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Towards integrated surveillance of
zoonoses: spatiotemporal joint modeling
of rodent population data and human
tularemia cases in Finland
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Abstract

Background: There are an increasing number of geo-coded information streams available which could improve public
health surveillance accuracy and efficiency when properly integrated. Specifically, for zoonotic diseases, knowledge of
spatial and temporal patterns of animal host distribution can be used to raise awareness of human risk and enhance early
prediction accuracy of human incidence.

Methods: To this end, we develop a spatiotemporal joint modeling framework to integrate human case data and animal
host data to offer a modeling alternative for combining multiple surveillance data streams in a novel way. A case study is
provided of spatiotemporal modeling of human tularemia incidence and rodent population data from Finnish health care
districts during years 1995–2012.

Results: Spatial and temporal information of rodent abundance was shown to be useful in predicting human
cases and in improving tularemia risk estimates in 40 and 75% of health care districts, respectively. The human
relative risk estimates’ standard deviation with rodent’s information incorporated are smaller than those from the
model that has only human incidence.

Conclusions: These results support the integration of rodent population variables to reduce the uncertainty of
tularemia risk estimates. However, more information on several covariates such as environmental, behavioral, and
socio-economic factors can be investigated further to deeper understand the zoonotic relationship.
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Background
Disease risk mapping is important for the understanding of
the spatial epidemiology of infectious diseases. In most cases
and even for multi-host diseases such as zoonoses, risk esti-
mation has been conducted in a univariate fashion based on
human case data alone. Modeling of multivariate health
data, informed by multiple streams of geo-coded informa-
tion, allows observation of concurrent patterns among data
streams and conditioning on one another. As a result, multi-
variate methods can deliver greater statistical power and
lead to more precise risk estimation and enhanced event

detection. Specifically, for zoonotic diseases, knowledge of
spatial and temporal patterns of the animal host could in-
form incidence in humans.
Integration of data and analyses, whether of population or

health related variables, has been suggested to improve zoo-
noses surveillance accuracy and efficiency [1, 2]. Integration
appears more feasible for endemic zoonoses, and for those
with domesticated animals as source, given the likely greater
availability of animal health data. For zoonoses with a
non-domesticated animal source (e.g. sylvatic yellow fever, tu-
laremia), availability of animal health data is likely to be a lim-
iting factor towards integration and alternative animal data
sources must be sought.
Tularemia is an infectious disease caused by an intracellu-

lar bacterium, Francisella tularensis. The disease is endemic
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in North America and parts of Europe, with recurrent out-
breaks in Sweden and Finland [3, 4]. Francisella tularensis
has a wide range of hosts with transmission most commonly
via arthropod vectors [5]. Rodents could play a role in the
zoonotic transmission of the disease after findings of a rela-
tionship between vole population cycles and human tular-
emia incidence in Finland [6] and Sweden [7]. Specifically in
Finland, rodent population dynamics displayed a spatiotem-
poral relationship with human tularemia cases, such that
human case numbers peaked one year after peak rodent
densities [6]. Similar findings, from studies of tularemia out-
breaks, indicate that high rodent densities might relate to
occurrences in humans [8–11].
This work explores the application of spatiotemporal joint

models to concurrent animal and human geo-referenced
data sources in an effort to explain possible patterns be-
tween the distribution and/or the abundance of the animal
host and human disease.. The proposed methodology is
evaluated on its performance in predicting human disease
risk and improving risk estimation in a case study of tular-
emia human incidence and rodent population data in
Finland. Not only our method contains methodological nov-
elty with potential applications in spatial epidemiology, it
also helps to reveal a disease pattern in the case study which
was not considered in previous studies.

