
 

1296 JOURNAL OF VIBROENGINEERING. AUGUST 2019, VOLUME 21, ISSUE 5  

An adaptive stochastic resonance method based on 
multi-agent cuckoo search algorithm for bearing fault 
detection 

Kuo Chi1, Jianshe Kang2, Rui Tong3, Xinghui Zhang4 
1, 3Army Engineering University of PLA, Shijiazhuang, China 
2, 4Mechanical Engineering College, Shijiazhuang, China 
1Corresponding author 
E-mail: 1dynamicck@emails.imau.edu.cn, 2jskang201206@126.com, 3trtcq@163.com, 
4dynamicbnt@163.com 
Received 3 September 2018; received in revised form 21 December 2018; accepted 8 February 2019 
DOI https://doi.org/10.21595/jve.2019.20192 

Copyright © 2019 Kuo Chi, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. Bearing is widely used in the rotating machinery and prone to failure due to the harsh 
working environment. The bearing fault-induced impulses are weak because of poor background 
noise, long vibration transmission path, and slight fault degree. Therefore, the bearing fault 
detection is difficult. A novel adaptive stochastic resonance method based on multi-agent cuckoo 
search algorithm for bearing fault detection is proposed. Stochastic resonance (SR) is like a 
nonlinear filter, which can enhance the weak fault-induced impulses while suppressing the noise. 
However, the parameters of the nonlinear system exert an influence on the SR effect, and the 
optimal parameters are difficult to be found. Multi-agent cuckoo search (MACS) algorithm is an 
excellent heuristic optimization algorithm and can be used to search the parameters of nonlinear 
system adaptively. Two bearing fault signals are used to validate the effectiveness of our proposed 
method. Three other adaptive SR methods based on cuckoo search algorithm, particle swarm 
optimization or genetic algorithm are also used for comparison. The results show that MACS can 
find the optimal parameters more quickly and more accurately, and our proposed method can 
enhance the fault-induced impulses efficiently. 
Keywords: fault detection, rolling element bearing, adaptive stochastic resonance, multi-agent 
cuckoo search. 

1. Introduction 

Bearing, which can support the rotating parts, is among the most widely used components in 
rotating machinery. Its failure is a common cause of machine breakdown as the harsh working 
environment, which can lead to tremendous economic losses and even cause disasters [1]. Earlier 
the bearing failure is discovered, more time people can take to avoid the unnecessary losses. 
However, the fault-induced impulses are weak due to the poor background noise, the long 
vibration transmission path, and the slight fault degree. Some methods have been proposed to 
detect the bearing failure [2-4]. For example, Sawalhi et al. [2] combined minimum entropy 
deconvolution with spectral kurtosis for rolling bearing failure. Smith et al. [3] proposed a simple 
spectral kurtosis-based approach for selecting the best demodulation band to extract bearing 
fault-related impulses from vibration. Mishra et al. [4] diagnosed bearing fault under slow speed 
operation by wavelet de-noising. However, the bearing fault-induced impulses are too weak and 
submerged in the strong background noise. Although much work has been done, there are still 
many shortcomings in bearing fault detection. 

Stochastic resonance (SR) is a special physical phenomenon that the weak low-frequency 
signal is enhanced when the mixture of the weak signal and noise are inputted into a proper 
nonlinear system. The phenomenon means that noise can be utilized for the weak signal 
enhancement under certain circumstances. Since SR was proposed by Benzi et al. in 1981 [5], it 
has been studied and applied in many fields such as bioengineering [6], medical equipment [7], 
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energy engineering [8] and so on. According to adiabatic approximation theory, the traditional SR 
only can deal with the low-frequency signal (the frequency is smaller than one) [9]. However, the 
bearing fault signal is a high-frequency signal (fault characteristic frequency is usually larger than 
one) and cannot be processed by the traditional SR. To solve the problem, researchers have 
proposed some methods such as re-scaling frequency SR [10], adaptive step-changed SR [11] and 
parameter normalized SR [12]. These methods can transform the high-frequency signal into a 
low-frequency signal that can be processed by the traditional SR. Because parameter normalized 
SR is simple and comprehensible, it will be used in this paper. 

