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Abstract: Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, 

belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the 

consumption of contaminated water. This virus is responsible for both sporadic and epidemic 

outbreaks, leading to thousands of infections per year in several countries, and is thus considered 

an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, 

targeting the detection and eventual quantification of enteric viruses in samples from surface and 

drinking water. Samples positive for HEV RNA were recurrently found by reverse transcription 

quantitative PCR (RT-qPCR), in both types of matrix. The infectivity of these samples was evaluated 

in cultured Vero E6 cells and RNA from putative viruses produced in cultures evidencing cytopathic 

effects and was subjected to RT-qPCR targeting HEV genomic RNA. Our results evidenced the 

existence of samples positive either for HEV RNA (77.8% in surface water and 66.7% in drinking 

water) or for infectious HEV (23.0% in surface water and 27.7% in drinking water). These results 

highlight the need for effective virological control of water for human consumption and activities. 

Keywords: drinking water; enteric viruses; Hepatitis E virus; RT-qPCR; surface water; Vero E6 cell 

line; viral infectivity; water quality; water treatment 

 

1. Introduction 

Diseases transmitted by water and food have high socioeconomic impacts on public health all 

around the world, especially at a time when climate change has caused alterations in the occurrence, 

distribution and seasonal variation of several pathogens, increasing the risk of exposure [1–3]. 

Viruses are among the most worrying groups of pathogens. Enteric viruses, which include, among 

others, enteroviruses, noroviruses, rotaviruses, Hepatitis A virus and Hepatitis E virus (HEV) are 

excreted in large quantities in human feces and transmitted mainly by the fecal–oral route [3–6]. They 

do not have a lipid envelope and possess a robust protein capsid, which is responsible for their high 

resistance to environmental stress such as heat, extreme pH, desiccation, and organic solvents [2]. 

Typical treatments used to inactivate/remove bacterial pathogens or enveloped viruses (for example, 

Influenza) in food and water, such as filtration and chemical oxidants, may not be effective against 

this group of viruses. In Korea, infectious enteric viruses such as adenovirus and enterovirus were 

detected in tap water, despite treatments [7]. Further, their stability also makes them quite resistant 

to the most common sanitation treatments and allows their maintenance in wastewater for long 
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periods [2,8,9]. Recently, in Canada, several infectious enteric viruses, such as rotavirus, have been 

detected in surface water in the country's largest rivers, where many wastewater sources are 

discharged [10]. 

According to the World Health Organization (WHO), enteric viruses have moderate to high 

significance in human health [4] and the existence of 20 million infections worldwide was estimated 

for HEV alone, with 3.3 million symptomatic cases of acute hepatitis E. In 2015, HEV caused 

approximately 44,000 deaths worldwide, representing 3.3% of viral hepatitis mortality [11]. In 

Europe, 68,000 HEV infections had recently been estimated in France, 100,000 in the United Kingdom 

and 300,000 in Germany, per year. The number of infections has been increasing dramatically, and 

now hepatitis E is considered an emerging disease in Europe and Asia [2,5]. 

HEV is a non-enveloped single-stranded positive-sense RNA virus belonging to the Hepeviridae 

family [12,13]. HEV is transmitted mainly by the consumption of contaminated water or 

contaminated undercooked or raw food such as vegetables, meat (pork, mutton, rabbit, poultry) and 

dairy products [2,5,14,15]. It is important to note that contaminated water is not only a cause of direct 

transmission but is also related to indirect transmission due to its use in agriculture practices, namely 

in the irrigation of vegetables, where the virus may accumulate and be delivered as infectious 

particles [16–20]. Although less frequent, HEV can also be transmitted by transfusions with 

contaminated blood and by vertical (mother-to-child) transmission [14,21,22]. 

HEV was responsible for both sporadic and epidemic outbreaks in several countries [23,24], and 

has been detected in natural waters from Colombia, Italy, and Sweden [9,25,26], in drinking water in 

Sweden and India [9,27], and in wastewater in Italy, Sweden, Pakistan, Colombia, Portugal and Spain 

[14,25,28–31]. 

After entering the human body, HEV is associated with clinical manifestations such as jaundice, 

vomiting, loss of appetite, fatigue, fever, darkened urine, hepatalgia and hepatomegaly. Although 

less common, this virus may also be associated with neurological complications such as Guillain–

Barré syndrome, neuralgic amyotrophy, inflammatory polyradiculopathy, ataxia/encephalitis, and 

peripheral neuropathy. The mortality rate associated with HEV is approximately 2% in the general 

population, although in pregnant women the rate increases to 20% [21,32,33]. HEV infectious dose is 

not known [3]. 

