferroni post-test) (C) Representative western-blot used in (A), showing the 

protein levels of the unprocessed Pro-Caspase-3 (32 kDa) and the active Caspase-3 (17-kDa). Note that 

the order of the conditions is different from (A). α-tubulin was used as a loading control. Data represented 

are mean ± SEM of n independent experiments. 
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Figure 6.4 – A2AR does not influence BDNF-mediated reduction in Aβ-induced spectrin breakdown.  

(A) Quantification of αII-spectrin breakdown with consequent formation of (B) SBDP150 and (C) SBDP120 

breakdown products in 8 DIV cortical neurons non-treated or treated with Aβ25-35 (25µM) for 24hours in 

the absence or presence of BDNF (20ng/mL) and SCH58261 (100nM) or CGS21680 (10nM). SBDP150 

and SBDP120 levels are normalized to Aβ condition given their almost undetectable amount in control 

conditions. ***p<0.001, **p<0.01, *p<0.05, when comparing to control, n.s (not significant) when compared 

between the conditions indicated by the horizontal line and #p<0.05 when comparing to Aβ (n=6, ANOVA 

followed by Bonferroni post-test) (D) Representative western-blot used in (A-C), showing the protein levels 

of αII-spectrin, SBDP150 and SBDP120. GAPDH was used as a loading control. Data represented are 

mean ± SEM of n independent experiments. 
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6.5. Aβ-induced TrkB truncation is not influenced by 
A2AR activation 

  

 As previously shown (Chapter 4.6), Aβ induces a calpain-mediated truncation on TrkB-

FL receptor, with concomitant formation of an intracellular fragment (TrkB-ICD) and an 

increase on truncated receptor (TrkB-Tc) levels [346]. As we showed previously, A2AR do not 

influence calpain activation induced by Aβ. However, given that A2AR activation is able to 

induce the translocation of TrkB receptors into lipid rafts microdomains [117], we considered 

noteworthy to test the hypothesis that A2AR might protect TrkB receptors from calpain-mediated 

cleavage, by allocating them in a different location in the membrane. 

 To test this hypothesis, the levels of TrkB-FL, TrkB-Tc and TrkB-ICD were analysed in 

8 DIV cortical cultures treated with Aβ25-35 (25µM), in the presence or absence of SCH58261 

(100nM) or CGS21680 (10nM). 

 The results show that, upon Aβ incubation the A2AR agonist, did not protected the 

TrkB-FL receptor from the Aβ-induced cleavage (p<0.05, n=6, Figure 6.5A-D). Conversely, the 

A2AR antagonist did not change the magnitude of TrkB cleavage induced by Aβ (p<0.05, n=6, 

Figure 6.5A-D). Moreover, the incubation with the A2AR agonist, or antagonist, for 24 hours did 

not significantly change TrkB expression (p>0.05, n=6, Figure 6.5A and D).  

  In addition, we also evaluated if BDNF can prevent the Aβ-induced TrkB truncation. 

The results show that 24 hours of BDNF (20ng/mL) incubation on neuronal cultures prevent the 

Aβ-induced formation on TrkB-ICD and TrkB-Tc (p<0.05, n=6, Figure 6.5B,C and D), an 

effect unaffected by the presence of the A2AR agonist or antagonist (p>0.05, n=6, Figure 6.5B,C 

and D). However, the BDNF incubation also strongly reduced the levels of TrkB-FL, even in 

the absence of Aβ (p<0.001, n=6, Figure 6.5A and D). 
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Figure 6.5 – Effect of A2AR and BDNF upon Aβ-induced TrkB truncation  

(A) Quantification of TrkB-FL cleavage with consequent formation of (B) truncated TrkB and (C) TrkB-ICD 

fragment, in 8 DIV cortical neurons non-treated and treated with Aβ25-35 (25µM) for 24hours in the 

absence or presence of BDNF (20ng/mL) and SCH58261 (100nM) or CGS21680 (10nM). TrkB-ICD levels 

are normalized to Aβ condition given their almost undetectable amount in control conditions. ***p<0.001, 

