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ABSTRACT 

The classification of electrocardiogram (ECG) waveform segmentation techniques 
can be difficult due to physiological variation of heart rate and different 

characteristics of the different ECG waves in terms of shape, frequency, amplitude , 
and duration. The P-wave, PR-segment, QRS-complex, ST-segment, and T-wave are 
extracted as the feature for classification algorithm to diagnose specified cardiac 
disorders. This requires the implementation of algorithms that identify specific 

points within the ECG wave. Some previous computational algorithms for automatic 
classification of ECG segmentation are proposed to overcome limitations of manual 
inspection of the ECG. This study presents new insight into the ECG semantic 
segmentation problem is surmounted by a deep learning approach for automatic 

ECG wave-form. Long short-term memory (LSTM) is proposed for this task. This 
experimental study has been performed for six different waveforms of ECG signal 
that represents cardiac disorders obtained from the Physionet: QT database. Overall,  
LSTM performance achieved accuracy, sensitivity, specificity, precision, F1 -score, 

is 93.36%, 86.85%, 95.78%, 81.79%, and 83.09%, respectively. 

Keywords: ECG, Segmentation, seq2seq, LSTM, Classification 

 
1. INTRODUCTION 

 
A cardiologist analyzes the electrical function of the cardiac via 

electrocardiogram (ECG). Analysis of critical segments of ECG is a crucial thing for 
diagnosing cardiac disorders. However, in some cases, ECG-based diagnosis can be 

difficult [1]. For examples, diagnosis of myocardial infarction (MI), one of coronary 
heart disease due to a lack of oxygen demand in the cardiac muscle tissue [2][3]. 
The ECG form changes in ST-elevation, T-waveform, and the ST interval length. In  
other cases, the detection of QT and RR interval for calculating QT corrected (QTc) 

to inform Long QT Syndrome (LQTS), and P-wave abnormality to diagnose Atrial 
Fibrillation, are difficult due to the lack of symptoms [4][5][6]. A cardiologist needs 
to analyze ECG recordings that acquired over several hours or even days, making 
the task very troublesome and time-consuming [1]. Such limitations can be reduced 

by advanced computing systems permit the automatic interpretation of ECG. Precise 
ECG is essential in getting maximum benefits to properly interpret ECG recordings. 
The additional features of ECG need to be analyzed the morphology of the different 
waves within the signal. The computing algorithms require specific points within the 

ECG wave segmentation, include the start (on) to end (off) of the P, QRS, and T 
waves.  

Automatic segmentation of the ECG is challenging due to the reduced amplitude 
of the P-wave, the high variability in the shape of the QRS complex, and the smooth 
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transitions of the beginning and end of T-wave [7][8][9]. The previous conventional 
algorithm is applied for automatic ECG segmentation in many works of literature. 

Laguna et al., [10] firstly proposed a very successful approach in ECG segmentation 
based on second-order bandpass filtering the ECG and then differentiating it.  In  the 
end, different waves would be detected based on their zero-crossings and finding the 
nearest points exceeding empirical thresholds. Otherwise, some method is proposed 

for ECG segmentation, such as hidden Markov model [11], multiple higher-order 
moments (MHOM) Metric [12], continuous wavelet transform [13], a band-pass 
Butterworth filter and the first derivative [14], etc.  

This study aims at providing new insights into the ECG semantic segmentation 

problem (i.e seq2seq) using a deep learning approach. Deep learning is still 
outstanding due to an automatic process of feature calculation without 
predetermining some appropriate features. This study proposes Long Short-Term 
Memory (LSTM), a family of Recurrent Neural Network (RNN) with its time 

correlation for classifying three different waveforms for ECG. In our previous work 
[2], LSTM works well for Myocardial Infarction classification compared to other 
recurrent networks. For this reason, the segmentation of beat-by-beat is applied by 
classifying P-wave (Pon-Poff), PR-segment (Poff-QRSon), QRS-complex (QRSon-Rpeak,  

Rpeak-QRSoff), ST-segment (QRSoff-Ton), and T-wave (Ton-Toff) based on LSTM 
algorithm. The classification of ECG segmentation techniques is used for detecting 
specific points to diagnose wave pattern abnormality. 

