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Abstract 

Questions:  

How do mat thickness, physical structure and allelopathic properties of terricolous mat-

forming lichens affect recruitment of vascular plants in dwarf-shrub and lichen heath 

vegetation?  

 

Location:  

The mountains of Dovrefjell, central Norway. 

 

Methods: 

In autumn, seeds of ten vascular plant species were collected and sown in a common garden 

experiment with mats of six lichen species and bare-soil controls as experimental treatments. 

We recorded growing season soil temperature and moisture, and seedling recruitment and 

growth after one year. The effect of lichen secondary compounds on germination was tested 

in a growth chamber experiment and compared to the lichen-plant interactions detected under 

field conditions. 

Results:  

The lichen mats buffered extreme soil temperatures and soil drying in dry weather, with soils 

below the thickest mats (Cladonia stellaris and C. rangiferina) experiencing the lowest 

temperature fluctuations. Seedling recruitment and seedling growth in the field and seed 

germination in the lab were species-specific. Seedling recruitment rates were overall higher 

within lichen mats than on bare soil, but the c. 6.5 cm thick mats of C. stellaris reduced 

recruitment of many species. The lab experiment suggested no overall strong effect of lichen 

allelopathy on seed germination, and effects on seed germination were only moderately 

correlated with the lichen-plant interactions observed for seedling recruitment in the field.  
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Conclusions:  

In harsh environments like alpine dwarf-shrub and lichen heaths, the presence of lichens and 

the resulting amelioration of the microclimate seems more important for vascular plant 

recruitment than are allelopathic effects often reported in lab experiments. We might 

therefore expect most terricolous lichens, depending on the plant species in focus, to facilitate 

rather than hamper the early stages of plant recruitment into lichen-dominated arctic-alpine 

heath vegetation. 

 

Keywords: 

Alectoria; Cetraria; Cladonia heath; Flavocetraria; Ground lichen; Lichen secondary 

metabolites; Lichen-plant interaction; Microclimate; Seedling emergence; Soil moisture; 

Stereocaulon; Tundra; Vascular plant colonization 

 

Introduction 

Terricolous lichens (i.e. lichens growing on soil) dominate the vegetation of roughly 8% of 

terrestrial ecosystems, among them arctic and alpine heaths (Ahti, 1977; Larson, 1987; 

Crittenden, 2000; Nash, 2008). The species composition and abundance of terricolous lichens 

on arctic-alpine heaths vary with elevation, topography, and continentality (Haapasaari, 

1988). Lichens are particularly dominant in convex parts of exposed and well-drained heaths 

(Crittenden, 2000; Vistnes & Nellemann, 2008), where standing lichen biomass can reach 

1200 g m-2 (Nellemann, Jordhøy, Støen, & Strand, 2000). Terricolous lichens are ecologically 

important as the main food resource for reindeer and caribou in winter (Boertje, 1984; Danell, 

Utsi, Palo, & Eriksson, 1994), and contribute substantially to the arctic-alpine carbon pool 

(Lange, Hahn, Meyer, & Tenhunen, 1998). Species with N2-fixing cyanobacteria, such as 
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Stereocaulon spp., further contribute to nitrogen enrichment of the often N-deficient heaths 

(Crittenden, 1989). 

 

Recent studies report declines in lichen abundance in arctic-alpine areas (Fraser, 

Lantz, Olthof, Kokelj, & Sims, 2014; Løkken, Hofgaard, Dalen, & Hytteborn, 2019;  

Maliniemi, Kapfer, Saccone, Skog, & Virtanen, 2018; Vanneste et al., 2017; Vuorinen et al., 

2017), often driven by expansion of vascular plants, and in particular shrubs (Cornelissen et 

al., 2001; Fraser et al., 2014; Vanneste et al., 2017). Whether the negative effects of vascular 

plants on lichen communities are mediated by expansion of the already established plants 

within or close to lichen mats, or by colonizing plants from outside, is not known. Many 

lichens are indeed sensitive to shading from plants or their litter (Palmquist, 2008), whereas 

the low seedling densities often reported on arctic-alpine lichen heaths (Evju, Hagen, & 

Hofgaard, 2012; Graae et al., 2011) suggest it is difficult for plants to recruit here. Plant 

recruitment in lichen heaths may be hampered by lichen secondary metabolites (i.e. 

allelopathy), by mechanisms related to the lichens’ physical structure, or by harsh 

environmental conditions (Fig. 1). 

 

In summer, lichen heaths often experience droughts, which Moles and Westoby 

(2004) identified as the second most important cause of seedling mortality. On the other 

hand, lichens modify microclimatic conditions in ways that may support seedling survival, as 

they maintain soil moisture (Broll, 2000; Kershaw & Rouse, 1971; Molina-Montenegro et al., 

2013) and prevent extreme temperatures due to high reflectivity and low thermal conductivity 

(Kershaw, 1977; Broll, 2000). Lichens furthermore reduce wind erosion and plant 

evapotranspiration through shelter effects (Molina-Montenegro et al., 2013).  
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The physical structure of lichens may have contrasting effects on plant recruitment. 