A vaccine to prevent HEV infection was developed in China but is not yet available in most 

countries [11]. Antibiotics are ineffective and only a small number of antivirals, such as ribavirin have 

been indicated to treat infected individuals [34,35]. For all these reasons, there is a growing need for 

an effective surveillance system for the detection and quantification of this pathogen, mainly in water 

sources delivered to large populations, in order to reduce its transmission to humans and prevent 

potential epidemic situations with remarkable human and economic impacts (Figure 1) [3,5,36]. 

This study aimed to evaluate the presence of HEV in two sources of surface water and in 

drinking water sampled at two water treatment plants (WTPs), located at the central region of 

Portugal and at a point in the water distribution network. Our first approach was a quantitative 

molecular method (reverse transcription quantitative PCR (RT-qPCR)) applied to RNA extracted 

from sampled water in order to identify HEV-positive samples. A second approach, applied to HEV-

positive samples, consisted of their inoculation in cultured cells (Vero E6 cell line); RNA was 

extracted from putative viral particles produced in these cells and HEV replication was 

detected/confirmed by RT-qPCR. 
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Figure 1. Schematic representation of water collection and distribution networks and their influence 

on human health. 

2. Materials and Methods  

2.1. Study Sites 

This study was carried out in two water matrices (surface water and drinking water) localized 

at the central region of Portugal. The sampling points of surface water were in a river and in a dam 

reservoir. Two sampling points of drinking water were located at the end of the treatment process in 

two water treatment plants (WTPs) and another one, at one point in the water distribution network. 

WTP_R treats surface water from the river and WTP_D treats surface water from the dam reservoir. 

In WTP_R, surface water goes through the following treatment processes: pre-oxidation with ozone, 

pH adjustment, activated carbon adsorption, coagulation/flocculation, sedimentation, filtration with 

sand filters, pH correction and disinfection with chlorine. This WTP is composed of two independent 

treatment lines, each one with the capacity to produce 120,000 m³/day. In WTP_D, surface water 

undergoes the following treatment processes: pre-oxidation with chlorine, remineralization and 

correction of aggressiveness, coagulation, filtration with sand filters, pH correction and disinfection 

with chlorine. This WTP has two independent treatment lines with the capacity to produce 500,000 

m³/day (line 1) and 125,000 m³/day (line 2). These two WTPs provide water for more than three 

million inhabitants [37]. 

2.2. Water Collection and Primary Concentration 

The sampled water analyzed was collected and processed (concentrated) in 2019, between 

January and December. Sampling sites, dates and volumes of sampled water are indicated in Table 

1. Large starting volumes of water (Table 1) were concentrated using NanoceramR PAC-AG 

electropositive filters (Argonite; Sanford, FL, USA) set up in housing chambers [38–40]. The housings 

with the filters immersed in water (500 mL) were transported refrigerated to the laboratory, as soon 

as possible and processed within 72 h. 
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Table 1. Water surveyed from five sampling sites in 2019. 

Sampling Site Date 
Sampled Volume (L) 

Surface Water Drinking Water 

River and 

Water Treatment Plant R 

 (WTP_R) 

January  900 1200 

February, first half  690 1800 

February, second half 250 1300 

March, first half 220 1600 

March, second half  170 1500 

April  170 1350 

May  152 1300 

June  122 2000 

July  150 1500 

August, first half 150 1350 

August, second half  130 950 

September, first half 165 1200 

September, second half  220 1300 

October, first half  155 1400 

October, second half 130 1180 

November  130 1500 

December  230 1400 

Dam reservoir and 

Water Treatment Plant D 

 (WTP_D) 

January 690 960 

February  710 620 

March  1500 3400 

April  550 1100 

May  2340 800 

June  530 1000 

September  450 900 

October  250 800 

November  665 945 

December  215 675 

Point in the distribution network  

January  

- 

1700 

February  1780 

April  1700 

May  1800 

June  1900 

July  1600 

August  1400 

September  1700 

October  1880 

2.3. Elution and Secondary Concentration 

The procedure was carried out according to EPA Method 1615 (EPA/600/R-10/181) with some 

modifications [41]. Before eluting the filter, 10 µL of Mengo virus solution (process control virus) with 

