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Abstract. To aim at the defects of the traditional VSG (virtual synchronous generator) control 
schemes to only complete the primary frequency regulation equivalent to droop control, and not 
to realize the secondary frequency regulation, this paper proposes a new control scheme to realize 
the secondary frequency regulation of the VSG, such that system frequency can return to the rated 
value. In this method, the torque change process of the rotor of synchronous generator is firstly 
analyzed when the system active power fluctuates. And then, a novel secondary frequency 
regulation control strategy of the VSG is proposed, where the small-signal model of power 
transmission of the VSG is established and transfer function is analyzed, and parameters design 
and stability analysis of the control system are conducted. Finally, simulation experiments show 
the correctness and effectiveness of the proposed method. 
Keywords: virtual synchronous generator, secondary frequency regulation, virtual mechanical 
torque, small-signal model, parameters design. 

1. Introduction 

With the emergence of a series of environmental, ecological, and social sustainable issues, all 
sorts of renewable energies have already been widely explored and utilized, such as photovoltaic 
power station, wind energy, and small-type hydroelectric generation, and etc., and the 
permeability of which is increased quickly. However, due to a variety of DGs (distributed 
generations) with outputs being uncertain, unpredictable, and uncontrollable, the consumption on 
them has already become a major problem [1, 2]. Hence, to promote the local consumption of 
renewable energy, some scholars put forward the microgrid concept organically integrating all 
kinds of renewable energies, ESSs (energy storage systems), power converters, and loads to 
smooth the power fluctuations [3]. Nowadays, the voltage level of microgrid has already covered 
400 V, 10 kV, and 35 kV in the medium and low voltage distribution networks in China. As a 
microgrid runs in an islanded mode, the DGs and the ESSs can instantaneously supply larger 
power support [4]. 

Compared with SG (synchronous generator), the grid-connected inverter possesses fast 
response and little inertia under conventional control strategies such as P/Q, V/f and droop control, 
such that it cannot effectively provide power support and maintain the frequency stability for 
microgrid [5]. Hence, to make it possess the characteristics of inertia and damping like SG, some 
scholars proposed the concept of the VSG in [6]. Today, the widely used VSG control scheme is 
based on the second-order model proposed in 2009 [7], which simulates the characteristics of rotor 
inertia, damping, and electromagnetic of SG, comprehensively, and is beneficial for the 
improvement of system stability. However, the scheme only can provide limited inertia support 
for microgrid to realize the PFR (primary frequency regulation) of the system, and fail to SFR 
(secondary frequency regulation), which limited its further application [8]. 

To improve power quality and anti-interference ability of the microgrid, there is necessary to 
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realize SFR by controlling the DGs [9]. Centralized SFR depends on the system information to 
timely compute the power shortage by means of energy management system of microgrid, and the 
dispatch instruction require to be sent to each DG with a complex communication system, which 
may lead to a certain delay, and poor reliability and instantaneity [9, 10]. Distributed SFR based 
on conformance algorithm utilizes the information of local generation units and adjacent DGs to 
realize parallel operation of multiple inverters, but there are still shortcomings of communication 
delay, inferior reliability, and etc. [11]. Decentralized SFR only utilizes local information, has 
received extensive attention because of its high reliability, low cost and good expansibility  
[12-14]. As is presented in [15], to add integrator in the damping part of the VSG control algorithm 
would complete the attenuation of frequency disturbance components, but it did not realize the 
essence of the SFR is to adjust the input mechanical torque. By changing the droop coefficient of 
inverters, a fixed value online tuning method is put forward in [16]. Although without 
communication system, it has a large amount of computation and requires better processor. 

In this paper, the traditional VSG control scheme is improved to realize the SFR of the 
microgrid. Based on the analysis of torque-speed characteristic of rotor, the virtual mechanical 
torque part of the VSG is adjusted without error according to the system frequency. Then, the 
parameters design and stability analysis of the control system are also carried out according to the 
derived small-signal model. Finally, simulation results verify the effectiveness and effectiveness 
of the proposed method. 

