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Abstract
Aim: The aim was to document the impact of the globalization of human activity 
on the biodiversity and biogeographical patterns of reptilian and amphibian faunas 
across islands worldwide.
Location: Islands worldwide.
Time period: From the 15th century to the present time.
Major taxa studied: Reptiles and amphibians.
Methods: We compiled lists of the reptilian and amphibian species that occurred on 
islands before the 15th century and of those that occur currently. For each species 
group, we calculated differences in species richness and in compositional similari-
ties among islands, between the two periods. Regression models were used: (a) to 
associate the observed differences with spatial patterns of geographical, climatic, 
biotic and human factors; and (b) to quantify changes in the relative importance of 
non-human factors in explaining the spatial patterns of species richness and compo-
sitional similarity.
Results: The richness of reptile and amphibian species increased consistently across 
islands worldwide. Hotspots of increase were detected in the Caribbean and the 
Indian Ocean. The composition of species assemblages was substantially homog-
enized; this was particularly true for amphibians within the Caribbean Sea and for 
reptiles within the Caribbean Sea and Indian Ocean and between the Indian and the 
Pacific Oceans. Our results showed that spatial patterns of change in species richness 
and compositional similarity are driven by human and natural factors. The driving role 
of mean annual temperature is particularly consistent, and current reptile richness 
and compositional similarity patterns for both species groups are increasingly being 
shaped by the global temperature gradient.
Main conclusions: The globalization of human activity is eroding the regionalized 
character of insular herpetofaunas and leading to the emergence of global-scale gra-
dients of taxonomic composition and species richness. Projections of increasing rates 
of biological invasions, extinctions and climate change suggest that these changes are 
likely to be aggravated even further in the coming decades.
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1  | INTRODUC TION

Human activities are changing the composition of species assem-
blages at unprecedented rates (Díaz et al., 2019; Dornelas et al., 
2019). Insular biotas have been particularly affected, with many 
islands becoming hotspots of extinction and of establishment of 
alien species after human arrival and colonization (Dawson et al., 
2017; Sax & Gaines, 2008; Spatz et al., 2017). Assessments of how 
these events are changing the taxonomic composition of insular bi-
otas have focused primarily on changes to the species richness of 
each island and to the compositional similarity of species among 
the islands. These assessments highlight important deviations from 
natural biodiversity patterns and a strong taxonomic dependence 
on the magnitude of the changes caused. For example, although 
the richness of bird species across islands has remained relatively 
unchanged, owing to the number of established alien species that 
usually replace extinct ones, the insular plant species richness has 
increased dramatically (Sax, Gaines, & Brown, 2002). Likewise, the 
compositional similarity of taxa has generally increased, that is, in-
sular biotas have become homogenized (Olden, Lockwood, & Parr, 
2011); however, taxonomic groups can differ by nearly an order of 
magnitude increase (Longman, Rosenblad, & Sax, 2018). Despite the 
lack of cross-taxonomic generalities in the patterns of change in bio-
diversity on islands, thus far only the changes in a few taxonomic 
groups have been assessed comprehensively.

In this study, we assessed how human activity is changing the 
taxonomic diversity of reptiles and amphibians on islands worldwide 
and how these changes are reconfiguring their biogeographical pat-
terns. To our knowledge, only a few studies have assessed the effect 
of human activities on the taxonomic diversity of insular herptiles 
in broad oceanic areas. In one of these studies, Ficetola and Padoa-
Schioppa (2009) evaluated the long-term impact of human activities 
on reptile species richness in Mediterranean islands. In a similar 
study, Helmus, Mahler, and Losos (2014) focused on the effect of 
recent human activity on anole lizards in the Caribbean islands. 
Interestingly, the two studies obtained contrasting results for spe-
cies richness. On the Mediterranean islands, the number of reptile 
species lost to human activity was not compensated by gains in alien 
species richness (Ficetola & Padoa-Schioppa, 2009). On the con-
trary, in the Caribbean, the number of anole species increased con-
sistently across islands, owing to many introduced species becoming 
naturalized and the absence of species extinction events (Helmus 
et al., 2014). Notwithstanding these differences, both studies identi-
fied a strong imprint of human activity on the current geography of 
reptile richness.

In the present study, we focused on the taxonomic changes 
that have occurred since the onset of globalization. The focus 
on this period of human history, which has an ecologically sig-
nificant start in the 15th century and extends until the present 
day (Crosby, 2003; Hulme, 2009), addresses both theoretical and 
practical considerations. First, it is during this period that human 
activity is likely to have caused the strongest changes in the di-
versity of herpetofauna on islands. This assumption is based on 

the combined effect of known factors, particularly many cases of 
first human contact with pristine islands. These led to a relevant 
number of extinction events, particularly for reptiles (Alroy, 2015; 
Case, Bolger, & Richman, 1992; Rhodin et al., 2015; Slavenko, 
Tallowin, Itescu, Raia, & Meiri, 2016), and a profusion of estab-
lished alien species, many with wide, pan-oceanic invasion ranges 
(Capinha et al., 2017). Second, by restricting our analysis to the 
most recent centuries of human history, we are ensuring higher 
data completeness and reliability in terms of taxonomic changes 
(Case et al., 1992).

