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Abstract. Numerical simulation of a novel fuzzy control and back propagation neural network 
(BPNN) control for divergent instability based on classical flutter of 5-DOF wind turbine blade 
section driven by pitch adjustment has been investigated. The work is dedicated to solving 
destructive flap/lag/twist divergent instability from classical flutter, which might occur during the 
gust wind action, and might cause fracture failure of the blade itself and tower body. In order to 
investigate the optimal control method, the parameters of blade section are specially designed so 
as to simulate the actual situation, which lead to absolutely divergent motions (ADM) under gust 
wind load. The control of ADM often leads to limit cycle oscillation (LCO), the larger amplitude 
of which is likely to cause fracture failure of tower body. A novel fuzzy control method with 
adjustable quantization gain and BPNN control strategy are investigated in order to effectively 
eliminate LCO (leading to direct convergence of the system) or reduce the amplitude of LCO. The 
obvious effects of fuzzy control and BPNN control are illustrated by numerical comparisons of 
vibration suppression from nonlinear time response, amplitude of LCO and frequency spectrum 
analysis. An experimental platform is built based on hardware-in-the-loop simulation by way of 
PLC-OPC technology in order to test the real-time performance of the control algorithm. The 
feasibility of the control algorithm is demonstrated by the experimental results displayed by touch-
screen hardware. 
Keywords: fuzzy control, BPNN control, pitch adjustment, classical flutter, divergent instability, 
limit cycle oscillation, hardware-in-the-loop simulation, real-time effect. 

1. Introduction 

The flutter instability of wind turbine blades usually includes two cases: classical flutter 
instability and stall flutter instability. Although stall flutter instability has generally been an 
important issue in flutter research recent years, classical flutter was observed involving a 
high-speed rotating blade under gust load. Especially under extreme conditions, divergent 
instability issues of classical flutter may become a more important design consideration. For 
example, in September 2013, the typhoon event in Shanwei (China) [1], the maximum 
instantaneous wind speed reached 62.5 m/s, which resulted in not only flap/lag failure (from stall 
flutter instability) of a large number of wind turbine blades, but also fracture failure (from 
divergent instability of classical flutter) of the tower body. 

Most of the literature of classical flutter focused on the helicopter blades, or non-coupling wing 
sections [2, 3]. However, the classical flutter studies of wind turbine blades are still rare. The 
aeroelastic stability of a three-bladed wind turbine was considered with respect to classical flutter 
for a MW sized turbine, with critical frequency computed [4]. Don W. Lobitz discussed the 
classical flutter issue in an infinite aerofoil undergoing oscillatory pitching and plunging motion 
in an incompressible flow based on Theodorsen’s technique [5]. Baran R. P. gave a literature study 
on classical flutter and obtained theoretical background information on BLADEMODE V.2.0 and 
PHATAS [6]. The influence of the large deformation on the performance was introduced and the 
classical flutter instability was investigated in literature [7]. Flutter instability was discussed both 
in frequency and time domains in terms of blade tip flap/lag/twist deformations [7]. Classical 
flutter and active control of single-cell thin-walled composite wind turbine blade beam based on 
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piezoelectric actuation with small deformation and constant wind loads were analyzed [8]. 
However, all these literatures were based on either Theodorsen’s technique which has been 
modified over the years in a variety of ways to simplify the solution procedure, or computations 
using the time-domain ADAMS/AERODYN software. Moreover, most of them are based on 
constant wind load. How to effectively realize classical flutter control for a large blade with pitch 
motion and variable wind load has become an important research needed to be investigated.  

The divergent instability might be produced by vertical loads which make the system 
conservative. The instability type involving the cracked beam depends on the crack flexibility 
parameter, the boundary conditions as well as the non-conservativeness parameter [9]. In present 
study, in order to maximize the control performance and investigate the optimal control method 
for divergent instability, the sectional parameters are specially designed with ADM [10], i.e. even 
if the wind speed ܷ  is small, the system is still in an unstable state of divergent instability. 
Classical flutter for the purposes of LCO analysis is defined as the coupling of the bending and 
torsional modes, which is rarely observed. While flow separation is not necessary for this type of 
flutter, structural and fluidic non-linearities are present in the experiment as a stable LCO was 
achieved in reference [11]. In present study, when the specific frequency ratio and damping ratio 
are designed for ADM, the LCO vibration in control process can also be observed. However, the 
conventional PID controller has lost its usefulness here. A novel fuzzy PID control based on 
maximum error tracking method with adjustable quantization gain is investigated to realize flutter 
suppression for classical flutter with ADM so as to avoid fracture failure of the tower body to the 
utmost. For the purpose of comparison, BPNN PID control for divergent instability from classical 
flutter based on pitch adjustment is also investigated. Meanwhile in this area, the investigation of 
typical 2D blade section based on flap/lag or flag/twist motion plays an important role due to its 
simplicity and high efficiency; so, in this study, researches on aeroelastic instability and flutter 
control will be depicted based on a 5-DOF blade section. Both fuzzy PID and BPNN PID can 
produce LCO vibration. Whereas amplitudes and spectra are usually used to analyze LCO 
vibration [12], the role of initial parameters in the formation of LCO and different control methods 
based on analysis of response amplitude and frequency structure are discussed. 

In addition, real-time effects of control algorithms (for the independent airfoil cross-section) 
are investigated by an experimental platform based on hardware-in-the-loop simulation by way of 
PLC-OPC technology, which provides a kind of operation method and platform based on 
laboratory conditions for the real-time control of virtual objects. The implementation process of 
PLC-OPC communication technology can be described as follows: the aeroelastic system model 
is run in MATLAB/SIMULINK environment; the controlled output of the aeroelastic model is 
directly entered into the corresponding PLC memory via SIMULINK's “OPC Write” module; the 
control algorithm is run entirely in PLC system; and the driving signal sent by PLC is output to 
the aeroelastic model via “OPC Read” module. 