2. Basic VSG control scheme 

Fig. 1 shows the main circuit topology structure of the VSG with a DG, wherein the primary 
source of the DG could be photovoltaic panels, wind power generator, or other distributed energy 
resources with ESS, which can maintain the output power controlled and the voltage of DC bus 
stable [17]. The main circuit in Fig. 1 may be a three-phase voltage source inverter, and 𝑄  to 𝑄  
represents the driving pulse, and 𝑈  is the DC bus voltage, where LC filter is adopted to filter the 
harmonics of the switching frequency and its adjacent frequency band. 𝑅  and 𝐿  present the line 
resistance and reactance from VSG to PCC (point of common coupling), respectively, 𝐸  is the 
RMS (root-mean-square) value of modulation wave, and 𝑒 , 𝑒 , and 𝑒  are three-phase 
modulated wave signals, 𝑃 and 𝑄 respectively are the instantaneous active power and reactive 
power whereas 𝑃  and 𝑄  are the references at the stable state, 𝑓  and 𝑈  are the given 
reference of frequency and voltage, respectively. In addition, compared the main circuit of 
grid-connected inverter with the electromagnetic part of SG, the bridge-side fundamental voltage 𝑒 , 𝑒 , and 𝑒  can be regarded as exciting electromotive force, 𝑅  and 𝐿  are regarded as 
resistance and synchronous inductance of armature winding, 𝑢  and 𝑖  are regarded as output 
voltage and current of SG terminal. To make the control system response faster, the dashed part 
is selected to be equivalent to the main circuit of VSG in Fig. 1 [18]. 
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Fig. 1. Main circuit topology of the VSG 
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2.1. P-f controller 

Fig. 2 shows the block diagram of the VSG control system, including P-f controller and Q-V 
droop controller. The upper part represents the P-f controller being the core of swing equation, 
where 𝑆 , 𝑆  are the secondary frequency control enabled switches, 𝑘  and 𝑘  are the integral 
coefficients of the governing loop of virtual mechanical part and damping part. In this paper, the 
frequency response capability of the VSG is specially focused when the active load fluctuates in 
microgrid, such that the second-order model of SG is adopted, and swing equation can be 
described as Eq. (1): 

𝐽 𝑑𝜔𝑑𝑡 = 𝑇 − 𝑇 − 𝑇 = 𝑇 − 𝑇 − 𝐷 𝜔 − 𝜔 ,𝑑𝜃𝑑𝑡 = 𝜔 ,  (1) 

where 𝐽  presents the moment of inertia of all the parts rotating of the rotor, and 𝑇  is the 
mechanical torque, and 𝑇  is the electromagnetic toque, and 𝑇  is the damping torque, and 𝐷 is a 
damping factor. As magnetic pole pair is one, the mechanical angular velocity is equal to its 
electrical angular frequency 𝜔 , and the angular displacement 𝜃 is the integral of 𝜔 . Below the 
mechanical torque change process of SG is analyzed in the dynamic process. 
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Fig. 2. Block diagram of VSG control system 

Tm consists of two parts: 𝑇  and Δ𝑇 , wherein 𝑇  indicates the mechanical torque of the prime 
mover in stable state, and Δ𝑇  is the response torque of frequency deviation on the rotor. In a 
regulated SG, the torque-speed characteristic of the rotor possesses a drop performance, that is, 
with the increase of the load, the rotor speed will decrease, and the torque on the rotor will increase 
accordingly. This can be described as Eq. (2): 

𝑇 = 𝑇 + Δ𝑇 = 𝑇 + 𝜔 − 𝜔𝑀 , (2) 

where 𝑀 is the speed regulation rate whose typical value 5 %. Fig. 3 shows the torque-speed 
characteristic of the rotor. 

