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Abstract. A comprehensive study on the influence of an inerter on the response of single-degree-
of-freedom systems is presented; therefore, complete and thorough results for free and forced 
vibrations of linear SDOF systems with inerter are obtained. The free response results are for 
damped and undamped systems; moreover, the forced response solutions are for harmonic and 
arbitrary excitations. The classical problems of rotating unbalanced mass and support vibration 
isolation are solved. 
Keywords: inerter, vibrations, free response, forced response. 

1. Introduction 

The inerter device was introduced 15 years ago, when it originated from the control and 
electrical engineering community [1]; a literature review indicates that there are no comprehensive 
results, either from mechanical (vibrations) engineering or the civil engineering (earthquake 
engineering) community, for the free and forced response of a one-degree-of-freedom system with 
the device, which is the fundamental and primary system in Vibrations. Nevertheless, that review 
of late engineering literature shows great practical interest on the inerter (especially in the last five 
years); in particular, on its direct applications in the three engineering fields [2-4], as it is explained 
next. 

From the vibroengineering or mechanical engineering perspective, the inerter is another or a 
new ideal component in discrete systems, as the dashpot or spring; it comes from electric circuit 
theory [1], particularly, from the study of analogies between electrical and mechanical systems 
[5]. A definition of inerter from Mechanical Vibrations will be: massless two-end component in 
which the force is proportional to the difference between the accelerations of the ends. 

The inerter was first applied in mechanical engineering or automobile engineering [2, 6] as 
component of suspension systems, and it can be found in studies on dynamics of railway vehicles 
[7]. The device has been applied also in civil or earthquake engineering, where it has been mainly 
used as a new alternative to the traditional tuned mass dampers (TMD) [3, 8]. In control and 
electrical engineering, the inerter concept has also been lately applied [4, 9]. 

Regarding more fundamental work in mechanical or vibration engineering, Chen et al. studied 
the influence of inerters on discrete systems natural frequencies [10], and more recently Yang 
analyzed the influence of adding an inerter to the simple spring-damper linear isolation system 
[11]. Finally, and considering that the original concept or model of the device is linear, it is noted 
that very lately work has been published on its nonlinear behavior [12, 13]. 

As indicated in the first paragraph, or as a current literature review indicates, there is no 
thorough and complete analysis, either in mechanical or civil engineering sources, of the response 
of the vibrations fundamental system with the inerter; therefore, a full analysis of the free and 
forced response of an inerter-added one-degree-of-freedom system is a necessity and is presented 
herein, whose main outcome are many original and novel results for Mechanical Vibrations. The 
free response solutions are for both, damped and undamped systems, and the forced response 
results are for harmonic and nonperiodic or arbitrary excitations. In addition, the classical 
problems of rotating unbalanced mass and support harmonic vibration isolation are solved 
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considering, of course, that an inerter is an additional component of both systems. 

2. Characterization of the inerter as a vibrating system component 

A definition of the inerter device from mechanical vibrations will be: massless two-end (or 
2-terminal) component in which the force (at each end) is proportional to the difference between 
the absolute accelerations of the terminals. Inerters have been physically realized and a very 
simple version consists of a box or cylinder (right end) to which a flywheel and at least one gear 
are internally hinged through bearings, and the gear’s pinion rests on a rack which is finally the 
left terminal, as shown in Fig. 1; more schematically, let us have the inerter as in Fig. 2, with the 
dynamic variables that interest us: the displacements of the ends and the inerter force. Therefore, 
in the linear range, the fundamental equation that characterizes this component is: 𝐹 = 𝑏(𝑥ሷଶ − 𝑥ሷଵ), (1) 

where the proportionality constant is known as inertance, being the units of this 𝑏 kilograms (kg). 

 
Fig. 1. A basic inerter device 

 
Fig. 2. Massless inerter depiction 

It must be pointed out that the inerter, as the damper, does not have a favorite configuration: 
if one elongates an inerter, it will keep that displacement on the laboratory table (the spring of 
course tries to return to the undeformed configuration). Again, as the other discrete components 
(springs and dashpots) the inerter is assumed massless [1], and regarding the linearity expressed 
by Eq. (1), some work has very lately been done on nonlinearities involved in such geared devices 
[12-14]. 