Methods
Data sources
A complete description of the rodent population and human
tularemia incidence data is available from earlier reports [6].
Briefly, data on rodent population levels, predominantly bank
voles (Myodes glareolus) and field voles (Microtus agrestis),

were collected across Finland by the Natural Resources Insti-
tute Finland and categorized into three population levels: de-
cline, increase, and peak [12]. Human tularemia cases were
reported as laboratory-confirmed to the National Infectious
Disease Register, kept by the National Institute for Health and
Welfare of Finland. Both human cases and rodent data were
aggregated into 20 Finnish healthcare districts over the period
1995–2012 [6]. An indicator to quantify the influence of ro-
dent population levels on human incidence is developed for
each health district. Plots of human cases and binary rodent
status for the 20 Finnish health districts in the period 1995–
2012 show a one-year lagged increase in the number of hu-
man tularemia cases after rodent population peaks for certain
districts and years (Fig. 1). A similar pattern was found be-
tween human cases and the categorical rodent population sta-
tus (Fig. 2). These support the choice of spatiotemporal
models which will be developed in the next section.

Statistical methodology
We propose a Bayesian framework to jointly analyze rodent
population status and human case incidence. We assume
that the human cases are associated with rodents’ status
through a latent structure. Let human cases (counts), hit, at
health district i and time t follow a Poisson distribution with
mean = eiθit where ei is the expected number of human
cases in the ith health district (presumably constant across
the years) and θit is the relative risk at the ith health district
and year t There are a number of ways to calculate the ex-
pected rate. In this paper, the expected rates, ei, are calcu-
lated as the average case count at area i over the time

period as ei ¼
P

t
hit

T where T is the length of study period

Fig. 1 Human cases (solid line) and 2-level rodent status (dot) for the 20 Finnish health districts over years 1995–2012
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(T = 8 years). Human population data was obtained from
the Finnish Population Register Centre [13]. However, the
population variation between regions was found to be lim-
ited and combined with the low overall rate of the disease,
it was decided that a time averaged rate would be appro-
priate in this case.
A simple approach to jointly model human incidence

and rodent population data is to consider a 2-level ro-
dent population indicator as in [6]. As a binary variable,
we denote rit = 0 if the number of rodents declined and
rit = 1 if the number of rodents is at peak or increased.
The 2-class rodent status is then assumed to follow a
Bernoulli distribution with parameter pit being the prob-
ability of rodent for the i th health district and year t. To
specify the parameters in the joint likelihoods, θitfor
humans and pit for rodents, linear predictors are decom-
posed additively into spatial, and space-time interaction
random effects as follows

αr, αh are the overall mean levels for rodent and hu-
man respectively, and assumed to have zero-mean
Gaussian prior distributions. The latent variables uhi ; u

r
i ;

vhi ; v
r
i are included to model non-temporal background

variation with spatial and non-spatial prior distributions.
The spatial structure for uhi ; u

r
i follow an intrinsic condi-

tional autoregressive (ICAR) [14] model and the
non-spatial distribution for vhi ; v

r
i is assumed to be

zero-mean Gaussian prior distribution. A Gaussian dis-

tribution with zero mean is assumed for λht ; λ
r
t at t = 1

and an autoregressive prior distribution is assumed for

λht ; λ
r
t at t > 1 which allows for a type of nonparametric

temporal effect. δhit ; δ
r
it represent the temporal trend for

each health district at year t. We also assume that the
space-time random effects of human and rodent are pro-
portional with one-year lag. This is supported by the
finding suggested in [6] that 1-year temporal lag effect

humanit ¼ hit � Poisson eiθitð Þ
log θitð Þ ¼ αh þ uhi þ vhi þ λht þ δhit
δhit ¼ βiδ

r
it−1

βi ¼ βpi rit−1 þ βni 1−rit−1ð Þ
rodentit ¼ rit � Bernoulli pitð Þ
logit pitð Þ ¼ αr þ uri þ vri þ usrk þ vsrk þ λrt þ δrit