The parameters of the nonlinear system have a big influence on the SR effect. For example, 
the two parameters of the bi-stable system determine the barrier height. If the barrier is too high, 
it will be difficult for the particle to transfer from one potential well to another, and the bi-stable 
SR will not be triggered. If the barrier is too low, the effect of SR is not obvious. Heuristic 
optimization algorithms can search the optimal parameters of SR easily and have been applied in 
adaptive SR. For example, Chi et al. [13] used an adaptive SR based on cuckoo search algorithm 
for bearing fault diagnosis. López et al. [14] applied the underdamped SR based on particle swarm 
in weak signal detection. Qiao et al. [15] proposed an adaptive unsaturated bi-stable SR based on 
the genetic algorithm for mechanical fault diagnosis. However, these algorithms have relatively 
long computing time and their local optimization accuracies are insufficient. Multi-agent cuckoo 
search (MACS) algorithm applies the multi-agent strategy to cuckoo search (CS) algorithm and is 
a more efficient algorithm. In this paper, an adaptive SR based on MACS is proposed for bearing 
fault detection. 

The rests of this paper are arranged as follows. Section 2 will analyze the bi-stable SR theory, 
the SR implements for the discrete signal and the evaluation of SR effect. Section 3 will introduce 
MACS and propose the adaptive SR based on MACS for bearing fault detection in detail. 
Section 4 will validate our proposed method by two bearing fault signals. Finally, Section 5 will 
provide conclusions. 

2. Stochastic resonance theory 

2.1. Bi-stable stochastic resonance 

Bi-stable SR phenomenon is described as follows: a particle is driven by a weak driving signal 
and a noise in the bi-stable system, and then the weak oscillation is enhanced with the assistance 
of the noise. Such a phenomenon can be illustrated by Langevin Equation (LE) as: 𝑑𝑥𝑑𝑡 = − 𝑑𝑈 𝑥𝑑𝑡 + 𝐴sin 2𝜋𝑓 𝑡 + 𝑁 𝑡 , (1) 

where 𝐴  and 𝑓  are the amplitude and frequency of the driving signal. 𝑁 𝑡 = √2𝐷𝜀 𝑡  is 
Gaussian white noise (GWN) with noise intensity 𝐷. 𝜀 𝑡  is the standard GWN with zero mean 
and unit variance. 

 
Fig. 1. Sketch map of the bi-stable potential function 𝑈 𝑥  
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𝑈 𝑥 = −𝑎𝑥 2⁄ + 𝑏𝑥 4⁄  is the bi-stable potential function as shown in Fig. 1. 𝑎 and 𝑏 are 
the potential parameters, and 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑅 . It is obvious that the bi-stable potential function 
has two minimums which are located at ±𝑥 = ± 𝑎/𝑏 and a potential barrier which is located 
at 𝑥 = 0 with the height Δ𝑈 = 𝑎 4𝑏⁄ . 

Thus, Eq. (1) can be rewritten as: 𝑑𝑥𝑑𝑡 = 𝑎𝑥 − 𝑏𝑥 + 𝐴sin 2𝜋𝑓 𝑡 + √2𝐷𝜀 𝑡 . (2) 

Supposing that 𝑧 = 𝑎 𝑏⁄ 𝑥 and 𝜏 = 𝑎𝑡, Eq. (2) can be rewritten as: 

𝑑𝑧𝑑𝜏 = 𝑧 − 𝑧 + 𝑏𝑎 𝐴sin 2𝜋 𝑓𝑎 𝜏 + √2𝐷𝜀 𝜏𝑎 . (3) 

Because both parameters of the bi-stable system are transformed into one, it is called parameter 
normalized transformation of SR. After the transformation, the driving frequency reduces 𝑎 times. 
Thus, the high-frequency signal can be transformed into a low-frequency signal by the 
transformation with the appropriate parameters (𝑎, 𝑏). The transformed signal will satisfy the 
limitation of the traditional SR. 