Lichen mats act as efficient seed traps (Sedia & Ehrenfeld, 2003), but can also prevent seeds 

or seedlings from reaching the ground. A classic example is Allen’s (1929) observation of 

seedlings pulled out of the soil by repeated lichen thalli expansion and contraction driven by 

fluctuations in moisture. Some species (e.g. Cladonia stellaris) have upright, branched, 

shrub-like thalli, and form very thick and dense mats with low light penetration and high 

insulation capacity. Others (e.g. Flavocetraria nivalis) form upright, but thinner and more 

open mats that provide less thermal insulation (Crittenden, 2000), but may be easier for seeds 

and seedlings to penetrate. However, most lichen-plant recruitment interaction studies under 

field conditions have focused on Cladonia spp. (e.g. Allen, 1929; Brown & Mikola, 1974; 

Hawkes & Menges, 2003; M. M. Kytöviita & Stark, 2009; Sedia & Ehrenfeld, 2003) in 

various vegetation types, whereas less is known about the interactions between other 

ecologically successful genera of terricolous lichens (e.g. Cetraria, Stereocaulon and 

Alectoria; Crittenden, 2000) and plant species that co-occur in arctic-alpine vegetation. 

 

Lichen secondary metabolites may also inhibit establishment and growth of vascular 

plants. Direct lichen allelopathic effects may inhibit germination, radicle and hypocotyl 

growth (Hobbs, 1985; Latkowska, Bialczyk, Lechowski, & Czaja-Prokop, 2008; Nishitoba, 

Nishimura, Nishiyama, & Mizutani, 1987; Peres, Mapeli, Faccenda, Gomes, & Honda, 2009; 

Pyatt, 1967; Sedia & Ehrenfeld, 2003; Tigre et al., 2012). Importantly, most findings of 

allelopathy are results from in vitro experiments, often with pure lichen compounds at high 

concentrations, and clear evidence for lichen allelopathy under natural conditions is scarce 

(Favero-Longo & Piervittori, 2010). Under field conditions, allelopathy has been suggested to 

indirectly affect seedling growth by inhibition of soil microorganisms and mycorrhizal fungi 

(Brown & Mikola, 1974; Fisher, 1979; Sedia & Ehrenfeld, 2003), although the generality of 
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these findings have been challenged (Kytöviita & Stark, 2009; Stark & Hyvärinen, 2003; 

Stark, Kytöviita, & Neumann, 2007). Furthermore, the allelopathic effects depend on the 

specific secondary compounds and plant species in focus (Brown & Mikola, 1974; Favero-

Longo & Piervittori, 2010; Hobbs, 1985; Peres et al., 2009). 

 

Whether the lichens’ negative effects via allelopathy and physical structure or 

facilitation via amelioration of the microclimate is more important for plant recruitment is an 

open question. Therefore, we here combine field and laboratory experiments to investigate 

how terricolous lichens affect the early recruitment phase of plants in dwarf-shrub and lichen-

dominated heath vegetation typical for arctic-alpine areas. We test the response of plant 

species with different growth forms, seed sizes and seedling morphologies, which we expect 

to interact uniquely with the lichen species. In a field experiment, we aimed to answer the 

following questions: (1) Is soil microclimate (i.e. temperature and moisture) affected by 

lichen species and lichen mat thickness? Is (2) seedling recruitment and (3) seedling growth 

affected by lichen species and lichen mat thickness? Because allelopathy is hard to 

distinguish from other factors under natural conditions, we conducted a complementary 

laboratory experiment where we asked: (4) Is seed germination affected by lichen 

allelopathy? To reveal the importance of lichen allelopathy under natural conditions we 

asked: (5) Are the same lichen-plant interactions detected for seed germination in the 

laboratory and seedling recruitment in the field? 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

Methods 

Study site 

The field study was conducted at an exposed dwarf-shrub and lichen heath, surrounded by 

subalpine birch forest in the mountains of Dovrefjell, Central Norway, close to Kongsvoll 

Biological Station (c. 930 m a.s.l., 62°18′5.75517″N, 9°36′24.00385″E). The bedrock at the 

site consists of lightly eroded actinolite-hornblende amphibolite (Geological Survey of 

Norway, https://www.ngu.no/en/, accessed 11.07.17). The vegetation is dominated by 

Empetrum nigrum ssp. hermaphroditum, Arctostaphylos uva-ursi, Vaccinium vitis-idaea, 

Betula nana and Salix glauca, and the lichens Alectoria ochroleuca and Flavocetraria 

nivalis. Such dwarf-shrub and lichen heaths predominantly occur above the forest line, but 

can also be found on locally exposed areas within subalpine forests like our study site 

(Fremstad, 1998) (see Appendix S1 for photo from the study site). The studied dwarf-shrub 

and lichen heath is thus representative for such vegetation in general, and the findings 

especially relevant for arctic-alpine areas where these heaths are widespread. 

 

Dovrefjell has a slightly continental climate with short warm summers and long cold 

winters. At the weather station Fokstugu (930 m a.s.l.) c. 26 km south of the study site, the 

mean annual precipitation was 435 mm (Førland, 1993) and mean annual temperature -0.1°C 

(Aune, 1993) for the period 1961–1990. For the same period, the warmest month was July 

with average monthly temperature 9.8°C and the coldest was January, with -8.8°C (Aune, 

1993). 
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Lichen and seed material 

In a parallel field and laboratory experiment, we studied the interactions between six locally 

abundant terricolous lichen species: Alectoria ochroleuca, Cetraria islandica, Cladonia 

arbuscula, Cladonia stellaris, Flavocetraria nivalis and Stereocaulon paschale and 11 

vascular plant species: Anthoxanthum nipponicum, Avenella flexuosa, Betula nana, Bistorta 

vivipara, Dryas octopetala, Luzula spicata, Pinus sylvestris, Salix glauca, Silene acaulis, 

Solidago virgaurea and Vaccinium myrtillus common in subalpine and low-alpine vegetation. 