2. Analytical model 

The 5-DOF blade section structure is designed in such a way that its motions have five 
independent translational degrees of freedom: an edgewise direction (lag), denoted ݕ ; one 
perpendicular to that (flap), denoted ݖ; another twisted angle, denoted ߠ; variable pitch angle ߚ, 
and rotating angle ߶ (see Fig. 1(a)). The classical aerodynamic forces are denoted by lift ܨ and 
moment ܯ. The wind velocity is denoted by ܷ, with relative wind angle denoted by ߰. In 
order to simulate the extreme state, present study uses a kind of gust wind load, as shown in 
Fig. 1(b). 

In order to maximize the control performance, the sectional parameters listed in Table 1 are 
specially designed with ADM, while the wind speed ܷ ≥ 4 m/s, the three system movements are 
still divergent.  

It is assumed that the distance between the centre of gravity and the elastic axis is small  
enough, at the same time regardless of the impact of the masses determining the sum of inertia of 
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the rotor, gearbox and generator. Based on analysis of Lagrange’s equations, the blade tip sectional 
flap/lag/twist motions are respectively described as [13]: ݖሷ + ሶݖ௭߱௭ߦ2 + ߱௭ଶݖ + ݕሷߚ − ሷ߶ܮ sinβ + ሶݕሶߚ2 + ݖሶଶߚ + ݈ீா(ߠሶ + ሶ)ଶߚ = ௕ିߩ ଵܨcos(߰), ݕሷ + ሶݕ௬߱௬ߦ2 + ߱௬ଶݕ − ݖሷߚ + ሷ߶ܮ cos(ߚ) − ሶݖሶߚ2 − ݕሶଶߚ − ݈ீா൫ߠሷ + ሷ൯ߚ = ௕ିߩ ଵܨsin(߰), ߠሷ + ሶߠఏ߱ఏߦ2 + ߱ఏଶߠ + ሷߚ + ሷ߶ܮ ௕ିߩ ଵsin(ߠ + (ߚ + ௕ିߩ ଵ{ݕሷ sin(ߠ) − ݖ(ߠ)ሶଶ[cosߚ+      (ߠ)ሷcosݖ − sin(ߠ)ݕ] − ሶݖ(ߠ)ሶ[sinߚ2 + cos(ߠ)ݕሶ ] − ݖ(ߠ)ሷ[sinߚ + cos(ߠ)ݕ]} = (1) .ܯ஼ீିଵܫ

 

 
a) 

 
b) 

Fig. 1. a) Coordinate system and b) gust load 

Table 1. The blade sectional parameters 
Iterms Values Iterms Values 

Natural frequency ߱௭ 6 rad s-1 Damping ratio ߦ௭ 0.02 
Natural frequency ߱௬ 8 rad s-1 Damping ratio ߦ௬ 0.08 
Natural frequency ߱ఏ 4 rad s-1 Damping ratio ߦఏ 0.02 

Mass per length ߩ௕ 15 kg m-1 1/4 chord length by ݁ ܿ/4 
Rotational inertia ܫ஼ீ  10 mkg Blade length 20 ܮ m 

Length of chord (at ܮ) ܿ 0.3 m Tip speed ratio 1.2 ߣ 
Distance between center of gravity and center of elasticity ݈ீா ܿ/6 

The classical linear models including piston theory and full potential flow models are widely 
used in aeroelastic design for their advantage of computational efficiency [14]. The aerodynamic 
model is used here in order to quickly investigate a wide range of initial parameters that control 
the behavior of the nonlinear system in Eq. (1). Since the classical flutter problem refers to the 
linear flow regime, a linear aerodynamic theory was deemed sufficient. The linear aerodynamics 
of lift ܨ and moment ܯ can be approximatively expressed as [15]: ܨ = ௔ܿߩ− ଴ܸଶߙ)ߨ + ܯ    ,(ሶݖ = ௔ܿଶߩ− ଴ܸଶߙ)݁ߨ + ሶ), (2)ݖ

where ߩ௔ is the air density; the inflow wind speed is expressed as: 

଴ܸ = ඥ(Ωܮ)ଶ + ܷଶ = ඥ(ܷߣ)ଶ + ܷଶ. 
3. Pitch adjustment based on intelligent control 

Most of pitch control processes for wind turbine are realized by intelligent control strategy. A 
hybrid controller based on PI and fuzzy technique for the pitch angle controller was analyzed in 
order to improve power quality and maintain the stable output from wind farm [16]. A nonlinear 
control i.e. integral sliding mode control was proposed to regulate rated power at above rated wind 
speed by pitch control [17]. Two types of artificial neural network controllers including multi-
layer perceptions with back propagation learning algorithm and radial basis function network were 
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used to investigate the influences of pitch control [18]. However almost all these similar papers 
today focus on power control and conversion, wind energy utilization, and multivariable and 
nonlinear control so as to achieve maximum performance. Present study mainly focuses on the 
flutter control of divergent instability rather than power control. Meanwhile for the sake of 
comparison, two control methods, fuzzy PID control and BPNN PID control, are applied in this 
study. 