2.2. SR implement for discrete signal 

The collected vibration signal is discrete and contains weak fault characteristic signal and 
strong noise. Let 𝑆 𝑛  denote the vibration signal. For a discrete signal 𝑆 𝑛 , Eq. (3) can be solved 
by the five-order Runge-Kutta algorithm as: 𝑧 = 𝑧 + 𝐻6 𝑘 + 𝑘 + 2𝑘 +𝑘 +𝑘 , 𝑘 = 𝑧 − 𝑧 + 𝐾𝑆 𝑛 , 𝑘 = 𝑧 + 𝐻2 𝑘 − 𝑧 + 𝐻2 𝑘 + 𝐾𝑆 𝑛 , 𝑘 = 𝑧 + 𝐻2 𝑘 − 𝑧 + 𝐻2 𝑘 + 𝐾𝑆 𝑛 + 1 , 𝑘 = 𝑧 + 𝐻2 𝑘 − 𝑧 + 𝐻2 𝑘 + 𝐾𝑆 𝑛 + 1 , 𝑘 = 𝑧 + 𝐻𝑘 − 𝑧 + 𝐻𝑘 + 𝐾𝑆 𝑛 + 1 , 

(4) 

where 𝑧 is the SR output. 𝐾 = 𝑏 𝑎⁄  is the amplitude factor. 𝐻 = 𝑎 𝑓⁄  is the integral step. 

2.3. Evaluation of SR effect 

A criterion is needed to evaluate the SR effect. Some indexes have been proposed such as 
approximate entropy [11], signal-to-noise ratio (SNR) [16], local signal to noise ratio (LSNR) [13] 
and weighted power spectrum kurtosis (WPSK) [17]. Because of the precise definition and easy 
application, LSNR will be used as the evaluation criterion: 

𝐿𝑆𝑁𝑅 = 10log 𝑆 𝑓𝑁 𝑓 , ∆𝑓 , (5) 

where 𝑆 𝑓  is the power of the frequency 𝑓 . 𝑆 𝑓 , ∆𝑓  is the power in frequency domain 
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𝑓 − ∆𝑓 , 𝑓 ∪ 𝑓 , 𝑓 + ∆𝑓 . Larger the LSNR is, better the signal is. 
Fig. 2 shows the output LSNR with the increase of noise intensity 𝐷 under different low 

driving frequencies without transformation. With the increase of 𝐷, the input LSNR decreases 
while the output LSNR increases at first and then decreases. Thus, the noise improves the SR 
output before the output LSNR reaches the maximum. Also, with the increase of the driving 
frequency, LSNR becomes smaller and smaller. It means that SR without transformation is 
effective for the low-frequency signal but bad for the high-frequency signal. 

 
Fig. 2. Output LSNR vs. 𝐷 under different driving frequencies without transformation  

(𝑓 = 10 Hz, signal length 𝑛 = 104, 𝐴 = 0.2, 𝐾 = 1, 𝐻 = 1 𝑓 = 0.1⁄ , and ∆𝑓 = 20 Hz) 

Fig. 3 shows the output LSNR with the variation of amplitude factor 𝐻 and integral step 𝐾. 
Output LSNR varies with the change of parameter 𝐻 and 𝐾. Larger the output LSNR is, better the 
parameter 𝐻 and 𝐾 are. However, the 3D surf in Fig. 3 is complicated. It is difficult to find the 
optimal parameter 𝐻  and 𝐾 . Therefore, a heuristic optimization algorithm is needed to find the 
optimal parameters. 