Beyond the expectation of substantial taxonomic changes, we 
hypothesized that the magnitude of these changes will have a pre-
dictable distribution. More specifically, it is likely that islands sharing 
similar colonial histories and human activity levels will have higher 
species compositional similarity, thereby reflecting commonalities in 
the species that were introduced or are extinct (Rhodin et al., 2015; 
Russell & Kueffer, 2019). Likewise, higher compositional similarity 
should be observed among islands with similar climates, thus high-
lighting the role of environmental filtering in the establishment of 
introduced species (Capinha, Essl, Seebens, Moser, & Pereira, 2015). 
The island characteristics that could drive changes in species rich-
ness are less clear. This is because changes in species richness result 
from a balance between species extinctions and the establishment 
of introduced species, two processes that often relate in opposing 
ways to human and ecogeographical factors (Dawson et al., 2017; 
Russell & Kueffer, 2019; Spatz et al., 2017). However, if one of these 
processes consistently prevails over the other, coherent geograph-
ical patterns are likely to emerge. If introduced species prevail over 
extinctions, increases in richness are likely to be greater where 
human activity has been more intense, thereby reflecting a greater 
number of introduced species (Dawson et al., 2017; Lockwood, 
Cassey, & Blackburn, 2009). The same is also true in areas where 
natural conditions favour the establishment of a diversified fauna, 
namely large islands with varied habitats (Ricklefs & Lovette, 1999) 
and (sub)tropical climates (Kier et al., 2009). Moreover, if extinctions 
prevail over introductions, the changes are likely to reflect mainly 
the intensity of human activity (Russell & Kueffer, 2019) and the size 
of the historical species pool, which mediates the number of extinc-
tions that might occur.

To test these hypotheses, we compiled carefully curated lists of 
the extant reptiles and amphibians on islands at the onset of glo-
balization (i.e., the historical baseline). We complemented this infor-
mation by listing all the recorded extinction and introduced species 
establishment events that occurred until the present day. Based on 
these lists, we quantified the differences in species richness and 
compositional similarity between historical and current species as-
semblages. Then, we identified spatial hotspots of change and ex-
amined the roles of geography, the environment and human factors 
on the spatial distribution of species richness and compositional 
differences. Finally, we assessed how the historical and current spe-
cies richness and compositional similarity patterns differ in their re-
lationships with spatial patterns of geographical and environmental 
factors.
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2  | METHODS

2.1 | Historical and current species assemblages

We used the scientific literature to compile lists of all known ex-
tant and extinct reptile and amphibian species in 64 island regions 
globally. We included both terrestrial and freshwater species, but 
excluded those dependent on marine resources, such as sea tur-
tles and sea snakes. To increase the comparability of our results 
with those obtained for other taxonomic groups, our data search 
was directed mainly to island regions included in previous studies 
(e.g., Blackburn, Delean, Pyšek, & Cassey, 2016; Longman et al., 
2018; Sax et al., 2002). However, other island regions for which 
we collected comprehensive information were also included in our 
study. The regions represented in our study were either single is-
lands (e.g. Corsica) or island groups (e.g., São Tomé and Príncipe); 
however, each region was treated as a single unit in the analyses 
(hereinafter referred to as islands). The islands were distributed in 
the Atlantic (n = 19), Indian (n = 7), Pacific (n = 22) and Southern 
(n = 2) Oceans and in the Caribbean (n = 12) and Mediterranean 
Seas (n = 2). The delineation of oceanic regions followed “The 
World Factbook” (Central Intelligence Agency, 2008). A full list 
of the data sources used is provided in the Appendix. The loca-
tions of the island regions included in the study and the corre-
sponding oceanic regions are shown in the Supporting Information 
(Appendix S1, Figure S1.1).

We aimed to compare the current species diversity with that 
having occurred before global oceanic exploration. To this end, 
we started by harmonizing the species lists according to the most 
recent taxonomic knowledge (for a schematic representation of 
the species data processing sequence, see Supporting Information 
Appendix S1, Figure S1.2). As much as possible, we used the taxo-
nomic information provided by Frost (2019) and Uetz, Freed, and 
Hošek (2019) for amphibians and reptiles, respectively. A few spe-
cies only recently identified were not included in these resources, 
and their original naming was retained. Based on the literature, 
we then classified each species on each island as native extant, 
native extinct or introduced; for the last of these categories, we 
considered only the species that became established (i.e., perma-
nent additions to the insular faunas). Next, each species extinction 
and introduction event was classified according to its time of oc-
currence. Two temporal classes were considered: before and after 
the 15th century (< 1,400 and > 1,400 CE, respectively). Then, we 
assembled a baseline list for each taxonomic group and island that 
combined native extant species, extant species introduced before 
the 15th century and species that became extinct only during 
or after the 15th century (Supporting Information Appendix S1, 
Figure S1.2). One exception to this was the addition of the only 
record we found of a species that colonized by means of natu-
ral dispersal one of the island regions included in our study after 
1,400 CE (Iguana iguana in Anguilla; Hodge, Powell, & Censky, 
2011). This was a record of a species that is native to the island, 

and its inclusion in the baseline list allowed our analyses to focus  
exclusively on taxonomic changes caused by human activity.