3.1. Pitch actuator 

Pitch adjustments of most large wind turbines today are realized by a series of hydraulic pitch 
actuators. Reference [19] used a hydraulic pitch actuator, which is a crank swing block using a 
kinematic scheme of blade rotation mechanism to realize pitch control. In view of this hydraulic 
system is a six-order system, and in order to make the pitch motion of the section closer to the 
actual situation, it is reasonable to find a new model for sectional unit system, with fewer states 
such that the input/output behaviour is changed as little as possible. Based on the six-order transfer 
function system in reference [19], the Optimal Hankel norm [20-21] is used here to make model 
reduction, with the states corresponding to the smallest Hankel singular values discarded. Hence 
a new model with two-order transfer function structure suitable for section unit can be obtained. 
Furthermore, applying the Laplace Inverse Transform for this two-order transfer function  
structure, the pitch actuation behavior can be described by two-order differential equation  
model as: ߚሷ + ሶߚ11.6118 = 495.1565൫ߚ௥௘௙ − ൯, (3)ߚ

where ߚ௥௘௙ is the pitch angle requested by the actual hardware controller. 
Fig. 2 illustrates the effectiveness of model reduction characterized by the unit step responses. 

The unit step response after model reduction of Eq. (3) is very close to the result without model 
reduction in reference [19]. Meanwhile after the reduction, the curve is smoother with better 
stability. 

 
Fig. 2. The response of model reduction in present study vs. that without model reduction in reference [19] 

3.2. Fuzzy PID control strategy 

The requested pitch angle ߚ௥௘௙ can be implemented by PID controller using the rotating speed 
error ∆߶: 

௥௘௙ߚ = ߶∆௣ܭ + ௜ܭ න ݐ݀߶∆ + ௗܭ ௧ݐ݀߶∆݀
଴ , (4)

where ܭ௣ ௜ܭ ,  and ܭௗ  are proportional gain, integral gain and derivative gain, respectively;  
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∆߶ = ݀߶ ⁄ݐ݀ − Ω଴ and Ω଴ is a given initial rotating speed determined by initial wind speed ܷ଴.  
It should be noted that most of the pitch control strategies in the previous literatures are based 

on linear control after linearization process [13]. The present control is the direct control of the 
nonlinear system, and of more practical significance. 

Parameters ܭ௣, ܭ௜ and ܭௗ can be tuned to optimize control performance by control strategy. 
Fuzzy control depends on the fuzzy algorithm between the information of process and control 
input. Fuzzy controllers from their inception have demonstrated a vast range of applicability to 
processes where the control actions can be described in terms of linguistic variables, and can be 
used to improve the performance of a nonlinear system. For this rotating speed feedback system, 
fuzzy PID controller is devised in Fig. 3, with fuzzy rules developed based on Sugeno type. Two 
input variables, error of ݀߶ ⁄ݐ݀  (E) and change in error (ED), and three output variables ܭ௣, ܭ௜ 
and ܭௗ with seven linguistic variables of membership functions are used. The input linguistic 
variables are NB (Negative big), NM (Negative medium), NS (Negative small), ZE (Zero), PS 
(Positive small), PM (Positive medium) and PB (Positive big), respectively. Seven 
gbell--membership function forms for both E and ED (݀ܧ ⁄ݐ݀ ), are determined the same, which 
are shown in Fig.4. Borders of both function sequences vary between ±0.3. There are 49 weight 
values in PID parameter design. According to intuition method, lists of linguistic rules are shown 
in Tables 2-4. 

It should be stated that according to the intuition method, the determination of fuzzy rules is a 
complex process, with operating experience playing a decisive role. Also, Eq. (1) is actually a 
nonlinear system, with different initial values determining quite different time responses. 
Therefore, for these gusty responses under different initial wind values, it is difficult to uniformly 
determine the ranges of error, scaling factors and other parameters. In particular for different initial 
wind values, it is a complex process to simultaneously adjust the membership function range in 
Fig. 4 and the PID parameter values in Tables 2-4. Here a novel maximum error tracking method 
for the determination of fuzzy rule is demonstrated as follows: 

1) Preliminary determine the maximum speed (݀߶ ⁄ݐ݀ ) error range between ±݊ = ±0.3. 
2) According to intuition method [20], the values of the Mamdani forms of the rules of the PID 

parameters (take ܭ௣ for example) are determined as: 
If E = NB, and ED = NB, NM, NS, ZE, PS, PM, and PB, respectively, then ܭ௣ = PB(ܭ௣), 

PB(ܭ௣), PM(ܭ௣), PM(ܭ௣), PS(ܭ௣), ZE(ܭ௣), and ZE(ܭ௣), respectively, which correspond to the 
first row values in Table 1. 

 
Fig. 3. The structure of fuzzy PID controller 

3) Let the values of the Sugeno forms of the rules of the PID parameters (still take ܭ௣ for 
example) directly change according to the magnitude of the maximum speed error. It is depicted 
as: 

NB(ܭ௣ )  = −݊ , NM(ܭ௣ ) = −݊ /6×4, NS(ܭ௣ )= −݊ /6×2, ZE(ܭ௣ ) = 0, PS(ܭ௣ )= ݊ /6×2, 
PM(ܭ௣) = ݊/6×4, PB(ܭ௣) = ݊. Hence rewrite the values of the Mamdani forms of the rules of ܭ௣ 
as: 
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௣ܭ = 0.3, 0.3, 0.2, 0.2, 0.1, 0, and 0, respectively, which are exactly equal to the first row 
values in Table 1. Other fuzzy rules can be determined similarly. 

4) A special quantization gain ܭ௘ is designed in Fig. 3, which can be manually adjusted to a 
reasonable range to meet the requirements of the scaling factors for all different initial wind speeds 
(within 0 m/s-20 m/s). Appropriate range of quantization gain ܭ௘  in present study is between  
10-3-10-5. Furthermore, the values of ܭ௘ beyond this range will make the control fundamentally 
ineffective, or bring about the occurrence of unexpected deviations, which is precisely the subtlety 
of this design. 

