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Abstract. Two methods (equivalent force method and segmental mode assuming method) of 
calculating the natural frequencies and mode shapes of a free-free-multi-supported beam subjected 
to an axial load is found, considering the structure characteristic of the guide bar, which has long 
length but small section, and supported by many bearings. The calculation shows that these two 
methods are convenient for computer programing and have the same results in obtaining the 
natural frequencies and mode shapes of a free-free-multi-supported beam subjected to an axial 
load, solving the problem that the vibration function of this kind of beam is hard to deal with 
because it cannot be simplified with the boundary condition of two ends. Then the segmental mode 
assuming method is used to analyze the impact of the support location on the natural frequencies 
and mode shapes of the guide bar. The relation graphs of the natural frequencies with support 
location, as well as the support locations where the natural frequencies reached the maximum and 
the minimum are found, providing a reference for the support location selection for the guide bar. 
The changing curves of the mode shapes with support location are plotted, which show that the 
bending deformation is homogeneous when the length of each segment is approximately equal, 
avoiding the phenomenon that bending stresses concentrates at the large-amplitude segments and 
cause breakage while less stress exists in small-amplitude segments and hinder the exploiting of 
their performance, providing a reference for the structure design of the guide bar. 
Keywords: guide bar, supports location effect, vibration analysis, equivalent force method, 
segmental mode assuming method. 

1. Introduction 

The guide bar shogging system was composited of servo motor, ball screw, spherical hinge, 
steel wire rope, guide bar and supporting elements, as showed in Fig. 1. Servo motor drives the 
ball screw, pushes out the guide bar through spherical hinge and hauls it back through steel wire 
rope. Guide bar with long length but small section, supported by many bearings, will vibrate under 
high speed movement, which influents the movement smoothness, causes transverse error, leads 
to “needle rubbing” phenomenon, and hinders the high speed development of warp knitting 
machine [1, 2]. 

 
Fig. 1. The structure of the guide bar shogging system 

After analyzing the model of guide bar, as showed in Fig. 2, it can be known that the guide bar 
satisfies the following conditions: 
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(1) The length of each segment (0.6 m) is more than 10 times the height of section (0.055 m). 
(2) The length of a guide bushing (0.044 m) is much less than that of the guide bar (3.6 m). 
(3) The transverse displacement (4×1.0583 = 4.2332 mm) can be ignored compared with the 

length of guide bar.  
Therefore, guide bar can be considered as a free-free-multi-supported continuous beam 

subjected to an axial load, the main vibration form of which is bending vibration. 

 
Fig. 2. The model of guide bar 

Beam is widely used in the field of aviation, mechanism and architectural engineering. The 
vibration of multi-supported continuous beam is often approximately calculated by energy  
method, iteration method and transfer matrix method [1-24]. S.-W. Hong and J.-W. Kim applied 
Laplace transformation to a spatial state equation and came up with the dynamic matrix for the 
vibration analysis of multi-span Timoshenko beams [3]. Yusuf Yesilce1et al. used secant method 
to obtain the frequencies values and mode shapes for the multi-span Timoshenko beam with 
multiple spring-mass systems [4]. D. Y. Zheng et al. analyzed the vibration of a multi-span non-
uniform beam subjected to a moving load based on Hamilton principle [5]. Hai-Ping Lin et al. 
considered the compatibility requirements on each constraint point of Timoshenko beam and came 
up with the transfer matrix to deal with the free vibration analysis of a multi-span beam with an 
arbitrary number of flexible constraints [6]. Hsien-Yuan Lin employed the numerical assembly 
method (NAM) to determine the “exact” frequency–response amplitudes of a multi-span beam 
carrying a number of various concentrated elements and subjected to a harmonic force [8]. C. 
Johansson et al. applied the boundary conditions to the characteristic function of a beam and 
obtained its natural frequencies as well as its mode shapes, providing a closed-form solution for 
the vibration of continuous stepped beams under constant moving loads [9]. M. Guebailia et al. 
solved the free vibration equation of a multi-span bridge deck by local estimation method, and 
estimated the coefficients at anti nodes of the mode shapes of the beam [11]. D. ZHOU developed 
the static Timoshenko beam functions, which are composed of a set of transverse deflection 
functions and a set of rotational angle functions, and solved the vibration of a multi-span 
Timoshenko beam under a series of static sinusoidal loads distributed along the length of the beam 
[12]. H. P. Lee analyzed the dynamic response of a multi-span beam on one-sided point constraints 
subjected to a moving load by Hamilton’s principle and the assumed mode method [13]. WU 
Chongjian et al. used WPA method to obtain the dynamic response, modal shape and stress 
distribution of a multi-supported mast of a submarine [14]. 

