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Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes
in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of
AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further
treatment optimization. To assess which genes and pathways are implicated in tumor drug resistance,
we correlated ex vivo drug response data to genome-wide gene expression profiles of 73 primary
pediatric AML samples obtained at initial diagnosis. Ex vivo response of primary AML blasts towards
cytarabine (Ara C), daunorubicin (DNR), etoposide (VP16), and cladribine (2-CdA) was associated with
the expression of 101, 345, 206, and 599 genes, respectively (p < 0.001, FDR 0.004-0.416). Microarray
based expression of multiple genes was technically validated using qRT-PCR for a selection of genes.
Moreover, expression levels of BRE, HIF1A, and CLEC7A were confirmed to be significantly (p < 0.05)
associated with ex vivo drug response in an independent set of 48 primary pediatric AML patients.
We present unique data that addresses transcriptomic analyses of the mechanisms underlying ex vivo
drug response of primary tumor samples. Our data suggest that distinct gene expression profiles
are associated with ex vivo drug response, and may confer a priori drug resistance in leukemic cells.
The described associations represent a fundament for the development of interventions to overcome
drug resistance in AML, and maximize the benefits of current chemotherapy for sensitive patients.

Keywords: pediatric acute myeloid leukemia; drug resistance; drug response; gene expression;
chemotherapy; cytarabine; daunorubicin; cladribine; etoposide

1. Introduction

The vast majority of pediatric acute myeloid leukemia (AML) patients achieves complete remission
with current intensive chemotherapy protocols [1]. Despite optimal upfront therapy, 30-40% of patients
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relapse [2], and this substantial fraction of patients has not decreased with the introduction of newer
treatment protocols [3]. Although 60-70% of these patients achieve second complete remission [4],
salvage therapy often results in short- and long-term side effects. Therefore, reducing the requirement
for salvage therapy is desirable. Several approaches to prevent relapse may be effective. One could focus
on suppression of resistant clones harboring targetable mutations that may have been selected during
induction chemotherapy [5], e.g., using FLT3 or IDH1/2 inhibitors [6,7], which requires additional
monitoring of clonal heterogeneity at diagnosis and in complete remission. An alternative approach to
prevent relapse is the eradication of all leukemic cells with initial (combination) therapy.

The backbone of chemotherapeutic regimens in AML contains the deoxynucleoside analogue
cytosine arabinoside (Ara C), combined with an anthracycline such as daunorubicin (DNR), and often
with the topoisomerase inhibitor etoposide (VP16) [8]. In adult AML patients, ex vivo resistance towards
Ara C is associated with an increased risk of relapse and poor outcomes, mediated by blast-specific
or stroma-specific phenotypes [9,10]. However, controversy exists with regard to the translational
capacity of primary AML samples for ex vivo drug sensitivity testing [11-15]. Ex vivo culture data
are hampered by variation in cell viability and limited cell proliferation. We have developed strict
protocols and quality control to ensure reliable results for ex vivo drug testing of primary leukemia
samples. Using highly standardized assays, data on ex vivo drug response have been successfully
linked to resistance mechanisms that were shown to be relevant in further studies [16,17].

Some previous studies reported that patient samples with a high ex vivo drug resistance
towards Ara C were not only resistant towards other deoxynucleotide analogues (e.g., fludarabine or
gemcitabine) [18], but also towards other chemotherapeutics with different modes of action (such as
VP16 or DNR) [19,20]. An intrinsic property of leukemic cells that is thought to play an important
role in resistance to Ara C, is the ability to transport the drug across the plasma membrane in both
directions [21]. The influx of Ara C may be influenced by the expression of nucleoside transporter
proteins that limit drug accumulation at a standard dose of Ara C, e.g., via the equilibrate nucleoside
transporter protein (hRENT1/SLC29A1) [22,23]. Additional mechanisms of Ara C resistance concern
altered oxidative phosphorylation status [24], NT5C2 mutations and alteration of DCK and SAMHD1
expression levels [25-27]. On the other hand, the effectiveness of other drugs may also be hampered
by drug efflux, which is strongly influenced by the activity of multidrug efflux transporters, including
ABCC and ABCG2, members of the ABC family [28,29]. Other general drug resistance mechanisms
include alterations in cellular metabolism, signal transduction pathways, proliferative capacity or
qualitative and/or quantitative alterations in the drug target [30-32].

In addition to these mechanistic studies focusing on a single target, a few studies describe genome
wide gene expression profiles that were associated with drug resistance in pediatric AML patients.
Lamba et al. [33], combined genome wide-gene expression data, ex vivo Ara C response data and clinical
response parameters from 88 AML patients. Markers were identified that were predictive for beneficial
(240 probe sets) or a detrimental (97 probe sets) Ara C related clinical response. McNeer et al. correlated
clinical data with whole genome DNA and RNA sequencing in a set of 28 patients, and showed that
certain recurrent molecular aberrations (e.g., NUP98 rearrangements) are predictive for induction
therapy failure, but did not observe distinct expression patterns in primary resistant pediatric AML
patients [34].