In the following section, Section 2, with a detailed description of ECG database 
and pre-processing. Section 3 presents a classification method based on LSTM and 

describe the proposed architecture. For model evaluation, Section 4 discusses 
performance metrics in terms of accuracy, sensitivity, specificity, precision, and F1 -
score to analyze how well the model works. Finally, Section 5 state the c onclusion 
of this study.  

 
2. MATERIAL AND METHOD 

 

In this study, a new input layer with wavelet basis was designed for the 

multiclass classification of start to the end P-wave, QRS-complex, and T-wave (Pon-
Poff, Poff-QRSon, QRSon-Rpeak, Rpeak-QRSoff, QRSoff-Ton, and Ton-Toff) from standard 
deep learning layers. The input signals are decomposed into wavelet levels and 
transferred to other layers as sequences. This study conducted the experiment on the 

well-known Physionet: QT Database (QTDB), which the training and testing set was 
generated. LSTM networks and architectures were designed for the classification 
process.  
 

2.1 THE PHYSIONET: QT DATABASE 

ECG raw data is obtained from the open-access of the Physionet public dataset: 

The QT Database (QTDB) [15]. The database consists of 105 ECG records taken in  
15 min with a sampling frequency of 250 Hz from two-channel Holter ECG 
recordings. This database consists of 15 records of MIT-BIH Arrhythmia, 6 records 
of MIT-BIH ST Change, 13 records of MIT-BIH Supraventricular Arrhythmia, 33 

records of European ST-T, 24 records of sudden death patients from BIH, 4 records 
of MIT-BIH Long-Term ECG, and 10 records of MIT-BIH Normal Sinus Rhythm. 
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For this study, the records of sudden death are excluded. This database provides the 
input to the WFDB function ecgpuwave(), which gives us the exact position of all 
the P, R, and T peaks found in the signal. The output of the ecgpuwave is written as 
a standard WFDB-format annotation file associated with the specified annotator. It 

is utilized as “ground truth” or label for the proposed ECG segmentation algorithm. 
Otherwise, only a complete waveform pattern of P-wave, QRS-complex, and T-
wave is utilized in this study. Points of interest within the ECG include the P on-Poff,  
Poff-QRSon, QRSon-Rpeak, Rpeak-QRSoff, QRSoff-Ton, and Ton-Toff. The location of 

these points is plotted in Figure 1.  

 

FIGURE 1. The Pointon-Pointoff ECG Segmentation 

2.2 WAVELET TRANSFORM 

The vital sign from cardiac patients monitored by ECG. The changes of ECG 
waveforms indicate the cardiac abnormality that may occur for any reason. While 

acquisition, ECG can get corrupted due to different types of artifacts and power line 
interference [16]. Before transferred to the classification process, ECG signals are 
enhanced by eliminating various kinds of noise and artifacts. Wavelet tran sform 
(WT) is applied to the process with reconstruction a signal from a noisy one. WT 

performs a correlation analysis, therefore the output is expected to be maximal when 
the input signal most resembles the mother wavelet. Unlike the old denoising 
method (i.e Fourier transform), WT provides an analysis of the signal which is 
localized in both time and frequency. In contrast, the Fourier transform is localized 

only in frequency. Given a mother wavelet 𝜑 (𝑡) (which can be considered simply 

as a basic function of 𝐿2), the continuous wavelet transform (CWT) of a function 

𝑥 (𝑡) (assuming that 𝑥 𝜖 𝐿2) is defined as [17]: 
 

 𝑋 (𝑎, 𝑏) =
1

√𝑎
∫ 𝜑

∞

−∞ (
𝑡−𝑏

𝑎
)𝑥(𝑡) 𝑑𝑡             (1) 

 

where 𝜑 (𝑡) is basic waveforms or functions, dilation 𝑎 corresponds to  f requency 
information, and translation 𝑏 relates to the locations of the wavelet function.  
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The algorithm of wavelet denoising mainly contains three steps: wavelet 
decomposition, coefficient processing, and wavelet reconstruction [18]. The 

common wavelet families such as daubechies, biorthogonal, coiflet, and symlet can 
be used for ECG signal denoising [19]. Among them, this study applies the 
biorthogonal (“bior”) wavelet due to this wavelet function can remove noise 
successfully [20][21][22]. Qin et. al. proposes the decomposition procedure of 8-

level WMRA using bior6.8 wavelet, soft thresholding [7]. The results of bior6.8 
wavelet in QTDB can be shown in Figure 2. 