Now, it is common in applications that springs and dashpots occur in certain combinations, 
and the same will happen for the new inerters; consequently, the concept of equivalent inerter will 
arise to simplify or simulate the action of a particular combination. As in the case of the classic 
components [15], a good start is to consider inerters connected in parallel and in series, as shown 
in Figs. 3(a) and 3(b), respectively. For the in-parallel case, a free body diagram of the massless 
(left or right) connecting structure implies that: 𝐹 = 𝐹ଵ + 𝐹ଶ, (2) 

where 𝐹ଵ and 𝐹ଶ are the forces in the corresponding inerters. If the inerters are assumed to be linear, 
we have that: 𝐹ଵ = 𝑏ଵ(𝑥ሷଶ − 𝑥ሷଵ), (3a) 𝐹ଶ = 𝑏ଶ(𝑥ሷଶ − 𝑥ሷଵ). (3b) 

From Eq. (2) it follows that: 
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𝐹 = 𝑏௘௤(𝑥ሷଶ − 𝑥ሷଵ), (4) 

where 𝑏௘௤ is the inertance of the equivalent inerter representing the combined effect of 𝑏ଵ plus 𝑏ଶ; 
mathematically: 𝑏௘௤ = 𝑏ଵ + 𝑏ଶ. (5) 
 

 
a) 

 
b) 

Fig. 3. a) Inerters connected in parallel, b) inerters connected in series 

If several inerters (𝑛 ) with inertances 𝑏௜  ( 𝑖 =  1, 2,…, 𝑛 ) are arranged in parallel, it is 
straightforward to show that: 

𝑏௘௤ = ෍ 𝑏௜௡
௜ୀଵ . (6) 

Now, for inerters in series (Fig. 3(b)), these relations can be written: 𝐹 = 𝑏ଶ(𝑥ሷଶ − 𝑥ሷ଴), (7a) 𝐹 = 𝑏ଵ(𝑥ሷ଴ − 𝑥ሷଵ). (7b) 

Eliminating 𝑥଴ from Eq. (7), we get again: 𝐹 = 𝑏௘௤(𝑥ሷଶ − 𝑥ሷଵ), (8) 

but in this case the equivalent inertance is: 

𝑏௘௤ = ൬ 1𝑏ଵ + 1𝑏ଶ൰ିଵ (9) 

If there are 𝑛 inerters connected in series, it can be concluded that: 

𝑏௘௤ = ൭෍ 1𝑏௜
௡

௜ୀଵ ൱ିଵ. (10) 

3. Differential equation of motion for linear systems with the inerter 

As explained in the Introduction, a system of considerable recent interest in vibrations and 
structural dynamics is the spring-damper-inerter-mass system of Fig. 4; its differential equation 
of motion for its displacement (from the unstreched-spring position) 𝑥 can be derived by Newton’s 
second law along with the free-body diagram of the main mass, which results in: 𝐹 − 𝑘𝑥 − 𝑐𝑥ሶ − 𝑏𝑥ሷ = 𝑚𝑥ሷ , (11) 

where 𝐹 is the external force; this differential equation is better or more commonly written as: 



COMPLETE RESULTS FOR FREE AND FORCED VIBRATIONS OF INERTER-ADDED ONE-DEGREE-OF-FREEDOM SYSTEMS.  
CÉSAR A. MORALES 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1567 

(𝑚 + 𝑏)𝑥ሷ + 𝑐𝑥ሶ + 𝑘𝑥 = 𝐹(𝑡). (12) 

The equation of motion is the same for an inclined or vertical system, such as the one shown 
in Fig. 5. The only difference is that in this vertical case 𝑥 does not measure displacement from 
the unstreched spring position but from the static equilibrium position; in this regard, it is 
interesting to note that an inerter, as the dashpot, does not have any favorite position or an 
unstreched position to return to: if an inerter is placed on a laboratory table and elongated, it will 
remain elongated. 

 
Fig. 4. SDOF system with damper and inerter 

 
Fig. 5. Vertical oscillatory system with inerter 

4. Force-free response 

Let us assume that for the system of Fig. 4 the external excitation is zero; in that case from 
Eq. (12), we get a homogeneous equation, or: (𝑚 + 𝑏)𝑥ሷ + 𝑐𝑥ሶ + 𝑘𝑥 = 0, (13) 

which is the general differential equation for free response. Now, in some cases damping is 
extremely low and can be ignored; in this instance the equation is simpler: (𝑚 + 𝑏)𝑥ሷ + 𝑘𝑥 = 0, (14) 

and its solution is obtained next. 