105 copies/µL (bioMérieux; Marcy-l'Etoile, France) was added to the water inside the housing with 

the filter [42,43]; then, this water was passed through the filter to be discarded. Following this 

procedure, the NanoceramR PAC-AG filters (Argonite; Sanford, FL, USA) were eluted with 1 L of 3% 

beef extract (BD Bioscience; Franklin Lakes, NJ, USA). The resulting eluted solution was subjected to 

an organic flocculation process with pH adjustment to 3.5, followed by centrifugation at 2500× g, 4 °C 

for 15 min The pellet was resuspended in sodium phosphate pH 7.0–7.5 and, after adjusting the pH 

to 9.0, a new centrifugation was performed at 5000× g, 4 °C for 10 min. The resulting supernatant was 

transferred to a new tube and the pH adjusted to 7.0–7.5. Samples were filtered through Acrodisc 

Syringe filters (PALL Corporation; Ann Arbor, MI, USA) with a pore size of 0.22 µm and the resulting 

volume (35–40 mL) was divided into three parts: 20 mL for RNA extraction and further evaluation 
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by RT-qPCR, 10 mL for inoculation into cell cultures and 5 to 10 mL for storage. The samples were 

kept at -70 °C until use. 

2.4. Tertiary Concentration and Nucleic Acid Extraction  

Samples reserved for RT-qPCR analysis (20 mL) were thawed and applied to VivaspinR 

concentrators (Sartorius; Goettingen, Germany) that were centrifuged at 8000× g and 4 °C for several 

hours including, in the final, two wash steps with 1 mL of 1 M sodium phosphate (pH 7.0–7.5), until 

the sample volume was less than 1 mL. The final concentrate was transferred from the VivaspinR 

concentrator to a 1.5 mL microtube. All final concentrates were subjected to RNA extraction and 

purification with the QIAamp viral RNA Mini kit (Qiagen; Hilden, Germany) [44,45] according to the 

manufacturer's instructions. 

2.5. Detection and Quantification of Viral Genomes 

RT-qPCR amplifications were performed in a StepOnePlus thermocycler (Applied Biosystems; 

Foster City, CA, USA), in reaction mixtures of 25 µL containing 5 µL of extracted RNA. Each template 

RNA was assayed in duplicate and negative controls without nucleic acid as well as positive controls 

were introduced in each run. HEV and Mengo virus were assayed with a CeeramTools Hepatitis E kit 

(bioMérieux; Marcy-l'Etoile, France) and a Mengo virus Extraction Control kit (bioMérieux; Marcy-

l'Etoile, France), respectively. HEV amplification conditions were reverse transcription at 45 °C for 

10 min, enzyme activation at 95 °C for 10 min, followed by 40 cycles of amplification with 

denaturation at 95 °C for 15 s and data collection at 60 °C for 45 s. Mengo virus amplification 

conditions were reverse transcription at 45 °C for 10 min, enzyme activation at 95 °C for 10 min, 

followed by 45 cycles of amplification with denaturation at 95 °C for 15 s and data collection at 60 °C 

for 45 s. Quantification of HEV was estimated by standard curves, with five points constructed with 

serial dilutions (1:10) of control HEV RNA (CeeramTools Hepatitis E Standard kit; bioMérieux; 

Marcy-l'Etoile, France). Mengo virus quantification was performed with a four-point quantitation 

curve (0.1%, 1%, 10%, and 100%), prepared with RNA extracted from 10 µL of Mengo virus solution 

(105 copies) with the QIAamp viral RNA Mini kit (Qiagen; Hilden, Germany). Only the results that 

met the quality criteria established by the mentioned kits were considered. Values given were the 

average of the results obtained in two independent RT-qPCR reactions. Initial results, expressed in 

genomic copies per five microliters of RNA (gc/5µL) in the reaction mixture, were converted in 

number of genomic copies per liter (gc/L) of sampled water, based on the data presented in Table 1. 

For Mengo virus, the results were expressed in percentage (%) of genomic copies (according to the 

quantitation curve). 

2.6. Infectivity Assays 

Concentrated water samples reserved for assays of infectivity were thawed and maintained at 4 

°C, until inoculation into Vero E6 cultures (Vero C 1008, ATCC CRL–1586) [46,47]. Cells were grown 

at 37 °C in 25 cm2 flasks (T25) in the following culture medium (culture medium, FBS10): CO2-

Independent Medium (Gibco, Thermo Fisher Scientific; Waltham, MA, USA) with additional 10% 

fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific; Waltham, MA, USA), 2 mM GlutaMAX 

(Gibco, Thermo Fisher Scientific; Waltham, MA, USA), and 0.5 mg/mL gentamicin (Gibco, Thermo 

Fisher Scientific; Waltham, MA, USA). Cells were routinely sub-cultured at confluency, by action of 

TrypLE Express cell dissociation reagent (Thermo Fisher Scientific; Waltham, MA, USA). 

