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1. Introduction
For the past years, the au-

thors have been developing the 
concept of systematic computer 
simulation training at univer-
sities. Spreadsheets are chosen 
to be the leading environment 
for computer simulation train-
ing, their application discussed 
in articles [1, 2]. Using spread-
sheet processors (autonomous, 
integrated and cloud-based) as 
examples, the authors demon-
strate components of technology 
of computer simulation of de-
termined and stochastic objects 
and processes of various nature. 
Extensive application of artificial 
intelligence in everyday life calls 
for students’ early acquaintance 
with its models and methods 
including neural network-based 
while teaching machine learning 
[‎3]. It conditions the need for 
developing training methods of 
computer simulation of neural 
networks in the general-purpose 
simulation environment, i.e. 
spreadsheets.

The first description of 
spreadsheet application to arti-
ficial neural network simulation 
of visual phenomena belongs to 
Thomas T. Hewett, Professor of 
the Department of Psychology 
of Drexel University [‎4]. His 
approach implies simultaneous 
studying a neural network and 
understanding its functioning as 
psychology students conclude the 
laws of the neural impulse spread 
by applying the trial-and-error 
method.

The patent “Embedding neural networks into spreadsheet 
applications” [‎5] describes an artificial neural network with 
a plurality of processing elements called neurons arranged 
in layers. A network has an input layer, an output layer, and 
one or more “hidden” layers in between, necessary to allow 
solutions of non-linear problems. Each unit (in some ways 
analogous to a biological neuron: dendrites – input layer, 
axon – output layer, synapses – weights, soma – summation 
function) is capable of generating an output signal which is de-
termined by the weighted sum of input signals it receives and 
an activation function specific to that unit. A unit is provided 
with inputs, either from outside the network or from other 
units, and uses these to compute a linear or non-linear output. 
The unit’s output goes either to other units in subsequent lay-
ers or to outside the network. The input signals to each unit 
are weighted by factors derived in a learning process. In his 
patent, Ruggiero details a network structure (multi-level), an 
activation function (sigmoidal), a coding method (polar), etc. 
He presents a mathematical apparatus for network training 
and determines a method of data exchange between a spread-
sheet processor nucleus and an add-in to it. The patent author 

suggests storing input data in 
columns, maximum and mini-
mum values for each column of 
input data, the number of learn-
ing patterns. Data can be nor-
malized or reduced to the polar 
range [0; 1] both in spreadsheets 
and add-ins.

The authors of [6] give an 
example of applying the non-lin-
ear optimization tool, Microsoft 
Excel Solver, to forecasting stock 
prices using the “grey-box” con-
cept, in which the model is evi-
dent, yet, the details of its reali-
zation are hidden.

According to [7], Anderson 
first selected Iris versicolor, the 
common blue flag, because he 
believed it to be clearly defined, 
and it was common and easily ob-
served. He recorded several mor-
phological characters in more 
than 2,000 individuals belonging 
to 100 populations, data far more 
extensive than those that any bot-
anist had yet obtained on a sin-
gle species. In the famous article 
“The Use of Multiple Measure-
ments in Taxonomic Problems” 
indicating that “Table I shows 
measurements of the flowers of 
fifty plants each of the two spe-
cies Iris setosa and I. versicolor, 
found growing together in the 
same colony and measured by 
Dr E. Anderson, to whom I am 
indebted for the use of the data” 
[8]. Fisher’s article contained only 
three references two of which to 
Anderson’s works – that of [9] 
and that of [10] marked with “(in 
the Press)”. The set of data used 

by Fisher and collected by Anderson was introduced as “Iris 
flower data set” (or “Iris data set” and “Iris data”). The phrase 
“Fisher’s Iris data set” traditionally expresses Fisher’s role as the 
founder of linear discriminant analysis, but not the authorship 
of the data set. So, it is possible to pay tribute to Edgar Anderson 
by naming this data set after him – Anderson’s Iris data set.

2. Methods
Let’s consider the pattern classification problem by taking 

a Anderson’s Iris data, composed of data on 150 measurements 
of three Iris species – Iris setosa, Iris virginica and Iris versicol-
or) – including 50 measurements for each species. There were 
measured four features: sepal length (SL), sepal width (SW), 
petal length (PL), and petal width (PW).