αh � N 0; τ−1αh
� �

; αr � N 0; τ−1αr
� �

δhit � N 0; τ−1
δh

� �
; δrit � N 0; τ−1δr

� �
λht � N λht−1; τ

−1
λh

� �
; λrt � N λrt−1; τ

−1
λr

� �
λh1 � N 0; τ−1

λh

� �
; λr1 � N 0; τ−1λr

� �
uhi � ICAR τ−1uh

� �
; vhi � N 0; τ−1vh

� �
uri � ICAR τ−1ur

� �
; vri � N 0; τ−1vr

� �
usrk � ICAR τ−1usr

� �
; vsrk � N 0; τ−1vsr

� �
βpi � N 0; τ−1βp

� �
; βni � N 0; τ−1βn

� �
τ−1=2� � Uniform 0; 10ð Þ

Fig. 2 Human cases (solid line) and 3-level rodent status (dotted line) for the 20 Finnish health districts over years 1995–2012
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can be beneficial to predict human tularemia outbreaks.
To model unobserved ecological effects associated with
vole cycles at the five boreal zones in Finland (Southern
Finland, Southwestern and Inland Finland, Eastern
Finland, Northern Finland, and Lapland) [13], two add-
itional parameters usrk ; v

sr
k are included as the spatial and

non-spatial contextual variables for regional state level k.
δrit ; β

p
i ; β

n
i are assumed to follow a zero-mean Gaussian

prior distribution and the uniform distribution on (0,10)
is used to model all standard deviation parameters [15].
Although there is some evidence that a 2-level rodent

status could have a lagged predictive ability on human
tularemia [6], we also want to extend our consideration
to include the original three rodent levels in the joint
modeling and assume a categorical likelihood for rodent
population status. A specification for multiple categories
of rodent status can be defined as

humanit ¼ hit � Poisson eiθitð Þ
log θitð Þ ¼ αh þ uhi þ vhi þ λht þ δhit
δhit ¼ βi;rit−1δ

r
rit−1;it−1

rodentit ¼ rit � Categorical p1;it ; p2;it ; p3;it
� �

pj;it ¼
exp μ j;it

� �
P3

j¼1 exp μ j;it

� �
μ j;it ¼ αr þ uri þ vri þ usrk þ vsrk þ λrt þ δrj;it

where j = 1 indicates the declining rodent population
level, j = 2 is the increasing level, and j = 3 is the rodent’s
population at peak, and δrj;it � Nð0; τ−1δr Þ. The other prior
distributions for the random effects terms are assumed
the same as the 2-level model.
We further assume that the space-time random effects

of human and rodent are proportional with one-year lag.

That is δhitαδ
r
rit−1;it−1 , i.e. δ

h
it ¼ βi;rit−1δ

r
rit−1;it−1 where βi;rit−1

is the proportional parameter. This specification is de-
veloped to examine the lagged effect of rodent status,
δrrit−1;it−1 , at level j = rit-1 in health district i at time t-1on
the number of human cases through the space-time

interaction term,δhit .

Model evaluation
To evaluate the models, we use two goodness of fit mea-
sures: the Deviance Information Criterion (DIC) [16, 17]
where the effective number of parameters is estimated in
terms of deviance’s variance, and the Watanabe-Akaike
information criterion (WAIC) [18–20]. Both measures
are computed under the likelihood of human data to
compare the models’ fit with and without the contextual
variables. We also compare the posterior standard devia-
tions of θit from the two models (binary and categorical)
with the rodent data, with those from a model based
only human data, to examine the benefits of

incorporating animal data in surveillance. Results are ob-
tained from 10,000 posterior samples using WinBUGS
software after a burn-in period of 10,000 draws. To as-
sess the mixing of posterior samplers, we adopt

Gelman’s Rb statistics proposed in [18, 21] for multiple
chain convergence and converged chains should have

the value of Rbapproximately 1.

Results

The histograms of Rbestimates of θit from posterior sam-

pler under the models are displayed in Fig. 3. The Rbesti-
mates under all the models are approximately or less
than 1.005 which indicates the chains converge to a pos-
terior distribution. Table 1 displays the DIC and the
measures of model performance. We compared the
models (binary vs. polytomous) on their DIC and WAIC
values under the human likelihood. The binary model
without the contextual effect shows the smallest DIC
and WAIC values and hence it can be considered as hav-
ing the best fit to the data. To provide evidence of the
benefits from incorporating rodent information into the
model, the posterior estimates of standard deviation
(SD) of θit from both binary and polytomous models are
compared and presented in Table 2 for each area over
the time period. The SD estimates of θit with rodent’s in-
formation incorporated are smaller than those from the
model that has only human incidence. This result sup-
ports the integration of rodent population variables to
reduce the uncertainty of tularemia risk estimates.
To help assess the predictive performance of rodent

abundance data on the occurrence of human cases, we
develop a metric on the 0 to 1 scale, namely the degree
of positive indicator (DP) for each health district as