4.1. Free response of an undamped system with inerter 

We are concerned with the free and conservative case and its differential Eq. (14), which if 
divided by 𝑚, is reduced to: (1 + 𝜇)𝑥ሷ + 𝜔௡ଶ𝑥 = 0, (15) 

where 𝜇 is the inertance-to-mass ratio [16], or: 

𝜇 = 𝑏𝑚 , (16) 

and 𝜔௡ is the natural frequency of the system without inerter. Thus, we are concerned with a linear 
second-order differential equation for which established solutions are exponential or of the form 𝑒௥௧. Now, introducing this proposed solution into Eq. (15), we obtain the characteristic equation: (1 + 𝜇)𝑟ଶ + 𝜔௡ଶ = 0, (17) 

whose roots imply the exponential-form solution: 
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𝑥(𝑡) = 𝐴ଵ𝑒௜ఠ೙ᇲ ௧ + 𝐴ଶ𝑒ି௜ఠ೙ᇲ ௧, (18) 

and the definition of a new concept, the natural frequency of the system with inerter or: 𝜔௡ᇱ = 𝜔௡ඥ1 + 𝜇. (19) 

The solution can be put in a real and natural form by means of Euler’s formula and changing 
constants: 𝑥(𝑡) = 𝐴′ cos(𝜔௡ᇱ 𝑡 − 𝜙ᇱ), (20) 

which is a harmonic response. The integration constants 𝐴′ and 𝜙ᇱ certainly depend on the initial 
conditions 𝑥(0) = 𝑥଴ and 𝑥ሶ(0) = 𝑣଴, and can be shown to be: 

𝐴ᇱ = ඨ𝑥଴ଶ + ൬ 𝑣଴𝜔௡ᇱ ൰ଶ, (21a) 𝜙ᇱ = tanିଵ 𝑣଴𝜔௡ᇱ 𝑥଴. (21b) 

We point out that there is an interesting result if the initial conditions are as a simple elongation 
or 𝑣଴ = 0: the amplitude of oscillation 𝐴′ is equal to 𝑥଴ , and thus, equal to the amplitude of 
vibration that the system will have without the inerter; in fact, any other combination of initial 
conditions will result in different amplitudes of oscillation for both systems: the only conditions 
implying the same amplitude for the systems with and without the inerter is a null initial velocity. 
Other new and interesting results regarding response of MDOF systems to initial displacements 
and velocities have recently been obtained [17]. 

4.2. Free damped response 

In case damping cannot be ignored, the equation of motion of the SDOF system with inerter 
and in free vibration is Eq. (13), or: (1 + 𝜇)𝑥ሷ + 2𝜁𝜔௡𝑥ሶ + 𝜔௡ଶ𝑥 = 0. (22) 

As it is expected, the solution of this differential equation is more involved than that of  
Eq. (15); nevertheless, standard and general mathematical procedures to solve ordinary and 
homogeneous differential equations can also be applied, that will result in the system response: 

𝑥(𝑡) = ൬𝐴ଵ𝑒ඥచమିఓିଵ ఠ೙௧ଵାఓ + 𝐴ଶ𝑒ିඥచమିఓିଵ ఠ೙௧ଵାఓ൰ 𝑒ି఍ఠ೙௧ଵାఓ , (23) 

which is the free response of SDOF systems with inerter plus dashpot. In the very special case in 
which the inertance-to-mass ratio is set as 𝜇 = 𝜉ଶ − 1, that exponentially decaying response is 
simple to obtain by the order reduction method: 𝑥(𝑡) = (𝐴ଵ + 𝐴ଶ𝑡) 𝑒ିఠ೙ᇲ ௧. (24) 

Now, for cases in which 𝜇 > 𝜉ଶ − 1, or 𝜉ଶ − 𝜇 < 1, the response is not simply exponential 
but oscillatory, thus of actual interest in Vibrations or in this work. The solution procedure starts 
with the acceptance of the appearance of two original concepts, one is a new dimensionless 
parameter that depends on the damping factor and the inertance-to-mass ratio, or: 
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𝜁ᇱ = 𝜁ඥ1 + 𝜇, (25) 

and a new damped frequency: 𝜔ௗᇱ = 𝜔௡ᇱ ඥ1 − 𝜉′ଶ. (26) 