These 11 plant species were chosen because they represent a variety of growth forms (tree, 

shrub, dwarf shrub, graminoid and forb), have been observed as adult plants growing within 

terricolous lichens (negative effects of lichen secondary metabolites on plant recruitment are 

more likely to have developed in co-occuring lichen and plant species; Hobbs, 1985), have 

seeds (bulbils for B. vivipara, hereafter referred to as seeds) of different sizes which might 

affect their recruitment potential, and have seedlings easy to distinguish from each other. The 

lichen species were chosen because of their dominance in arctic-alpine vegetation, and 

because they produce different secondary metabolites, have different growth forms (fruticose 

vs. cetrarioid) and physical structure of their mats (e.g. height and density), resulting in a 

variety of microenvironments for the recruiting plant species (Table 1). 

The lichens and seeds were collected close to the study site in September and October 

2013. For one species, P. sylvestris, seeds were supplied by The Norwegian Forest Seed 

Center and originated from Oppdal at c. 600–650 m a.sl., c. 35 km north of the study site. We 

planned to use all plant and lichen species in both the laboratory and field experiment, but 

due to seed limitation D. octopetala was used only in the laboratory and B. vivipara only in 

the field experiment. See The Norwegian Biodiversity Information Centre (NBIC) 

(https://www.biodiversity.no/, accessed 23.10.18) for unified nomenclature of lichen and 

plant species. 
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Field experiment 

In the field, seventeen plastic trays (56 × 26 × 8 cm) were divided into four plots each, for a 

total of 68 plots. Each plot was filled with one liter of commercial garden soil. The trays had 

holes to drain water, and the vegetation underneath was removed so that the plots were at 

level with the surrounding vegetation. Each of the six lichen species had eight replicate plots 

randomly assigned to the trays. Two types of controls were used with ten replicates each: (a) 

bare soil where seeds were sown, and (b) bare soil without seeds to control for external seed 

influx (see Appendix S1 for field design figure). At least one plot per tray was assigned to a 

control treatment, and each lichen species had one replicate per tray only. 

 

For C. stellaris and C. arbuscula, coherent mats were collected and transplanted into 

the plots. As A. ochroleuca, C. islandica, F. nivalis, and S. paschale form less coherent mats, 

the plots were filled with several smaller lichen samples representing how they naturally 

grow. A mixture of 30 seeds from each of the 10 plant species, except for P. sylvestris with 

only 10 seeds and S. glauca with only 15 seeds due to limited seed availability, was sown on 

top of each lichen species and bare soil sowing control plot (the “lichen treatments”) in 

October 2013. This gives a total of 265 seeds per plot, and as each plot was approximately 

365 cm2, the seed density was 0.73 seeds per cm2. This density is higher than the expected 

natural seed rain in such vegetation (Graae et al., 2011; Molau & Larsson, 2000), and ensured 

that seed availability would not constrain seedling recruitment. String was tied in a grid over 

the trays to prevent the lichens from being blown out. From October to May the trays were 

placed in a sheltered scrub community dominated by Salix spp., graminoids and bryophytes 

at the study site to reduce wind exposure during winter, and were moved c. 35 m to a 

neighboring exposed dwarf-shrub and lichen heath in late May, which is the most 

representative environment for the lichen species used in this experiment. 
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In late May 2014, temperature loggers (NexSens Micro-T DS1921G) were placed 0.5 

cm below the soil surface in each plot to measure the soil temperature every second hour. 

Soil moisture (% volumetric soil water content) was measured once in each plot during 

overcast conditions after rain (26.08.14) and again during dry conditions on a sunny day after 

one day without rain (28.08.14) with a hand-held 5 cm long soil moisture probe set to option 

“organic soil” (TRIME-PICO, IMKO GmbH, Ettlingen, Germany). In late August and early 

September 2014, the temperature loggers were collected and the seedlings harvested. Mean, 

maximum and minimum temperatures were calculated for the period 13.06.14–31.08.14. 

Seedlings were identified, counted, rinsed in water to remove soil fragments, and oven dried 

at 70°C for 72 hours. All seedlings of each species from each plot were weighed together to 

obtain a measure of average dry seedling biomass (mg). The thickness of the lichen mats 

(average of 3 measurements from soil surface to highest lichen thallus point at different fixed 

locations) was measured for each plot at the end of the experiment (Table 1).  