 
Fig. 4. Membership function plots 

Table 2. Rules for ܭ௣ 
E\ED NB NM NS ZE PS PM PB 
NB 0.3 0.3 0.2 0.2 0.1 0 0 
NM 0.3 0.3 0.2 0.1 0.1 0 0 
NS 0.2 0.2 0.2 0.2 0 –0.1 –0.1 
ZE 0.2 0.2 0.1 0 –0.1 –0.1 –0.2 
PS 0.1 0.1 0 –0.1 –0.1 –0.2 –0.2 
PM 0.1 0 –0.1 –0.2 –0.2 –0.2 –0.3 
PB 0 0 –0.2 –0.2 –0.2 –0.3 –0.3 

Table 3. Rules for ܭ௜ 
E\ED NB NM NS ZE PS PM PB 
NB –0.3 –0.3 –0.2 –0.2 –0.1 0 0 
NM –0.3 –0.3 –0.2 –0.1 –0.1 0 0 
NS –0.3 –0.2 –0.1 –0.1 0 0.1 0.1 
ZE –0.2 –0.2 –0.1 0 0.1 0.2 0.2 
PS –0.2 –0.1 0 0.1 0.1 0.2 0.3 
PM 0 0 0.1 0.1 0.2 0.3 0.3 
PB 0 0 0.1 0.2 0.2 0.3 0.3 

Table 4. Rules for ܭௗ 
E\ED NB NM NS ZE PS PM PB 
NB 0.1 –0.1 –0.3 –0.3 –0.3 –0.2 –0.1 
NM 0.1 –0.1 –0.3 –0.3 –0.3 –0.2 –0.1 
NS 0 –0.1 –0.2 –0.2 –0.1 –0.1 0 
ZE 0 –0.1 –0.1 –0.1 –0.1 –0.1 0 
PS 0 0 0 0 0 0 0 
PM 0.3 –0.1 0.1 0.1 0.1 0.1 0.3 
PB 0.3 0.2 0.2 0.2 0.1 0.1 0.3 

3.3. BPNN PID control strategy 

In view of the empirical fuzzy rules and regulative method of fuzzy control, at the same time, 
in view of the superiority of neural network control itself, and in order to compare with the fuzzy 
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control, another method of BPNN control with back propagation learning algorithm [22] is 
investigated in this study. 

BPNN is a perceptron network in which each neuron is connected with a number of input arcs. 
It is associated with each neuron having weight ߱௜௝, which represents a factor to a value passing 
to the neuron. The BPNN PID control strategy uses an adaptive training algorithm based on a 
gradient descent approach to update network weights and ensures that the designed neural network 
is able to calculate the desired PID parameters. The incremental digital PID control algorithm can 
be expressed as: ߚ௥௘௙(݇) = ݇)௥௘௙ߚ − 1) + (݇)߶∆]௣ܭ − ∆߶(݇ − 1)] + (݇)߶∆]ௗܭ+      (݇)߶∆௜ܭ − 2∆߶(݇ − 1) + ∆߶(݇ − 2)]. (5)

Generally, the artificial neural network connects independent and decided variables through 
the neurons of input layer, hidden layers and transmit output layer. The present design is a four-
input-three-output BPNN with three layers: input layer, one single hidden layer and output layer. 

Four inputs of BPNN are: 

ଵݔ = Ω଴,     ݔଶ = ଷݔ     ,௥௘௙ߚ = ସݔ     ,߶∆ = ݐ݀߶∆݀ . (6)

Output of each neuron in the input layer is expressed as: 

௝ܱ(ଵ)(݇) = ݆     ,௝ݔ = 1, 2, 3, 4. (7)

Input/output pair of each neuron in the hidden layer is expressed as follows: 

(݇)௜(ଶ)ݐ݁݊ = ෍ ௜߱௝(ଶ)(݇) ௝ܱ(ଵ)(݇)ସ
௝ୀ଴ ,     ௜ܱ(ଶ)(݇) = ݆     ,௜(ଶ)(݇)൧ݐ݁݊ൣ݂ = 1,2, … , ܰ, (8)

where ܰ is the number of neurons in the hidden layer. ݂(ݔ) is the symmetrical activation function 
(log-Sigmoid function) [20]. 

Input and output signals of each neuron in the output layer are: 

(݇)௟(ଷ)ݐ݁݊ = ෍ ௟߱௜(ଷ)(݇) ௜ܱ(ଶ)(݇)ே
௜ୀଵ ,    ௟ܱ(ଷ)(݇) = ݈     ,௟(ଷ)(݇)൧ݐ݁݊ൣ݃ = 1, 2, 3, (9)

ଵܱ(ଷ)(݇) = (݇)௣,     ଶܱ(ଷ)ܭ = (݇)௜,     ଷܱ(ଷ)ܭ = ௗ, (10)ܭ

where ݃(ݔ)  is the non-negative activation function (log-Sigmoid function) [20]. Hence the 
learning algorithm of the weight update (according to gradient descent algorithm) in output layer 
can be expressed as: ∆ ௟߱௜(ଷ)(݇) = ௟(ଷ)ߜߟ ௜ܱ(ଶ)(݇ − 1) + ∆ߙ ௟߱௜(ଷ)(݇ − ௟(ଷ)ߜ ,(1 = ∆߶(݇)sgn ቆ ௥௘௙(݇)ቇߚ߲(݇)߶߲ ߲(݇)௥௘௙ߚ߲ ௟ܱ(ଷ)(݇) ݃ᇱቂ௡௘௧೗(య)(௞)ቃ, (11)

and the learning algorithm of the weight update in hidden layer is expressed as: 