Both of which are we emphasize novel results and allow us to write the solution as: 𝑥(𝑡) = ቀ𝐴ଵ𝑒௜ఠ೏ᇲ ௧ + 𝐴ଶ𝑒ି௜ఠ೏ᇲ ௧ቁ 𝑒ି఍ᇲఠ೙ᇲ ௧, (27) 

which can be written in a more natural form using a similar approach as in 4.1; thus, this vibratory 
response is finally: 𝑥(𝑡) = 𝐴𝑒ି఍ᇲఠ೙ᇲ ௧ cos(𝜔ௗᇱ 𝑡 − 𝜙). (28) 

The integration constants are now: 

𝐴 = ඨ𝑥଴ଶ + ቆ𝜁ᇱ𝜔௡ᇱ 𝑥଴ + 𝑣଴𝜔ௗᇱ ቇଶ, (29a) 

𝜙 = tanିଵ 𝑣଴𝑥଴ + 𝜁ᇱ𝜔௡ᇱ𝜔ௗᇱ , (29b) 

but if Eq. (29b) is used or calculated first, a much simpler expression for 𝐴 is: 𝐴 = 𝑥଴cos 𝜙. (30) 

Now, as the type of response of these inerter systems depend on the value of 𝜉ଶ-𝜇, or the values 
of 𝜉 and 𝜇, Fig. 6 is presented by which it can be defined whether the response is oscillatory (with 
exponentially decaying amplitude) or simply exponentially decaying, depending on the point 
(𝜉, 𝜇). 

 
Fig. 6. Diagram indicating oscillatory motion or not depending on 𝜉 and 𝜇 
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5. Forced response 

If there is an external excitation in the form of force (not initial displacements or velocities), 
the equation of motion for the SDOF system is Eq. (12). The method to obtain the response of a 
system to a forcing function depends on the type or excitation or its dependence on time. In this 
section we first treat, harmonic excitation and its applications, and then present the response to a 
general or nonperiodic force. 

5.1. Response to harmonic excitation  

In this case, Eq. (12) can be written as: (1 + 𝜇)𝑥ሷ + 2𝜁𝜔௡𝑥ሶ + 𝜔௡ଶ𝑥 = 𝐹଴𝑚 cos 𝜔𝑡.  (31) 

We will be concerned with the case of the system not being simultaneously excited by initial 
conditions, which is the engineering or not mathematical case; in any case, the solution procedure 
is stablished in mathematics literature so that we do not demonstrate the final result step by step 
as in the previous Sections, even though the final result is original as well, which is this 
steady-state response: 

𝑥(𝑡) = 𝐹଴/𝑘ඥ(1 − (1 + 𝜇)𝑟ଶ)ଶ + (2𝜁𝑟)ଶ cos(𝜔𝑡 − 𝜙) = 𝐹଴𝑘 𝑓(𝑟, 𝜇, 𝜁) cos(𝜔𝑡 − 𝜙). (32) 

Note that a new amplification (magnification) factor [15] appears: 𝑓 = 1ඥ(1 − (1 + 𝜇)𝑟ଶ)ଶ + (2𝜁𝑟)ଶ. (33) 

In addition, there is also a new expression for the phase angle: 𝜙 = tanିଵ 2𝜁𝑟1 − (1 + 𝜇)𝑟ଶ. (34) 

It is noted that Yang [11] has recently worked also on the magnification factor and has obtained 
an expression similar to that of Eq. (33); the difference is in the analysis which was 
nondimensional therein. 

5.2. Rotating unbalance 

Actual or unbalanced rotating equipment in which the shaft is short (e.g. fans, clothes washers 
and dryers) can be modelled by a system such as the one shown in Fig. 7, where the new 
component or addition (with respect to what is found in Vibrations literature) is the inerter. The 
mass of the rotor or impeller is 𝑚 and its center of mass is separated by a segment 𝑒 from the shaft 
axis or rotor centroid, whereas 𝑀 is the mass of the whole machine (rotor, shaft plus casing). The 
response of this system, rotating with a constant angular velocity 𝜔 , has not been presented 
previously in the literature; nevertheless, as in the last subsection (5.1), the response is not fully 
demonstrated because the procedure does not differ a lot from what it can be found in a good 
Vibrations book; therefore, only the original or final result is presented for design or direct 
engineering applications, which is: 𝑦(𝑡) = 𝑚𝑒𝑀 𝑟ଶ𝑓(𝑟, 𝜇, 𝜁) cos(𝜔𝑡 − 𝜙). (35) 
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It is the steady-state vibration 𝑦(𝑡) of the machine, that is classically isolated (𝑘 -𝑐 ) and 
additionally mounted on an inerter or a combination of these new devices (Section 2). Note that a 
new design (3-variable) function or amplitude response 𝑔 arises: 