The above data indicate that drug response of AML patients is (partly) due to intrinsic
properties of leukemic cells and may be modulated via the expression of specific proteins.
Detailed knowledge of the cellular mechanisms that determine overall drug response towards
commonly used chemotherapeutics in AML is lacking, and remains crucial for the development
of new treatment strategies. Here, we hypothesized that AML cells possess a priori usage of
specific signaling pathways—which can be detected by gene expression profiles—that contribute
to drug response. To explore this hypothesis, we studied the relationship between gene expression
and ex vivo response to four chemo-therapeutic drugs in a discovery cohort of 73 pediatric AML
patients. We observed genes related to previously reported pathways and novel genes to be related
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to ex vivo drug resistance. Five uncovered genes associated with response to multiple drugs were
selected, and differential expression was validated in an independent cohort of 48 pediatric AML
patients. Our gene-expression-based data show that the heterogeneous drug response genes relate
to key pathways, which may underlie the molecular basis of cellular drug resistance in pediatric
AML. With this data, we aim to contribute to the understanding of response mechanisms and the
development of novel approaches to circumvent drug resistance for the individual patient.

2. Results

2.1. Patients and Ex Vivo Drug Response of Primary AML Blasts

A schematic overview of experiments and analyses is given in Figure Al. In the discovery
cohort, 63.4% of patients were male, with overrepresentation of MLL-rearranged AML patients (27.5%,
Table A1). We tested primary blast cells of de novo pediatric AML patients for ex vivo response towards
the chemotherapeutic agents Ara C (n = 121), DNR (n = 119), cladribine (2-CdA) (n = 103) and VP16
(n =70), which are used for the treatment of AML routinely, or in trial setting [35-37]. All drugs showed
a dose-dependent cytotoxicity in the tested drug concentration ranges (representative dose-response
curves are shown in Figure 1), with exception of one sample in the discovery cohort, and three samples
in the validation cohort, which did not reach the LCsy with the used drug concentration ranges for one
or more drugs (Supplementary Table S1). The LCs( values for all cytotoxic drugs from the discovery
and validation cohorts are shown in Figure 2A,B and Table A2. Of note, a selection of patients in
the validation cohort showed relatively high LCsj values for 2-CdA, which were not present in the
discovery cohort. Ex vivo drug response varied among karyotype groups, with the most apparent
differences observed towards 2-CdA (Kruskal-Wallis p = 0.063, Figure A2). Overall, no statistically
significant differences were observed between karyotypes. We then investigated whether aberrations
in recurrently mutated genes were associated with the observed drug response profiles. Although
small subgroups hampered these analyses, ex vivo drug response was not significantly associated
with recurrent gene mutations (unpaired ¢-test p > 0.1, Supplementary Figure S1 and Table A2).
Of note, samples with CEPBA mutations displayed a slightly enhanced drug response towards all
drugs compared to wild type samples (p = 0.13, Supplementary Figure S1). To test whether samples
displayed ex vivo cross-resistance, we calculated the Spearman’s rank correlation using the LCs
values of the four drugs (Figure 2C). In the discovery cohort, a cross-resistance of patients’ blasts was
observed between VP16 and the other drugs: Ara C (r = 0.38, p = 0.02) and in particular DNR and
2-CdA (r =0.61 and r = 0.54, p < 0.001 and p = 0.001, respectively) (Figure 2C). Moreover, similar drug
responses were observed within patients for the two nucleoside analogues, Ara C and 2-CdA (r = 0.44,
p < 0.001). In contrast to others, who reported ex vivo cross-resistance towards Ara C and DNR using
similar methods, we observed no correlations between LCs of these drugs [18]. Although differences
in the mechanism of action of the drugs may explain this, the possibility cannot be excluded that the
lack of this cross-resistance is due to the relatively small sample size. Independent validation of these
findings in 48 patients confirmed a cross-resistance between 2-CdA, VP16 and DNR, but not with
Ara C (Figure 2D).
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Figure 1. Representative dose-response curves for ex vivo drug response of primary acute myeloid
leukemia (AML) samples towards (A) cytarabine (Ara C), (B) daunorubicin (DNR), (C) cladribine
(2-CdA), and (D) etoposide (VP16). Responsive and resistant samples have LCsy values below the
30th and 70th percentile, respectively. Error bars represent standard error of the mean. The number
of samples visualized is displayed per response-group. Data from each patient sample was assessed
using technical duplicates.

2.2. Correlation of Gene Expression with Ex Vivo Drug Response

To assess associations between gene expression levels and ex vivo drug response, we correlated
microarray data with ex vivo LCsg values. For Ara C, DNR, 2-CdA, and VP16, we identified 128,
461, 279, and 731 probes, respectively, that were associated (p < 0.001) with ex vivo drug response,
representing 101, 345, 206, and 599 unique coding genes. Figure 3 shows heatmaps of the intensity
levels of all associated probes with a p-value < 0.001, with patients ordered according to ex vivo drug
response (LCsg) and annotated with gene mutations. Gene mutations did not demonstrate specific
patterns associated with the observed gene expression profiles, although several samples with CEBPA
and WT1 clustered based on similar gene expression profiles were associated with DNR and VP16
response (Figure 3B,D). Distinct gene expression was especially apparent in patients with extremely
low or high LCs) values. A complete overview is provided in Supplementary Table S2. Table A3
shows the top ten positively and negatively correlating genes for each drug. Although drug response
data for VP16 were only available for a selection of samples, the strongest correlations between the ex
vivo drug response and gene expression were observed for VP16, with the Spearman’s correlation
coefficients ranging from r = —0.75 to 0.67 and FDRs between 0.004 and 0.073.
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Figure 2. Distribution of ex vivo drug response data (LCsp) for chemotherapeutic drugs and
cross-resistance. ex vivo drug response of primary AML cells to: Ara C, DNR, 2-CdA and VP16. Data
are depicted as LCy( values, the drug concentration (M) at which 50% of the cells in the assay die.
Each dot represents the LCs( value of an individual sample. (A) Ex vivo drug response in discovery
and (B) independent validation cohort. Cross-resistance between the tested drugs in (C) the discovery
cohort and (D) validation cohort. Numbers represent the Spearman’s correlation coefficient of LCs
values between shown drugs. p-value is calculated likewise and depicted according to the indicated
color scheme.