 

Laboratory experiment 

In the laboratory, samples of each of the six lichen species were cleaned of debris, dried, and 

crushed with a hand blender. Two grams of crushed lichen was added underneath filter paper 

in five Petri dishes for each of the ten species sown and a control. Thirty seeds, except for P. 

sylvestris with 10 and S. glauca with 15 seeds, were placed on the filter paper and 6 ml of 

distilled water was added. The controls had only filter paper, water and seeds. The Petri 

dishes were sealed with parafilm and kept in darkness at 3°C for 12 weeks. After this cold 

stratification, the Petri dishes were transferred to growth chambers (Percival E-36L) for 6 

weeks with 20 hours daylight (representative for mid-June growing season photoperiod in 

central Norway) with approx. 200 µm m-2 s-1 photosynthetically active radiation at 20°C, and 

4 hours darkness at 10°C. Every week, 2 ml of distilled water was added, and the Petri dishes 
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were rotated within the chamber. More water (1–2 ml) was added if signs of desiccation on 

the filter paper occurred. Germinated seeds were counted and then removed from the Petri 

dishes weekly over six weeks. 

 

Statistical analyses 

To test whether the soil microclimate was affected by the lichen treatments (question 1), we 

fitted linear mixed-effects models with Gaussian errors and with each microclimate 

parameter (mean soil temperature, maximum soil temperature, minimum soil temperature, 

soil moisture wet day and soil moisture dry day) as response variable, lichen treatment, lichen 

mat thickness and their interaction as fixed effects, and tray as random factor. 

 

To test if seedling recruitment in the field experiment was affected by the lichen 

treatments (question 2), we fitted a generalized linear mixed-effects model with binomial 

errors and logit link-function, with proportion seedling recruitment as response variable, 

lichen treatment, lichen mat thickness, plant species and their interaction as fixed factors, and 

tray and plot (nested within trays) as random factors. In this analysis, plot was also included 

in the random structure because of several observations (i.e. plant species) per plot. Numbers 

of seeds sown for each species were added as weights in the models. For V. myrtillus, the 

only species with external seed influx from the control plots without sowing, the mean influx 

(0.7 seedling) was subtracted from the data prior to the analyses. Estimates were back-

transformed (from logit scale to probability scale) to obtain recruitment rates, and these rates 

are presented in figures and text as they account for the nested structure of our experimental 

design. 
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Similarly, to test if seedling biomass was affected by the lichen treatments (question 

3), we fitted linear mixed-effects models with average seedling weight as response variable, 

lichen treatment, lichen mat thickness, plant species and their interactions as fixed factors, 

and tray and plot (nested within trays) as random factors. Seedling numbers were added as 

weights in the model because the number of recruited seedlings (i.e. the sample size) varied 

among plant species and plots. Two species were excluded from the field recruitment and 

growth analyses: B. nana because of low emergence rates in all treatments, and S. glauca 

because most seedlings were dead when counted and harvested in autumn (see Appendix S2 

for counts of live and dead seedlings). 

 

To test if seed germination in the lab was affected by lichen treatments (question 4), 

we fitted a generalized linear model with binomial errors and logit link-function, with the 

proportion of germinated seeds as response variable, and lichen treatment, plant species and 

their interaction as fixed factors. Estimates were back-transformed to obtain germination 

rates. 

 

Finally, we used a Spearman rank correlation test to test for correlation between the 

field recruitment and laboratory germination estimates (question 5). Control treatments were 

excluded and only the seven plant species shared in both experiments were included. 

 

To visualize the lichen-plant interactions in the field recruitment and lab germination 

experiment, and explore possible clusters, we constructed heat maps with hierarchical 

clustering (two-dimensional representations where the recruitment and germination estimates 

of all combinations of plant species and lichen treatments are shown with colors and ordered 

by similarity) with the gplots R package (Warnes et al., 2019). Dendrograms were 
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constructed with hierarchical agglomerate Ward clustering based on Jaccard dissimilarities 

calculated in the vegan R package (Oksanen et al., 2017). Number of clusters for the lichen 

treatment and plant species dendrograms were manually chosen based on their separation 

heights and by visual inspection of the clusters’ ecological meaning.  

 

For question 1–4, model selection was based on the Akaike information criterion 

(AIC, see model selection results in Appendix S3). Small-sample corrected AIC (AICc) was 

used for model selection in question 1. Anova and summary tables of models presented in the 

manuscript are in Appendix S4. Differences in soil microclimate among lichen treatments 

were tested using multiple comparisons with the Tukey method in the multcomp R package 

(Hothorn, Bretz, & Westfall, 2008). For the mixed models (seed germination and seedling 

recruitment and biomass) we used the emmeans R package for pairwise comparisons (Lenth, 

2017). All statistical analyses were done in R 3.1.2 (R Core Team 2015). Mixed-effect 

models were fitted with the lme4 R package (Bates, Mächler, Bolker, & Walker, 2015). 

Primary data is available in Appendix S5 (seedling recruitment and seedling biomass in field) 

and Appendix S6 (seed germination in lab). 

 

Results 

Soil microclimate – field experiment 

Lichen treatment was a better predictor of all soil microclimate variables than was lichen mat 

thickness (Appendix S3). The presence of lichens reduced mean and maximum soil 

temperatures and increased minimum soil temperatures compared to the bare soil control 

(Fig. 2a). Temperature buffering was strongest beneath C. stellaris and C. arbuscula (Fig. 

2a), which had the thickest mats (Table 1). This was especially evident for maximum 
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temperature, which differed by more than 20°C between C. stellaris (24.9°C, 95% CI = 21.6 

– 28.3) and the bare soil control (45.7°C, 95% CI = 42.6 – 48.8; Fig. 2a). 