**p<0.01, *p<0.05, when comparing to control, n.s (not significant) when compared between the conditions 

indicated by the horizontal line and #p<0.05 when comparing to Aβ (n=6, ANOVA followed by Bonferroni 

post-test) (D) Representative western-blot used in (A-C), showing the protein levels of TrkB-FL, TrkB-Tc 

and TrkB-ICD. GAPDH was used as a loading control. Data represented are mean ± SEM of n 

independent experiments. 
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6.6. Discussion 
 

 

The results described in this chapter show that the BDNF exerts protective effects by 

reducing the caspase-3 and calpain activation upon Aβ25-35 toxicity, an effect independent on 

A2AR activation. 

 The BNDF effects are widely described in several in-vitro and in-vivo models of 

neurodegenerative disorders, as Parkinson’s and Alzheimer’s disease [120, 402]. In particular, 

BDNF is able to increase cell viability of neurons incubated with toxic concentrations of Aβ 

peptide [243]. By evaluating the levels of caspase-3 and calpain activation, both proteases 

involved in cellular death, it was confirmed the BDNF neuroprotective effects upon Aβ toxicity. 

Accordingly, the cortical neurons incubated with Aβ together with BDNF present a robust 

reduction in conversion of pro-caspase-3 into active caspase-3 and in the caspase-3 activity. 

Moreover, BDNF reduced the breakdown of αII-spectrin, a neuronal cytoskeletal protein highly 

susceptible to neurodegeneration, and consequently, reduced the formation of the calpain- and 

caspase-3-specific spectrin breakdown products (SBDP150 and SBDP120, respectively).  

 Caspases and calpains may act synergistically to induce neuronal death. It is now known 

that: 1) both calpains and caspases share multiple common substrates; 2) calpains can cleave a 

variety of caspases leading to their activation, or inhibition; 3) caspases can cleave calpastatin 

leading to the activation of calpains [256, 399, 403, 404]. In accordance to the results described 

in this chapter, others have shown that Aβ triggers the activation of both calpains and caspases 

in septal cultured neurons [256]. Therefore, caspases or calpains inhibitors can markedly protect 

cultured neurons against Aβ-induced toxicity. However the effects of calpain and caspases 

inhibitors are not additive, suggesting that other pathways might be involved [256]. Here we 

show that BDNF can reduce the Aβ-induced activation of both caspase-3 and calpain. It has 

been shown that BDNF can also block caspase-3 activation in neurons submitted to different 

types of insults, such as radiation or hypoxia-ischemia [405, 406]. The signalling pathways 

implicated in the BDNF-mediated inhibition of both caspase-3 and calpain were not evaluated 

in this work. Nevertheless, it is known that BDNF can activate PI3K/Akt signalling pathway, 

which in turn can halt apoptosis through phosphorylation and inhibition of pro-apoptotic 

proteins such as Bad and caspase-9 [407]. Importantly, other member of neurotrophin family, 

the neurotrophin-3 (NT-3), also protects cortical neurons from Aβ-induced toxicity by inhibiting 

caspase-3, -8 and -9, in an Akt-dependent and ERK/MAPK-independent way. In particular, NT-

3 incubation activates Akt, which in turn induces the expression of NAIP-1, a member of the 

inhibitors of apoptosis proteins (IAPs), which can directly inhibit caspase activation [408]. 

Although the BDNF-mediated inhibition of caspase-3 is most likely Akt-dependent, the 

mechanism that contributes to calpain inhibition is not known and awaits further elucidation. 
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Strikingly, BDNF and EGF can activate m-calpain in a MAPK dependant way [178]. However, 

although calpains could play multiple biological roles upon physiological activation, when 

overactivated, these enzymes, promote neuronal death and contribute to neurodegeneration. 

Thus, upon physiological conditions the BDNF-mediated activation of m-calpain might be 

relevant for some BDNF actions, while upon pathological conditions, the BDNF might 

normalize calpain activity by reducing its excessive activation, and preventing the 

neurodegenerative process. 