 

 

FIGURE 2. Wavelet Transform Processing of Samples in QT Database 
 

3.    LONG SHORT-TERM MEMORY 

The most widely used a family of the recurrent neural network (RNN) is Long 

Short-Term Memory (LSTM). Each node in LSTM is a cell that comprises input, 
forget, and output gates. The common of standard RNN problems caused by the 
iterative nature, whose gradient is essentially equal to the recurrent weight matrix 
raised to high power. The gradient to grow or to shrink at a rate that is exponential in 

the number of timesteps [23]. With the gating mechanism that control the manner in  
which internal states are retained or discarded, LSTM overcomes the gradient 
problems [2]. Mathematically, the LSTM can be written as [24]: 
 

   𝑐𝑡 = 𝜎(𝑊𝑓𝐼𝑡)𝑐𝑡−1 + 𝜎(𝑊𝑖𝐼𝑡) tanh(𝑊𝑖𝑛𝐼𝑡),           (2) 

 

 ℎ𝑡 = 𝜎(𝑊𝑜𝐼𝑡) tanh(𝑐𝑡),           (3) 

 

where 𝜎 is a sigmoid function, 𝑐𝑡  ∈ 𝑅𝑁, column vector 𝐼𝑡  ∈ 𝑅(𝑀+𝑁) is a 
concatenation of the current input, 𝑋𝑡  ∈ 𝑅𝑀 and the previous output, ℎ𝑡−1  ∈ 𝑅𝑁.  
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Under the assumption 𝑐0 = 0, the hidden state vector of LSTM can be derived by: 

 

 𝑐𝑡 = ∑ [∏ 𝜎(𝑊𝑓𝐼𝑗)𝑡
𝑗=𝑘+1 ]𝑡

𝑘=1 𝜎(𝑊𝑖𝐼𝑘) tanh (𝑊𝑖𝑛𝐼𝑘)                               (4) 

 

The comparation of output RNN (in Equation 5) and the gating mechanism in 
LSTM (in Equation 6) are given by: 

 

 ℎ𝑡 = tanh(∑ 𝑊𝑐
𝑡−𝑘𝑊𝑖𝑛𝑋𝑘)𝑡

𝑘=1         (5) 

 

        ℎ𝑡 = 𝜎(𝑊𝑜𝐼𝑡) tanh(∑ [∏ 𝜎(𝑊𝑓𝐼𝑗)𝑡
𝑗=𝑘+1 ]𝜎(𝑊𝑖𝐼𝑘) tanh (𝑊𝑖𝑛𝐼𝑘))𝑡

𝑘=1         (6) 

 

where 𝑊𝑖 , 𝑊𝑓 , 𝑊𝑜,  𝑊𝑖𝑛 are weight matrices for the input gate, forget gate, output 

gate, and the input, respectively.  

 

In this study, we propose unidirectional LSTM architecture for the multiclass 

classification process. The LSTM layer is stacked by three layers. Each layer had 
512 nodes and loss function was selected as the categorical cross-entropy. Time 
steps of LSTM are 2 seconds. The Adam optimization method was used in this 
study. Each classifier was trained for 100 epochs to ensure consistent comparisons, 

with a batch size of 32. The proposed LSTM architecture can be presented in Figure 
3.  
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FIGURE 3. The Proposed Stacked-LSTM Architecture 
 

4.     RESULTS AND DISCUSSION 

This study proposes a stacked-LSTM architecture with three layers for the 
automatic classification of the ECG segments. All 76 records of QTDB were divided 
as 90% in the training phase and the remaining 10% in the test phase with shuffle 

sampling. The testing as a validation set was used to tune the parameters and 
determine the optimal unit numbered of designed models. We utilized a workstation 
with NVIDIA GeForce RTX 2080 and CuDNN which is a GPU-accelerated deep 
neural network library that supports the training of LSTM for sequence learning. 