To draw a grounded conclusion on the Iris type, let’s build 
a three-layered neural network with the following architecture 
(Fig. 1):

– the input layer is a four-dimensional arithmetical vector 
(x1, x2, x3, x4) the components of which are corresponding mea-
sured features of Anderson’s Irises (SL, SW, PL, PW) normal-
ized according to the network activation function;

APPLICATION OF CLOUD-BASED  
SPREADSHEETS TO ARTIFICIAL NEURAL  

NETWORK MODELLING
Oksana Markova

PhD, Senior Lecturer
Department of Computer Systems and Networks

Kryvyi Rih National University
11 V. Matusevycha str., Kryvyi Rih, Ukraine, 50027

markova@mathinfo.ccjournals.eu

Serhiy Semerikov
Doctor of Pedagogical Sciences, Professor

Department of Computer Science and Applied Mathematics
Kryvyi Rih State Pedagogical University

54 Gagarina ave., Kryvyi Rih, Ukraine, 50086
semerikov@gmail.com

Abstract: The article substantiates the necessity to develop 
methods of computer simulation of neural networks in the 
spreadsheet environment. The systematic review of their ap-
plication to simulating artificial neural networks is performed. 
The authors distinguish basic approaches to solving the prob-
lem of network computer simulation training in the spread-
sheet environment, joint application of spreadsheets and 
tools of neural network simulation, application of third-par-
ty add-ins to spreadsheets, development of macros using the 
embedded languages of spreadsheets; use of standard spread-
sheet add-ins for non-linear optimization, creation of neural 
networks in the spreadsheet environment without add-ins and 
macros. It is shown that to acquire neural simulation compe-
tences in the spreadsheet environment, one should master the 
models based on the historical and genetic approach. The arti-
cle considers ways of building neural network models in cloud-
based spreadsheets, Google Sheets. The model is based on the 
problem of classifying multidimensional data provided in “The 
Use of Multiple Measurements in Taxonomic Problems” by R. 
A. Fisher. Edgar Anderson’s role in collecting and preparing 
the data in the 1920–1930s is discussed as well as some pecu-
liarities of data selection. 
Keywords: Anderson’s Iris, computer simulation, neural net-
works, cloud-based spreadsheets.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Conference Technology Transfer: fundamental and innovative technical solutions

https://core.ac.uk/display/323315663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


13

COMPUTER SCIENCES

– the hidden layer has dimension 9 (the minimal required 
number according to Kolmogorov-Arnold representation theo-
rem) and is described by the vector (h1, h2, h3, h4, h5, h6, h7, h8, h9);

– the output layer is a three-dimensional arithmetical vector 
(y1, y2, y3) the components of which are probabilities indicating 
the correspondence of the data set to one of the three Iris types.

The bias neuron equal to 1 (marked red in Fig. 1) is added 
to the neurons of the input and hidden layers. The bias neurons 
are noted for not having synapses so they cannot be located in 
the output layer.

3. Results
Let’s first introduce Anderson’s Irises into spreadsheets with 

the following values of cells: A1 is Iris Data, A2 is SL, B2 is SW, 
C2 is PL, D2 is PW, E2 is Species. The table cells A3:E152 include 
Anderson’s Irises. It isn’t possible to input the data of the given 
set into the input layer as the value of the four characteristics is 
beyond the range limits [0; 1]. The next step is normalization of 
columns A, B, C and D to meet the given range and coding of 
Iris types from column E.

Each Iris type is coded by the three-dimensional arithmeti-
cal vector: for i-Iris (Iris setosa is 1, Iris versicolor is 2, Iris virgi-
nica is 3) let’s set the i-th component in 1, and the other ones –  
in 0. To do this, let’s introduce the following values into the cells: 
G1 is encoding, G2 is setosa, H2 is versicolor, I2 is virginica, G3 
is =if($E3=G$2,1,0).

Next, let’s copy the formula from the cell G3 to the range 
G3:I152 and obtain the following model codes for the three Iris 
types: for Iris setosa – (1, 0, 0), for Iris virginica – (0, 0, 1) and for 
Iris versicolor – (0, 1, 0).

Each column is normalized separately. To perform this, 
let’s find minimum and maximum values by introducing 
the following values: E154 is min, E155 is max, A154 is 
=min(A3:A152), A155 is =max(A3:A152). Let’s apply the cells 
A154:A155 to the range B154:D155 and introduce the follow-
ing values into the cells: K1 is normalization, K2 is x1, L2 is 
x2, M2 is x3, N2 is x4, K3 is =(A3–A$154)/(A$155–A$154). The 
latter formula is applied to the range K3:N152. Its essence is 
explained by: normalization=(value–min)/(max–min). This 
approach results in the minimum value normalized to 0, while 
the maximum one – to 1.