𝑔(𝑟, 𝜁, 𝜇) = 𝑟ଶඥ(1 − (1 + 𝜇)𝑟ଶ)ଶ + (2𝜁𝑟)ଶ. (36) 

 

 
Fig. 7. Unbalanced rotating mass system with inerter 

 
Fig. 8. Support motion isolation system with inerter 

5.3. Isolation from support or ground excitation 

To separate a machine, device or structure from a moving support or ground is an important 
engineering action or subject in mechanical and civil engineering [18]. The system analyzed is the 
one shown in Fig. 8 where 𝑦(𝑡) is the ground displacement and 𝑥(𝑡) is the absolute displacement 
of an expensive and delicate device, or of a whole civil building, as hospitals and fire stations. 
Notice that if a building is isolated, it indeed behaves or responds as a rigid body or as a SDOF 
system; in other words, its elastic structural deformations will be almost vanished, that is the idea 
of seismic base isolation [18]. 

The first or basic case to be considered is that of harmonic motion of the support or ground; in 
other words, 𝑦 = 𝐴cos𝜔𝑡 ; in this case, it can be demonstrated that the response of the 
inerter-added system will be: 𝑥(𝑡) = 𝐴 ඥ(2𝜁𝑟)ଶ + (1 − 𝜇𝑟ଶ)ଶ 𝑓(𝑟, 𝜇, 𝜁) cos(𝜔𝑡 − 𝜑). (37) 

It is stressed that also a new transmissibility function 𝑇௕ appears, which is now a function of 3 
variables: 

𝑇௕(𝑟, 𝜇, 𝜁) = ඥ(2𝜁𝑟)ଶ + (1 − 𝜇𝑟ଶ)ଶඥ(1 − (1 + 𝜇)𝑟ଶ)ଶ + (2𝜁𝑟)ଶ. (38) 

5.4. Response to general excitations 

The question now is what the response of a SDOF system with inerter (Fig. 4) is when the 
excitation is nonperiodic or arbitrary (Eq. (12)). This answer or solution can be achieved by the 
convolution integral or by the Laplace transform approach, among other methods (e.g. Fourier 
integral). If initial conditions are null, any method will result in the same answer or response [15]. 

In case the Laplace transform method is chosen, the new or inerter-added transfer function is: 𝐺(𝑠) = 1(𝑚 + 𝑏)𝑠ଶ + 𝑐𝑠 + 𝑘, (39) 
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and the response of the SDOF system will finally be: 

𝑥(𝑡) = 1(𝑚 + 𝑏)𝜔ௗᇱ න 𝐹(𝜏)𝑒ିఠ೙ᇲ ఍ᇲ(௧ିఛ)௧
଴ sin 𝜔ௗᇱ (𝑡 − 𝜏)𝑑𝜏, (40) 

where the frequencies 𝜔௡ᇱ  and 𝜔ௗᇱ  , and the new damping factor 𝜉′ have been defined in Sections 
4.1 and 4.2. 

6. Conclusions 

In this work, complete results for free and forced oscillatory response of a single-degree-of-
freedom system with an inerter are presented. The free response solutions are for both, 
conservative (undamped) and damped systems, and the forced response results are for harmonic 
and for arbitrary or nonperiodic excitations. Comprehensive and thorough results as presented 
herein have not been published before in the vibrations or engineering literature. 

Moreover, the classical applications of rotating unbalance and base motion vibration isolation 
are presented, including the new solutions associated to the addition of the inerter device to both 
engineering problems. These full and general results will serve to practitioners in civil, control, 
mechanical and electrical engineering; as demonstrated in the Introduction, the engineering 
applications of the new device are growing and are very diverse.  