DPi ¼ expðβpi Þ
expðβpi Þþ1 : The DP indicator is derived from the

binary model without the contextual factors as this
was the model with the lowest DIC and WAIC. High
values of DP (close to 1) would indicate health districts
with a high number of human tularemia cases in the
current year, given increasing or at peak rodent popu-
lations in the past year. DP can be interpreted in a
similar fashion to the sensitivity of a diagnostic test.
High values of DP would suggest good predictive value
of the rodent data on the occurrence of human tular-
emia cases. Year-specific modeling was not considered
due to insufficient data. Thus positive dependence
values represent an averaged effect of rodent popula-
tions on human incidence across all the years (Table 3).
There are 8 (40%) health districts, mostly on the west
and south of the country, with mean DP values larger
than 0.8 and the lower 95% credible interval above
0.5 (Fig. 4).
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Discussion
Other modifications are possible. For example, in joint
modeling human and rodent data we could consider hu-
man cases being dependent on rodent population
through pit as a categorical covariate. For spatial unit,
smaller or administrative areas different from health dis-
tricts may have led to more discriminatory findings (or
not given increased noise from smaller units). Similarly,
more informative data on rodent population levels, e.g.
rodent densities as in other studies [11] might have re-
sulted in more descriptive models. Rodent populations
fluctuate with a highly varying amplitude, which means
that abundances may vary substantially from one peak
to the next, even within the same regions [12]. If tular-
emia transmission to humans is a phase and density
dependent process, as it most likely is [6], variation in
vole abundance during successive peaks may reduce the

predictive value of models employed here. Subsequent
studies must explore the incorporation of data on the
precise location of the rodent trapping sites through the
use of some form of interpolation [22]. In addition to
host population changes, environmental factors also
seem to impact on the occurrence of tularemia out-
breaks [23, 24]. Incorporation of evidence on mosquito
distribution (not purposely captured at this moment in
Finland), rainfall and water bodies into our models
would be straightforward.

Conclusions
Space-time proximity and contact patterns between
humans and animals play a central role in infection risk.
In this research, we attempted to assess the surveillance
relevance of regularly collected rodent population data
to i) improve tularemia risk estimates and ii) inform

Table 1 DIC (pD) and WAIC (pWAIC) corresponding to the human likelihood for the model comparison

Rodent status Contextual effect DIC pD WAIC pWAIC

Binary With 4269.945 1115.127 3463.587 557.5636

Without 4262.807 1110.623 3458.687 555.3114

Polytomous With 4276.408 1123.747 3465.682 561.8733

Without 4324.426 1170.232 3482.997 585.1162

Fig. 3 Histograms of R̂ statistics of θit from posterior sampler under models
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early prediction of human tularemia cases in Finland. To
that effect, we developed binary and polytomous archi-
tectures to jointly model human incidence and rodent
status with one-year lag. Our results returned a hetero-
geneous picture but for many health districts rodent
population status was relevant to the occurrence of hu-
man tularemia cases. We have shown that the incorpor-
ation of rodent population data led to an improvement
in the accuracy of human risk estimates in 15 (75%)
health districts, compared to models only considering
human tularemia cases. Furthermore, our purposely
built indicator (DP) showed that in 8 (40%) of the health
districts, increasing and at-peak rodent populations were
robust predictors of human tularemia cases in the

following year. However, for few districts (e.g. Länsi--
Pohja and Kainuu) where the model based only on hu-
man data leads to more precise estimates of incidence,
these areas also have the low values of positive indicator
(DP) with the corresponding credible intervals crossing
0.5. This suggests that the distribution of zoonotic path-
ogens in animal and human populations spatially varies
as we assumed according to local biotic and abiotic de-
terminants. To conduct further investigation, we need
more information on several covariates such as environ-
mental, behavioral, and socio-economic factors. How-
ever, the platform proposed in this research can facilitate
in identification of geographical areas that are potentially
suitable for transmission.
Our objective was to develop different models to

combine multiple data sources already available, on
animals and humans, to better inform the occurrence
of zoonoses. The present work shows the utilization
of animal population data (in the absence of animal
health-related data on rodents) to inform human risk.
Although different model parameterizations and, in
particular, evidence on other putative predictors, as
reported elsewhere [25], could contribute further