Cell inoculations with water samples were carried out in identical culture conditions, except that 

the concentration of FBS was 2% instead. The original culture medium was discarded from each T25 

with a sub-confluent cell culture, prior to its inoculation with 1 mL of water sample diluted 1:2 in 

culture medium, FBS2. After 3 h of incubation with gentle agitation, 4 mL of FBS2 was added and 

incubations occurred until a cytopathic effect (CPE) was observed or for a maximum period of 15 

days. Cultures were observed daily and when longer incubations were needed, there was a 

replacement of the culture medium every 5 days, keeping the previous medium refrigerated. Finally, 
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cells (in suspension or manually detached) and culture medium were frozen/thawed (-70 °C/37 °C) 

twice and centrifuged at 3000× g for 5 min. Supernatants with the first-passage (P1) intra and 

extracellular putative viral particles (pVPs) were used in a new round of inoculations, performed as 

described above, in order to produce pVPs from a second passage (P2). However, P2 pVPs differ 

from P1 pVPs because at the end of the incubation period, the culture medium with cells was directly 

subjected to centrifugation to recover the supernatant, mostly consisting of extracellular pVPs. The 

P2 pVPs were subjected to a 6 h centrifugation at 17,000× g and 4 °C and the pellets were suspended 

in 140 µL of phosphate-buffered saline (PBS) in order to be processed for RNA extraction and 

purification, as indicated in 2.4. RT-qPCR targeting HEV RNA was performed as described in 2.5. 

2.7. Statistical Analyses 

All statistical analyses were conducted using Microsoft Excel 2017 (Microsoft Inc., Redmond, 

WS, USA) and IBM SPSS Statistics (SPSS Inc., Chicago, IL, USA). The Kolmogorov–Smirnov test was 

applied to assess the normality of the data within each data set; a p-value greater than 0.05 was 

indicative of a normal distribution. Once the normality was confirmed, the Student's t-test could be 

used to compare the data. Differences were considered significant for a p-value less than 0.05. 

3. Results 

3.1. RT-qPCR HEV RNA Detection and Quantification in Water Samples 

3.1.1. HEV RNA in Surface Water Samples 

From the 27 concentrated samples from surface water, HEV RNA was detected and quantified 

in 21 (77.8%) (Figures 2 and 3). 

 

Figure 2. Variation in the concentration of hepatitis E virus (HEV) RNA detected in concentrated 

water sampled in four sampling sites during 2019. (a) River and WTP_R (n = 34). (b) Dam reservoir 
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and WTP_D (n = 20). RT-qPCR results (average values from two independent reactions), in gc/L, 

indicate estimated genomic copies per liter of sampled water (based on data from Table 1). 

 

Figure 3. Variation in the concentration of HEV RNA detected in concentrated drinking water from 

the sampling point in the distribution network during 2019 (n = 9). RT-qPCR results (average values 

of two independent reactions), in gc/L, indicate estimated genomic copies per liter of sampled water 

(based on data from Table 1). 

In the river, in February, March, August, September, and October, two sampling campaigns 

were carried out (in the first and second half of each month) and, of the 17 concentrated samples, 15 

(88.2%) were positive for HEV RNA (Figure 2a). HEV RNA was detected in 11 of the 12 months of 

campaign, in concentrations fluctuating between 0 and 7383.2 gc/L, with a maximum in April (7383.2 

gc/L) and a very sharp decrease from August to December (Figure 2a). 

In the 10 concentrated surface water samples from the dam reservoir, HEV RNA was detected 

in six (60%) (Figure 2b). HEV RNA was detected and quantified in concentrations ranging between 0 

and 10,9687.5 gc/L (the highest concentration, which was in April), with a concentration lower than 

2411.9 gc/L in the remaining months (Figure 2b). 

3.1.2. HEV RNA in Drinking Water Samples 

From the 36 samples of concentrated drinking water, HEV RNA was detected and quantified in 

24 (66.7%) (Figures 2 and 3). 

In WTP_R, two sampling campaigns were carried out in February, March, August, September, 

and October (in the first and second half of each month). HEV RNA was detected in 11 out of 17 

concentrated samples (64.7%) (Figure 2a), presenting its highest concentration (2,379.3 gc/L) in April, 

which then declined sharply to 0. It was not detected in January, March (first and second half), August 

and October (second half in both months), and December. 

In the 10 concentrated drinking water samples from WTP_D, HEV RNA was detected in five 

(50%), corresponding to five months (Figure 2b) and was not detected in January, March, May, 

November, and December. From 75.151 gc/L detected in February and a maximum concentration of 

5617.1 gc/L reached in April, HEV RNA concentrations significantly decreased, presenting values 

between 58.725 gc/L to no detection, from May to December.  