 
Fig. 3. Output LSNR vs. joint amplitude factor 𝐻 and integral step 𝐾  

(𝑓 = 6000 Hz, signal length 𝑛 = 104, 𝐴 = 1, 𝑓 = 30 Hz, 𝐷 = 2 and ∆𝑓 = 20 Hz) 

3. Multi-agent cuckoo search algorithm 

3.1. Cuckoo search algorithm 

Cuckoo search (CS) algorithm is a new heuristic optimization algorithm and has been used in 
many fields [13, 18-20]. It simulates the parasitic reproductive strategy of cuckoos: the solutions 
are seen as cuckoo eggs, the optimal solution which has the optimal fitness as the optimal cuckoo 
egg, the feasible region as the search zone of the cuckoos. Three hypothetical rules are set as 
follows: 

• A cuckoo only lay an egg at a time and dump it in a nest randomly. 
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• The current best egg should be kept to the next generation. 
• The nest number is fixed. The host birds should find some cuckoo eggs with a probability  𝑃 = 0, 1 , and these eggs will be replaced with new eggs. 
When generating the new candidate solutions 𝑌 , the update by Lévy flights is performed 

as [19]: 𝑌 = 𝑋 + 𝑅 𝑢|𝑣| ⁄ 𝑋 − 𝑋 ,      𝑖 = 1,2, … , 𝑛, 
𝑣~𝑁 0,1 ,     𝑢~𝑁 0, 𝜎 ,      𝜎 = Γ 1 + 𝛽 sin 𝜋𝛽22 ⁄ 𝛽Γ 1 + 𝛽2

⁄ , (6) 

where 𝑋  is the 𝑖th solution of the 𝑡th generation. 𝑅 is the step-size scale. 𝑋  is the best solution 
of the 𝑡th generation. 𝑢 and 𝑣 obey the Gaussian distribution. Γ ∙  is the standard gamma function. 𝑛 is the number of the solutions. 𝛽 = 1.5 is a constant. 

3.2. Multi-agent cuckoo search algorithm 

CS is an excellent algorithm. However, it lacks the communication among the populations and 
knowledge learning of the cuckoos, which limits the performance of CS. We regard the cuckoos 
as intelligent agents. These agents can communicate with others and learn the knowledge. Thus, 
a new improved CS is proposed called multi-agent cuckoo search (MACS) algorithm. Two 
operations are designed to realize these behaviors. They are the competitive cooperation operation 
for communication and the self-learning operation for knowledge learning. 

A multi-agent system should be constructed at first. Fig. 4 shows a multi-agent system with 
the Von Neumann structure. It contains 𝑀×𝑁 circles. Each circle represents a cuckoo. For a 
cuckoo, other cuckoos that connected with it by the lines are regarded as its neighborhoods. Let 𝐿 ,  denote the cuckoo in 𝑖th row and 𝑗th column. Its neighborhoods are 𝐿 , , 𝐿 , , 𝐿 , , and 𝐿 , : 𝑖 = 𝑖 − 1,   𝑖 ≠ 1,  𝑁,   𝑖 = 1.   𝑖 = 𝑖 + 1,    𝑖 ≠ 𝑁,1,   𝑖 = 𝑁.  𝑗 = 𝑗 − 1,   𝑗 ≠ 1,  𝑀,   𝑗 = 1.   𝑗 = 𝑗 + 1,   𝑗 ≠ 𝑀,1,    𝑗 = 𝑀.  

(7) 

 
Fig. 4. The multi-agent system with Von Neumann structure 

Cuckoo 𝐿 ,  only communicates with its neighborhoods by competitive cooperation operation. 
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Supposing 𝐿  is the best neighborhood of 𝐿 , . Competitive cooperation operation is performed 
only when the fitness of 𝐿  is better than 𝐿 , . The operation can be described as: 𝐿 = 𝐿 , + 𝑈 −1,1 × 𝐿 − 𝐿 , × 𝐻 𝑝 − 𝑟 , (8) 

where 𝐿  is the new cuckoo. 𝑈 −1,1  is a random number that obeys the (–1, 1) uniform 
distribution. 𝑝 ∈ 0,1  is the crossover probability. 𝑟 is a random number that obeys the (0, 1) 
uniform distribution. 𝐻 ∙  is the Heaviside function: 𝐻 𝑥 = 1,   𝑥 ≥ 0,  0,   𝑥 < 0.   (9) 