The results of LSTM performance for QTDB can be described in Table 1. Each start 
to the end of P-wave, QRS-complex, and T-wave is classified and measured by 
common performance metrics. Table 1 shows the performance of the ECG segment 
from six databases of QTDB. Overall, with the proposed LSTM architecture, 

segmentation of QRS-complex (QRSon-Rpeak, Rpeak-QRSoff) perform well in all 
QTDB. The poor result of segmentation of P-wave and T-wave can be seen in 
Arrhythmia, Supraventricular Arrhythmia, European ST-T, and Long-Term ECG 
Database. 

 

 

 

 

 

TABLE 1.  
The LSTM Performance of Testing Set in QT Database 

 
QTDB Metrics LSTM Performance (%) 

Pon- 
Poff 

Poff- 
QRSon 

QRSon- 
Rpeak 

Rpeak-
QRSoff 

QRSoff-
Ton 

Ton-
Toff 

Average 

Arrhythmia Accuracy 82.79 98.21 98.52 98.89 96.90 85.40 93.45 
Sensitivity 65.02 88.93 91.08 95.62 92.01 95.89 88.09 

Specificity 98.08 98.85 98.97 99.06 97.66 82.23 95.81 
Precision 96.68 84.34 84.18 84.26 85.89 61.96 82.88 
F1-Score 77.75 86.57 87.49 89.59 88.84 75.28 84.25 

ST Change  Accuracy 89.92 98.02 98.16 98.87 97.44 92.12 95.75 
Sensitivity 83.15 77.08 90.80 89.41 92.47 93.72 87.77 

Specificity 95.72 99.25 98.70 99.55 98.23 91.69 97.19 
Precision 94.32 85.70 83.80 93.42 89.32 75.01 86.93 
F1-Score 88.38 81.16 87.16 91.37 90.87 83.33 87.04 

Supraventric
ular 
Arrhythmia 

Accuracy 80.76 96.60 98.16 98.65 94.82 85.92 92.49 
Sensitivity 63.00 83.54 84.25 91.22 91.80 95.20 84.84 
Specificity 97.50 97.56 98.96 99.06 95.36 83.78 95.37 

Precision 95.97 71.44 82.45 84.45 78.05 57.45 78.30 
F1-Score 76.07 77.02 83.34 87.71 84.37 71.65 80.02 

Normal 
Sinus 

Accuracy 83.56 97.97 98.25 99.52 97.56 86.77 93.94 
Sensitivity 71.42 92.20 87.20 97.38 91.69 94.56 89.08 
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Rhythm Specificity 96.72 98.40 98.76 99.63 98.41 84.90 96.13 
Precision 95.93 81.01 76.39 92.93 89.20 59.98 82.57 

F1-Score 81.88 86.24 81.44 95.10 90.42 73.40 84.75 
European 
ST-T  

Accuracy 80.92 97.80 98.33 98.89 96.96 83.34 92.71 
Sensitivity 66.21 84.28 87.31 91.10 88.70 92.88 85.08 

Specificity 95.59 98.67 99.00 99.34 98.10 80.85 95.26 
Precision 93.73 80.32 84.19 88.89 86.49 55.92 81.59 
F1-Score 77.60 82.25 85.72 89.98 87.58 69.81 82.16 

Long-Term 
ECG  

Accuracy 78.31 96.95 98.11 98.72 96.77 82.05 91.82 
Sensitivity 57.19 92.50 93.79 97.53 82.40 94.23 86.27 

Specificity 98.30 97.36 98.41 98.83 97.88 78.74 94.92 
Precision 96.96 76.44 80.18 87.73 74.98 54.66 78.49 
F1-Score 71.95 83.71 86.45 92.37 78.51 69.18 80.36 

  

For segmentation of P-wave (Pon-Poff), MIT-BIH Arrhythmia achieved 
accuracy, specificity, and precision, is 82.79%, 98.08%, and 96.68%, respectively. A 
poor result of sensitivity and F1-score, is 65.02% and 77.75%, respectively. The 
segmentation of P-wave performs well in ST Changes and Normal Sinus Rhythm 

Database. Overall, the performance of the segmentation of PR-segment (Poff-QRSon) 
shows a good result in all databases. Like PR-segment, the segmentation of QRS-
complex (QRSon-Rpeak, Rpeak-QRSoff) is also obtained a good performance. In 
contrast, the segmentation of T-wave is not really good in all databases, except in ST 

Change. As we can see, the ST Change Database was correctly classified at 
accuracy, sensitivity, specificity, precision, F1-score, is 95.75%, 87.77%, 97.19%, 
86.93%, 87.04%, respectively. The comparison of the average performance of 
LSTM can be seen in Table 2. For all QTDB, the LSTM classifiers obtained the 

accuracy, sensitivity, specificity, precision, F1-score, is 93.36%, 86.85%, 95.78%, 
81.79%, and 83.09%, respectively.  