Additionally, we compiled a second list (current assemblage) of 
all the native and introduced extant species (Supporting Information 
Appendix S1, Figure S1.2). The species inventories, with species sta-
tus, timings of extinction or introduction and data sources used for 
each region are provided in the Supporting Information (Appendices 
S2 and S3).

2.2 | Island characteristics

We characterized the geography and environment of each island re-
gion and the human influence on each one using 13 variables. These 
variables were: (a) areal extent of the region (in square kilometres); 
(b) number of islands; (c) minimum distance to mainland (in kilome-
tres); (d) origin of native biotas (coded as one for oceanic and zero if 
otherwise); (e) number of ecoregions; (f) mean annual temperature 
(in degrees Celsius); (g) mean annual precipitation (in millimetres); 
(h) current human population density (people per square kilometre); 
(i) absence or presence of human occupation before the arrival of 
Europeans (coded as zero or one, respectively); (j) the absence or 
presence of British colonization (coded as zero or one, respectively); 
(k) French colonization (coded as zero or one); (l) Portuguese coloni-
zation (coded as zero or one); and (m) Spanish colonization (coded as 
zero or one).

Data for the first three variables were collected by Weigelt, 
Jetz, and Kreft (2013). For regions composed of more than one 
island, the minimum distance to the mainland corresponded to the 
minimum value for the island group. The number of ecoregions 
was determined from the study by Olson et al. (2001). Mean an-
nual temperature and mean annual precipitation data were col-
lected from the study by Weigelt et al. (2013); for the multi-island 
regions, these variables corresponded to region-wide averages. 
Data for the remaining variables (i.e., origin of native biotas and 
those associated with human activity) were obtained from the 
studies by Blackburn et al. (2016), Longman et al. (2018), the 
United Nations Environment Programme (UNEP) Island database 
(http://islan ds.unep.ch) and Wikipedia (https://www.wikip edia.
org/). Region-level values of each variable are provided in the 
Supporting Information (Appendix S4).

2.3 | Patterns and drivers of change in 
species richness

For each island and taxonomic group, we calculated the differ-
ence in the number of species between the historical and current 
species assemblages (hereafter, ∆SR). Negative values of ∆SR rep-
resented a reduction in total species richness, whereas positive 
values of ∆SR represented a gain in richness relative to the histori-
cal condition.

http://islands.unep.ch
https://www.wikipedia.org/
https://www.wikipedia.org/
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First, we investigated whether islands in distinct oceanic re-
gions had significantly different ∆SR values. This analysis was 
performed using Mann–Whitney U pairwise tests, by comparing 
the Atlantic, Indian and Pacific Ocean and Caribbean Sea island 
values of ∆SR. Owing to low sample sizes, the Mediterranean Sea 
(n = 2) and Southern Ocean (n = 2) islands were not included in the 
comparisons.

Next, we tested for relationships between the island character-
istics and the values of ∆SR. This analysis was performed using a 
generalized least squares (GLS) regression, a regression technique 
that considers the non-independence of observations that are geo-
graphically close (Dormann et al., 2007). In these models, ∆SR was 
associated with the aforementioned explanatory variables a–i (sec-
tion 2.2) and one additional variable representing the species rich-
ness of the taxa in the historical assemblages (collected from the 
species lists; section 2.1).

The analyses of ∆SR did not inform us about the change in the 
relationship of species richness and the geography of non-anthro-
pogenic factors. In order to evaluate this change, we used GLS re-
gressions to compare the relationships of historical (SRhistorical) and 
current species richness (SRcurrent) with spatial pattern variables de-
scribing the geography and environment of islands (variables a–g; 
section 2.2). We evaluated and compared the relationships of 
SRhistorical and SRcurrent with each explanatory variable individually 
and for all variables combined.

To improve the robustness of the statistical significance of the 
GLS coefficients, we used logarithmic transforms of ∆SR and SR 
(Ives, 2015). The same transformation was applied to the follow-
ing explanatory variables: number of islands, island area, human 
population density, distance from mainland and number of native 
species, in order to improve the linearity of their relationships with 
log10-transformed responses. To allow the transformation in the 
presence of negative values and zeros, we summed to ∆SR a con-
stant corresponding to one plus the absolute positive of its minimum 
value. For the transformation of SR and the explanatory variables 
where a value of zero was present, a constant value of one was 
added in all instances.

We implemented GLS models that accounted for an exponen-
tial decay of spatial autocorrelation, given the highly regionalized 
character of island regions on a global scale (Dormann et al., 2007). 
Additionally, we tested for redundancies among the set of predic-
tors using pairwise Pearson's correlations, r, and no variables were 
strongly correlated (r > |.7|) (Supporting Information Appendix S1,  
Figure S1.3). We also inspected for potential issues of multicol-
linearity among predictors by measuring the variance inflation 
factor (VIF) of each predictor, and none showed concerning multi-
collinearity levels (i.e., VIF > 10). The goodness-of-fit of GLS mod-
els was assessed by the pseudo-R2 of Nakagawa, Johnson, and 
Schielzeth (2017).