Only the current best cuckoo can learn knowledge through self-learning operation. Supposing 𝐿  is the current best cuckoo. Number 𝑁  of cuckoos 𝐿  are produced in a narrow range by 
Eq. (10). If the fitness of the produced best cuckoo is better than 𝐿 , the produced best cuckoo 
will replace 𝐿 . Otherwise, 𝐿  will not be changed: 𝐿 = 𝐿 × 𝑈 1 − 𝑅 , 1 + 𝑅 , (10) 

where 𝑅 ∈ 0,1  is the local search radius. 𝑈 1 − 𝑅 , 1 + 𝑅  is a random number that obeys the 
1 − 𝑅 , 1 + 𝑅  uniform distribution. 

The simple pseudo-code of the MACS algorithm can be provided as shown in Fig. 5. 

 
Fig. 5. Pseudo-code of the MACS algorithm 

3.3. The proposed adaptive SR for bearing fault detection 

For the deterministic input signal, SR output depends on the parameters 𝐻 and 𝐾 according to 
Eq. (4). However, the optimal parameters 𝐻  and 𝐾  are different to be found. In the proposed 
adaptive SR, MACS is used to search the optimal parameters 𝐻  and 𝐾 . LSNR is used as the 
evaluation criterion of the SR effect. For the bearing fault detection, the detailed steps are stated 
as follows: 

Step 1: Bearing vibration signal acquisition. Longer the vibration transmission path is, weaker 
the impact signal is. When acquiring the bearing vibration signals, the sensors should be near the 
bearings. 

Step 2: Bearing vibration signal pre-processing. Some common techniques are used to 
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preprocess the bearing vibration signal. Resonance demodulation is one of the most pre-processing 
technologies. Resonance band can be chosen by kurtogram, spectral kurtosis or visual 
identification [3, 21]. Visual identification is selected in this paper. The envelope signal is obtained 
by the conventional Hilbert transform method. The envelope signal contains not only the 
fault-induced impulses but also other known signals such as the shaft rotation signal. These known 
signals, especially whose frequencies are lower than the frequency of the impulses, are harmful to 
SR effect. Thus, these signals should be removed by spectral editing. The envelope signal is a 
unipolar signal, which is worse than the bipolar signal for SR effect improvement [22]. High-pass 
filtering is used to transform the envelope signal into a bipolar signal and filter some low 
frequencies which are harmful to the SR effect. Through the pre-processing, the preprocessed 
signal is obtained. 

Step 3: Parameter initialization and optimization by MACS. Intervals of parameters (𝐻, 𝐾) 
and other related parameters are set. MACS is used to search for the optimal parameters (𝐻 , 𝐾 ) 
which may solve Eq. (11): max  𝐿𝑆𝑁𝑅 𝑧 𝐻, 𝐾 . (11) 

Step 4: Signal post-processing. The optimal parameters (𝐻 , 𝐾 ), optimal SR output and its 
corresponding maximum LSNR are collected. 

4. Experimental validations 

To verify the feasibility of our proposed method, two bearing preset failure tests are carried 
out through the test rig as shown in Fig. 6. The test rig consists of three parts: the power and 
control part, the bearing fault simulation part and the data acquisition part (not shown). The power 
and control parts are composed of a three-phase asynchronous motor (supply the power), a motor 
controller (control the motor speed) and a speed indicator (display the real-time speed of the 
motor). The bearing fault simulation part consists of two deep groove ball bearings (support the 
shaft), an optical shaft (supply the radial load for the bearings) and two flywheels (also supply the 
radial load). In order to realize the power transmission, the coupler should connect the motor to 
the shaft. The data acquisition part is composed of vibration acceleration sensors, a data 
acquisition card and a software (display and storage the data). 