According to the chosen architecture, let’s add the bias 
neuron to the four neurons of the input layer by introducing 
its name (x5) into the cell O2 and its value (1) into the range 
O3:O152. On this stage, the input layer is formed as x1, x2, 
x3, x4, x5.

The next step includes transmission of a signal from the 
input layer to the hidden one of the neural network. Let’s denote 
the weight coefficient of the synapse connecting the neuron xi 
(i=1, 2, 3, 4, 5) of the input layer with the neuron hj (j=1, 2, ..., 9) 
of the hidden layer by ,xh

ijw  while the weight coefficient con-
necting the neuron hj of the hidden layer with the neuron yk 
(k=1, 2, 3) of the input layer is denoted by .hy

jkw  In this case, the 
force of the signal coming to the neuron hj of the hidden layer 
is determined as a scalar product of signal values on the input 
signals and corresponding weight coefficients. To determine a 
signal going further to the output layer, let’ apply the logistic 
function of activation f(S)=1/(1+e–S), where S is a scalar product. 
The formulae for determining the signals on the hidden and 
output layers will look like:

+
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Accordingly, two matrices should be created. The ma-
trix wxh of 5×9 contains weight coefficients connecting five 
neurons of the input layer (the first four contain normalized 
characteristics of Anderson’s Irises, while the fifth one is the 
bias neuron) with the neurons of the hidden layer. The matrix 
why of 10×3 contains weight coefficients connecting ten neu-
rons of the hidden layer (nine of which are calculated and the 
tenth one is the bias neuron) with the neurons of the output 
layer. For the “untaught” neural network, initial values of the 
weight coefficients can be set either randomly or left unde-
termined or equal to zero. To realize the latter, let’s fill the 
cells with the following values: R1 is wxh, Q2 is input/hidden, 
R2 is 1, S2 is =R2+1, Q3 is 1, Q4 is =Q3+1, R3 is 0, R9 is why, 
Q10 is hidden/output, R10 is 1, S10 is =R10+1, Q11 is 1, Q12 
is =Q11+1, R11 is 0. To create the matrices, let’s copy the cells 
R3 into the range R3:Z7, R11 – into R11:T20, S2 – into T2:Z2,  
Q4 – into Q5:Q7, S10 – into T10, Q12 – into Q13:Q20.

 

 
  

4 features 
SL   SW   PL   PW 

input 
layer x1 x2 x3 x4 1 

hidden 
layer h1 h2 h3 h4 1 h5 h6 h7 h8 h9 

output 
layer y1 y2 y3 

Anderson’s Iris Type 

Fig. 1. Architecture of the neural network to solve the problem of Anderson’s Iris classification
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To calculate the scalar product of the vector row of the input 
layer values by the matrix vector-column of the weight coeffi-
cients why, let’s apply the matrix multiplication function: AB1 is 
calculate the hidden layer, AB2 is h1, AC2 is h2, AD2 is h3, AE2 
is h4, AF2 is h5, AG2 is h6, AH2 is h7, AI2 is h8, AJ2 is h9, AK2 
is h10, AB3 is =1/(1+exp(mmult($K3:$O3,R$3:R$7))), AK3 is 1. 
Next, let’s copy the cell AK3 into the range AK4:AK152, while 
AB3 – into AB3:AJ152.

Considering the fact that all the matrix elements of the 
weight coefficients wxh equal to zero, after duplicating the 
formulae, the calculated elements of the hidden layer will be 
equal to 0.5.

In the same way, let’s calculate the output layer elements: 
AM1 is calculate the output layer, AM2 is y1, AN2 is y2, AO2 is 
y3, AM3 is =1/(1+exp(mmult($AB3:$AK3,R$11:R$20))). Next, 
let’s copy the cell AM3 to the range AM3:AO152.

Neural network training is performed by varying weight 
coefficients so that with each training step the difference 
between the calculated values of the output layer and the 
desired (reference ones) reduces. To solve the problem, the 
three-dimensional vectors resulted from coding of the three 
Iris types are reference. To find the difference between the 
calculated and the reference output vectors let’s apply the 
Euclidean distance: AQ2 is distance, AR2 is sum of distances, 
AQ3 is =sqrt((AM3-G3)^2+(AN3-H3)^2+(AO3-I3)^2), AR3 is 
=sum(AQ3:AQ152). Next, let’s copy the cell AQ3 to the range 
AQ4:AQ152. The cell AR3 contains general deviation of the 
calculated output vectors from the reference ones.