 The actions of BDNF upon synaptic transmission and plasticity are well characterized 

as being dependent on A2AR receptor activation [108-116]. However, the results presented in 

this work indicate that A2AR activation is not required for BDNF neuroprotective actions upon 

Aβ insult to 8 DIV primary cortical cultures. Similarly to the results obtained here, A2AR 

activation is not required for the effect of BDNF upon neuronal branching [99, 118]. Thus, 

taken together this data might indicate that the trophic and survival actions of BDNF do not 

depend on A2AR activation. However, it is not clear why the BDNF actions could be dependent 

or independent on A2AR activation, in distinct situations. Nevertheless, most A2AR-dependent 

actions of BDNF are synaptic and fast-mediated actions, while the trophic and neuroprotective 

actions of BDNF are slow and long-lasting events that require protein synthesis. Thus, one 

possibility that might explain the discrepancy in A2AR dependence is the fundamental difference 

between the slow and fast-mediated actions of BDNF, which in turn involve different signalling 

pathways.  

One might speculate whether the lack of A2AR expression, in the cultures, could explain 

the absence of A2AR effects. However, this is not the case since although A2AR are not 

abundantly expressed in the hippocampus or neocortex [98], the A2AR is detected in 6 DIV 

cortical cultures by immunocytochemistry [409], and also by western-blot and RT-PCR in 9 

DIV cortical cultures [410]. Controversial data have shown protective effects against insults 

either by blocking or activating A2AR. Accordingly, it has been shown that A2AR activation, by 

CGS21680, reduces kainite-induced excitotoxicity by 40%, in 6DIV cortical cultures [409]. In 

opposition, the blockade of A2AR by SCH58261 improves cell viability against the glutamate 

(20-1000µM, 24h) insult, whereas A2AR activation does not protect neurons, in 9 DIV cortical 

cultures [410]. In addition, both caffeine (a non-selective adenosine receptor antagonist) and 

A2AR antagonists prevent the toxicity induced by 48h of Aβ25-35 (25µM) incubation on cultured 

cerebellar granule neurons [411]. Moreover, A2AR blockade, or genetic deletion of A2AR, 

prevents synaptotoxicity and memory dysfunction caused by intracerebroventricular 

administration of 2nmol of Aβ1-42 in mice [383, 412]. Finally, blockade of A2AR, by SCH58261, 

prevented the reduction in cell viability induced by the incubation of oligomeric-enriched Aβ1-42 

(500nM), in hippocampal cultures [383]. In this work, using cortical neurons, no significant 

protective effect of the A2AR agonist, or antagonist, against the toxicity induced by the 
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incubation of fibrillary-enriched Aβ25-35 (25µM) [30] was seen. Considering that A2AR inhibition 

exerts protective actions, probably it was not sufficient to prevent the strong toxic insult used in 

this work. Indeed, previous results obtained showed that the same preparation of Aβ25-35 (25µM, 

24hours) decreased cell viability by around 45%, while glutamate (1000µM, 24h) only 

decreased viability by around 30% [409]. Moreover, the same study showed that the 

neuroprotection afforded by A2AR blockade against glutamate insult (100 µM, 24h) requires the 

activation of the corticotrophin-releasing factor (CRF) receptor subtype 2. Interestingly, the 

agonist of the CRF receptors was able to protect cortical neurons when glutamate was present at 

lower concentrations (50 and 100µM, 24hour), but failed to protect neurons at a higher 

concentration of glutamate (500 and 1000µM) [409]. Thus, this results support the hypothesis 

that A2AR inhibition might be not able to revert the toxicity of a strong insult such as Aβ25-35 

(25µM). Nevertheless, it is noteworthy to highlight that BDNF was able to reduce, very 

significantly, both caspase-3 activation and αII-spectrin breakdown, upon the Aβ25-35 (25µM) 

insult. 