 
Fig. 6. Bearing fault simulation test rig 

The bearing type is ER-12K, and its main dimensions are shown in Table 1. The preset faults 
are the inner-race fault (a groove with 0.5 mm width in the center of the inner race) and the rolling 
element fault (a deep groove with 0.5 mm width in one of the rolling elements). The fault bearing 
is located at bearing 1 as shown in Fig. 6. Vibration signals are collected by sensor 1. Sampling 
frequency 𝑓  is 12800 Hz, and sampling time 𝑡 is 0.5 s. Adaptive SR methods based on MACS, 
CS, particle swarm optimization (PSO) and genetic algorithm (GA) are used to process the bearing 
vibration signals for comparison. The parameters of these optimization algorithms are set as 
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shown in Table 2. The parameters of bi-stable SR are set as 𝐻 ∈ 10 , 10  and 𝐾 ∈ 10 , 500 . ∆𝑓  is set as 50 Hz. 

Table 1. Main dimensions of bearing ER-12K 
Number of rolling elements Ball diameter (inch) Pitch diameter (inch) Contact angle (°) 

8 0.3125 1.318 0 

Table 2. Algorithm parameter setting 
Algorithms Parameters 

MACS Population size 𝑀 × 𝑁 = 6×6, discovery rate 𝑃 = 0.25, step-size scale 𝑅 = 0.35, 
crossover probability 𝑝 = 0.5, local search radius 𝑅 = 0.05, number 𝑁 = 25 

CS Population size = 50, discovery rate 𝑃 = 0.25, step-size scale 𝑅 = 0.35 

PSO Population size = 100, intertia coefficient = 1, damping ratio of inertia coefficient = 0.99, 
personal acceleration coefficient = 5, social acceleration coefficient = 10 

GA Population size = 100, crossover percentage = 0.7, extra range factor for crossover = 0.4, 
mutation percentage = 0.3, mutation rate = 0.1 

4.1. Bearing inner-race fault detection 

The bearing outer race fault signal is analyzed firstly. According to the main dimensions of 
bearing ER-12K in Table 1 and the real motor speed (19.922 r/s), the fault feature frequency 𝑓  
is equal to 98.582 Hz. The bearing signal is preprocessed by the resonance demodulation. The 
signal is filtered by minimum-order Butterworth band-pass filter with pass-band [1500, 5000] Hz. 
The envelope signal is obtained by the Hilbert transform. The envelope signal and its spectrum 
are shown in Fig. 8(a). Some known frequencies that are lower than 𝑓  like the frequency 2𝑓  
and 3𝑓  are bad for the SR effect, and they will be removed by the spectral editing. It is obvious 
that the envelope signal is a unipolar signal, which is worse than the bipolar signal for the SR 
effect [22]. Thus, the minimum-order Butterworth high-pass filter with stop-band [0, 5] Hz is used 
to transform the unipolar envelope signal to a bipolar signal. After pre-processing, the 
preprocessed signal is obtained as shown in Fig. 8(b). 

Then, the preprocessed signal is processed by the SR methods based on MACS, CS, PSO and 
GA respectively. Max iterations (50 iterations) and limited time (60 seconds) of calculation are 
set as the termination conditions of the four optimization algorithms respectively. The fitness 
convergence curves and final optimization results are shown in Fig. 7 and Table 3. We can see 
that the final LSNR of SR output based MACS is the biggest among the four algorithms under 
both termination conditions.  

 
a) Max iteration = 50 times 

 
b) Limited time = 60 s 

Fig. 7. The fitness convergence curves of the four algorithms for the inner-race fault signal 

Therefore, the adaptive SR based on MACS is the best among the four methods. The optimal 
SR output (𝐻 = 0.290, 𝐾 = 94.398) and its spectrum are shown in Fig. 8(c). The fault feature 
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frequency 𝑓  is enhanced obviously. Thus, our proposed method is effective for bearing fault 
detection. 