For a SG, when oscillation occurs, the damping torque can be induced into its damping 
windings such that power oscillation will be suppressed. The reference frequency of the damping 
windings is the synchronous angular one, i.e., 𝜔 = 𝜔 . Therefore, when the system is at an 
active power-frequency equilibrium point, the damping windings are not working. 

In order to avoid the attenuated oscillation of SG rotor, we select 𝜔 = 𝜔 = 314 rad/s, thus, 
we have: 
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𝑇 − 𝑇 = 𝐷(𝜔 − 𝜔 ). (3) 

From Eq. (3), we can see that the output characteristic of VSG is of drooping like SG. As 𝑆  
and 𝑆  are not closed, the p-f controller simulates the PFR characteristic of SG, so that there is a 
certain deviation between the system frequency and the rated reference value. In order to resolve 
the issue and realize the SFR, the 𝑇  of the VSG would be adjusted so that system frequency could 
restore to rated value. 

 
Fig. 3. Torque-speed characteristic of the rotor 

2.2. Q-V droop controller 

Q-V droop controller is shown in the lower dashed block in Fig. 2, from it we have: 𝐾 𝐾 𝑑𝐸𝑑𝑡 = 𝑄 + 𝐾 𝑈 − 𝑈 − 𝑄 , (4) 

where 𝐾  is the transfer function from the modulator to inverter bridge, and 𝐾 is the integral 
coefficient. 𝑄  and 𝑄  are respectively the reference and instantaneous value of reactive power 
of the inverter, and 𝐾  is voltage-reactive power droop coefficient. Considering the influence of 
the filter and line impedances on output voltage, the voltage feedback of PCC is adopted, 𝑈  and 𝑈   are respectively the RMS value of the actual and reference value at PCC whereas 𝐸   is 
modulation wave’s RMS value. 

Combining 𝐸  and 𝜃 that come from the p-f Controller and Q-V droop controller respectively, 
the three-phase modulation wave 𝑒 , 𝑒  and 𝑒  can be expressed as Eq. (5): 

⎩⎪⎨
⎪⎧𝑒 = √2𝐸 sin(𝜃),𝑒 = √2𝐸 sin 𝜃 − 2𝜋3𝑒 = √2𝐸 sin 𝜃 + 2𝜋3 ., (5) 

In Eq. (5), 𝜃 = 𝜔 𝑑𝑡, 𝐾 = 𝑈 /𝑈 , 𝑈  is the peak value of triangular carrier. 

3. SFR control strategy of the VSG 

3.1. Small-signal modeling of the VSG 

VSG runs in droop control mode when 𝑆   and 𝑆   are disconnected, and the PFR can be  
realized. Compared with the traditional droop control, VSG benefits from the introduction of 
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virtual inertia and damping link, such that it possesses the ability of damping power oscillation to 
make frequency change process gentler, which can improve the frequency stability. 

As 𝑆  and 𝑆  closed, VSG runs in the SFR mode. The SFR can be achieved by bringing two 
integrators in the virtual mechanical and damping torque part in the p-f controller, and thus the 
frequency deviation would be fully eliminated. The parameters design of the two PI controllers 
will be described as follows. 

Fig. 4 is the equivalent circuit of an islanded microgrid, where the inverter is regarded as a 
voltage resource, and the transformer is assumed to be no phase shift action, and the impedance 
of inverter output, LC filter, transformer, and transmission lines are represented by 𝑍 = 𝑅 + 𝑗𝑋 of 
the ICI (integrated circuit impedance). Let the voltage of PCC be reference, i.e., 𝑈 ∠ 0°, and thus 
the terminal voltage of the VSG can be expressed by 𝐸∠𝜑. The three-phase active and reactive 
power of the inverter power supply injects into PCC can be obtained by: 

𝑃 = 3𝑈𝑅 + 𝑋 𝑅𝑈 cos𝜑 + 𝑋𝐸sin𝜑 − 𝑅𝑈 ,𝑄 = 3𝑈𝑅 + 𝑋 𝑋𝐸cos𝜑 − 𝑅𝐸sin𝜑 − 𝑋𝑈 ,  (6) 

where 𝜑 is the phase angle of the terminal voltage, and also called as power angle error. 