The GLS models were implemented using the “nlme” package 
(Pinheiro, Bates, DebRoy, & Sarkar, 2016) of R v.3.5.1 (R Core Team, 
2018). For the VIF calculations, we used the “vif” function of the 

“car” R package (Fox et al., 2012). Pseudo-R2 was calculated with the 
“piecewiseSEM” R package (Lefcheck, 2016).

2.4 | Patterns and drivers of change in 
compositional similarity

We calculated the similarity in taxonomic composition between 
all pairs of islands, for the historical and current species assem-
blages. Calculations of compositional similarity corresponded to 
the inverse of Jaccard's dissimilarity, CS = 1 − [(b + c)/ (a + b + c)],  
where a is the number of species occurring on both islands, b is 
the number of species found only on the first island and c is the 
number of species found only on the second island. This index  
returns values from one (indicating a fully similar taxonomic com-
position, i.e., all species are shared between the two islands) to 
zero (fully dissimilar composition, i.e., no species are shared). A 
total of 2,016 unique island pairs were compared. We also cal-
culated the ∆CS between the current and the historical species 
assemblages for each island pair. Positive values of ∆CS indicated 
that the species compositions of the island pair grew similar owing 
to human influence, whereas negative values indicated that they 
became differentiated.

We used network-modelling techniques to visualize the group-
ing of islands based on the CS of the historical and current assem-
blages. In these visualizations, the study system was represented as 
a network, where each island was a node and the CS between the 
island pairs were represented as weighted links. This visualization 
was implemented using the “qgraph” R package (Epskamp, Cramer, 
Waldorp, Schmittmann, & Borsboom, 2012). In this tool, we used the 
Fruchterman–Reingold algorithm to estimate the two-dimensional 
layout of the network (Fruchterman & Reingold, 1991). This is an it-
erative algorithm representing the length of links as a function of 
their absolute weight. Accordingly, islands with higher levels of com-
positional similarity were grouped closer together, whereas those 
with lower similarity were shown further apart.

To complement the visual analyses of the spatial relationships 
represented by the networks, we quantified a few descriptive 
statistics of the compositional similarity values. These statistics 
were the average CS of the historical and current assemblages 
and the average ∆CS of islands within the same oceanic region 
and between islands belonging to different oceanic regions. The 
Mediterranean Sea and Southern Ocean were not included in 
these calculations, because only a single pair of islands repre-
sented each of these regions.

We also analysed whether ∆CS was associated with similarities 
in the geography, environment and human occupation of islands. 
For this purpose, we used multiple regression on distance matri-
ces (MRM; Goslee & Urban, 2007). These models used the fol-
lowing explanatory variables: (a) geographical distance; (b) mean 
annual temperature; (c) total annual precipitation; (d) human pop-
ulation size; (e) the presence or absence (coded as one or zero, 
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respectively) of human occupation before European colonization; 
and the presence or absence (coded as one or zero, respectively) of 
(f) British; (g) French; (h) Spanish; and (i) Portuguese colonization. 
The geographical distances between the geographical centroids of 
islands were calculated by the great circle distance method using 
the “rdist.earth” function of the R package “fields” (Nychka, Furrer, 
Paige, & Sain, 2017). Pairwise differences of the remaining vari-
ables corresponded to Euclidean distances between the values of 
the two islands.

Finally, in order to evaluate the absolute effect of ∆CS on the nat-
uralness of the spatial patterns of compositional similarity, we mea-
sured and compared the relationships of CShistorical and CScurrent with 
the variables describing non-anthropogenic factors (variables a–c 
in the previous paragraph). The relationships were evaluated using 
MRMs, and each variable was considered separately and in combi-
nation with the others.

Multiple regression on distance matrices explicitly account for 
the non-independence of pairwise comparisons by performing tests 
of statistical significance of predictors based on permutations and 
a pseudo-t statistic (Legendre, Lapointe, & Casgrain, 1994). These 
models were implemented using the “ecodist” package in R (Goslee 
& Urban, 2007). A total of 9,999 permutations were used to assess 
the significance of coefficients.

3  | RESULTS

3.1 | Changes in species richness

From the 15th century to the present day, the establishment of 
introduced species was considerably more frequent than species 
extinctions were in both amphibians and reptiles (86 vs. 2 and 223 
vs. 35, respectively). Across islands, both types of events were sig-
nificantly more frequent for reptiles (average number of extinc-
tions per island = 0.5 ± 1.17; average number of alien species per 
island = 3.5 ± 3.8) than for amphibians (0.03 ± 0.18 and 1.3 ± 1.7, 
respectively; p < .05; Mann–Whitney U pairwise test). Only two spe-
cies were extinct on more than one island (Crocodylus rhombifer and 
Mabuya mabouya). About 38% of the introduced amphibian species 
(17 out of 45) and 42% of introduced reptile species (36 out of 86) 
colonized two or more islands. Of these, only six amphibian and 19 
reptile species (accounting for 13 and 23% of the total number of 
species, respectively) were found in more than one oceanic region 
(Supporting Information Appendix S1, Table S1.1).