 

Soil moisture differed between treatments under dry conditions, but not under wet 

conditions (Fig. 2b). On the dry and sunny day, the driest soils occurred in the bare soil 

control (8.6%, 95% CI = 6.9 – 10.3) and beneath C. islandica (8.6%, 95% CI = 6.6 – 10.7), 

whereas the soils beneath A. ochroleuca (13.1%, 95% CI = 11.2 – 15.0) and C. stellaris 

(12.6%, 95% CI = 10.7 – 14.5) were moister (Fig 2c). 

 

Seedling recruitment – field experiment 

The effects of the lichen treatments on seedling recruitment were complex and plant species-

specific (Fig. 3), as demonstrated by strongest statistical support for the model including the 

plant-lichen treatment interaction (Appendix S3). For some plant species (B. vivipara and L. 

spicata) the lichen species did not seem to affect the recruitment, whereas for the other six 

plant species recruitment rates were overall higher and differed between lichen species, or 

between some lichen species and the bare soil control (Fig. 3). Most species had recruitment 

rates below 40%, except P. sylvestris with recruitment rates approaching 80% (Fig. 3). 

 

Based on their effect on seedling recruitment, the lichen treatments cluster into three 

groups: one with bare soil control only, one with C. stellaris only, and a third with the 

remaining five lichen species (Fig. 3b, Appendix S7). The bare soil controls stand out with 

overall low recruitment, and not a single seedling of B. vivipara and L. spicata recruited here 

(Fig. 3a). Many germinating seeds were observed on the bare soil controls during early 

summer (Kristin O. Nystuen, pers. obs.), suggesting high post-germination mortality. 

Compared to other lichen species C. stellaris supported low recruitment of many plant 
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species, whereas for A. flexuosa the recruitment in C. stellaris was comparatively high (Fig. 

3). The remaining five lichens supported higher recruitment overall, but still depending on 

the plant species in focus. Some of the species had relatively high recruitment rates within S. 

paschale, especially S. virgaurea (Fig. 3). 

 

Seedling growth – field experiment 

The lichen treatments’ effects on seedling growth were species-dependent, as indicated by 

strongest statistical support for the model with lichen treatment-plant species interaction in 

Appendix S3. Most plant species had small seedlings below 5 mg in dry weight, whereas P. 

sylvestris and S. virgaurea had heavier seedlings (Fig. 4). Seedling weight of these two 

species was also detectably affected by the lichen treatments, whereas for the remaining six 

species, with fewer recruited seedlings (Fig. 3), there were no statistically detectable 

differences among treatments (Fig. 4). Cladonia stellaris clearly affected the growth of P. 

sylvestris negatively, and weight of the seedlings here were only half the weight of the 

heaviest seedlings found in S. paschale and A. ochroleuca (Fig. 4). 

 

Seed germination – laboratory experiment 

Seed germination in the Petri dishes differed among plant species, and the lichen species had 

species-specific effects on the plant species (strongest statistical support for the model with 

plant-lichen treatment interaction; Appendix S3). Six out of ten plant species were detectably 

affected by the lichen treatments (Fig. 5a). The lichen treatments’ species-specific influence 

on seed germination is also demonstrated in the heat map in Fig. 5b, where the lichen 

dendrogram did not separate until height 0.38 (Appendix S7), indicating that the treatments 

have few common effects on seed germination. 
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For two plant species (S. acaulis and V. myrtillus) we found interesting patterns 

concerning lichen secondary compounds. Germination of S. acaulis was clearly enhanced in 

C. islandica and S. paschale (Fig. 5a), the only two lichens without usnic acid (Table 1), 

whereas Vaccinium myrtillus germinated best in F. nivalis and C. islandica, which are the 

only lichens with protolichesterinic acid (Appendix S2). 

 

Comparison between field and laboratory results 

Estimated recruitment rates in the field and germination rates in the laboratory were 

moderately correlated (Spearman’s rho = 0.45, p = 0.003), indicating only partial 

correspondence between the field and laboratory results. 

 

Discussion 

This study suggests that terricolous lichens facilitate rather than prevent seedling recruitment 

under stressful, natural conditions, and that the effects of lichens on seedling recruitment are 

related more to their physical structure and resulting microclimate modifications than to 

allelopathy. The lichen mats prevent large temperature fluctuations and conserve soil 

moisture, and this may have caused the increased recruitment we observed within lichen mats 

compared to on bare soil. Importantly, the effects of lichen mats on seedling recruitment and 

growth were species-specific, and for C. stellaris, a lichen with thick and dense mats, the 

overall facilitative effect was replaced by restrained recruitment and growth conditions for 

many plant species. 
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Damped microclimatic variation under lichens 

Microclimatic conditions strongly affect plant species distributions in alpine habitats and are 

known to vary across small distances (Graae et al., 2012; Opedal, Armbruster, & Graae, 

2015; Scherrer & Körner, 2011). Our results suggest that some of this small-scale variation 

may be related to variation in lichen cover and assemblages, because the lichen species differ 

in their effect on microclimate. In general, temperatures beneath lichens were less extreme 

than on the bare soil controls. Large temperature fluctuations are favorable for germination of 

many species, especially those with small seeds and low competitive ability (Fenner & 

Thompson, 2005). However, despite having the largest temperature fluctuations, the bare soil 

controls did not have higher recruitment rates of small-seeded species (such as L. spicata, S. 

acaulis and V. myrtillus). Furthermore, large temperature fluctuations can also be detrimental 

for seedlings (e.g. Cavieres, Badano, Sierra-Almeida, & Molina-Montenegro, 2007), and the 

low recruitment we observed on bare soil may partly represent seedling mortality during 

summer. On bare soil, maximum temperatures reached 45°C, 10 – 20 degrees higher than 

within the lichen mats, and soil drying was pronounced. 