TABLE 2. 
The Average of LSTM Performance in The Testing Set 

 
Metrics LSTM Performance (%) 

Arrhythmia ST 

Change 

Supraventricular 

Arrhythmia 

Normal 

Sinus 
Rhythm 

European 

ST-T 

Long-

Term 
ECG 

QTDB 

Average 

Accuracy 93.45 95.75 92.49 93.94 92.71 91.82 93.36 
Sensitivity 88.09 87.77 84.84 89.08 85.08 86.27 86.85 

Specificity 95.81 97.19 95.37 96.13 95.26 94.92 95.78 
Precision 82.88 86.93 78.30 82.57 81.59 78.49 81.79 
F1-Score 84.25 87.04 80.02 84.75 82.16 80.36 83.09 

 
 

5.   CONCLUSION 

This study focuses on the segmentation of ECG-based annotation. The 
segmentation of the desired points of ECG is a challenging task due to the variation 
of characteristic signals. The new insight of segmentation is proposed by using 
stacked-LSTM networks, which recently have provided a significant achievement in  

the preliminary investigation. LSTM as classifier can overcome the semantic 
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segmentation problem. The challenge to construct the right model of LSTM is 
feature selection. For future work, it can be more explored to obtain a better result of 

LSTM performance in this study.  
 
 

ACKNOWLEDGEMENTS 

 
This research is supported by the Kemenristekdikti Indonesia under the Basic 

Research Fund Number. 096/SP2H/LT/DRPM/2019 and Universitas Sriwijaya, 
Indonesia under Hibah Unggulan Profesi Fund 2019. 
 

REFERENCES 

[1] P. Sodmann, M. Vollmer, N. Nath, and L. Kaderali, “A convolutional neural 
network for ECG annotation as the basis for classification of cardiac 

rhythms,” Physiol. Meas., vol. 39, no. 10, p. 104005, 2018. 

[2] A. Darmawahyuni, S. Nurmaini, W. Caesarendra, V. Bhayyu, M. N. 

Rachmatullah, and others, “Deep Learning with a Recurrent Network 
Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm 
Classifier,” Algorithms, vol. 12, no. 6, p. 118, 2019. 

[3] A. Darmawahyuni, “Coronary Heart Disease Interpretation Based on Deep 
Neural Network,” Comput. Eng. Appl. J., vol. 8, no. 1, 2019. 

[4] M. A. C. Gil, “A new, simpler and better correction formula for the QT 
interval,” J. Am. Coll. Cardiol., vol. 61, no. 10 Supplement, p. E294, 2013. 

[5] B. Vandenberk et al., “Which QT correction formulae to use for QT 
monitoring?,” J. Am. Heart Assoc., vol. 5, no. 6, p. e003264, 2016. 

[6] N. Nuryani, M. Solikhah, A. S. Nugoho, A. Afdala, and E. Anzihory, “RR-
Interval variance of electrocardiogram for atrial fibrillation detection,” in 
Journal of Physics: Conference Series, 2016, vol. 776, no. 1, p. 12105. 

[7] I. Beraza and I. Romero, “Comparative study of algorithms for ECG 
segmentation,” Biomed. Signal Process. Control, vol. 34, pp. 166–173, 2017. 

[8] S. Nurmaini, A. Gani, and others, “Cardiac Arrhythmias Classification Using 
Deep Neural Networks and Principle Component Analysis Algorithm.,” Int. 

J. Adv. Soft Comput. Its Appl., vol. 10, no. 2, 2018. 

[9] Siti Nurmaini, Radiyati Umi Partan, Muhammad Naufal Rachmatullah, 

“Deep Neural Networks Classifiers on The Electrocardiogram Signal for 
Intelligent Interpretation System,” Sriwij. Int. Conf. Med. Sci., 2018. 