As a net result of the two types of events, many islands experi-
enced gains in the total number of extant amphibian and reptile spe-
cies (Figure 1a–d). The ∆SR values showed a left-skewed distribution, 
with most islands gaining up to four species (Figure 1b–d). Islands 

F I G U R E  1   Difference between the number of (a,b) amphibian and (c,d) reptile species inhabiting islands at the onset of global oceanic 
exploration and the number of those species occurring there at present. (a,c) Inset maps depict the Caribbean Region in greater detail. The 
diamond symbol in maps identifies islands where all extant species were introduced after the 15th century. (b,d) Boxplots describe variation 
of differences in the number of species for all islands and for the four main oceanic regions represented in our data set. Inset histograms 
describe the number of islands per class of change in species richness
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without amphibians were reduced by 54% (from 39 to 18; Figure 1a), 
whereas those without reptiles were reduced by 36% (from 14 to 
nine; Figure 1c). The percentages of change in species richness that 
were calculated for islands with species before the globalization of 
oceanic travel showed that the richness of amphibian and reptile spe-
cies increased on average by 41 ± 53.2 and 48 ± 67.3%, respectively.

The results of the Mann–Whitney U pairwise tests for the ∆SR 
comparisons among oceanic regions confirmed that the gains in am-
phibian species richness were significantly higher on the Caribbean 
islands than in any of the other regions (Supporting Information 
Appendix S1, Table S1.2). The gains in reptile species richness of 

the Indian Ocean islands were significantly higher than those of the 
Atlantic Ocean islands, but not than those of the Caribbean or the 
Pacific islands (Supporting Information Appendix S1, Table S1.2). 
The gains in reptile richness of the Caribbean islands were signifi-
cantly higher than those of the Atlantic Ocean islands.

Generalized least square models allowed the identification of 
variables consistently associated with the variation in ∆SR across is-
lands. For amphibians, a pseudo-R2 value of .52 indicated the ability 
of the model to explain a fair amount of variation in ∆SR. For this 
group, six variables were identified as having significant relation-
ships (α = .05) with variations in ∆SR (Table 1). Areal extent, number 

TA B L E  1   Results of multivariate generalized least squared models explaining the log10-transformed difference between historical and 
current richness (∆SR) of (a) amphibian and (b) reptile species across 64 island regions worldwide

Explanatory variable Coefficient (SE) p-value Pseudo-R2

(a) Amphibians

Intercept −1.1478 (0.439) .012 .52

Geographical variables

Area (log) 0.2013 (0.035) < .001

Number of islands (log) −0.1361 (0.041) .002

Minimum distance to mainland (log) −0.0576 (0.056) .307

Continental or oceanic −0.3451 (0.189) .074

Environmental variables

Number of ecoregions 0.1265 (0.050) .015

Mean annual precipitation 0.0001 (0.00008) .142

Mean annual temperature 0.0386 (0.012) .003

Biological variables

Richness of amphibians in historical assemblages (log) −0.3291 (0.086) < .001

Human-related variables

Human population density (log) 0.0781 (0.0369) .039

Human occupation before Europeans −0.1285 (0.137) .354

(b) Reptiles

Intercept −1.6625 (0.589) .006 .58

Geographical variables

Area (log) 0.1425 (0.050) .006

Number of islands (log) 0.0313 (0.053) .558

Minimum distance to mainland (log) 0.0469 (0.066) .477

Continental or oceanic 0.0424 (0.217) .847

Environmental variables

Number of ecoregions −0.0868 (0.058) .143

Mean annual precipitation −0.0001 (0.0001) .134

Mean annual temperature 0.0707 (0.018) < .001

Biological variables

Richness of reptiles in historical assemblages (log) −0.0232 (0.100) .818

Human-related variables

Human population density (log) 0.1030 (0.040) .014

Human occupation before Europeans −0.0242 (0.162) .882

Note: Models used 10 explanatory variables representing four main types of putative drivers of the differences observed: Geographical, 
environmental, biological and human. Significant relationships are shown in bold (p < .05). Variation explained was measured by the pseudo-R2 of 
Nakagawa et al., (2017).
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of ecoregions, mean annual temperature and human population 
density were positively associated with gains in amphibian richness, 
whereas there was a negative association between the number of 
amphibians in historical assemblages and the number of islands. For 
reptiles, the variation in ∆SR explained by the model was slightly 
higher than it was for amphibians (pseudo-R2 = .58; Table 1). Three 
variables were significantly (α = .05) associated with the ∆SR varia-
tion in reptiles: areal extent, mean annual temperature and human 
population density were all positively associated with ∆SR (Table 1).