References 

[1] Smith M. C. Synthesis of mechanical networks: the inerter. IEEE Transaction on Automatic Control, 
Vol. 47, 2002, p. 1648-1662. 

[2] Smith M. C., Wang F. Performance benefits in passive vehicle suspensions employing inerters. 
Vehicle System Dynamics, Vol. 42, 2004, p. 235-257. 

[3] Lazar I. F., Neild S. A., Wagg D. J. Using an inerter-based device for structural vibration suppression. 
Earthquake Engineering and Structural Dynamics, Vol. 43, 2014, p. 1129-1147. 

[4] Chen M. Z. Q., Wang K., Shu Z., Li C. Realizations of a special class of admittances with strictly 
lower complexity than canonical forms. IEEE Transactions on Circuits and Systems I: Regular Papers, 
Vol. 60, 2013, p. 2465-2473. 

[5] Shearer J. L., Murphy A. T., Richardson H. H. Introduction to System Dynamics. Addison-Wesley, 
Reading, 1967. 

[6] Smith M. C., Swift S. J. Design of passive vehicle suspensions for maximal least damping ratio. 
Vehicle System Dynamics, Vol. 54, 2016, p. 568-584. 

[7] Wang F., Hsieh M., Chen H. Stability and performance analysis of a full-train system with inerters. 
Vehicle System Dynamics, Vol. 50, 2012, p. 545-571. 

[8] Ruiz R., Taflanidis A., Giaralis A., López D. Risk-informed optimization of the tuned  
mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures. 
Engineering Structures, Vol. 177, 2018, p. 836-850. 

[9] Pope S. A. Double negative elastic metamaterial design through electrical-mechanical circuit 
analogies. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 60, 2013, 
p. 1467-1474. 

[10] Chen M. Z. Q., Hu Y., Huang L., Chen G. Influence of inerter on natural frequencies of vibration 
systems. Journal of Sound and Vibration, Vol. 333, 2014, p. 1874-1887. 

[11] Yang J. Force transmissibility and vibration power flow behavior of inerter-based vibration isolators. 
Journal of Physics: Conference Series, Vol. 744, 2016, p. 012234. 

[12] Brzeski P., Perlikowski P. Effects of play and inerter nonlinearities on the performance of tuned mass 
damper. Nonlinear Dynamics, Vol. 88, 2017, p. 1027-1041. 

[13] González A., Lazar I. F., Jiang J. Z., Neild S. A., Inman D. J. Assessing the effects of nonlinearities 
on the performance of a tuned inerter damper. Structural Control and Health Monitoring, Vol. 24, 
2017, p. e1879. 



COMPLETE RESULTS FOR FREE AND FORCED VIBRATIONS OF INERTER-ADDED ONE-DEGREE-OF-FREEDOM SYSTEMS.  
CÉSAR A. MORALES 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1573 

[14] Papageorgiou C., Houghton N. E., Smith M. C. Experimental testing and analysis of inerter devices. 
Journal of Dynamic Systems, Measurement, and Control, Vol. 131, 2008, p. 011001. 

[15] Meirovitch L. Elements of Vibration Analysis. McGraw-Hill, Mexico, 1986. 
[16] Hu Y., Chen M. Z. Q., Shu Z., Huang L. Analysis and optimization for inerter-based isolators via 

fixed-point theory and algebraic solution. Journal of Sound and Vibration, Vol. 346, 2015, p. 17-36. 
[17] Morales C. A. On the conditions for synchronous harmonic free vibrations. Journal of 

Vibroengineering, Vol. 17, 2015, p. 3727-34. 
[18] Morales C. A. Transmissibility concept to control base motion in isolated structures. Engineering 

Structures, Vol. 25, 2003, p. 1325-1331. 

 

César Morales received a Cum Laude mechanical engineering degree from Universidad 
Simón Bolívar (USB), Caracas, 1991, and M.Sc. (1995, 23 months of study) and Ph.D. 
(1997, 20 months of work) degrees in engineering mechanics from Virginia Tech, both 
under the advice of L. Meirovitch. In 1992, he joined the Departamento de Mecánica at 
USB as Professor Instructor, by 2005 he became Full Professor; has lately worked in 
Chilean and Peruvian Universities. He has published in several areas, from modal analysis 
to earthquake engineering, from theoretical vibrations to structural stability, and from sport 
science to applied mathematics. 

 