Considering the similar responses of primary AML blasts from individual patients towards the
tested drugs, we hypothesized that certain gene expression profiles may correlate with an overall ex
vivo drug response profile, including several drugs that have a distinct structure and mechanism of
action. Therefore, we assessed the overlap between genes that correlated with ex vivo response data of
the individual drugs (Supplementary Table S3 and Figure 4). A total of 119 protein-encoding genes
were shared by two or more of the drugs analyzed. Overlap of drug response-associated genes was
most frequent for VP16 and DNR.

We then assessed whether the gene expression profiles and associated pathways could also
represent any known mechanisms underlying response. Therefore, we performed Gene Ontology
analysis (GO, to identify associated molecular and biological processes), Pathway analysis (to identify
in which pathways these genes may be enriched), and upstream regulon analyses (iRegulon, to identify
which transcription factors and/or motifs are predicted to be responsible for the observed gene
expression patterns). For these analyses, we used the genes that correlated with ex vivo response
to the four drugs (listed in Supplementary Table S2, summarized results in Tables A3 and A4 and
Supplementary Figure S2, full results in Supplementary Tables S4 and S5).
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Figure 3. Heatmaps of ex vivo drug response associated gene expression patterns of pediatric AML
blasts. Expression of probes was correlated to ex vivo drug response LCs, values using the Spearman’s
Rank method. Probes were selected based on a p-value < 0.001. Probes (rows) were clustered using
mean linkage, and samples were ordered according to ex vivo drug LCsy towards (A) Ara C, (B) DNR,
(C) 2-CdA, and (D) VP16 LCs. Bar plots represent LCsy (M) per patient. Black blocks underneath
heatmaps indicate presence of recurrent mutations in samples.
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Figure 4. Schematic depiction of the number of genes that (inversely) correlate significantly (Spearman’s
rank correlation p-value < 0.001) with ex vivo drug response in a single or two or more of the studied
drugs (Ara C, VP16, DNR, 2-CdA). A + indicates a positive correlation with high LCs( values, indicating
relatively resistant samples. A — indicates a negative correlation with resistance. Overlapping genes
are shown, ranked according to the Spearman’s rank correlation coefficient. A maximum of 14 genes
are shown. A complete overview of overlapping genes is given in Supplementary Table S3.

The most comprehensive and strongest associations between gene expression and ex vivo response
were observed in VP16 (731 probes). The gene expression was associated with GO categories and
canonical pathways that are involved in metabolic processes, chromosome organization, cell cycle DNA
replication, base excision repair, DNA repair, and mitotic cell cycle (Figure 5). The genes implicated in
these cellular processes were strongly enriched, and are shown in the gene networks in Figure 5 and
in Supplementary Figure S2E, and include, for example, TOP2A, GTSE1, STAG1, BRCA1, and E2FS8.
Most genes displayed lower expression in the patient samples that were relatively resistant to VP16.
Upstream regulon analyses revealed E2F7, TFDP3, and E2F8 as the most important transcription
factors, with 229, 280, and 215 gene targets, respectively. Genes of the E2F family play a crucial role in
cell cycle regulation and apoptosis upon treatment with chemotherapeutic drugs [38], with E2F7 and
E2F8 being negative regulators [39]. TFDP3 is a member of the DP transcription factor family which
heterodimerizes with E2F to promote transcription of E2F target genes. TFDP3 overexpression confers
chemo resistance in minimal residual disease in childhood T-cell acute lymphoblastic leukemia [40].
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Figure 5. Summary of Gene Ontology Analysis and Pathway analysis on genes that are associated

with ex vivo VP16 response, ranked according to adjusted p-values. (A) Biological processes and

(B) molecular functions linked to genes associated with response towards VP16. Pathway terms
from (C) KEGG and (D) REACTOME with significantly enriched genes that are associated with VP16
response. An interaction network visualization on the right depicts the gene—gene interactions for

selected processes, pathways, or functions, indicated with dotted lines. Blue indicates a negative

correlation and orange-red indicates a positive correlation with drug resistance.
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Ex vivo Ara C response was associated with 128 probes, related to e.g., H3-K4 specific histone
methyl transferase activity, according to the associations with elevated expression levels of KMT2B,
KMT?2D, and RBBPS5. Gene ontology analysis demonstrated that these genes were mainly involved
in epigenetic gene regulation. Gene regulatory analysis predicted that the observed gene expression
profiles were associated with upstream regulation by ZNF513 (20 target genes) and ELF5 (16 target
genes). ELF5 is a transcription factor regulating key genes e.g., FOXA1, EGFR, and MYC, and has been
described as potential regulator of anti-estrogen resistance in luminal breast cancer [41] and imatinib
resistance in chronic myeloid leukemia [42].

GO and pathway analysis on genes that were correlated with ex vivo DNR response (n = 461)
showed enrichment in canonical pathways that mediate RNA processing, DNA replication, and growth
hormone signaling. MEF2A was predicted to regulate the observed gene expression patterns with 62
target genes. It has been reported that a member of the MEF2 family, MEF2C, is associated with chemo
resistance upon phosphorylation of the serine 222 residue in AML patients [43].