∆ ௜߱௝(ଶ)(݇) = ௜(ଶ)ߜߟ ௝ܱ(ଵ)(݇) + ∆ߙ ௜߱௝(ଶ)(݇ − ௜(ଶ)ߜ     ,(1 = ൤෍ ௟(ଷ)ଷ௟ୀଵߜ ௟߱௜(ଷ)(݇)൨ ݂ᇱቂ௡௘௧೔(మ)(௞)ቃ, (12)
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where ߟ = 0.25 is learning rate, ߙ = 0.05 is momentum factor, and ݃′, ݂′ are: 

݃ᇱ( ) = ൫1(ݔ)݃ − ( )൯,    ݂ᇱ(ݔ)݃ = 1 − ݂ଶ(ݔ)2 . (13)

4. Results and discussions 

Considering the three equations of motions in Eqs. (1) and the pitch actuation expression in 
Eq. (3), and inserting Eq. (4) coupled with corresponding fuzzy structure or BPNN structure, and 
assuming: ܺ = ,ݖ] ,ݕ ,ߠ ,ߚ ߶]், (14)

result in the equations governing the whole nonlinear aeroelastic system as follows: ܯ ሷܺ + ܥ ሶܺ + ܺܭ = ܳ, (15)

where ܥ ,ܯ and ܭ all are nonlinear matrix variables described in Appendix, with their matrix 
variable elements comprised of: ݐ݀/ߠ݀ ,ߠ ,ݐ݀/ߚ݀ ,ߚ ,ݖ ,ݕ, and wind speed ܷ. 

Eq. (15) can be solved by nonlinear time integration scheme with nonlinear residual analysis 
by an internal iterative procedure in reference [23]. In the solution process, since the coefficient 
matrix is not a square matrix, the inverse operation of the matrix requires pseudo inverse operation. 
Aeroelastic instability analysis and control can be implemented by time responses, analysis of 
phase plane and limit cycle, and frequency spectrum analysis. Influences of different initial wind 
velocities and comparisons of two different control methods are demonstrated. The obvious effects 
of flutter suppression for divergent instability cases are displayed. 

  

 
Fig. 5. The uncontrolled blade tip responses of flap/lag/twist motions  

for different cases under different initial wind speeds 
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4.1. Divergent instability cases 

The discrete gust can be used singly or in multiples to assess blade response to large wind 
disturbances. The mathematical representation of the discrete gust can be found in reference [24], 
with the gust amplitude and the gust length displayed in Fig. 1(b). 

Fig. 5 shows the uncontrolled blade tip responses of flap/lag/twist motions for different cases 
under different initial wind speeds ܷ଴ = 4, 8, 12, and 18 m/s (all within the range of gust load), 
respectively. As depicted in aforementioned ADM state, all the three motions are in states of rapid 
divergences. Especially for flap/lag motions of ܷ଴ = 8, 12, and 18 m/s, all the displacements are 
rapidly divergent, and more than the blade length of ܮ = 20 m within the 5 s time. This is precisely 
the ADM phenomenon mentioned above: assuming that the blade is long enough, over time, the 
magnitudes of all the divergent displacements will be incredible, even for smaller initial wind 
speeds (for example ܷ଴ = 4 m/s). According to the experience of ADM displacement control, it 
is difficult to achieve the states of complete convergences for all the divergent motions. Hence the 
follow-up study for divergent instability control will often present the limit cycle vibration state. 
Some cases intended to highlight the effects of two control methods under conditions of ܷ଴ = 8, 
12, and 18 m/s are presented below, with time response analysis and LCO vibration demonstrated. 

All the responses diverge rapidly in a matter of seconds, which means that the period is infinite 
and the magnitude is also infinite. It should be stated that in cybernetics, it is an extremely 
divergent unstable system, which is exactly what the author describes as the ADM system. 

4.2. Influences of fuzzy control on divergent instability 

Fig. 6 show the controlled responses of the three motions and pitch motion by fuzzy controller 
under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively. It can be seen that the controlled 
flap/lag/twist displacements and the pitch motion all show convergent or equal amplitude states, 
with the very small amplitudes of vibrations displayed. In other words, in contrast with 
uncontrolled cases, the controlled displacements are of more advantages from the viewpoint of 
amplitude suppression. It can also be demonstrated that all the three controlled flap motions, and 
the lag/twist motions in ܷ଴ = 18 m/s, are likely to show the states of LCOs as time goes on. 

Fig. 7 show the controlled phase planes of the three displacements and pitch motion by fuzzy 
controller under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively. It can be demonstrated that 
all the three controlled flap displacements, and the lag/twist displacements in ܷ଴ = 18 m/s, do 
show the states of the limit cycle vibrations. In particular, the scopes of amplitudes of the limit 
cycles of the three flap displacements are 0.002×0.002, 0.001×0.0067, and 0.07×0.0267, 
respectively, which demonstrate apparent aeroelastic control effect on divergent instability. In 
addition, all the starting points of the limit cycles and the phase planes are point (0, 0). The other 
phase planes in Fig. 7 will converge to fixed points as time goes on, the stability sates of which 
coincide with those demonstrated in Fig. 6. 