 
Fig. 4. Equivalent circuit of an islanded microgrid 

Under steady-state operation state, a small-signal model of power transmission is firstly 
derived from Fig. 2 and 4 to analyze the impact of load fluctuations on the output of the VSG. The 
fluctuations of frequency and voltage of the system will result in a small change on the phase and 
amplitude of PCC and the output voltage of the VSG, simultaneously. By analyzing the change of 
three-phase active and reactive power that the VSG injects into PCC after microgrid suffers a 
small disturbance, we then have: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧Δ𝑃 = ∂𝑃∂𝜑 Δ𝜑 + ∂𝑃∂𝑈 Δ𝑈 + ∂𝑃∂𝐸 Δ𝐸 = 3 𝑋𝐸𝑈 cos𝜑 − 𝑅𝑈 sin𝜑𝑅 + 𝑋 Δ𝜑

     +3 2𝑅𝑈 (cos𝜑 − 1) + 𝑋𝐸sin𝜑𝑅 + 𝑋 Δ𝑈 + 3 𝑋𝑈 sin𝜑𝑅 + 𝑋 Δ𝐸,Δ𝑄 = ∂𝑄∂𝜑 Δ𝜑 + ∂𝑄∂𝑈 Δ𝑈 + ∂𝑄∂𝐸 Δ𝐸 = −3 𝑋𝐸𝑈 sin𝜑 + 𝑅𝐸𝑈 cos𝜑𝑅 + 𝑋 Δ𝜑     +3 𝑋𝐸cos𝜑 − 𝑅𝐸sin𝜑 − 2𝑋𝑈𝑅 + 𝑋 Δ𝑈 + 3 𝑋𝑈 cos𝜑 − 𝑅𝑈 sin𝜑𝑅 + 𝑋 Δ𝐸.
 (7) 

For a microgrid, DG and load are connected by the transformer and transmission lines, such 
that it can be assumed that the resistance in ICI can be ignored. In order to make the VSG run 
stably and unlikely to out of step, 𝜑 is generally very small, and so we have: sin𝜑 ≈ 𝜑,cos𝜑 ≈ 1. (8) 

Thus, Eq. (7) can be rewritten as Eq. (9): 
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⎩⎨
⎧Δ𝑃 = 3𝐸𝑈𝑋 Δ𝜑 + 3𝐸𝜑𝑋 Δ𝑈 + 3𝑈 𝜑𝑋 Δ𝐸,Δ𝑄 = − 3𝐸𝑈 𝜑𝑋 Δ𝜑 + 3 𝐸 − 2𝑈𝑋 Δ𝑈 + 3𝑈𝑋 Δ𝐸. (9) 

Let Δ𝑃 = Δ𝑈  and Δ𝑄 = ( ) Δ𝑈 , and combining them with Eqs. (1)-(2) and (4), 
a small signal model of the VSG can be immediately obtained as shown in Fig. 5. 
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Fig. 5. Small-signal model of the VSG 

3.2. Parameters design of the controllers 

As demonstrated in [19], when the inductive in ICI is larger, there is 2 % coupling between p-f 
control loop and Q-V droop control loop only, such that the coupling effect can be neglected, and 
the decoupled small-signal model is shown in Fig. 6(a) and (b). 
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Fig. 6. Decoupled small-signal model: a) p-f control loop, b) Q-V droop control loop 

From Fig. 6, we can obtain the open-loop transfer function from Δ𝑓  to Δ𝑃  and Δ𝑈  to Δ𝑄  
respectively expressed as Eqs. (10), (11): 