Among the GO categories and pathways that were associated with the gene expression patterns
that correlated with ex vivo 2-CdA response (279 probes) were pathways and cellular functions involved
in the modification, transcription, and binding of DNA and RNA. Other pathways were related to
transcriptional deregulation in cancer and immune response. Upstream, STAT3 was predicted to
regulate expression levels of 56 of the associated genes. STAT3 was also observed to be positively
correlated with drug resistance towards DNR and 2-CdA in this data and has been described extensively
as a regulator of pathways related to tumorigenesis, tumor growth, and drug resistance [44].

2.3. Technical and Independent Validation of the Association between Expression Levels of Selected Genes and
Ex Vivo Drug Response

Next, we aimed to evaluate the validity of the microarray data analyses. Based on strong association
with ex vivo towards multiple drugs resistance in the discovery cohort, we selected CLEC7A [45],
HIF1A [46,47], and RUNX1 [48] for technical validation in the discovery cohort. Moreover, considering
their known role as predictor of survival in AML, and the observed association with ex vivo response
in the discovery cohort, we additionally evaluated STAT3 [44] and BRE [49] using qPCR for technical
validation in 58 of the 73 patients from the discovery cohort. The correlation coefficients between
microarray and qPCR data were statistically significant, with the best concordance observed for CLEC7A,
HIF1A, and BRE (Figure 6A,B,E; Spearman’s r ranging from 0.65 to 0.88, p ranging from 9.5 X 1078 to
<2.2 x 1071%). In the discovery cohort, the expression levels of HIF1A and CLEC7A, based on qPCR
data, correlated significantly with drug response to VP16 and DNR, respectively, with the strongest
correlation between the DNR response and CLEC7A expression (r = 0.52, FDR < 0.001, Figure 6F).
Expression levels of BRE were, as expected, inversely correlated to drug response to 2-CdA and VP16.
It is important to emphasize that qPCR has a lower limit of detection, leading to an underestimation of
the correlation for genes with many samples at these low ranges of expression. RUNX1 and STAT3
levels did not correlate with the LCsg values of any drug, which is possibly explained by the poorer
concordance between qPCR and microarray data (r = 0.44-0.47, p = 6.474-1.87%).

To test validity of the data in an independent dataset, we performed qPCR for the abovementioned
panel of five genes in the 48 pediatric AML samples of the validation cohort. The LCsq distribution in
these samples towards Ara C, DNR, 2-CdA, and VP16 is shown in Figure 2B. As distinct gene expression
profiles were especially notable in samples with very high or low LCsj, we compared sensitive and
resistant samples based on a cut-off at the 30th and 70th percentile. This cut-off was a trade-off between
selecting truly different response subgroups (e.g., the 25th and 75th percentiles) and the appropriate
number of patients per group for statistical analyses. Overall, expression differences between resistant
and sensitive samples were subtle (Figure 7). RUNX1 and STAT3 were not differentially expressed
among drug-response groups (Figure 7D and data not shown). Samples with high VP16 LCs values had
higher CLEC7A and HIF1A expression, compared to samples with LCs( values below the 30th percentile
(Wilcoxon Rank Sum test, p = 0.03 and p = 0.02, respectively, Figure 7E,F). HIF1A expression was
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significantly higher, and BRE expression was significantly lower in DNR-resistant samples (Figure 7B,C,
p = 0.004 and p = 0.01, respectively), in line with previous reports where high BRE expression was
observed to predict favorable outcome in MLL-rearranged AML patients [49,50].
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Figure 6. Technical validation of gene expression levels of selected genes. Scatter plots of gene
expression levels measured by microarray and qPCR for: (A) CLEC7A, (B) HIF1A, (C) STAT3, (D) RUNX1,
and (E) BRE. Correlation coefficients and p-values are calculated using the Spearman’s rank correlation.
(F) The Spearman’s rank correlation coefficients and FDRs between LCsg of Ara C, DNR, 2-CdA,
and VP16 and expression levels of the abovementioned genes, measured by qPCR in the discovery cohort.

Although we primarily aimed to investigate ex vivo drug response, we addressed whether
ex vivo response was associated with adverse clinical outcomes. In this relatively small pediatric
AML-population, we did not observe such associations. Additionally, cross-resistance in the discovery
cohort (defined by LCsp above the median for two or more drugs) was not predictive for adverse
clinical outcomes. We investigated whether expression levels of genes associated with ex vivo drug
response would have prognostic potential, using the AML dataset by Li et al. [51] and data from
TCGA [52]. In the first dataset, CLEC7A expression was associated with a poorer overall survival
compared to low CLEC7A expression (p = 0.0013, optimal cut-off at the 11th percentile). Additionally,
low BRE expression (p = 0.021-<0.001, depending on selected probe) and high HIF1A expression
predicted poor overall survival in this dataset (p = 0.0053, optimal cut-off at the 37th percentile). In the
TCGA dataset, only high and intermediate HIF1A expression were predictive for shorter disease-free
survival, compared to low expression, below the 30th percentile (p = 0.0071). Although this analysis
lacks the combined effect of these gene expressions and multivariate validation, these data suggest the
added value of the observed gene expression profiles associated with ex vivo drug response in the
discovery set.
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of 48 pediatric AML patients. Expression levels of BRE in sensitive (light blue), intermediate (white),
and resistant (red) patient samples, based on 30th and 70th percentile towards (A) Ara C and (B) DNR.
(C) Expression levels of HIF1A, according to response to DNR. (D) Expression levels of RUNX1,
according to response to 2-CdA. (E) Expression levels of CLEC7A and (F) HIF1A, according to the
response to VP16. p-values were calculated using Wilcoxon Rank Sum test.