 
a) ܷ଴ = 8 m/s 
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b) ܷ଴ = 12 m/s 

 
c) ܷ଴ = 18 m/s 

 
d) The controlled pitch angles in ܷ଴ = 8, 12, and 18 m/s, respectively 

Fig. 6. The controlled responses of the three motions and pitch motion by fuzzy controller  
under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively 
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a) ܷ଴ = 8 m/s 

 
b) ܷ଴ = 12 m/s 
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c) ܷ଴ = 18 m/s 

Fig. 7. The controlled phase planes and LCOs of the three displacements and pitch motion by fuzzy 
controller under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively 

4.3. Influences of BPNN control on divergent instability 

Fig. 9(a)-(c) show the controlled responses of the three motions and pitch motion by BPNN 
controller under conditions of ܷ଴ = 8 m/s and 12 m/s, respectively. Also, the controlled 
flap/lag/twist displacements and the pitch motion all show convergent or equal amplitude states 
as time goes on. In contrast with the corresponding controlled cases in Fig. 6, vibration amplitudes 
of the BPNN control are slightly larger, but still within the ideal range of control. At the same 
time, the latter is also accompanied by a larger pitch power consumption. The additional difference 
between the fuzzy control cases and the BPNN cases is that the controlled lag/twist displacements 
of the BPNN cases might show the states of LCOs as time goes on, while the flap motions tend to 
converge stably. 
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c) ܷ଴ = 18 m/s 

 
d) The controlled pitch angles in ܷ଴ = 8, 12, and 18 m/s, respectively 

Fig. 8. The controlled responses of the three motions and pitch motion by BPNN controller  
under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively 

Fig. 9(a)-(b) show the controlled phase planes and LCOs of the three displacements and pitch 
motion by BPNN controller under conditions of ܷ଴ = 8 m/s and 12 m/s, respectively. All the 
controlled lag/twist displacements do show the states of the limit cycle vibrations. All the flap 
phase planes will converge to fixed points as time goes on, convergent characteristics of which 
are in qualitative agreement with those from corresponding time responses in Fig. 8. 

Anyway, above numerical simulations show an expected conclusion, namely that for flutter 
suppression of divergent instability, fuzzy control (based on maximum error tracking method and 
quantization gain) and BPNN control, each can play an important role in enhancing the vibration 
behavior of the classical flutter. Moreover, the former is more accurate, but it requires more 
complex experience. On the contrary, the latter does not require operational experience, but 
requires a higher level of programmable technology. In addition, for blade with ADM sate, no 
matter for what kind of control method, the generation of LCOs cannot be avoided, so the 
amplitudes control of limit cycle vibrations is very important. 
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a) ܷ଴ = 8 m/s 

 
b) ܷ଴ = 12 m/s 
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c) ܷ଴ = 18 m/s 

Fig. 9. The controlled phase planes and LCOs of the three displacements and pitch motion  
by BPNN controller under conditions of ܷ଴ = 8, 12, and 18 m/s, respectively. 

4.4. Vibration periods of LCOs 

The vibration period (including period of LCO) is another indicator of vibration performance, 
which is usually reflected by the frequency structure from Fast Fourier Transformation(FFT) 
analysis. Take the case of initial ܷ଴ =  12 m/s; for example, Fig. 10 shows the frequency 
distribution diagrams of both fuzzy control(a) and BPNN control(b) under ܷ଴ = 12 m/s. Fequency 
structures of different iterms including flap/lag/twist motions and the requested pitch angle ߚ௥௘௙ 
are demonstrated. From Fig. 10(a) we can see that the first frequencies of flap/lag/twist motions 
and the requested pitch angle all are within scope of 18-20 Hz, which are much smaller than the 
other corresponding ones (within the scope of 1050-1200 Hz) in Fig. 10(b). This means that the 
vibration periods of different terms of fuzzy control are much larger than those of BPNN control, 
which indicates the greatly improved flutter stability. Of course, this does not mean that the greater 
the vibration cycle, the better the performance, because too large a cycle means divergence. The 
same is true for the second frequencies: the second frequencies within range of 48-50 Hz in 
Fig. 10(a) are far less than those within range of 1150-1340 Hz in Fig. 10(b).  

This can also be confirmed not only from the change trends of time responses in Fig. 6(b), but 
also from the phase planes and LCOs in Fig. 7(b). It also can be seen that the frequency distribution 
diagrams of flap motion and the requested pitch angle Fig.10(b) have large fluctuations, which 
means the relatively low stability and higher control consumption. This can also be confirmed 
from the time responses in Fig. 8(b). 

In addition, take the controlled flap amplitude in Fig. 10(b) of BPNN control with  ܷ଴ = 12 m/s, for example. The spectrum processing process can be summarized as follows. In the 
simulation solution, the variable step size method is used. Since the data points are very large and 
the frequency coverage range is 103 Hz-3×105 Hz, furthermore the frequencies are symmetrical 

-8 -7 -6 -5 -4 -3 -2 -1 0 1
-7

-6

-5

-4

-3

-2

-1

0

1

2
Flap limit cycle for U=18m/s

z (m)

dz
/d

t (
m

/s
)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Lag phase plane for U=18m/s

y (m)

dy
/d

t (
m

/s
)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Twist phase plane for U=18m/s

 (rad)

d 
 /d

t (
ra

d/
s)

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
-4

-3

-2

-1

0

1

2

3

4
Pitch limit cycle for U=18m/s

(rad)

d 
 /d

t (
ra

d/
s)



2659. THE LIMIT CYCLE OSCILLATION OF DIVERGENT INSTABILITY CONTROL BASED ON CLASSICAL FLUTTER OF BLADE SECTION.  
TINGRUI LIU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2017, VOL. 19, ISSUE 7. ISSN 1392-8716 5129 

about ݂ = 1.5×105 Hz. In present study, only half of the spectrum is taken to avoid the laborious 
time-consuming process. At the same time, it can effectively reduce the influence of frequency 
aliasing of the two parts of the left and the right. Furthermore, the meaningful spectrum region is 
103 Hz-2×103 Hz. Especially the ‘big’ spectrum at ݂ = 1×103 Hz is exactly the main lobe of the 
spectrum in the sinc form which is from truncated window function in time domain and should be 
filtered out. Thus, in this study, the frequency of display coordinates starts with ݂ = 1050 Hz. 
Hence, Fig. 10(b) shows exactly what the analysis needs. 