 Despite that TrkB gene transcription can be regulated by Ca2+ or cAMP [393, 394], the 

results obtained here show that the activation of A2AR, which is known to increase cAMP levels, 

does not significantly change TrkB-FL expression. Although incubation of cortical neurons with 

forskolin, which stimulates cAMP production, increased mRNA transcripts of both full-length 

and truncated TrkB within 1 hour, the increase on protein only appear to be evident after 16 

hours [393]. Thus, it is possible that A2AR activation had not been sufficient to significantly 

increase TrkB protein levels after 24hours. In addition, the results also show that acute blockade 

of A2AR for 24hours does not changed TrkB expression. However, the in-vivo chronic blockade 

of A2AR for one month decreased both protein and mRNA levels of TrkB-FL [116].  

 Finally, we evaluated whether BDNF was able to prevent the Aβ-induced truncation of 

TrkB, which is known to be mediated by calpains, as we previously described in [346]. We 

found that BDNF significantly reduces the levels of TrkB-FL cleavage fragments (TrkB-Tc and 

TrkB-ICD). However, in accordance to what had been initially described [347], the present 

results confirm that BNDF strongly downregulates TrkB-FL protein levels after 24 hours of 

incubation. This BDNF-mediated downregulation of TrkB-FL is a fast event, in which total 

TrkB-FL receptor levels decrease by 80% in just 3 hours after the ligand binding, a value that 

remain almost constant up to 24 hours, at least [347]. Given that the calpain-mediated cleavage 

of TrkB-FL has a much slower time course (Figure 4.5B)Figure 4.5 – Aβ peptide induces a 

TrkB-FL receptor cleavage. [346], it is likely that when calpains became active and begin to 

cleave TrkB-FL, the levels of the receptor are almost fully reduced due to the BDNF-mediated 

downregulation. Thus, the observation that BDNF prevent the formation of TrkB-FL cleavage 

fragments might be explained by both calpain inhibition and by BDNF-mediated 

downregulation of TrkB-FL. 
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 Together, these results show that BDNF exerts a robust neuroprotective effect upon Aβ-

induced toxicity, by reducing calpain and caspase-3 activation. In opposition to most fast 

synaptic actions of BDNF, the neuroprotective effect of this neurotrophin does not depend on 

A2AR activation. 
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7. General discussion and conclusions 

 

 Multiple studies have shown the vital importance of BDNF in the brain. Indeed, BDNF 

is not only essential for the regulation of synaptic plasticity and memory formation, but also 

confers strong protection to neurons against a wide variety of toxins and insults [120]. 

Interestingly, a growing number of studies have shown that BDNF signalling is impaired in 

several chronic neurodegenerative disorders, including AD [319-326, 333-337]. Thus, the 

dysregulation of BDNF signalling might be a consequence of the disease which in turn could 

aggravate the progression of the degenerative process, or might be one of the leading causes of 

the pathology. Indeed, BDNF administration or upregulation of TrkB and BDNF signalling on 

AD animal models have shown strong beneficial effects, including the reduction of 

neurodegeneration and increased cognitive performance [120, 243, 315-317, 344, 413]. Despite 

the importance of BDNF on AD, the mechanisms that contribute to the loss of BNDF signalling 

upon AD remained largely unknown. 

 In this work, it was found that Aβ induces a dysregulation on TrkB receptors levels and 

abolishes BDNF actions upon synaptic plasticity and neurotransmitter release, in a calpain-

dependent mechanism. In particular, Aβ induces calpain activation on cortical cultures, resulting 

in the cleavage of TrkB-FL receptor in the juxtamembrane region, producing a new truncated 

receptor (TrkB-T’) which contains the Shc binding site and an intracellular domain fragment 

(TrkB-ICD) which contains the entire TrkB kinase domain. Interestingly, the presence of TrkB-

ICD was detected in human brain sample, indicating that endogenous human calpains are able 

to cleave human TrkB receptor. Moreover, Aβ selectively increases the mRNA levels of 

truncated TrkB isoforms, an effect independent on calpains. 

 In addition, the exposure of hippocampal slices to Aβ results in the abolishment of 

BDNF action upon LTP and upon glutamate and GABA release, an effect reverted by the 

inhibition of calpains. 