The current relationships between the amphibian SR and the 
non-anthropogenic factor patterns deviated moderately from the 
corresponding relationships of pre-15th century species assem-
blages (Figure 2). The most relevant change in terms of individual 
variables concerned an increase in the explanatory power of areal 
extent (pseudo-R2 increased from .16 to .26; Figure 2a). Taking into 
account all the geographical and environmental variables combined, 
the GLS models were able to explain a reasonably higher amount 
of variation in the current (pseudo-R2 = .76) than in the historical 
amphibian SR (pseudo-R2 = .63) (Figure 2f,g). These models also 
highlighted the importance of the role of geography over that of the 
environment as the main driver of amphibian SR patterns. In reptiles, 
the change in the relationship of geographical patterns of richness 
and non-human factors was more apparent and expressed mainly 
through a substantial increase in the explanatory power of mean an-
nual temperature (pseudo-R2 increased from .28 to .49; Figure 2i). 
Likewise, multivariate model analysis highlighted the importance of 
environmental factors over purely geographical factors as the main 
drivers of the distribution of reptile SR patterns (Figure 2l,m).

3.2 | Changes in compositional similarity

The average compositional similarity for the historical amphib-
ian and reptile assemblages was very low (average pairwise 
CShistorical = 0.002 ± 0.031 and 0.012 ± 0.066, respectively; 
Figure 3a,c). Most islands had no amphibian species in common 
(n = 48; 75%), except for a few islands in the Caribbean Sea and the 
north-eastern Atlantic. For reptiles, the number of islands without 
compositional relatedness was smaller (n = 21; c. 33%), and faunal 
regionalization was slightly more structured, because it involved a 
higher number of islands and the addition of a consistent cluster 
formed by Pacific islands.

The average compositional similarity of the current assemblages 
increased by c. 7.5 times for amphibians (CScurrent = 0.015 ± 0.069) 
and 2.1 times for reptiles (CScurrent = 0.025 ± 0.067). These increases 
led to substantial biogeographical reorganizations for both species 
groups. The compositional homogenization of amphibians was more 
accentuated among the Caribbean islands (Figure 3b; Supporting 
Information Appendix S1, Figure S1.4a), which now grouped tightly 
with a few islands from other regions, particularly the Pacific. The 
number of islands that had no amphibians in common was reduced 
almost by half, but still represented an important percentage of all 
islands (n = 25, c. 39%; Figure 3b). The compositional convergence 

of reptiles occurred mainly within the Indian Ocean, within the 
Caribbean Sea and between the Indian and the Pacific Ocean islands 
(Figure 3d; Supporting Information Appendix S1, Figure S1.4b). The 
number of islands that had no reptiles in common was reduced by 
more than half, thus representing a small percentage of the entire set 
of islands (n = 10, c. 16%).

The MRM results regarding ∆CS showed that longer geograph-
ical distances and larger differences in the average temperature 
between islands were negatively associated with increases of both 
amphibian and reptile compositional similarity (Table 2). Most im-
portantly, these models explained only a very small fraction of the 
variation in ∆CS in both species groups (R2 = .06 for amphibians and 
R2 = .07 for reptiles).

The MRM results on the relationship between the historical 
and current CS patterns and the non-anthropogenic factor patterns 
showed that the globalization of human activity contributed to an in-
crease in the explanatory power of geographical distances and of the 
mean annual temperature for both taxa (Figure 4). In both cases, the 
increase in mean annual temperature was higher than the increase 
in geographical distance. For amphibians, this caused a matching 
between the relative importance of environment and geography as 
predictors of current CS (Figure 4d), whereas for reptiles, environ-
ment is now the most important predictor (Figure 4h). Importantly, 
the amount of variation in current CS explained by the two types 
of factors remains small (R2 = .08 for amphibians and R2 = .18 for 
reptiles).

4  | DISCUSSION

4.1 | Patterns and drivers of change in species 
richness

Our results showed that, since the 15th century, there has been a 
considerable increase in both amphibian and reptile species rich-
ness on islands. Recent increases in insular species richness have 
been identified in vascular plants, mammals and freshwater fish 
(Blackburn, Cassey, Duncan, Evans, & Gaston, 2004; Sax & Gaines, 
2008; Sax et al., 2002) but not in birds, a group whose species rich-
ness has remained relatively stable owing to the numbers of estab-
lished alien species roughly matching those of extinct species (Sax 
et al., 2002). The consistently positive balance between herptile 
invasions and extinctions on islands is not surprising. First, islands 
appear to be particularly susceptible to the establishment of intro-
duced species, including herptiles (Capinha et al., 2017; Dawson 
et al., 2017). The reasons behind this susceptibility remain an active 
topic of research, with factors commonly mentioned including a high 
diversity of introduced species (i.e., colonization pressure; Helmus 
et al., 2014; Lockwood et al., 2009), a low diversity of natural en-
emies and the naiveté of local prey (e.g., Jeschke, Debille, & Lortie, 
2018; Moser et al., 2018). Second, the low or null diversity of native 
herptiles on many islands inherently limits the number of extinc-
tions that can possibly occur. This limitation should be particularly 
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F I G U R E  2   Proportion of variation in spatial patterns of richness of (a–g) amphibians and (h–m) reptiles explained by spatial patterns 
of geographical and environmental factors. Proportions are shown for species richness before the onset of global oceanic exploration 
(“historical”) and for the present day (“current”). Measurements were made using generalized least squares models and considered each 
explanatory variable separately (bar plots) and all in combination (rectangles). For the latter models, the proportion of variation explained 
solely by geographical factors (Geo.) and by environmental factors (Env.) was also evaluated. Circles are not drawn to scale. Bar plots are 
shown only for individual variables having significant relationships (α = .05). Reported values correspond to pseudo-R2 (Ps.R2)



     |  9CAPINHA et Al.