In the concentrated samples of drinking water from the sampling point in the distribution 

network, HEV RNA was detected in eight out of nine samples (88.9%) (eight months) (Figure 3), in 

concentrations fluctuating between 5645 and 8926.6 gc/L. The highest concentration occurred in April 

and then decreased until December. It was not detected in February. 
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3.2. Evaluation of the Efficacy of Water Treatment Plants (WTPs) in HEV RNA Elimination 

3.2.1. River vs WTP_R 

In January and the first half of March, HEV RNA was not detected either in the surface water of 

the river or in its treated drinking water from WTP_R. Along the remaining months (15 sampling 

dates), HEV RNA was detected in the river, always in higher concentrations than in the WTP_R (9.8 

–100% reduction, as shown in Table 2). The lowest reduction values were obtained in February (9.8 

and 37%, in the first and in the second half, respectively), while the highest values (100%) were 

obtained in the second half of March, August, October, and December; values higher than 87.6% were 

obtained in the first half of these months. High reduction values (>90%) were also obtained in four 

other situations (June, July, and in the first and second half of September), while intermediate values 

were obtained in the remaining comparisons (77.9 and 67.8%, in May and April, respectively). There 

were statistically significant differences in the concentrations of HEV RNA between samples from 

the river and from WPT_R, i.e., between non-treated and treated water samples (Student’s t-test, p < 

0.05). 

3.2.2. Dam Reservoir vs WTP_D 

In January, March, and December, HEV RNA was not detected either in surface water from the 

dam reservoir or in its treated drinking water from WTP_D, and in February and June, there was no 

reduction with the treatment. However, a reduction of 73.3% was observed in September and a 

reduction of over 94.9% in April, May, October, and November (Table 2). There were no statistically 

significant differences in the concentrations of HEV RNA between samples from the dam reservoir 

and from WTP_D, i.e., between non-treated and treated water samples (Student’s t-test, p > 0.05). 

Table 2. Quantification of HEV RNA in concentrated samples from surface water sources and their 

associated water treatment plants, and evaluation of the treatment efficacy (reduction in RNA copies). 

Date 

HEV Concentration 

(gc/L) Reduction (%) 

after Treatment 

HEV Concentration 

(gc/L) Reduction (%) 

after Treatment 
River WTP_R 

Dam 

Reservoir 
WTP_D 

January  0 0 * 0 0 * 

February, first half  355.5 320.8 9.8 - - - 

February, second half 78.2 49.3 37.0 29.1 75.2 NR 

March, first half 0 0 * - - - 

March, second half  4,029.1 0 100 0 0 * 

April  7,383.1 2,379.3 67.8 109,687.5 5,617.1 94.9 

May  1,936.5 428.0 77.9 2,412 0 100 

June  1,394.9 126.0 91.0 0 58.7 NR 

July  1,755.0 22.0 98.7 - - - 

August, first half 206.5 24.2 88.3 - - - 

August, second half  113.3 0 100 - - - 

September, first half 23.3 1.9 91.9 - - - 

September, second half  55.1 5.0 90.9 19.5 5.2 73.3 

October, first half  36.3 4.5 87.6 - - - 

October, second half 2.7 0 100 30.4 0.7 97.6 

November  69.9 4.8 93.1 0.7 0 100 

December  2.1 0 100 0 0 * 

* Undetermined value or not calculated due to absence of detection; NR—no reduction with 

treatment; - no result, due to absence of sampling; gc/L: genomic copies per liter of sampled water, 

calculated with RT-qPCR results (average values of two independent reactions) and data from Table 

1. 
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3.3. Recovery of the Process Control Virus (Mengo virus) in the Water Samples Subjected to the Survey 

Mengo virus recovery was evaluated by RT-qPCR in the 59 water samples subjected to this 

survey: 25 from surface water and 34 from drinking water. The percentages of recovery were low 

(0.1–5.0%) in most samples (63%), and it was not even detected in 25%. Recoveries higher than 5% 

were found in 12% of the samples (Figure 4a). The results, shown in Figure 4b, evidence much lower 

recoveries in surface water samples than in drinking water samples. There were statistically 

significant differences in the recovery of Mengo virus between surface water and drinking water 

(Student’s t-test, p < 0.05). 

 

Figure 4. Recovery of the process control virus (%) in the water samples analyzed. (a) Mengo virus 

recovery in surface water and drinking water samples (n = 59). (b) Box plot generated with Mengo 

virus recoveries in samples from surface water and drinking water samples (n = 59); X represents the 

average recovery value. 