 Several studies have demonstrated the benefits of calpain inhibitors in animal models of 

neurodegenerative disorders. In particular, calpain inhibitors reduce neurodegeneration and 

improved cognitive performance in AD animal models [199, 201, 202]. The present work shows 

that calpain inhibition prevents TrkB receptors changes induced by Aβ and also restores BDNF 

actions reinforcing the rational for the use of calpain inhibitors in the therapeutics AD.  

 Interestingly, most of BDNF synaptic actions are dependent or facilitated by A2AR 

activation [108-116]. However, inhibitors of A2AR, in particular the orally-active KW-6002 

inhibitor, have been proposed as a therapeutical tool against Parkinson’s disease and AD [376-

378]. Here, we evaluated the effect of the chronic in-vivo administration of KW-6002 on the 

BDNF actions upon synaptic plasticity. It was shown that KW-6002 administration for one 



7. General discussion and conclusion 

108 

month to young rats, reduces the mRNA and protein levels of TrkB-FL in the hippocampus, and 

also abolishes the facilitatory effect of exogenous BDNF upon LTP in hippocampal slices. 

Thus, we conclude that A2AR inhibition might impair BDNF signalling, at least in young rats.  

 A2AR inhibition has been associated to the reduction of neuronal excitability and to 

neuroprotection against toxic insults such as Aβ [376-378, 383, 411, 412]. Here, by evaluating 

the extension of caspase-3 and calpain activation, it was possible to show that acute A2AR 

inhibition does not protect cortical neurons against a strong Aβ insult. Moreover, the activation 

of A2AR also does not influence neuronal death induced by Aβ. However, BDNF reduces the 

activation of caspase-3 and calpain induced by Aβ insult, an effect that it is also observed in the 

presence of the A2AR agonist or antagonist. Thus, it is possible to conclude that, in opposition to 

synaptic plasticity, the protective action of BDNF upon caspase-3 and calpain activation, in Aβ 

toxicity, does not depend on A2AR activation.  

 Together, the present work shows that Aβ dysregulates TrkB receptors and BDNF 

actions on synaptic plasticity and neurotransmitter release, by a calpain-dependent mechanism. 

This data reinforces the rational of using calpain inhibitors for the therapeutics of AD. 

Moreover, the acute blockade, or activation, of A2AR does not influence the protective effect 

mediated by BDNF against Aβ peptide. Interestingly the chronic in vivo blockade of A2AR, 

which has been considered as a useful therapeutical strategy against neurodegenerative 

disorders, abolishes BDNF actions upon hippocampal synaptic plasticity and decreases TrkB-

FL receptors levels. This data highlight the caution that must be taken whenever studying A2AR 

antagonist as pharmacological tools to treat neurodegenerative disorders where BDNF 

signalling is impaired. 
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8. Future perspectives 

 

 One interesting question raised in chapter 4, that would be interesting to address is 

whether the TrkB intracellular cleavage fragment (TrkB-ICD) has any biological function. 

Calpains usually cleave proteins in interdomain regions, releasing big stable fragments that can 

have a distinct or enhanced biological activity [127]. For instance, calpain cleave p35 protein 

into p25, enhancing its activity and promoting an aberrant activation of CDK5, which in turn 

contributes to neurodegeneration [196, 282, 285, 361]. In another study closely-related to this 

work, it was described that calpain cleaves Src kinase upon excitotoxicity, both in-vivo and in-

vitro, releasing a cytosolic 52kDa fragment which contains the Src kinase domain. The 

expression of this fragment in neuronal cultures was sufficient to induce neuronal death, 

possibly by inactivating Akt kinase [414]. Our preliminary results suggest that TrkB-ICD 

fragment released after the cleavage, has a different conformation than the native TrkB-FL 

protein (see subchapter 10.1). Moreover, TrkB-ICD appears to be enriched in the non-cytosolic 

fraction (probably located within the nucleus or another organelle, or even associated with 

membranes). Thus, in future, it would be interesting to confirm the subcellular localization of 