Table 3. Optimization results of the four algorithms and related parameters for the inner-race fault signal 

Algorithms Max iterations = 50 times Limited time = 60 s 
LSNR (dB) 𝐻, 𝐾  LSNR (dB) 𝐻, 𝐾  

MACS –0.961 [0.290, 94.352] –0.960 [0.290, 94.398] 
CS –1.001 [0.284, 93.965] –0.961 [0.290, 94.652] 

PSO –1.222 [0.277, 99.096] –1.200 [0.297, 89.445] 
GA –1.097 [0.264, 96.203] –1.243 [0.195, 130.002] 

 

 
a) Envelope signal and its spectrum 

 
b) Preprocessed signal and its spectrum 

      
c) SR output and its spectrum 

Fig. 8. Analysis results for the inner-race fault signal 

4.2. Bearing rolling element fault detection 

The fault-induced impulses in bearing rolling element fault signal are weaker than that in 
bearing inner-race fault signal. Then, the bearing rolling element fault signal will be analyzed. 
According to the main dimensions of bearing ER-12K in Table 1 and the real motor speed 
(19.922 r/s), the fault feature frequency 𝑓  is equal to 39.650 Hz. The bearing signal is 
preprocessed by the resonance demodulation. The signal is also filtered by minimum-order 
Butterworth band-pass filter with pass-band [1500, 5000] Hz, and the envelope signal is also 
obtained by the Hilbert transform. The envelope signal and its spectrum are shown in Fig. 10(a). 
It is obvious that the frequency 𝑓  is very weak and submerged in the heavy noise. The envelope 
signal is a unipolar signal, which is worse than the bipolar signal for the SR effect [22]. Then, the 
minimum-order Butterworth high-pass filter with stop-band [0, 5] Hz is used to transform the 
unipolar envelope signal to a bipolar signal. After pre-processing, the preprocessed signal is 
obtained as shown in Fig. 10(b). 

Then, the preprocessed signal is also processed by the SR methods based on MACS, CS, PSO 
and GA respectively. Max iterations (50 iterations) and limited time (60 seconds) of calculation 
are set as the termination conditions of the four optimization algorithms respectively. The fitness 
convergence curves and final optimization results are shown in Fig. 9 and Table 4. In Fig. 9, the 
convergence curve of MACS is steep in the early stage of optimization, which means that the 
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MACS converges quickly. The final LSNR of SR output based MACS is the biggest among the 
four algorithms under both termination conditions. Therefore, the adaptive SR based on MACS is 
the best among the four methods. The optimal SR output (𝐻 =  2.350, 𝐾 =  58.986) and its 
spectrum are shown in Fig. 10(c). The fault feature frequency 𝑓  is enhanced obviously. Thus, 
our proposed method can enhance the weak signal submerged in the strong noise. 

 
a) Max iteration = 50 times 

 
b) Limited time = 60 s 

Fig. 9. The fitness convergence curves of the four algorithms for the ball fault signal 

Table 4. Optimization results of the four algorithms for the ball fault signal 

Algorithms Max iterations = 50 times Limited time= 60 s 
LSNR (dB) 𝐻, 𝐾  LSNR (dB) 𝐻, 𝐾  

MACS –4.855 [1.498, 40.379] –4.514 [1.350, 58.986] 
CS –6.401 [1.609, 27.523] –5.191 [1.380, 70.745] 

PSO –7.115 [1.650, 27.523] –8.644 [0.240, 263.966] 
GA –8.800 [1.612, 11.193] –8.462 [0.215, 293.586] 

 

 
a) Envelope signal and its spectrum 

 
b) Preprocessed signal and its spectrum 

      
c) SR output and its spectrum 

Fig. 10. Analysis results for the rolling element fault signal 
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5. Conclusions 

In this paper, we propose an adaptive SR based on MACS for bearing fault detection. Two 
bearing fault signals are used to validate our proposed method, and three adaptive SR methods 
based on CS, PSO, or GA are compared with our proposed method. The conclusions are drawn as 
follows: (1) Both of parameters 𝐻  and 𝐾  affect the SR effect; (2) MACS can find the best 
parameters of SR in the same max iteration or the same limited calculation time among the four 
methods; (3) Our proposed method is effective for bearing fault detection especially when the 
fault is weak. 

However, the proposed adaptive SR based on MACS only can enhance the single effective 
frequency component. Other effective frequency components may be filtered. Thus, the detection 
of the multi-frequency signal should be researched furtherly. 
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