3. Discussion

In summary, we provide a transcriptomic dataset of primary pediatric AML samples in relation to
ex vivo drug response towards Ara C, DNR, VP16 and 2-CdA. We show meaningfulness of the data by
providing examples of known biology underlying ex vivo drug response towards chemotherapeutical
drugs, as well as by providing internal and external validation data for selected genes (available
through Supplementary Data).

Among the relatively low number of genes associated with Ara C response, we observed the
enrichment of genes related to epigenetic regulation (e.g., KMT2B and KMT2D (also known as MLL2
and MLL44)). In pediatric AML, MLL genes are notorious because of the frequent rearrangements that
comprise a cytogenetic subgroup of often poor prognosis patients [53]. Wild type MLL genes play a
crucial role in eukaryotic transcription factor 2 (E2F)-mediated DNA damage response and apoptosis.
E2F1 associates with the MLL family of histone methyl transferases, and with host cell factor 1 (HCF1),
to induce apoptosis upon DNA damage [54]. It has become increasingly clear that E2F1, through
complex functions via the p73/DNp73-miR205 axis, is both involved in regulating drug resistance and
cancer progression as a genotoxic-treatment induced apoptosis [41,55,56], with context-dependent
effects [57,58]. We observed E2F7 and E2F8 as negatively correlated to drug resistance (Supplementary
Table S2) and, as predicted upstream regulators of the observed gene expression profiles (Supplementary
Table S5). This suggests that expression profiles may be the result of shared transcription factors and/or
motifs related to E2F. Indeed, shared motifs regulating E2F family members were predicted to control
the expression of genes correlated with both Ara C and DNR, as well as DNR and VP16 (Supplementary
Table S5). The functional interpretation of these observations remains difficult, as conflicting results
have been published on the role of over- and underexpression of these transcription factors in relation
to cancer [59-64]. Although finding transcription factors related to cell cycle and apoptosis may seem
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logical, as most cytostatic agents target fast cycling cells, these observations both confirm the quality of
the data and stress the function of this upstream regulator.

The most frequent overlap of genes that correlated with drug resistance was observed for DNR
and VP16. Interestingly, these genes are implicated in the mechanism of action of these drugs;
for example, the gene expression levels of DNA polymerases POLE3-4 were inversely correlated to
DNR resistance. In concordance with previous reports [65], expression of the TOP2A gene—the direct
target of VP16—was inversely correlated with ex vivo VP16 resistance (r = —0.57). Expression levels of
members of the solute carrier family proteins (SLC) were associated with ex vivo resistance towards
all antitumor drugs (Supplementary Table S2). SLC proteins comprise a large family of transporters,
some of which are directly or indirectly associated with drug resistance. In this respect, SLC2A3
(GLUT3) expression was positively correlated with drug resistance towards DNR, VP16, and 2-CdA
(r=0.44, r = 0.55 and r = 0.48, respectively, Supplementary Table S2). SLC2A3 expression levels were
found to be increased in virtually all types of cancer cell lines, including leukemia. In these cell lines,
it was also shown that the use of glucose transport inhibitors that interact with SLC2A3 and related
molecules can sensitize cancer cells to drugs including DNR under hypoxic conditions [66].

In an independent validation cohort, we observed that HIF1A, BRE, and CLEC7A levels were
related to drug response. The roles for HIF1A and BRE have been previously described in drug
resistance and clinical outcomes in myeloid malignancies [49,51]. Although the CLEC genes, especially
CLEC12A or CLL-1, have been previously linked to drug resistance, and proposed as treatment targets
in AML [67], CLEC7A was not yet associated with a drug resistance phenotype. Specifically, CLEC7A
plays a role in innate immune response, and is thus predominantly expressed in the bone marrow,
lymphoid tissue, and blood. High CLEC7A expression has been identified as an adverse prognostic
factor in renal cell carcinoma [45].

For the appropriate translation of our findings to the clinic, a major limitation of our study is the
response measurements of single drugs, while in the clinic, combinations of chemotherapeutic drugs
are common practice to overcome resistance in the heterogeneous AML cell populations. This may
partly explain the lack of association with clinical outcomes. Moreover, differential expression in single
genes may not be able to elicit a clear phenotype. In summary, we showed gene sets and signaling
pathways relevant for ex vivo drug response. These results should be explored in more detail to allow
further clinical translation.

4. Materials and Methods

4.1. Patient Samples

The current study group of 121 pediatric AML patients was divided in a discovery cohort (n = 73),
for which microarray-based gene expression data was available [68], and a validation cohort (1 = 48).
The study was approved by the Institutional Review Board according to national law and regulations
and informed consent was obtained for all patients. Patients were diagnosed with AML between
1984 and 2017. Clinical patient characteristics are summarized in Table A1l and an overview of tests
performed is given in Table A5. Viably frozen bone marrow or peripheral blood samples were provided
by the Dutch Childhood Oncology Group (DCOG) and the ‘Berlin-Frankfurt-Miinster” AML Study
Group (BFM-AML SG). RNA or cDNA samples for gPCR were provided by the DCOG or the Princess
Maxima Center for Pediatric Oncology in Utrecht (PMC).