TrkB-ICD and its putative biological function. To help addressing this issue we already have 

cloned the TrkB-ICD fragment and generated an expressing vector containing the fragment, the 

pcDNA-TrkB-ICD-V5 (see subchapter 10.2). As future work, we would like to transfect 

neurons or neuronal lines and evaluate: 1) the subcellular localization of the fragment by 

microscopy; 2) cell viability alterations (since many of calpain-generated fragments have a pro-

apoptotic role); 3) phosphorylation status of the signalling pathways associated with TrkB-FL 

(Akt, ERK, PLCγ), since TrkB-ICD might be phosphorylating these proteins, or TrkB-ICD 

might be not functional and attenuating the phosphorylation of these signalling molecules by 

competing with native kinase receptors. Additionally, as a major goal, we would like to evaluate 

if the in-vivo administration of calpain inhibitors increases BDNF signalling in a 

neurodegenerative AD mice model. 

 Finally, regarding chapter 6, it would be important in future to identify the molecular 

pathways by which BDNF inhibits the Aβ-induced calpain overactivation. 
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10. Appendix 

 

10.1. TrkB-ICD: putative conformation and localizat ion.  
 

 Preliminary data obtained in this thesis, indicate that the TrkB-ICD fragment, which is 

produced upon calpain-mediated cleavage of TrkB-FL receptor, adopts a different conformation 

after the cleavage. Indeed, it was observed that the c-terminal TrkB antibody is only able to 

immunoprecipitate TrkB-FL, but not TrkB-ICD (Figure 10.1A). Given that both TrkB-FL and 

TrkB-ICD share the same c-terminal domain (see Figure 10.1B) and are both recognized by the 

c-terminal TrkB antibody in western-blot (denaturing conditions), our hypothesis would be that 

after the cleavage of TrkB-FL, the TrkB-ICD fragment would adopt a different structure in 

solution, masking the c-terminal epitope and preventing the immunoprecipitation with the c-

terminal TrkB antibody in native conditions. 

  

 

Figure 10.1 – TrkB-ICD conformation  

(A) Left: Western-blotting, probed with TrkB c-terminal antibody, showing the presence of TrkB-FL and the 

TrkB-ICD fragment on Aβ-treated neuronal cultures. Right: Immunoprecipitation (IP) of Aβ-treated 

neuronal cultures lysate with the TrkB c-terminal antibody. This antibody fully immunoprecipitates TrkB-FL 

from the Aβ-treated neurons, but it failed to immunoprecipitate the 32kDa TrkB-ICD. Thus, the supernatant 

(washflow) does not contain TrkB-FL, since it was fully immunoprecipitated, and it contains almost all 

original amount of TrkB-ICD. (B) Schematic representation of TrkB-FL, showing calpain cleavage site, c-

terminal, Y515 and Y816 (indicated with P), and TrkB-ICD with a different conformation. 
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To identify the subcellular localization of TrkB-ICD, it was performed a cytosolic and nuclear 

protein extraction, as described in [415], from Aβ-treated cortical neurons. By analysing the 

levels of GAPDH (a cytosolic protein), we observed that TrkB-ICD is not enriched in cytosolic 

(GAPDH) fraction. However, we cannot conclude that TrkB-ICD is enriched in nuclear (Lamin) 

fraction, since this fraction was contaminated with other fractions and it was also detected the 

presence of TrkB-FL (transmembrane protein located in plasma membrane and intracellular 

membranes). Thus, our preliminary data suggests that TrkB-ICD is not enriched in the cytosolic 

fraction. 

 The indication that TrkB-ICD has a different conformation and that TrkB-ICD seems to 

be enriched in nucleus or inside other organelles, suggest that this fragment may have a distinct 

function. 

 

 

Figure 10.2 – TrkB-ICD subcellular localization 

Western-blot of cytosolic and non-cytosolic fractions from Aβ-treated cultured neurons, showing the levels 

of TrkB-ICD and TrkB-FL (transmembrane protein), Lamin A/C (nuclear protein) and GAPDH (cytosolic 

protein). 
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10.2. TrkB-ICD: cloning and transfection  
 

 

 In order to study the putative biological role of TrkB-ICD fragment, and also to evaluate 

its subcellular localization by microscopy, we already cloned the fragment sequence into a 

mammalian expression vector (by using a PCR cloning kit – pcDNA Gateway Directional 

TOPO expression by Invitrogen). 