There are also a few points that need to be explained as follows: the unit of the amplitude in 
Fig. 10 is the result of normal FFT processing. However, the amplitudes of the BPNN controller 
cases are much higher than the fuzzy PID ones. Take the controlled flap amplitude in Fig. 10(b) 
of BPNN control with ܷ଴ = 12 m/s, for example. The response of the controlled flap displacement 
has a lot of frequency aliasing within 90s. This creates a great deal of overlap of amplitude. 
Although the frequency domain can also be expanded, the time at which the peak corresponds 
does not change. Therefore, in present study, frequency spectrum analysis is concerned only with 
frequency location structure, without regard to amplitude results. Another reason is that in the 
spectrum analysis, there is still the problem of truncation in time domain. This is equivalent to 
multiplying a rectangular weighting function. Compared with the fuzzy control, BPNN control in 
itself with more weighted signals, hence the frequency amplitude will be affected by more sinc 
function signals. Of course, none of this affects the expression of frequency structure in abscissa 
axis. 

As for the frequency structure of uncontrolled system in Fig. 5, the same treatment can be 
implemented. However, it is meaningless to display the spectrum of the uncontrolled signal. This 
is because the truncation time of the time domain in Fig. 5 is very short 5 seconds as mentioned 
above, which means that a very small rectangular window function is loaded. Therefore, in the 
frequency domain, a sinc function of wide width will be convolution, which seriously affects the 
spectrum of the original signal. Of course, some tests tried to increase the time of signals in Fig. 5, 
say, for 300 seconds. The results that the numerical solution time was too long, and the amplitude 
was too large to infinity, and even the simulation would be terminated, which is exactly what the 
ADM system indicates. 

In addition, it should be stated that the steady-state value of the PID parameter is not 
necessarily fixed at a single value. Fig. 11 demonstrates the change of the coefficients of PID 
controller of both fuzzy control(a) and BPNN control(b) under ܷ଴ = 12 m/s, respectively. As time 
goes on, all the parameters can be stabilized. However, parameter ܭ௜ of BPNN controller is either 
equal to 0 over time, or equal to 1. In addition, the parameter frequencies of initial fluctuations 
within 45 s-100 s of BPNN controller are greater than those of Fuzzy controller, which 
demonstrates the relatively complex regulation performance of BPNN controller, on the other 
hand, the initial stage adjustment of BPNN controller is also easy to cause frequency aliasing. 
Another point to note is that the conventional PID controller has lost its usefulness here, even the 
widely used optimal PID controller based on ITAE optimization criteria can, the conventional 
fuzzy control algorithms, and the conventional neural network algorithms [25] not be done here, 
which is exactly the reason why the new intelligent control methods are developed for ADM blade 
in present study. 

5. Real-time effects of control algorithms 

Because the large wind power system is mostly controlled by PLC, the design of the controller 
adopts the SIEMENS S7-200 controller in present study. Due to the possibility of singular values 
in the simulation process, or the possibility that the numerical value of the control is too large, in 
the real-time control of the process, there might be a hardware interrupt or downtime. Or because 
the sampling time is too small, and the controller computation is too large, there will be a memory 
overflow problem. Therefore, the validity of the control algorithm needs to be verified in real-
time operation. 
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a)  

 
b)  

Fig. 10. Frequency structures of responses of both a) fuzzy control  
and b) BPNN control under ܷ଴ = 12 m/s, respectively 
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a)  

 
b) 

Fig. 11. The change of the coefficients of PID controller of both a) fuzzy control  
and b) BPNN control under ܷ଴ = 12 m/s, respectively 
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For example, the controller system in Fig. 12(c) contains two modules of CPU 224XP. If a 
single CPU module is used, memory overflow errors may occur during the BPNN operation. 
However, for fuzzy control process, a single CPU module is sufficient. Of course, the sampling 
time should not be too small. The platform can detect in actual control, which control algorithm 
is more easily implemented in the project, and which control is more security, but also has a 
control system cost performance problem. Hence in view of the processor speed of the controller 
hardware, memory limitations, and possible hidden singularity during parameter simulation, the 
real-time effects of the two control methods should be tested. An experimental platform is built in 
present study to investigate the real-time effects of control algorithms. Due to testing and control 
of the independent airfoil(section) cannot be carried out under laboratory conditions, also in light 
of the effectiveness of MATLAB/SIMULINK in simulation of complex system, the experimental 
platform is built based on hardware-in-the-loop simulation by way of PLC-OPC technology [26] 
in Fig. 12. The OPC Read/Write blocks read/write data from/into PLC by items on OPC server. 
Fuzzy or BPNN control is fully implemented in PLC controller. Touch screen HMI is connected 
to the “port0” port of PLC, which can display the displacement signals, the pitch adjustment signal 
and the PID parameter process signals, etc. 