Table 2 Standard deviation of θit calculated from posterior
samplers for each area over the time period of the models

Health district Binary Categorical Only Human

With
contextual
effect

Without
contextual
effect

With
contextual
effect

Without
contextual
effect

Southwest
Finland

1.0216 1.0193 1.1402 1.1569 1.3604

Satakunta 3.6330 3.6124 3.5493 3.5371 3.6365

Kanta-Häme 0.7336 0.7354 0.7632 0.7689 1.0398

Pirkanmaa 3.2779 3.2862 3.2114 3.2071 3.4309

Päijät-Häme 0.9032 0.9011 0.9682 1.0048 1.0475

Kymenlaakso 2.4761 2.4859 2.5092 2.4819 2.7240

South Karelia 0.5381 0.5268 0.5841 0.6060 0.6480

Southern
Savonia

0.7490 0.7518 0.7448 0.7722 0.8808

Eastern
Savonia

0.7536 0.7551 0.7024 0.6833 0.7279

North
Karelia

0.5753 0.5695 0.5475 0.5732 0.5982

Northern
Savonia

1.5263 1.5273 1.4859 1.5119 1.6492

Central
Finland

5.5499 5.5361 5.5562 5.6234 6.0488

South
Bothnia

4.7209 4.7507 4.7506 4.7505 4.7708

Vaasa 2.1997 2.2187 2.2057 2.1912 2.1572

Central
Bothnia

3.2251 3.2411 3.2267 3.1927 3.1619

North
Bothnia

7.7036 7.6829 7.6786 7.6660 7.5354

Kainuu 0.1984 0.1957 0.2255 0.2468 0.2596

Länsi-Pohja 0.7437 0.7415 0.7377 0.7399 0.6897

Lapland 0.4929 0.4905 0.4979 0.5332 0.6323

Helsinki and
Uusimaa

3.3256 3.3243 3.3982 3.4146 3.8419

Average
over all areas

2.2174 2.2176 2.2242 2.2331 2.3421

Table 3 The mean values and 95% credible intervals (CrI) of DP
under the binary rodent model without the contextual effect for
20 health districts

Health district Lower 95% CrI Mean Upper 95% CrI

Southwest Finland 0.0129 0.4974 0.9881

Satakunta 0.8447 0.9686 1.0000

Kanta-Häme 0.0019 0.5099 0.9985

Pirkanmaa 0.7794 0.9428 0.9996

Päijät-Häme 0.0037 0.4921 0.9951

Kymenlaakso 0.0000 0.5057 1.0000

South Karelia 0.0004 0.5031 0.9996

Southern Savonia 0.0001 0.5010 1.0000

Eastern Savonia 0.9407 0.9929 1.0000

North Karelia 0.0000 0.5005 1.0000

Northern Savonia 0.0006 0.3543 0.9965

Central Finland 0.9485 0.9931 1.0000

South Bothnia 0.9276 0.9901 1.0000

Vaasa 0.9621 0.9953 1.0000

Central Bothnia 0.9755 0.9973 1.0000

North Bothnia 0.8998 0.9832 1.0000

Kainuu 0.0004 0.5060 0.9992

Länsi-Pohja 0.0000 0.5789 1.0000

Lapland 0.0013 0.5064 0.9993

Helsinki and Uusimaa 0.0347 0.4788 0.9568
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evidence to better inform human risk, our proposed
methodology demonstrates its ability to quantify the
association between the rodent status and human
incidence. This is potentially useful in prediction of
human outbreak when put in the health-policy
perspective.
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