relevant for both amphibians (e.g., c. 61% of the islands included in 
our study had no amphibians in the historical baseline) and reptiles 
(e.g., c. 22%). Finally, the diversity of herptile species targeted for 
direct exploitation by human explorers and settlers was apparently 
narrow. Direct human exploitation was a dominant cause of insular 
extinctions across taxa (Blackburn et al., 2004; Rhodin et al., 2015; 
Slavenko et al., 2016), and small-sized herptiles, which compose 
most of the taxonomic diversity on islands, have remained largely 

free from these pressures (Rhodin et al., 2015; Slavenko et al., 2016), 
substantially reducing their chances of becoming extinct.

Given the prevalence of invasions over extinctions, the results 
of the regression models associating spatial variables with varia-
tions in change in richness are consistent with our expectations. 
Both species groups showed higher gains in richness on islands 
where the human population density, areal extent and mean annual 
temperatures were higher. Human population density is a proxy for 

F I G U R E  3   Clustering of islands based on levels of compositional similarity (as measured by the inverse of the Jaccard's dissimilarity 
index) for (a,b) amphibians and (c,d) reptiles. Clusters are shown for historical species assemblages, representing bioregionalization before 
the onset of global oceanic exploration and for current species assemblages. Islands are represented as nodes, and the compositional 
similarity between pairs of islands is represented as weighted links. The width and length of links is a function of compositional similarity, 
with thicker and shorter links representing higher similarity. Islands with higher compositional similarity are grouped closer together 
and those with lower compositional similarity are further apart. Names of regions and their abbreviatons are provided in the Supporting 
Information (Appendix S4).
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the volume of goods that are imported and the amount of human 
travel to and from islands, and thus plays a driving role in the num-
ber of species introduced (e.g., via pet trade and as stowaways in 
cargo) (Dawson et al., 2017). The relationships identified for the 
areal extent agree with the expectations for higher diversity in 
wider areas (MacArthur & Wilson, 2001). The relationship identi-
fied for the annual mean temperature also makes ecological sense, 
because it is likely to express the inability of most herptiles to with-
stand cold climates (Storey, 1990). Amphibians had a significant, 
positive relationship with the number of ecoregions and negative 

relationships with historical species richness and the number of 
islands. The former relationship is supportive of a positive, often 
identified, effect of habitat diversity (Ricklefs & Lovette, 1999). The 
relationship with historical species richness could suggest a role for 
the biotic resistance of the pre-exiting community over introduced 
species (Jeschke et al., 2018). The possibility of this relationship 
resulting from higher potential for extinctions on islands with larger 
historical species pools might seem more parsimonious, but only 
two amphibian extinction events were recorded. The negative rela-
tionship with the number of islands is unclear and, possibly, corre-
sponds to an offsetting of the areal extent effect when wide areas 
were obtained from the combination of a high number of islands.

The loss of naturalness in the spatial patterns of species rich-
ness was substantial for both species groups. Interestingly, human 
action caused an increase and not a decrease in the predictability 
of patterns of richness from patterns of geographical and environ-
mental factors. In amphibians, the increase in predictability was 
driven mostly by the areal extent and the number of ecoregions; 
wide islands with higher habitat diversity currently host a consis-
tently higher number of amphibian species than they did before 
globalization. Moreover, the explanatory power of the distinction 
between oceanic and non-oceanic islands, which is commonly used 
to differentiate between species-poor and species-rich islands (e.g., 
Longman et al., 2018), was reduced. In reptiles, the higher predict-
ability of current patterns of species richness distribution was driven 
primarily by a strong increase in the role of mean temperature. The 
strong increase in the role of this variable was also apparent in the 
map of changes in richness (Figure 1c), where the highest gains in 
richness were observed mainly on islands at lower latitudes. This 
pattern is likely to express, to some extent, the inability of intro-
duced species to become established successfully on higher latitude 
islands characterized by cold climates (Storey, 1990).

4.2 | Patterns and drivers of change in 
compositional similarities

There were substantial increases in the average compositional simi-
larity of both reptilian and amphibian species. The current average 
compositional similarity of reptiles was more than two times higher 
than it was before the 15th century; in amphibians, this value was 
almost eight times higher. These values are higher or on par with the 
increases recorded for vascular plants and birds after the first human 
occupation of oceanic islands (Rosenblad & Sax, 2017), but are lower 
than those recorded for mammals on islands worldwide (Longman 
et al., 2018). The much higher relative increase of amphibian com-
positional similarity is likely to be a result of the very low levels of 
initial (historical) similarity, which amplify the homogenizing effects 
of same-species introductions between islands, as was also verified 
for mammals (Longman et al., 2018).