 
a) The experimental platform scheme 

 
b) The photograph of the platform 

 
c) Controller system 

Fig. 12. The experimental platform built by PLC-OPC technology 
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In addition, the values and curves of other displacements, as well as the process curve of pitch 
adjustment, can also be displayed in the HMI interface. It should be noted that the implementation 
of technical route of PLC-OPC technology, as well as settings and adjustments of the 
communication parameter (including data types, sampling frequency and sampling points, etc.) is 
a complex process. Especially the data structure and variable type defined in the connection links, 
must be consistent with each other in storage performance. In order to ensure the appropriate 
accuracy and moderate computing time, the characteristics of communication parameters 
comprise a number of features such as: OPC Write mode is synchronous, with sample time being 
0.1 s; OPC Read mode is from cache, with sample time between 0.1 s-1 s, and with value data 
type being single type; the data address defined in OPC server is the type of double word 
corresponding to S7-200 PLC memory, with data type being real type; the data type defined in 
HMI system is float, with sample time being 1 s. 

 
a) Real-time effects of fuzzy contol 

 
b) Real-time effects of BPNN control 

Fig. 13. Real-time effects of fuzzy control and BPNN control displayed in HMI 

Still take the previous case under initial ܷ଴ = 12 m/s; for example, real-time effects of fuzzy 
control(a) and BPNN control(b) are displayed in HMI in Fig. 13. Two flap responses in Fig. 13 
reproduces the values and graph curves of flap displacements in Fig. 6(b) and Fig. 8(b), 
respectively, which shows considerable consistency. Notice that in Fig. 13(a), the value of the flap 
scrolling bar is –0.3, which is consistent with the steady value shown in the graph in Fig. 6(b). 
Responses of PID parameters ܭ௣, ܭ௜, and ܭௗ in Fig. 13 show the adjustment and fluctuation of the 
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PID parameters in both fuzzy PID control and BPNN PID control process in Fig. 11. Take BPNN 
control as an example, ܭ௣ and ܭௗ are finally stable near zero and at 0.4271, respectively, while ܭ௜ 
is either equal to 0 over time, or equal to 1. Furthermore, binarization of ܭ௜ (0 or 1) may be the 
cause of the limit cycle vibration as the time goes on. As a matter of fact, all the three responses 
of PID parameters under BPNN control are always stabilized within a fixed bounded region [0, 1] 
when the time is extended beyond 100 s. At the same time, all PID parameter values are greater 
than zeros, which confirms the values of the non-negative activation function (log-Sigmoid 
function) in the output layer in Eq. (10). 

6. Conclusions 

Flap/lag/twist classical flutter behavior and intelligent control of blade section with ADM are 
investigated. The obvious numerical simulation and real-time effects of the two controllers are 
demonstrated by flutter suppression for ADM cases. Some concluding remarks can be drawn from 
the numerical and real-time illustrations: 

1) The control of blade section with ADM often presents the limit cycle vibration state. The 
amplitude of limit cycle oscillation should be strictly limited so as to avoid the fracture failure of 
blade or tower body. Limit cycle vibrations of flap/lag/twist displacements under different initial 
wind speeds are displayed. At the same time, the study of vibration periods of LCOs based on 
FFT frequency analysis reveals an excellent agreement with other related conclusions. 

2) Vibration behavior is investigated and discussed based on fuzzy control and BPNN control, 
with nonlinear time responses, phase planes and LCOs illustrated. Fuzzy control strategy is based 
upon the novel maximum error tracking method and variable quantization gain, which can 
simplify the processing of fuzzy rules, and can manually adjust the quantization gain. The BPNN 
control strategy uses an adaptive training algorithm based on a gradient descent approach to update 
network weights and ensures that the designed neural network is able to calculate the desired PID 
parameters. 

3) In view of the processor speed and memory limitations of the controller hardware, and the 
possible hidden singularity during the simulation which might cause controller hardware crashes, 
the real-time effects of the control method are tested by PLC-OPC technology with a hardware-
in-the-loop simulation platform. 

4) Compared with BPNN control, fuzzy control has higher precision and perfect control 
performance, but it has a high demand for personal experience. In turn, the BPNN control does 
not require personal experience, but the technical requirements of the numerical program are 
higher, with larger controller performance consumption accompanied. This study might provide a 
compromise choice of control strategy for blade section with ADM. 
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Appendix 

ܯ = ൦ 1 0 0 ݕ 0ߚsinܮ− 1 −݈஼ீ −݈஼ீ − ݖ ௕ିߩ−ߚcosܮ ଵcosߠ ௕ିߩ ଵsinߠ 0 ௕ିߩ ଵ(sinݖߠ + cosݕߠ) ௕ିߩܮ ଵsin0ߚ 0 0 1 0 ൪, 
ܥ = ଵܥ]  ,[ଶܥ
1ܥ = ێێێۏ
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ሶߠ)ܩܥ݈ۍ + ሶߚ2 ) ܩܥ݈) + ሶߚ(ݖ 00 ሶߚ− ݕ 00 ሶߚ1ܾ−ߩ (cosݖߠ − sinݕߠ) 00 11.6118 ۑۑے0
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௭ଶ߱ۍ 0 ௕ିߩ− ଵcos߰ߩ௔ܿ ଴ܸଶߨ ௕ିߩ− ଵcos߰ߩ௔ܿ ଴ܸଶߨ 00 ߱௬ଶ ௕ିߩ− ଵsin߰ߩ௔ܿ ଴ܸଶߨ ௕ିߩ− ଵsin߰ߩ௔ܿ ଴ܸଶߨ 00 0 ߱ఏଶ − ௔ܿଶߩ ଴ܸଶ10/݁ߨ ௔ܿଶߩ− ଴ܸଶ10/݁ߨ 00 0 0 495.1565 ۑۑے0
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