𝐺 (𝑠) = Δ𝑃Δ𝑓 = 3𝐸𝑈 𝜔 𝑘 𝑠 + 𝑘𝑋𝜔 𝐽𝑠 + 𝑋𝜔 𝐷𝑠 + 3𝐸𝑈 + 𝑋𝜔 𝑘 𝑠, (10) 
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𝐺 (𝑠) = Δ𝑄Δ𝑈 = 3𝐾 𝐸 − 2𝑈 𝑠 + 3𝑘 𝐾𝑈𝑋𝐾 𝑠 + 3𝐾𝑈 . (11) 

This paper focuses on the influence of the introduction of the gain factor of the integrators on 
the control system. First, the calculation method of the gain factors of the integrators is derived. 

As in Eq. (1), the adjustment of the mechanical and damping torque is consistent, that is, the 
adjustments of both of them exist or disappear at the same time, so that 𝑘  can be designed firstly.  

When the integrator of damping torque part is not introduced, the open-loop transfer function 
from Δ𝑇  to Δ𝑇  can be derived by: 

𝐺 (𝑠) = Δ𝑇Δ𝑇 = 3𝐸𝑈𝑋𝜔 𝐽𝑠 + 𝑋𝜔 𝐷𝑠. (12) 

Thus, its closed-loop transfer function can be expressed by: 

𝑠 + 𝐷𝐽 𝑠 + 3𝐸𝑈𝑋𝜔 𝐽 = 0. (13) 

According to Fig. 6, when the integrator of damping torque part is introduced, the open-loop 
transfer function from Δ𝑇  to Δ𝑇  can be derived as: 

𝐺 (𝑠) = Δ𝑇Δ𝑇 = 3𝐸𝑈𝑋𝜔 𝐽𝑠 + 𝑋𝜔 𝐷𝑠 + 𝑋𝜔 𝑘 . (14) 

Thus, its closed-loop transfer function can be expressed by: 

𝑠 + 𝐷𝐽 𝑠 + 𝑘𝐽 + 3𝐸𝑈𝑋𝜔 𝐽 = 0. (15) 

According to Eqs. (12)-(15), the torque regulation part is a second-order system, and the 
natural frequency and damping coefficient of the second-order system can be derived as Eq. (16): 

⎩⎪⎨
⎪⎧𝜔 = 𝑘𝐽 + 3𝐸𝑈𝑋𝜔 𝐽 ,

𝜉 = 𝐷2𝜔 𝐽 .  (16) 

According to the relation between the damping ratio and the natural frequency of the 
second-order system, 𝑘  can be obtained by: 

𝑘 = 𝐷4𝜉 𝐽 − 3𝐸𝑈𝑋𝜔 ,𝑘 = 2𝜋𝑘 .  (17) 

That finishes the calculation method of the two gain factors of the integrators. 
Then, the influence of the introduction of the gain factors of the integrators on the stability and 

the dynamic response of the system are investigated. 
According to the torque-speed characteristic of the rotor shown in Fig. 3, the frequency 

adjustment coefficient can be obtained by 𝑘 = 2𝜋/𝑀 = 40𝜋. In this paper, the virtual inertia 𝐽 is 
taken as 0.2 kg·m2 refer to [20], and other parameters are designed using the proposed method  
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in [19].  
According to national grid code [21], by the change of 100 % active power corresponding to 

the change of 5 % grid frequency in a small-capacity power system, whereas the change of 100 % 
reactive power for the one of 7 % grid nominal voltage according to [22]. In this paper, it is 
assumed that the VSG capacity is given by 20 kVA. Considering that it needs to provide both 
active and reactive power support simultaneously, we have: 

𝐷 = Δ𝑇Δ𝜔 = Δ𝑃2√2𝜔 Δ𝜔 = 20 × 10√2 × 100𝜋 × 2𝜋 = 7.16  W · s/rad, 𝐾 = Δ𝑄2√2Δ𝑈 = 20 × 10√2 × 220 × 2 × 7% = 459.16 A.  