Under this approach, the neural network training can be 
treated as an optimization problem in which the target function 
(the sum of distances in the cell AR3) will be minimized by 
varying the matrix weight coefficients wxh (the range R3:Z7) 
and why (the range R11:T20). To solve this problem, application 
of cloud-based spreadsheets (Google Sheets) is not enough and 
it is necessary to install an additional cloud-based component 
(add-in) Solver. Adjustment of the add-in Solver to solve the set 
goal: the target function (Set Objective) is minimized (To: Min) 
by changing the values (By Changing) of the matrix weight 
coefficients in the range (Subject To) from –10 tо +10 by one 
of the optimization methods (Solving Method). To reduce the 
total distances, the actions with Solver can be done repeatedly 
as it is expedient to experiment with combination of various 
optimization methods by changing the variation limits of the 
weight coefficients. It is not necessary to try to reduce the val-
ue of the total distances to zero as this can be a greater (quite 
smaller) value.

On the assumption of the chosen coding method, the 
output vector actually contains three probabilities: yi denotes 
the probability of the given sample being the i-type Iris, 
where i=1 for Iris setosa, 2 for Iris versicolor and 3 for Iris 
virginica. Then, to find out which Iris type describes the in-
put vector (SL, SW, PL, PW), the most probable component 
should be determined. To do this, let’s fill the cells in the 
following way: AT2 is Calculated Iris species, AT3 is =if(max-
(AM3:AO3)=AM3,$G$2,if(max(AM3:AO3)=AN3,$H$2, $I$2)), 

AU3 is =if(AT3=E3,»right!»,»wrong»). Next, the range AT3:AU3 
is copied to the range AT4:AU152.

The obtained result enables to visualize pattern recognition 
simulated in spreadsheets. The built model will be considered 
relevant in all 150 cases, the column AU contains the value 
«right!» To check the limits of the built model application, let’s 
try to input the vector not coinciding with any reference input 
vector. For this, let’s copy the table row 152 to 158 and delete the 
content of the cells E158:I158, AQ158, AU158. Let’s introduce 
averaged values borrowed from the description of Iris versicolor 
in the article by Anderson [10]: 5.50, 2.75, 3.50 and 1.25. The 
reference values x1=0.3333, x2=0.3125, x3=0.4237, x4=0.4792 are 
conveyed to the input layer, while on the hidden layer there are 
calculated h1–h9 and the values of the output layer y1=0.0000, 
y2=1.0000, y3=0.0000. As the maximum value of the output 
layer 1.0000 corresponds to the other Iris type, it is possible to 
conclude that Iris versicolor is identified.

4. Discussion and conclusions
The conducted review makes it possible to find the follow-

ing solutions of the problem of computer simulation of neural 
networks in the spreadsheet environment:

1) joint application of spreadsheets and neural network 
tools, in which data is exported to the unit calculating weighting 
factors imported to spreadsheets and used in calculations;

2) application of third-party add-ins for spreadsheets, ac-
cording to which structured spreadsheet data is processed in 
the add-in, calculation results are arranged in spreadsheet cells;

3) macros development enables direct software control over 
neural network training and creation of a user’s specialized 
interface;

4) application of standard add-ins for optimization calls for 
transparent network realization and determination of an opti-
mization criterion (minimization of a squared deviation total of 
the calculated and etalon outputs of the network);

5) creation of neural networks in the spreadsheet environ-
ment without add-ins and macros requires transparent realiza-
tion of a neural network with evident determination of each step 
of adjustment of its weighting factors.

Edgar Anderson appeared to be not a simple botanist 
whose data were the basis for Fisher’s known method. Ander-
son’s Irises resulted from his long experience of working out 
relevant models to describe changes in specific populations by 
means of a limited number of characteristics. Yet, Anderson 
had also coped with the opposite problem of building simple 
multi-dimensional data interpretation 40 years before Chern-
off faces appeared.

The described methods of applying cloud-based spread-
sheets as a machine learning tools can enable solution of all 
basic problems of neural network simulation. The only limita-
tion is not so much the volume of a spreadsheet as the memory 
space and the speed of the device processing it. In the special 
course projects if the limitation is overcome, this becomes a 
stimulus for replacing the simulation environment by a more 
relevant one.
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