3.4. Potential Infectivity of the Water Samples 

3.4.1. Effect on Vero E6 Cultures and Production of Putative Viral Particles 

Thirty-four concentrated samples from water sampled in 2019, between January and August and 

covering all sampling sites, were considered for infectivity assays in Vero E6 cultures. However, 

samples previously identified as negative for HEV RNA were not selected, except when the related 

sample (collected on the same date in the associated matrix) was positive. This was the case of the 

four HEV RNA negative samples, whose infectivity results are shown in Tables 3 and 4. 

Table 3. Evaluation of related concentrated water samples (river and WTP_R) for the presence of HEV 

RNA and infectious particles. 

Months 

HEV RNA 

(gc/L)  
HEV Reduction (%) after 

Treatment 

HEV Infectivity (*) 

River WTP_R River WTP_R 

February 355.5 320.8 9.8 Negative Negative 

February 78.2 49.3 37 Negative Negative 

March 4,029.1 0 100 Negative Negative 

April 7,383.1 2,379.3 67.8 Negative Negative 

May 1,936.5 428 77.9 Negative Positive 

June 1,394.9 126 91 Positive Positive 

July 1,755 22 98.7 Negative Negative 

August 206.5 24.2 88.3 Negative Negative 

August 113.3 0 100 Positive Positive 

*Based on RT-qPCR results, when RNA extracted from putative viruses produced in Vero E6 cultures 

were identified as HEV RNA; gc/L: genomic copies per liter of sampled water, calculated with RT-

qPCR results (average values of two independent reactions) and data from Table 1. 
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Table 4. Evaluation of related concentrated water samples (dam reservoir and WTP_D) for the 

presence of HEV RNA and infectious particles. 

Months 

HEV RNA  

(gc/L)  
HEV 

Reduction (%) 

after Treatment 

HEV Infectivity (*) 

Dam 

Reservoir 
WTP_D 

Dam 

Reservoir 
WTP_D 

February  29.1 75.2 NR Negative Negative 

April  109,687.5 5,617.1 94.9 Negative Negative 

May  2,412 0 100 Negative Negative 

June  0 58.7 NR Positive Positive 

*Based on RT-qPCR results, when RNA extracted from putative viruses produced in Vero E6 cultures 

were identified as HEV RNA; NR—no reduction with treatment; gc/L: genomic copies per liter of 

sampled water, calculated with RT-qPCR results (average values of two independent reactions) and 

data from Table 1. 

Most cultures (19 in 32) did not develop CPEs during the incubation period (15 days). 

Nevertheless, putative viral particles (pVPs) from this first passage were collected and used to infect 

new cultures. From these, 17 developed CPEs within 2–6 days post-inoculation; pVPs from this 

second passage, with or without CPEs, were collected and subjected to RNA extraction. 

3.4.2. RT-qPCR Evaluation of Putative Infectious HEV Produced in Vero E6 Cultures 

RNA extracted from pVPs produced as referred to above was subjected to RT-qPCR evaluation. 

From the samples evaluated, 18 were related samples from the river and WTP_R (eight from each) 

(Table 3), eight from the dam reservoir and WTP_D (four from each) (Table 4), and six were from the 

sampling point in the distribution network (Table 5). HEV infectivity was confirmed in samples from 

all matrixes (globally 25%): 3/13 (23.0%) from surface water were positive (two from the river and 

one from the dam reservoir: 22.2% and 25.0%, respectively) as well as 5/18 (27.7%) from drinking 

water (three from WTP_R, one from WTP_D and one from the sampling point in the distribution 

network: 33.3%, 25.0% and 16.6%, respectively) (Tables 3–5). 

Table 5. Evaluation of concentrated water samples from a sampling point in the distribution network, 

for the presence of HEV RNA and infectious particles. 

Months 
HEV RNA 

(gc/L)  
HEV Infectivity (*)  

January 46.9 Negative 

April 8,926.6 Negative 

May 1,473.5 Negative 

June 133.3 Negative 

July 221.4 Positive 

August 186.6 Negative 

* Evaluated by CPEs in Vero E6 cells, and RNA from virus produced in Vero E6 cells were found by 

RT-qPCR; gc/L: genomic copies per liter of sampled water, calculated with RT-qPCR results (average 

values of two independent reactions) and data from Table 1. 