 

Under dry conditions, C. islandica was the only lichen below which the soil was as 

dry as in the bare soil controls. Lichen water absorption and retaining abilities may vary 

among species (Larson, 1979), and depend on morphology (Larson, 1981) and thallus size 

(Gauslaa & Solhaug, 1998). Our focal lichen species varied extensively in morphology, and 

lichen species was a better predictor of soil microclimate than was lichen mat thickness in 

itself. For instance, the soil beneath C. islandica became much drier than beneath S. paschale, 

which has thinner mats. This could be due to poor water retention of C. islandica combined 

with its open mat structure and dark color.  
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Lichens facilitate seedling recruitment 

We found that the presence of lichens increased seedling recruitment rates compared to 

recruitment on bare soil. High seedling numbers within lichen mats have also been reported 

for subarctic forests (Brown & Mikola, 1974; den Herder, Kytoviita, & Niemela, 2003; 

Steijlen, Nilsson, & Zackrisson, 1995; Zackrisson, Nilsson, Steijlen, & Hornberg, 1995), and 

for the treeline ecotone (Dufour-Tremblay, De Vriendt, Lévesque, & Boudreau, 2012). The 

recruitment rates within lichens observed in our study (below 40% for all species except P. 

sylvestris) is within the expectations for such systems (Graae et al., 2011; Steijlen et al., 

1995), and therefore contrasts with the negative effects of lichen physical structure and 

allelopathy on seedling recruitment as reported by Hobbs (1985), Hawkes and Menges 

(2003), and Sedia and Ehrenfeld (2003) at lower elevations, and possibly more benign 

environments. Hawkes and Menges (2003) found, however, that the negative effect of lichens 

was weaker under more severe environmental stress. Indeed, on exposed heaths dominated by 

terricolous lichens, the vegetation is sparse and the sheltering effect of lichens may be an 

advantage for seedling recruitment in accordance with the Stress Gradient Hypothesis 

(Bertness & Callaway, 1994). 

 

 The increased importance of facilitation in stressful habitats could explain the lower 

recruitment observed on bare soils, as bare soils otherwise tend to promote seedling 

recruitment, also in arctic-alpine vegetation (Lembrechts et al., 2016; Milbau, Shevtsova, 

Osler, Mooshammer, & Graae, 2013). However, recruitment is often better in small gaps, or 

for big gaps, close to the edge and not in the center, especially in harsh environments 

(Lembrechts, Milbau, & Nijs, 2015; Houle & Filion, 2003). The bare soil plots in our study 

were quite big and comparable to the severe disturbances performed by Evju et al. (2012) on 

exposed heaths where few seedlings recruited. Furthermore, the ability of lichens to trap 
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seeds (Sedia & Ehrenfeld, 2003) is important in wind-exposed sites like lichen heaths. This 

could explain the low recruitment of S. glauca and S. virgaurea on bare soils in our study, as 

both species have seeds with hairy appendages that could easily be blown away. 

 

Only lichen species with dense and thick mats (e.g. C. stellaris) seem to negatively 

affect plant recruitment. This may be caused by a combination of seeds not being able to 

reach the soil and seedlings not being able to emerge through the mat. Plant species with long 

and thin cotyledons (e.g. the graminoid A. flexuosa) may establish more successfully in thick 

and dense mats (cf. the observations of Sydes and Grime (1981) of seedlings emerging in leaf 

litter). 

 

Lichens affect seedling growth 

Dense and thick lichen mats (e.g. C. stellaris) seem to negatively affect seedling growth of 

many plant species. Seedling growth of the treeline-forming P. sylvestris (Körner, 2012) was 

clearly reduced in C. stellaris compared to lichen species forming thinner mats, and this 

reduced growth, as well as the low recruitment rates, could slow down potential upward 

migration of P. sylvestris into low-alpine C. stellaris-dominated heaths. Brown and Mikola 

(1974) also reported reduced growth of P. sylvestris seedlings within C. stellaris and 

suggested that allelopathy restricted ectomycorrhiza formation. In a later study, Kytöviita and 

Stark (2009) found no negative effect of usnic acid (one of the secondary metabolites in C. 

stellaris) on P. sylvestris growth and suggested other compounds or lichen structure as 

explanations for the reduced growth. Zamfir (2000) found that light availability decreased 

dramatically as they moved down the thick (c. 6 cm) lichen mats of Cladonia spp., with only 

about 7% of the available light reaching the soil below. We therefore suggest that for C. 

stellaris, low light availability rather than allelopathy during the initial phase of stem and root 
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elongation contributed to the growth reduction of P. sylvestris and other species in our field 

experiment. 