The parameters of the three-phase VSG control system are listed in Table 1. 

Table 1. Parameters of the VSG 
Parameters Value Parameters Value Parameters Value 𝑅  0.002 Ω 𝑅  0.05 Ω 𝜑 0.1 rad 𝐿  3 mH 𝐿  8 mH 𝑈  220 V 𝐶  500 μF 𝐸 225 V 𝐾 0.141 

From Eq. (13), the root locus of torque regulation part is shown in Fig. 7(a), and the parameter 
root locus with 𝑘  as the gain is shown in Fig. 7(b) according to Eq. (15). 
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Fig. 7. Root locus: a) when 𝑘  is not introduced, b) 𝑘  as the loop gain 

According to Eqs. (13) and (15), when 𝐽  and 𝐷  are confirmed, the introduction of 𝑘   will 
increase the natural frequency of the second-order system, that is, the cut-off frequency of the 
system, such that the damping ratio is reduced. Compared Fig. 7(a) with Fig. 7(b), we can see that 
due to the introduction of 𝑘  , the root locus initiation point shrinks ten-unit-length to the 
separation point, and eliminates the pole at the origin, so that all the closed-loop feature roots are 
located at the left side of the imaginary axis, which improves the stability of the control system. 
Meanwhile, before and after the introduction of 𝑘 , the separation point coordinates of the root 
locus are both (–35.8, 0). If the selection of 𝑘   makes the damping ratio same, the dynamic 
response speed of the system will not change. Thus, the introduction of 𝑘  improves the stability 
of the system without changing the dynamic response speed of the system. 

As 0 < 𝑘  < 138.46, the two poles of the closed-loop system are both on the real axis, is an 
over-damping system. With 𝑘  increasing, the characteristic roots evolve into conjugate complex 
roots so that the control system is under-damped. In comparison with [15], we can see that the 
system possesses a faster dynamic response speed when the ICI is inductive.  
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The damping ratio can be selected by 𝜉 = 0.707 from the second-order engineering optimal 
value, such that 𝑘 = 2482. 

Fig. 8 shows the Bode diagram of the torque regulation loop gain of the p-f controller. The 
cut-off frequency of the loop is about 10 Hz, which has a good inhibitory effect on the  
double-line-frequency ripple of VSG output power and the detected system frequency, and the 
control system has enough phase margins. 

In reality, the parallel operation of multiple inverters is often required. In order to enable the 
multiple VSGs to share the loads, it is required that the VSGs can have a consistent dynamic 
response, that is, the changing trend of each rotor of the VSG should keep consistent, such that it 
will not produce circulation or even power oscillation between the VSGs due to the difference of 
the rotor frequency. Hence, when the parameters of VSGs are consistent, the accurate load sharing 
can be achieved, so that the parallel and stable operation of the VSGs can be realized. 

 
Fig. 8. Bode diagram of the torque regulation loop gain 

4. Simulations 

Simulations are executed in MATLAB/Simulink environment to verify the effectiveness of the 
proposed SFR scheme. The system parameters in simulation are listed in Table 2. For comparison 
conveniently, the droop control mode of the VSG is also applied, and the results are shown in 
Fig. 9. The initial load is 10 kW/5 kVar, and the active load increases 5 kW at 0.3 s and ends at 
1.0 s, and the two integrators are put into at 0.6 s so as to make the VSG runs under the SFR mode. 