It was also possible to determine that 1) most positive samples for HEV infectivity had also tested 

positive for HEV RNA (exceptions were WTP_R from August and dam reservoir from June) and 2) 

positive samples for HEV infectivity were frequently found in related samples, i.e., in river/WTP_R 

and dam reservoir/WTP_D sampled on the same date (one exception was found in  river/WTP_R 

from May, where only WTP_R was positive for infectious HEV) (Tables 3–5). Moreover, a relationship 

was not evidenced between the number of RNA copies detected in a water sample and its potential 

infectivity because, from the 11 samples presenting more than 1000 gc/L, only one (river from June) 
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evidenced infectivity; values of gc/L between 0 and 428 had been found in all the others able to 

produce infectious HEV in Vero E6 cells. 

4. Discussion 

Although a preliminary work, this study followed a complex and complete approach in order 

to assess the presence of HEV, starting from high volumes of water and combining, in the same 

procedure, the possibility to detect viral RNA by RT-qPCR as well as evaluate infectivity. Other 

methods are limited to a maximum starting volume of five liters of water, as described in ISO 15216-

1:2017 [42,43], but EPA Method 1615 of the United States Environmental Protection Agency [41], 

which supported this experimental protocol, is based on the collection of much larger volumes, 

making the results more reliable [40,48]. The use of cell cultures also overcame the limitation of 

evaluations based only on RT-qPCR. In fact, RT-qPCR has been increasingly used to detect enteric 

viruses in water and food samples, with high specificity/sensitivity and the possibility of obtaining 

results in less than four hours [3,48,49]. However, this methodology does not allow assessing the 

infectivity associated with the viral genomes detected in the reaction [3,25,40]. Beyond the 

confirmation of viral genomes, it is crucial in the evaluation of risks to public health in order to 

determine whether they correspond to viral particles with the ability to infect human cells as well 

[48–51]. Despite being expensive and time consuming, relying on cell cultures, it is the most used 

standard method for assessing the infectivity of viral particles, by observing cytopathic effects (CPEs) 

[3,6,52]. 

This one-year survey evaluated the presence of HEV in concentrated samples from two bodies 

of water (a river and a dam reservoir) and from the drinking water sampled on their water treatment 

plants (WTP_R and WTP_D, respectively) at the end of the treatment process. A mammal cell line 

(Vero E6) derived from African green monkey (Cercopithecus aethiops) kidney was used for the first 

time in order to assay the potential infectivity of water samples where HEV RNA had been detected 

by RT-qPCR. The rationale for the utilization of this cell line was its capability to replicate many 

different viruses [46,53], also taking into account that HEV has a large host range [12,15]. This 

approach effectively resulted in the detection of infectious HEV in several samples, by induction of 

CPEs in cultured cells with subsequent confirmation of HEV replication through RT-qPCR to RNA 

extracted from extracellular viral particles. Our results agree with a recent study [54] demonstrating 

that a wild-derived HEV strain replicated in Vero cells, the cell line from which Vero E6 was derived 

(46). 

HEV was detected in concentrated samples from the two bodies of water, and in an infectious 

state in some of these samples. Comparing the two bodies of water, the river showed a greater 

number of positive samples for HEV RNA (88,2%) than the dam reservoir (60%). On the other hand, 

in both, the maximum concentration (>100,000 gc/L, in the dam reservoir) occurred in April (Spring 

in Portugal) and decreased until December. The maximum concentrations in April can be explained 

by the pattern of precipitation in Portugal, as described for Colombia [25]. In April 2019, rainfall was 

high, the fifth rainiest April since 2000 [55] and, associated with more precipitation, a greater runoff 

of possible contaminants from the surrounding areas may have disturbed these water bodies [56]. 

Many of the areas surrounding the sampling sites are places of agriculture and animal production 

[57], where manure from animal production activities is still used as fertilizer. It is well known that 

pigs are reservoirs of HEV, which is excreted in feces, and might thus be the possible origin of water 

contamination [2,58,59]. Concentrated surface water samples also presented infectious HEV in higher 

percentages (33.3%) in samples from the river than in samples from the dam reservoir (25%). 

Although the peak HEV RNA concentration was found in April, those samples did not produce 

infectious HEV in Vero E6 cells. Nevertheless, infectious HEV was detected in both bodies of water 

in June, when HEV RNA concentrations were high in the river (>1000 gc/L) and zero in the dam 

reservoir, evidencing inexistence of a direct association between the number of detected RNA copies 

and potential infectivity. 

In drinking water, HEV RNA was also detected, although in a smaller number of concentrated 

water samples (64.7% in WTP_R, and 50.0% in WTP_D) than was observed in the bodies of water, as 
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also found in Switzerland [9]. After analyzing the concentrated samples of drinking water from the 

two WTPs and from a point in the distribution network, there was an identical pattern: the peak HEV 

RNA concentration was detected in April, and subsequently decreased until the end of the year. 