 

Limited lichen allelopathic effects on seed germination 

Our laboratory experiment assessing allelopathic effects of lichens suggests no consistent 

negative effect on seed germination. Some species were more sensitive to the lichen 

treatments (such as S. acaulis, S. glauca and V. myrtillus), demonstrating the importance of 

species-specific effects as shown by Escudero, Martínez, de la Cruz, Otálora, and Maestre 

(2007) and Favero-Longo and Piervittori (2010). In our study only germination of two plant 

species were seemingly affected by lichen secondary compounds acting alone: S. acaulis with 

higher germination in lichens devoid of usnic acid (C. islandica and S. paschale), and V. 

myrtillus with highest germination in protolichesterinic-producing lichens (C. islandica and 

F. nivalis). The allelopathic effect of certain metabolites may vary among plant species 

(Peres et al., 2009), and plant responses to different lichen species may be complicated by 

mutual adaptation of plants and lichens (Hobbs, 1985). In our study, however, the lichen 

secondary metabolites were not distinguished from one another or from other compounds, 

and we cannot ascertain which compounds affected germination. Stereocaulon paschale, for 

instance, has N2-fixing cyanobacteria (Kytöviita & Crittenden, 2007), potentially resulting in 

more available nitrogen (Nash 2008), which in turn may increase germination (Baskin & 

Baskin, 2014) and plant growth (Körner, 2003). Although not apparent for all plant species 

(but for S. acaulis and S. virgaurea), this could have contributed to high germination in the 

lab as well as recruitment and growth in the field in association with S. paschale compared to 

most of the other lichen species. 
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The germination responses to lichens observed in the lab were only partly confirmed 

in the field, suggesting a minor effect of lichen allelopathy on seed regeneration under natural 

conditions. We did not measure secondary metabolites under field conditions, but concerning 

C. stellaris and usnic acid, Stark et al. (2007) found no traces in rainwater percolated through 

the mat or in the soils beneath. Our findings therefore support recent studies suggesting that 

allelopathic effects of lichens on vascular plants under natural conditions are weaker than 

traditionally thought (Favero-Longo & Piervittori, 2010; Stark et al., 2007).  
Conclusions and implications for vegetation dynamics 

Our study shows that lichens facilitate recruitment of vascular plants in dwarf-shrub and 

lichen heaths, but also that lichen-plant interactions are likely to be species-specific. Overall, 

the observed lichen-driven modification of microclimate indicates more benign conditions for 

seedling recruitment. Together, these findings suggest that the ecological importance of 

lichen allelopathy under natural conditions might be overestimated based on the findings in 

laboratory experiments, at least in stressful habitats. We might therefore expect most lichens 

to facilitate rather than hamper vegetation changes in dry tundra heaths. While lichens may 

facilitate recruitment of seedlings of some species in harsh environments, the effect of lichens 

may be different for later life stages. High seedling mortality during the first years is common 

on heaths as well as other tundra habitats (Graae et al. 2011; Milbau et al. 2013), and for 

heaths associated with low winter temperatures (Milbau et al. 2013). The lichen mats may 

protect against very low winter temperatures, though, as observed during summer for the 

species with thick mats. For herbaceous species with broad leaves, re-emerging through the 

densest lichen mats every spring could get harder as they grow bigger. When seedlings 

eventually grow past the protective lichen canopy, their survival may depend on adaptations 
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to conserve water and withstand wind-erosion and low temperatures, especially on the most 

exposed heaths. 

 

Nevertheless, vascular plants are expanding at the cost of terricolous lichens e.g. in 

low-arctic Canada (Fraser et al., 2014) due to increase of tall- and dwarf shrubs, and on 

Scandinavian low-alpine summits due to increase of the shrub B. nana (Vanneste et al., 

2017). Accumulation of leaf litter from deciduous shrubs, or other plant litter, can result in 

death of fruticose lichens (Cornelissen et al., 2001). This suggests that certain vascular plants, 

and especially those adapted to drought and/or with prostrate growth forms, such as B. nana 

(de Groot, Thomas, & Wein, 1997), are able to expand and outcompete shade-intolerant 

lichens in heaths despite the stressful environment. 
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Tables 

 

Table 1: Characteristics of lichen and vascular plant species used in the study, including 

growth form (fruticose here referring to lichens with upright, shrub-like thalli with cylindrical 

branches, and cetrarioid to lichens with upright, modified lobed and leaf-like thalli with 

dorsiventral morphology), mat thickness in the field experiment (mean ± SE, n=8 except for 7 

in C. islandica) and secondary metabolites of the lichen species, and growth form and seed 

mass (mg) of the plant species. The lichen species are listed by increasing mat thickness. 

Lichen species Growth form 
Mat 
thickness 
(cm) 

Secondary metabolites* 

Flavocetraria nivalis Cetrarioid 1.9 ± 0.2 Usnic acid and protolichesterinic acid 

Alectoria ochroleuca Fruticose 1.9 ± 0.4 Usnic acid and diffractaic acid 

Stereocaulon paschale Fruticose 2.1 ± 0.2 Atranorin and lobaric acid 

Cetraria islandica Cetrarioid 2.6 ± 0.3 Fumarprotocetraric acid and protolichesterinic acid 

Cladonia arbuscula Fruticose 3.8 ± 0.3 Usnic acid and fumarprotocetraric acid 

Cladonia stellaris Fruticose 6.8 ± 0.4 Usnic acid and perlatolic acid 

Vascular plant species Growth form Seed mass (mg)** 

Anthoxanthum nipponicum Graminoid 0.4878  

Avenella flexuosa Graminoid 0.5  

Betula nana Shrub 0.3184  

Bistorta vivipara Forb 2.73  

Dryas octopetala Dwarf shrub 0.706  

Luzula spicata Graminoid 0.259  

Pinus sylvestris  Tree 6.0  

Salix glauca Shrub 0.163  

Silene acaulis Forb 0.3  

Solidago virgaurea Forb 0.55  

Vaccinium myrtillus Dwarf shrub 0.3  

*Info on secondary metabolites from Krog, Østhagen, and Tønsberg (1980) and Holien and Tønsberg (2008). 