Leukemic cells were isolated by Ficoll gradient centrifugation (1.077 g/mL Amersham Biosciences,
Freiburg, Germany) and non-leukemic cells were eliminated as previously described [20]. Detailed
leukemic cell isolation procedures are available in the Supplementary Material. After processing,
samples contained more than 80% leukemic cells, as determined by morphology, using cytospins
stained with May-Griinwald-Giemsa (Merck, Darmstadt, Germany). A minimum of 5 x 10° leukemic
cells were lysed in Trizol reagent (Invitrogen, Life Technologies, Breda, The Netherlands). Genomic
DNA and RNA were isolated as described [49]. Leukemic samples were routinely analyzed for
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cytogenetic aberrations by chromosome-banding analysis, and screened by participating childhood
oncology groups for recurrent non-random genetic aberrations characteristic for AML, including
MLL-rearrangements, inv(16), t(8;21), and t(15;17), using either RT-PCR and/or fluorescence in situ
hybridization (FISH).

4.2. Ex Vivo Drug Response

Ex vivo cytotoxicity of the deoxynucleoside analogues 1-3-D-arabinfuranosylcytosine (Ara C,
Cytosar; Pharmacia & Upjohn, Woerden, The Netherlands) and 2-chlorodeoxyadenosine (2-CdA,
Leustatin, Ortho Biotech, Horsham, PA, USA), the anthracycline daunorubicin (DNR, Cerubidine,
Rhone-Poulenc, Maisons-Alfort, France), and the topoisomerase Il inhibitor etoposide phosphate (VP16,
etoposide-TEVA; TEVA-Pharma, Haarlem, The Netherlands) was determined after 96 h drug exposure
using MTT [69] on fresh, non-cryopreserved primary AML samples. Briefly, six concentrations of each
drug were used in the following ranges: Ara C (0.04—41 uM); 2-CdA (0.001-140 pM); DNR (0.004—4 pM),
and VP16 (0.09-3.4 uM). Cells without any drug added were included as controls and wells containing
culture medium only were used as blanks. The cells were cultured for 96 h at 37 °C in a humidified
atmosphere containing 5% CO2, after which 10 pl of 3-[4,5-dimethylthiazol-2-y1]-2,5 diphenyl
tetrazoliumbromide (MTT; 5 mg ml-1, Sigma Aldrich, Zwijndrecht, The Netherlands) was added.
Formazan crystals (indicating metabolically viable cells) were dissolved using acidified isopropanol
(0.04 N HCl-isopropyl alcohol) and the optical density (OD) was measured spectrophotometrically at
562 nm and 720 nm. Importantly, only high quality data were used with stringent criteria, since 25%
of ex vivo samples cannot be used in ex vivo assays, due to limited viability or low blast percentage,
and 20% of MTTs are not evaluable, due to low number of remaining blasts at day 4. Evaluable results
were obtained when a minimum of 70% leukemic blast cells was present at day 4 in control wells
and when the control OD was >0.05. Dose response curves were obtained, and drug responses were
summarized using the LCs value, the drug concentration achieving 50% lethality of the leukemic cells.
Details methods for the ex vivo drug response assays are available in the Supplementary Material.

4.3. gPCR

DNA and RNA samples were available from routine processing of diagnostic samples. cDNA was
synthesized from RNA samples as previously described [70]. Probes for RUNX1 (Hs00231079_m1),
HIF1A (Hs00153153_m1), BRE (Hs01046283_m1), STAT3 (Hs00374280_m1), CLEC7A (Hs01902549_s1),
and GAPDH (Hs02786624_g1) (Thermo Scientific, Waltham, MA, US) were used to quantify gene
expression, according to the manufacturers’ instructions and as previously described [70]. All gene
expression data were calculated relative to GAPDH expression using the delta(CT) method.

4.4. Data Preprocessing and Statistical Analyses

Data were preprocessed as previously described [68]. The variance stabilization normalization
procedure (VSN) [71] was applied to remove background signals and to normalize raw data across
arrays. Log2 transformed expression values were calculated from perfect match (PM) probes only,
and summarized using median polishing. The original and processed data have been deposited in the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) under GEO Series accession
number GSE17855. Expression values were correlated with the LCsj values of the MTT assays using
the Spearman’s rank correlation. A nominal p-value of 0.001 was used to identify correlated genes.
p-value correction was performed using FDR approach. Group means were compared according to the
appropriate statistical methods considering distribution of the data, and are indicated per situation in
the results section.
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4.5. Software

RStudio (version 3.6.1) was used to run the abovementioned analyses (RStudio Inc, Boston, MA,
USA). Hierarchical clustering analysis with average linkage was performed and visualized using
ComplexHeatmap [72]. Correlation analyses were performed using base R functions and visualized
using corrplot [73]. Gene Ontology (GO) and Pathway analyses were performed using g:Profiler [74].
Upstream regulator analyses were performed using String (https://string-db.org/) and the Cytoscape
(version 3.7.2) plugin iRegulon (version 1.3) [75-77].

5. Conclusions

Here, we provide novel gene-expression based data, supporting the notion that multiple
deregulated pathways can lead to distinct drug response phenotypes in myeloid neoplasia [78].
Further studies are required to clarify whether or not modulation of the identified pathways may
improve response to cornerstone chemotherapeutic drugs that continue to be our first line treatment of
AML. Ultimately, we anticipate that this will support the development of novel clinical approaches,
leading to deeper responses with elimination of the residual resistant cells, thereby preventing relapse
and improving the prognosis of AML patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1247/s1.
Supplementary Methods, Supplementary Figure S1: Complete comparisons of LCsg values within genetic subtypes,
Supplementary Figure S2: Extended overview of Gene Ontology and Pathway analyses with genes associated with
chemo resistance towards (A) Ara C, (B) DNR, (C) 2-CdA and (D) VP16, (E): Significantly enriched genes involved
in biological processes associated with drug resistance towards VP16,. Supplementary Table S1: Drug-response
LCsg and qPCR data from the discovery and validation cohort, Supplementary Table S2: Complete overview
of probes and genes associated with ex vivo drug resistance. Gene symbols and microarray probes with the
Spearman’s Correlation Coefficient, p-value and FDR with respect to LCs, values towards all drugs are provided,
Supplementary Table S3: Overlapping Genes and Probes associated with drug response towards all tested drugs,
Supplementary Table S4: Complete Gene Ontology and Pathway Analysis, Supplementary Table S5: Upstream
Regulatory (iRegulon) Analysis.
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Appendix A