These results are in complete accordance with what was previously described for the bodies of water 

that feed these WTPs and the point in the distribution network. Likewise, the highest HEV RNA 

concentrations were found in two related water matrixes: the dam reservoir and WTP_D. Out of the 

18 concentrated drinking water samples selected for evaluation of HEV infectivity, 27.7% were 

positive. Drinking water from WTP_R presented the highest number of infectious samples (three), 

followed by WTP_D and the water from the point in the distribution network, both with only one 

infectious sample. Infectious HEV was detected in samples collected between May and August, after 

the peak of HEV RNA copies, as also observed in the bodies of water. No clear relationship was found 

between infectivity and number of HEV RNA copies detected per liter of sampled water. 

Even though most of the results did not evidence contradictory aspects, a few should be 

discussed. One unexpected result was the infectivity of two samples (one from the dam reservoir and 

the other from the WTP_R) originally identified as negative for HEV RNA. This may be explained by 

eventual mishaps during the original RNA extraction procedures and emphasizes the relevance of 

evaluating results achieved by independent approaches. The detection of an infectious drinking 

water sample (WTP_R) was also unexpected, although the sampled water from its source (river) did 

not show infectivity. This may be explained by the large differences in the water volumes subjected 

to sampling: 1300 L in the WTP_R and 152 L in the river. It should be noted that the positive result of 

infectivity in WTP_R means that HEV was also present in the river to such an extent that infectivity 

remained after treatment. 

The results showing the presence of infectious HEV in concentrated samples of drinking water 

evidence the need to further investigate eventual threats to human health. It is worth noting that Vero 

E6 cultures were inoculated with 0.5 mL of concentrated (40×, in average) drinking water samples, 

equivalent to approximately 17.5 L of the sampled water (1400 L, in average). Actually, while healthy 

individuals drink approximately two liters of water each day [60], this study, as referred above, was 

conducted with an average volume of 1400 L. 

High values of genomic copies per liter found in several samples of natural water may also be 

attributed to the large volumes sampled. These large volumes were considered necessary to recover 

enough viruses to allow a reliable quantification based on the low levels of enteric viruses often 

reported for natural waters. 

Low recovery percentages of the process control virus (Mengo virus) used for validation of the 

experimental procedure [61,62] were often found, as also occurred in Kyria da Silva et al. [63] and 

Teixeira et al. [43]. Recoveries were even lower in the untreated water, which may be related to the 

great number of particles and other interfering materials usually present [64]. These results suggest 

that Mengo virus was not a good recovery control despite the relevance that may be attributed to its 

presence at the end of the process for the validation of the eventual negative results of the viruses 

under detection. 

Regarding the efficacy of the WTPs in reducing HEV, based only on genome copies, this was 

observed in both situations, but only with statistically significant differences in WTP_R. Differences 

in the water volumes sampled in the two types of matrix, as discussed above and evidenced in Table 

1, may explain less marked differences. Differences in eliminating viruses may also be attributed to 

difficulties related to the manipulation of the sample during the various stages of filtration and 

concentration, including the characteristics of each water matrix. Moreover, the values obtained by 

RT-qPCR cannot be interpreted as absolute, since there are many steps in the experimental 

procedures that may lead to RNA degradation [48]. In any case, these results may indicate that the 

treatment at WTP_R, including pre-oxidation with ozone, adsorption with coal and disinfection with 

chlorine, may be more effective in the elimination of this virus than WTP_D, which uses neither ozone 

nor adsorption with coal [25,65,66]. Ozone may be crucial in the control of viruses in water, as found 

in other studies [67,68], concerning the elimination of enteric viruses and bacteriophages. However, 

more studies will be needed to confirm this statement. 
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Finally, climate change will certainly increase the frequency of pathogens in water systems 

worldwide, whether due to the occurrence of floods, sewage contamination or the scarcity of safe 

drinking water sources [3]. In this context and considering the results obtained in this study, 

monitoring the presence of HEV and other viruses in water supply and distribution systems is 

advisable. A similar approach should be conducted, increasing the sampling effort (number of 

samples and geographical regions during the entire year to allow the detection of possible seasonality 

patterns) and implementing the application of the quantitative microbial risk assessment (QMRA) 

[69]. 

5. Conclusions 

HEV has is gaining an increasing presence in developed societies. As in many other countries in 

Europe and Asia, this virus also circulates in Portuguese waters. The results of this survey highlight 

the need for systematic monitoring of the presence of HEV and other emerging enteric viruses in 

surface and treated waters. It is also recommended to carry out studies targeting water treatment 

methods to better understand the influence of the various stages of the elimination/inactivation of 

these viruses in WTPs.  
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