 Given that we identified the TrkB cleavage site by N-sequencing, we were able to 

design a pair of PCR primers with the proper sequences to amplify the TrkB-ICD sequence. In 

addition, to be able to amplify the TrkB-ICD sequence, the primers must also have the required 

sequence to facilitate directional cloning and the required Kozak sequence to promote the 

initiation of translation. Moreover, the reverse primer should not contain the termination codon 

in order to fuse the TrkB-ICD product in frame with the c-terminal V5 tag. Thus, the forward 

primer was: 5’-CACCATGAGCCAGCTCAAGC-3’ (the first 4 nucleotides CACCA will 

promote directional cloning, and the ATG is the initiation codon); and the reverse primer was 

5’-GCCTAGGATGTCCAGGTAGAC-3’.  

 By performing a RT-PCR with the selected primers, we were able to amplify a ~910bp 

product, which as the expected size of TrkB-ICD product (Figure 10.3A). The TrkB-ICD band 

obtained with 64ºC of annealing temperature was cut and gel-purified using a DNA extraction 

kit. One fifth of total purified TrkB-ICD DNA was applied in the agarose gel, and its purity was 

confirmed by the appearance of a single band (Figure 10.3B). 
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Figure 10.3 – Amplification of TrkB-ICD by RT-PCR  

(A) Agarose electrophoresis showing the amplification of TrkB-ICD fragment by RT-PCR in different 

annealing temperatures, from the total mRNA extracted from a rat hippocampus. The expected size of 

TrkB-ICD product is 910bp. (B) Agarose electrophoresis showing the gel-purified TrkB-ICD product. 

   

 

 After the purification process, 3 ng of purified TrkB-ICD amplification product were 

cloned into 3 ng of linearized pcDNA 3.2 TOPO vector (Invitrogen). After the cloning reaction, 

the chemically competent E.coli cells (TOP10, Invitrogen) were transformed and plated in 

selective media overnight at 37ºC. Then, six colonies were picked and analysed by colony PCR 

and three of them contained the plasmid of interest with the TrkB-ICD inserted in the correct 

direction (Figure 10.4). The results were further confirmed by restriction analyses (not shown). 

One of the plasmids was selected and its sequence was ultimately confirmed by DNA 

sequencing. 

 Finally, after the successful cloning of TrkB-ICD into pcDNA 3.2, a neuroblastoma cell 

line (SH-SY5Y) was lipo-transfected with the expression vector (Figure 10.5). The results 

obtained indicate the presence of a ~35kDa protein containing the V5-tag, which matches with 

the expected weight of TrkB-ICD plus the linker and V5-Tag (4 kDa). This TrkB-ICD-V5 was 

not detected by the c-terminal antibody of TrkB (not shown), possibly due to the epitope 

alteration on c-terminus. The results obtained also indicate a slight increase in the levels of 

SBDP120 (caspase-3 specific SBDP) in the presence of the TrkB-ICD-V5 (Figure 10.5). 
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Figure 10.4 – Analysis of selected E.coli colonies by RT-PCR.  

Agarose electrophoresis showing the RT-PCR amplification of distinct products based on the mentioned 

primers combination. T7 sequences are located on the plasmid and flank the TrkB-ICD insertion product. 

All products sizes observed matched with the expected sizes for a plasmid with the TrkB-ICD inserted in 

the correct direction. 

 

 

  

Figure 10.5 – Transfection of SH-SY5Y cell line with pcDNA-TrkB-ICD-V5. 

Western-blot probed with anti-αII-spectrin antibody (upper panel) and anti-V5-tag antibody (lower panel) 

for SH-SY5Y cells 72hours after transfection with different amounts of lipofectamine2000 and plasmid in 

24-well plates (0.25x106 cells/ well).  