Primary pediatric acute myeloid leukemia (AML)
bone marrow samples
n=73

Blast enriched mononuclear cells
> 80% blasts

AffyMetryx HGU 133Plus2
4-day colorimetric 55K probeset
MTT assay gene-expression
to assess ex vivo microarrays |

drug response
(LC,,) *-

VSN normalization

Correlation Analysis
Cross resistance
Differential gene expression and LC,,
Overlapping genes

List of top ranked probes
p<0.001
FDR correction |

Gene Ontology, Pathway and V]
Upstream Regulator analysis
g:Profiler | StringDB | Cytoscape
ClusterONE | iRegulon

Technical validation
TagMan™ qPCR for gene expression
levels of 5 genes in 58 of 73 samples

Independent validation v
Differential gene expression and
cross-resistance in primary pediatric
AML bone marrow samples
n =48

Figure Al. Schematic overview of analyses. Mononuclear cells were isolated from 73 primary
pediatric AML samples at initial diagnosis. These mononuclear cells were either tested for Ex Vivo
resistance towards Ara C, DNR, VP16 and 2-CdA or they were used for gene expression microarray.
Technical validation was performed on an independent set of 48 primary AML samples.
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Figure A2. LCsy (uM) per karyotype group of patient samples from the discovery cohort towards
(A) Ara C, (B) DNR, (C) 2-CdA, (D) VP16. p-values were calculated using Kruskal-Wallis comparison
for multiple groups.
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Table Al. Patient characteristics of patients from the discovery and validation cohort.

Characteristic Molecular Aberration Discovery Set n =73 Validation Setn = 48
median (range) median (range)
Age 8.90 (0.0-15.8) 7.33 (0.0-16.9)
% leukemia blasts 87 (33-98) 78.00 (33-98)
Time to relapse (months) 9.8 (0.6-125.5) 20.1 (2.1-107.0)
Overall survival (months) 26.1 (2.6-148.5) 375 (0.1-195.8)
N (%) N (%)
Males, 1 (%) 45 63.4 30 62.5
Cytogenetics Normal 16 38.1 10 21.7
(8;21) 7 21.9 2 4.3
MLL rearranged 19 43.2 10 21.7
Abnormal 16 8 25.0 1 2.2
7/7q- 1 42 1 22
-5/5g- 0 0.0 0 0.0
8 2 8.0 3 6.5
Complex 0 0.0 3 6.5
Other 14 38.9 14 30.4
No data 2 8.3 2 43
Gene mutations FLT3/ITD 15 40.5 7 24.1
NPM1 6 22.2 2 6.9
CEBPA 5 20.0 2 6.9
WT1 5 20.8 6 20.7
NRAS/KRAS 15 441 8 27.6
CKIT 9 32.1 3 10.3
PTPN11 0 0.0 1 34

Table A2. Median LCsp (uM) of patient samples in the discovery cohort per molecular group.
Visualization and full mutation group-comparison results can be found in Supplementary Figure S1.
No statistical differences in LCs values were observed between genetic (p > 0.1, unpaired t-test) or
karyotype groups (p > 0.063, Kruskal-Wallis).

Category Molecular Aberration n AraC DNR 2-CdA VP16
Total 38-73 1.48 0.33 0.07 4.55
Cytogenetics
Normal 16 1.09 0.30 0.08 4.51
t(8;21) 7 1.54 0.33 0.08 11.05
MLL rearranged 19 1.23 0.24 0.01 3.62
Abnormal 16 8 1.37 0.68 0.08 22.48
-7/79- 1 2.09 0.47 0.13 5.12
Tris8 2 1.14 0.52 0.08 0.00
Other 14 1.37 0.26 0.06 4.25
Gene mutations
FLT3/ITD 15 1.07 0.34 0.08 451
NPM1 6 1.07 0.27 0.21 451
CEBPA 5 0.79 0.41 0.01 3.99
WT1 5 0.79 0.42 0.03 4.37
NRAS/KRAS 15 1.29 0.43 0.09 13.08

CKIT 9 1.54 0.36 0.08 15.85
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Table A3. Top 10 positively and negatively correlating genes per drug. Correlation coefficient and p-values were calculated using the Spearman’s rank correlation.