**Seed mass data accessed from Royal Botanic Gardens Kew. (2018) Seed Information Database (SID). 

Version 7.1. Retrieved from: http://data.kew.org/sid/ (October 2018). 
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Figures 

 

Figure 1: Visual representation of how lichens may affect the recruitment phase of vascular 

plants. In scenario (a) lichen allelopathy inhibits seed germination and early seedling 

development and reduces the number of mycorrhizae associations of the seedling. In scenario 

(b) the physical structure of lichen mats prevents seeds and root radicles of germinating seeds 

from reaching the soil, and emerging seedlings may fail to penetrate the lichen mat. In 

scenario (c) lichens may facilitate plant recruitment by modifying the microclimate, in 

particular shelter against wind, extreme temperatures, and drought, which are harmful for 

emerging seedlings. 

 

Figure 2: Estimated soil microclimate conditions in the field experiment with temperature 

(maximum, mean and minimum) (a) and moisture (wet and dry day) (b) with 95% confidence 

intervals for each lichen treatment. Treatments with no letters in common are significantly 

different (p < 0.05), tested using multiple comparisons with the Tukey method. The lichen 

treatments are ordered by increasing mat thickness and abbreviated as follows: Co; Control 

(bare soil), Fn; Flavocetraria nivalis, Ao; Alectoria ochroleuca, Sp; Stereocaulon paschale, 

Ci; Cetraria islandica, Ca; Cladonia arbuscula and Cs; Cladonia stellaris. 

 

Figure 3: Seedling recruitment in the field experiment across lichen treatments. (a) Barplots 

showing mean estimated seedling recruitment and 95% confidence intervals. Notice that the 

recruitment scale of P. sylvestris differ from the other plant species. The lichen treatments are 

ordered by increasing mat thickness and abbreviated as follows: Co; Control (bare soil), Fn; 

Flavocetraria nivalis, Ao; Alectoria ochroleuca, Sp; Stereocaulon paschale, Ci; Cetraria 

islandica, Ca; Cladonia arbuscula and Cs; Cladonia stellaris. Treatments with no letters in 
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common are significantly different (p < 0.05), as revealed by pairwise comparisons. (b) Heat 

map of mean estimated seedling recruitment rates in the lichen treatments with clustering of 

plants (top) and lichen treatments (left). The plant and lichen dendrogram were cut at 

manually chosen heights (see Appendix S7). 

 

Figure 4: Estimated biomass (mg dry weight) of the emerged seedlings in the field 

experiment across lichen treatments with 95% confidence intervals. Notice that the seedling 

weight scale of the heavy P. sylvestris and S. virgaurea differ from the six other plant 

species. Legends show number of seedlings emerged in each lichen treatment. The lichen 

treatments are ordered by increasing mat thickness and abbreviated as follows: Co; Control 

(bare soil), Fn; Flavocetraria nivalis, Ao; Alectoria ochroleuca, Sp; Stereocaulon paschale, 

Ci; Cetraria islandica, Ca; Cladonia arbuscula and Cs; Cladonia stellaris. Treatments with 

no letters in common are significantly different (p < 0.05), as revealed by pairwise 

comparisons. 

 

Figure 5: Seed germination in the laboratory experiment across lichen treatments. (a) 

Barplots showing mean estimated seed germination and 95% confidence intervals. The lichen 

treatments are abbreviated as follows: Co; Control (water only), Fn; Flavocetraria nivalis, 

Ao; Alectoria ochroleuca, Sp; Stereocaulon paschale, Ci; Cetraria islandica, Ca; Cladonia 

arbuscula and Cs; Cladonia stellaris. Treatments with no letters in common are significantly 

different (p < 0.05), as revealed by pairwise comparisons. (b) Heat map of mean estimated 

mean germination rates in the lichen treatments with clustering of plants (top) and lichen 

treatments (left). The lichen treatment dendrogram did not separate until height 0.38 and 

supported no ecologically meaningful clustering of the lichens (see Appendix S7). 
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Supporting Information 

Appendix S1: Schematic figure and photo of the field design. 

Appendix S2: Figure with number of live and dead seedlings in the lichen treatments after 

one year. 

Appendix S3: Table with model selection results for the four first research questions in the 

study. 

Appendix S4: Anova and summary statistic tables of the models presented in the manuscript. 

Appendix S5: Seedling recruitment and biomass data for the field experiment. 

Appendix S6: Seed germination data for the laboratory experiment. 

Appendix S7: Dendrograms for lichen treatments and plant species used in Fig. 3 and Fig. 5 

with heights.  
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