Table 2. Simulation parameters  
Parameters Value Parameters Value 

DC voltage: 𝑉  800 V 𝑓  50 Hz 
Line voltage 380 Vrms 𝑈  220 V 𝑆  20 kVA Power reference 10 kW+5 kVar 𝐾 0.141 Switch frequency 10 kHz 𝐾  1.6 ICI 0.5+j4 Ω 

Fig. 9 illustrates the dynamic performance of active power and frequency during the loading 
transition at 0.3 s and 1.0 s. Before 0.6 s, VSG runs in droop control mode to realize PFR alone. 
From 0.3 s to 0.6 s, due to the increase of the active load, the rotor and the system frequency are 
around 49.9 Hz deviating from the reference value 50 Hz, which is the characteristic of the droop 
control. As the SFR part is put into operation at 0.6 s, the rotor and system frequency are restored 
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to rated value after 5 fundamental frequency cycles, which fully meets the time requirement of the 
dynamic response of the system. Because the ICI is not inductive purely, there is a weak coupling 
between the active power and the reactive power of the VSG, which can be neglected. 
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Fig. 9. Comparison between PFR and SFR: a) VSG output power waveform, b) rotor frequency curve  
of VSG, c) system frequency curve, d) comparison between 𝑓  and 𝑓  from 0.28 s to 0.43 s 
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Fig. 10. Waveforms of VSGs and load under the SFR mode: a) active power of the microgrid,  
b) reactive power of the microgrid, c) frequency of rotor1, rotor2 and system 
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Furthermore, we also can observe that the rotor frequency declines before the system 
frequency conducts in Fig. 9(d), which demonstrates that the VSG possesses the ability to 
frequency support for microgrid. There is no malignant event as frequency dips, which enhances 
the stability of system frequency. It is stable after a short period of adjustment, which is consistent 
with the PFR dynamic process of the power system. And the waveform of the system frequency 
is more stable in the SFR mode compared to the droop control mode, which indicates that the 
control system possesses better stability. Due to the frequency reference of the damping part is 
selected as the rated value, the attenuated oscillation of rotor frequency in SG is not generated, 
such that the change process of rotor frequency is stable in the VSG. 

To verify the stability of the parallel operation of multiple VSGs under the SFR mode, two 
VSGs with a capacity of 20 kVA are established, other parameters are same with Table 2. The 
initial load is set as 20 kW/10 kVar, and the active load increases 8 kW at 0.3 s and ends at 1.0 s. 
The two VSGs can share the active and reactive load accurately to realize the stable and parallel 
operation as shown in Fig. 10(a), (b). The coordinated dynamic performance of rotor frequency 
of VSG1 and VSG2 is illustrated in Fig. 10(c), and there is no power oscillation and the 
phenomenon of loss of synchronism between the two VSGs. 

Fig. 11 shows the 𝑉  and 𝐼  waveforms of PCC. There is a small fluctuation on 𝑉  when 
active power transition happens due to the weak coupling but can restore to reference quickly, as 
shown in Fig. 11(a). Meanwhile, it is indicated that the output current of VSGs can track the load 
accurately in Fig. 11(b). 

0.2 0.4 0.6 0.8 1

210

220

230

 
a) 

0.2 0.4 0.6 0.8 1
20

30

40

50

 
b) 

Fig. 11. 𝑉  and 𝐼  of PCC: a) phase 𝑉  of PCC, b) phase 𝐼  of PCC 

5. Conclusions 

In this paper, an improved VSG control is proposed as a novel communication-less control 
method in an islanded microgrid. The swing equation of the SG is applied to the p-f controller of 
the VSG, which makes the inverter have certain inertia. Firstly, the torque-speed characteristic of 
the rotor is analyzed, and then the small-signal model of the VSG is derived when the ICI is mainly 
inductive. Secondly, the calculation method of the integral coefficients is given, and illustrated 
that the introduction of the integrator can improve the stability but don't change the dynamic 
response of the system on the basis of small-signal model. And based on inversed voltage droop 
control, a control strategy about communication-less reactive power is also proposed to achieve 
accurate reactive power sharing. Finally, simulation results demonstrated that the proposed 
improved VSG control achieves the SFR whether in single or parallel operation state without 
power oscillation. It is verified that the improved VSG control proposed is a preferable option to 
the control system of DGs in microgrids. 
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