Rank AraC DNR 2-CdA VP16
Rspearman )4 Gene Rspearman p Gene Rspearman p Gene Rspearman p Gene
Positive correlation
1 0.54 1.51 x 107° RDHI13 0.58 1.42 x 1077 CLEC7A 0.54 1.00 x 107> TAB2 0.67 3.70 x 107° MALAT1
2 0.50 1.25x 107>  LOC339988 0.53 222 %1076 TNFSF8 0.54 1.10 x 107> CYTIP 0.66 8.08 x 107 CLEC7A
3 0.50 1.27 x 1075 PML 0.52 5.90 x 1076 PRKCH 0.53 1.28 x 107> BNIP3L 0.65 1.23 x 107° Clorfl15
4 0.49 191x 107>  TMEM259 0.51 7.11 x 1076 TNFSF8 0.52 213 x 1075 PIK3IP1 0.63 2.15x 1075 SYNJ2
5 0.48 2.59 x 1075 KMT2D 0.51 7.30 x 1076 SH2D1A 0.52 2.14x107° TCF7L2 0.63 229 x 1075 SPATA13
6 0.47 3.88 x 1075 DCAF15 0.51 8.31 x 1076 HAVCR2 0.52 252 x 1070 LOXL1 0.62 2.94 x 1075 ATP1B3
7 0.47 459 x 1075 ATGY9A 0.51 8.33 x 107° NPDC1 0.52 2.70 x 1072 MALAT1 0.61 5.10 x 107° NFKBID
8 0.46 559%x10°  ARFGAPI1 0.50 1.23 x 107° TNFAIP3 0.51 4.09 x 107> GLS 0.61 532 x 1075 ZBTB18
9 0.46 7.32x107° KMT2B 0.49 221 %107 TNFSFS8 0.51 417 x 107 FOXO03 0.60 6.73 x 107> PPP1R16B
10 0.45 8.24 x 1073 BAZ2A 0.49 228 x 1075 RNF213 0.50 4.66 x 1075 OSER1 0.60 8.08 x 1073 USP53
Negative correlation

10 —-0.44 1.38x10™*  TMEM38B -0.53 3221070 CBX3 -0.49 874x10°  GOLGASCP  —0.65 1.17 x 1075 FAR1
9 -0.44 1.18x10™*  FAMI62A -0.53 2.81x 1076 UNC13B -0.49 751 x 1072 Cborf63 -0.65 9.87 x 1076 NOP16
8 -0.44 1.14 x 107 PPA2 -0.53 2.73x 1076 Céorf99 -0.50 6.10x107°  GOLGASN -0.65 9.69 x 1076 RCAN3
7 -0.45 811 x 107> STRN —-0.53 2.64 %1076 CCDC125 —-0.50 5.07 x 1075 HOXA9 -0.66 7.36 x 1076 IKBKAP
6 —-0.46 7.21 x 1073 NXPE3 -0.53 228x107®  FAMI27A -0.50 489x107°  LOC101927851 —0.66 5.61 x 1076 NMNAT3
5 -0.46 5.60 x 1075 urs?2 -0.54 2.06x107¢  TMEM237 -0.51 4.03 x 107> CCDC168 -0.66 5.56 x 1070 IMP3
4 -0.48 2.63 x107° GPR78 —-0.54 1.87 x 107° KCTD15 -0.51 3.82x 107 ZBTB24 -0.67 3.62 x 1070 ENTPDI1-AS1
3 -0.49 1.93 x 1075 VWAS -0.54 1.35 x 107° PARL -0.51 3.11x 1075 H6PD -0.68 236 x 1070 LOC100506730
2 -0.49 1.74 x 107° PTCHD1 -0.56 6.70 x 1077 PON2 -0.52 2.60 x 107> CCL23 -0.69 1.61 x 107° FEN1
1 -0.51 5.19 x 107° CLCC1 —0.60 6.76 x 1078 PON2 —-0.54 112 x 1075 CCL23 -0.75 6.74 x 1078 HNRNPAB
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Table A4. Summary of Gene Ontology and Pathway analyses. Top 3 Gene Ontology (GO), KEGG and REACTOME terms are displayed, based on p-value.
Top 3 REACTOME Pathways

Top 3 KEGG Pathways
RUNX]1 regulates genes involved in

megakaryocyte differentiation and

Top 3 GO Biological Processes Top 3 GO Molecular Functions

Drug
Ara C None histone rr(ﬁt?_;;(l’zzniiis)e activity None
p platelet function
snRNA 3’-end processing electron transfer activity DNA replication Growth hormone receptor signaling
snRNA processing Alzheimer disease
DNR . Non-alcoholic fatty liver disease
snRNA metabolic process (NAFLD)
+ 2 GO terms + 2 KEGG pathways
regulation of transcription by DNA-binding transcription factor Immune Svstem
RNA polymerase II activity, RNA polymerase II-specific Y
RNA polymerase II proximal . . L.
s Transcriptional misregulation in
system development promoter sequence-specific DNA
2-CdA bindi cancer
o inding
transcription by RNA kinase binding
polymerase II
... +5GO terms
cellular metabolic process catalytic activity, acting on DNA DNA replication Cell Cycle
Base excision repair DNA Repair

cellular nitrogen compound . . T
- organic cyclic compound binding
metabolic process
VP16
cell cycle DNA replication

+ 56 GO terms

Ribosome biogenesis in Cell Cycle, Mitotic

eukaryotes
\+ 42 REACTOME Pathways

heterocyclic compound binding
+ 1 KEGG Pathways

+ 10 GO terms
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Table A5. Summary of experimental test performed in the discovery and validation cohort. MicroArray
data were available for all patients in the discovery cohort. Ex vivo drug response MTT data were
available for a selection of patients. qPCR data were available for all patients in the validation cohort.

Technique Drug Discovery Cohort Validation Cohort

n of Patients (%) n of Patients (%)

MlcroArray'-based gene 73 100.0 ) }
expression data

MTT AraC 70 95.9 48 100.0

DNR 69 94.5 45 93.8

2-CdA 59 80.8 41 85.4

VP16 38 52.1 26 54.2

qPCR 58 79.5 48 100.0
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