The increases in compositional similarity that were observed 
caused a marked reshaping of the bioregionalization of islands on a 
global scale. This reshaping was dominated by the biotic convergence 

TA B L E  2   Results of multivariate regression on distance matrices 
(MRMs) explaining difference between historical and current 
compositional similarity of assemblages (∆CS) of (a) amphibians and 
(b) reptiles

Explanatory variable Coefficient p-value R2

(a) Amphibians

Intercept 0.04933 < .001 .06

Geographical variable

Geographical distance < −0.000002 < .001

Environmental variables

Mean annual temperature −0.00148 < .001

Mean annual precipitation 0.000003 .414

Human-related variables

Human population size < −0.000001 .155

British colonization −0.00565 .069

French colonization 0.00216 .606

Portuguese colonization −0.01148 .255

Spanish colonization −0.00122 .849

Human occupation before 
Europeans

−0.00164 .641

(b) Reptiles

Intercept 0.03262 < .001 .07

Geographical variable

Geographical distance −0.000001 < .001

Environmental variables

Mean annual temperature −0.00130 < .001

Mean annual precipitation < 0.00001 .685

Human-related variables

Human population size < −0.00001 .462

British occupation 0.00038 .864

French colonization 0.00308 .291

Portuguese colonization −0.00814 .221

Spanish colonization −0.00261 .553

Human occupation before 
Europeans

0.00508 .073

Note: Historical and current compositional similarities were calculated 
between each pair of islands, for 64 islands dispersed worldwide. The 
models used nine explanatory variables, representing geographical, 
environmental and human relatedness among islands. Significant 
relationships are shown in bold (p < .05), based on 9,999 permutation 
tests.
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of islands within the Caribbean (for both species groups) and within 
the Indian Ocean (for reptiles), but also between many islands lo-
cated in distinct oceanic regions (e.g., in the Indian and the Pacific 
Oceans for reptiles). The results of the regression analyses show that 
island pairs that were close to each other had significantly higher 
increases in compositional similarity, which is likely to reflect a de-
gree of spatial regionalization in the distribution of human-mediated 
events of invasion and extinction. However, compositional simi-
larities are now equally or better explained by thermal similarities 
than by geographical distances as opposed to what was true before 
the onset of globalization. Temperature plays a part in environmen-
tal filtering, with thermal conditions acting in favour of certain in-
troduced species. This finding is consistent with the hypothesis of 
an increased correspondence of global biogeographical regions to 
global climatic patterns driven by biological invasions (Capinha et al., 

2015). It should, however, be noted that the models could explain 
only a modest fraction of variation in the compositional differences 
of the two species groups. The explanatory variables used in these 
models reflect general patterns of geographical, environmental and 
human-related similarities between islands, and their limited ex-
planatory power suggests a high importance of episodic, eventually 
idiosyncratic, drivers of alien species establishment and of species 
extinction. This is unsurprising given the large number of distinct 
human disturbances and complex global trade and travel flows that 
mediated the types and magnitudes of species extinctions and in-
troductions on islands over the last centuries (Russell & Kueffer, 
2019). In our models, we tested for evidence that British, French, 
Portuguese and Spanish colonial empires helped to reshape insular 
biodiversity. Future work could elucidate the role of human influ-
ence further by representing more accurately the flows of people 

F I G U R E  4   Proportion of the variation 
in spatial patterns of compositional 
similarity for (a–d) amphibians and 
(e–h) reptiles, explained by patterns 
of geographical proximity and of 
environmental similarity between islands. 
The amount of variation explained 
(R2) was quantified using multiple 
regression on distance matrices, and 
measurements were made for historical 
species assemblages (“historical”) and 
for the current assemblages (“current”). 
Regression models considered each 
explanatory variable separately (bar plots) 
and all in combination (rectangles). For the 
latter models, the proportion of variation 
explained by geographical factors (Geo.) 
and by environmental factors (Env.) is also 
shown. Circles are not drawn to scale. Bar 
plots are shown only for variables with 
significant relationships (α = .05)
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and goods between islands and between islands and continental 
areas throughout the years. However, we anticipate that the lack of 
detailed data on these flows for most islands would be a difficult 
obstacle to overcome.

4.3 | Conclusion

Our work provided the first global-scale assessment of how the 
diversity and biogeography of insular herpetofaunas have changed 
since the onset of globalization. We found widespread increases in 
species richness and substantial faunal homogenization. Somewhat 
paradoxically, human activity has introduced an increasing agree-
ment between the spatial patterns of herptile richness and com-
positional similarity and the spatial patterns of some non-human 
factors, particularly the global temperature gradient. This in-
creasing agreement appears to be driven primarily by biological 
invasions and reflects a reduction in the role of natural dispersal 
barriers, allowed by human agency, and an increase in the role of 
ecological factors in determining the number and identity of spe-
cies colonizing islands. Altogether, our findings substantiate the 
growing body of literature identifying anthropogenic activities as 
a major agent of biodiversity and biogeographical alteration on a 
global scale (Capinha et al., 2015; Díaz et al., 2019; Dornelas et al., 
2019). Recent projections of high rates of herptile species invasions 
and extinctions (Alroy, 2015; Seebens et al., 2017), combined with 
fast-changing climatic patterns (Foufopoulos, Kilpatrick, & Ives, 
2011; Stocker, 2014), suggest that insular herpetofaunas are likely 
to undergo further substantial changes in the coming decades.
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