[10] P. Laguna, R. Jané, and P. Caminal, “Automatic detection of wave boundaries 
in multilead ECG signals: Validation with the CSE database,” Comput. 
Biomed. Res., vol. 27, no. 1, pp. 45–60, 1994. 



 

 
Computer Engineering and Applications Vol. 9, No. 2, June 2020 

 

ISSN: 2252-4274 (Print)   115 
ISSN: 2252-5459 (Online) 

[11] M. Akhbari, M. B. Shamsollahi, O. Sayadi, A. A. Armoundas, and C. Jutten, 
“ECG segmentation and fiducial point extraction using multi hidden Markov 
model,” Comput. Biol. Med., vol. 79, pp. 21–29, 2016. 

[12] A. Ghaffari, M. R. Homaeinezhad, M. Khazraee, and M. M. Daevaeiha, 
“Segmentation of holter ECG waves via analysis of a discrete wavelet-
derived multiple skewness--kurtosis based metric,” Ann. Biomed. Eng. , vol. 

38, no. 4, pp. 1497–1510, 2010. 

[13] M. V\’\itek, J. Hrubeš, and J. Kozumpl\’\ik, “A wavelet-based ECG 

delineation with improved P wave offset detection accuracy,” Anal. Biomed. 
Signals Images, vol. 20, pp. 160–165, 2010. 

[14] C. R. Vázquez-Seisdedos, J. E. Neto, E. J. M. Reyes, A. Klautau, and R. C. L. 
de Oliveira, “New approach for T-wave end detection on electrocardiogram: 
Performance in noisy conditions,” Biomed. Eng. Online, vol. 10, no. 1, p. 77, 
2011. 

[15] P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, “A database for 
evaluation of algorithms for measurement of QT and other waveform 

intervals in the ECG,” in Computers in cardiology 1997, 1997, pp. 673–676. 

[16] J. Wang, Y. Ye, X. Pan, and X. Gao, “Parallel-type fractional zero-phase 

filtering for ECG signal denoising,” Biomed. Signal Process. Control, vol. 18, 
pp. 36–41, 2015. 

[17] R. Cohen, “Signal denoising using wavelets,” 2012. 

[18] Z. Wang, J. Zhu, T. Yan, and L. Yang, “A new modified wavelet-based ECG 

denoising,” Comput. Assist. Surg., pp. 1–10, 2019. 

[19] Ö. Yildirim, “A novel wavelet sequence based on deep bidirectional LSTM 

network model for ECG signal classification,” Comput. Biol. Med. ,  vol. 96, 
pp. 189–202, 2018. 

[20] Q. Qin, J. Li, L. Zhang, Y. Yue, and C. Liu, “Combining low-dimensional 
wavelet features and support vector machine for arrhythmia beat 
classification,” Sci. Rep., vol. 7, no. 1, p. 6067, 2017. 

[21] M. Sharma and U. R. Acharya, “A new method to identify co ronary artery 
disease with ECG signals and time-Frequency concentrated antisymmetric 
biorthogonal wavelet filter bank,” Pattern Recognit. Lett., vol. 125, pp. 235–

240, 2019. 

[22] K. Mourad and B. R. Fethi, “Efficient automatic detection of QRS complexes 

in ECG signal based on reverse biorthogonal wavelet decomposition and 
nonlinear filtering,” Measurement, vol. 94, pp. 663–670, 2016. 

[23] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of 
recurrent network architectures,” in International Conference on Machine 
Learning, 2015, pp. 2342–2350. 



Annisa Darmawahyuni, Siti Nurmaini,  

Muhammad Naufal Rachmatullah, Vicko Bhayyu 
Automated ECG Waveform Annotation  

Based on Sequences to Sequences of Stacked Long Short-Term Memory 

 

116  ISSN: 2252-4274 (Print) 
  ISSN: 2252-5459 (Online) 

[24] Y. Su, Y. Huang, and C.-C. J. Kuo, “Dependent Bidirectional RNN with 
Extended-long Short-term Memory,” 2018. 

 