However, most of the algorithms listed above aim at solving the vibration of hinged-hinged-
multi-supported beam, and few of them involve the vibration calculation of a free-free-multi-
supported beam. Also, some of the methods are too difficult for computers to calculate 
programmatically. Cause the displacement of two ends of a free-free-multi- supported beam isn’t 
fixed, the coordinate building method, as well as the vibration calculation method, is different 
with others. It is difficult to obtain the natural frequencies and mode shapes of a free-free-multi-
supported beam because the vibration function of it cannot be simplified with the boundary 
condition of two ends as that of a hinged- hinged-multi-supported beam can. Two methods 
(equivalent force method and segmental mode assuming method) of obtaining the natural 
frequencies and the mode shapes of a free-free-multi-supported beam are presented based on the 
vibration analysis of a guide bar. The analysis shows that these two methods are convenient for 
computer programing and have the same results in obtaining the natural frequencies and mode 
shapes of a free-free-multi-supported beam subjected to an axial load. Later, the segmental mode 
assuming method is used to analyze the effect of supports location on frequencies and the mode 
shapes of the guide bar.  
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2. Equivalent force method 

The method which replaces  supports of a free-free-multi-supported beam subjected to an 
axial load by support constrained forces ( ) ( = 1, 2,…, ), transforming into the problem of 
solving the vibration of a free-free beam subjected to an axial load and  support constrained 
forces, is named Equivalent force method [23]. The coordinate origin point of the model should 
be put on the place of the first support, making the coordinate fixed, as showed in Fig. 3. The 
frequency equation and mode function can be derived through the vibration differential equation 
and constraint conditions of the beam based on this model. 

 
Fig. 3. The model of the equivalent force method 

2.1. Vibration differential equation and constraint conditions in equivalent force method 

The vibration differential equation of a beam subjected to an axial load is as below: 

+ + = ( ) ( − ), (1)

where ( − ) is the impulse function.  is the flexural rigidity,  is the cross section area,  
is the length, and  is the density of the beam. The location coordinate of the support is   
( = 1, 2,…, ) (− < < − ). 

The bending moment as well as the shear force of the beam’s free ends is 0, so the boundary 
conditions [15, 18] are: ( , ) = ( , ) = 0,( , ) = ( , ) = 0. (2)

The displacement constraint condition: ( , ) = 0,     = 1,2, … , . (3)

2.2. The frequency equation and mode function in equivalent force method 

The laws of the support constrained forces is the same as that of the free vibration of a beam, 
so let ( , ) = ( )sin( + ), ( ) = sin( + ) ( = 1, 2,…, ), put into Eqs. (1) and 
(2) and get: 

( )( ) + ( )( ) − ( ) = ( − ), 
where: 
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= ,     = , (4)( )(− ) = ( )( − ) = 0, (5)( )(− ) = ( )( − ) = 0, (6)( ) = 0,      = 1,2, … , . (7)

Implement the Laplace transformation on Eq. (4) and get: ( ) − (0) − ′(0) − (0) − (0) + ( ) − (0) − ′(0)        − ( ) = . (8)

Namely: 

( ) = 1+ − (0) + (0) + (0) + (0)+ (0) + (0) + , (9)

where: 

= 2 + + 4 ,
= − 2 + + 4 . (10)

Implement the inverse Laplace transformation on Eq. (9) and get: ( ) = sin + cos + sinh + cosh         + 1+ 1 sinh ( − ) − 1 sin(x − ) ( − ), (11)

where , , ,  are the undetermined coefficients, which are determined by the boundary 
conditions, ( − ) is the unit step function, namely: ( − ) = 0,     < ,1,     > ,     = 1,2, … , . 

Take a derivative of the formula above and get: 
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− sin (− ) − cos (− ) + sinh (− )       + cosh (− ) = 0,− cos (− ) + sin (− ) + cosh (− )       + sinh (− ) = 0,− sin ( − ) − cos ( − ) + sinh ( − )       + cosh ( − ) + 1+ sinh ( − − )+ sin ( − − ) = 0,− cos ( − ) + sin ( − ) + cosh ( − )       + sinh ( − ) + 1+ cosℎ ( − − )+ cosh ( − − ) = 0.
 (12)

It can be known that , , ,  are complex expressions containing variable  and  
( = 1, 2,…, ), which result from the coupling of all support constrained forces. Because the 
coordinate origin point isn’t put on the end of the beam, Eq. (12) can’t be simplified by the 
boundary condition as in article [15], and unfit for computer programing. Symbol ∗( )  is 
introduced to decouple Eq. (12) based on its characteristics. ∗( ) is an equation containing only 

 ( = 1, 2, 3, 4; = 1, 2,… or ), based on which , , ,  can be expressed as below: 

= 1+ ∗( ),     = 1, 2, 3, 4,     = 1,2, … , . (13)

Displacement function can be expressed as: 

( ) = 1+ ∗( )sin + ∗( )cos + ∗( )sinh  
     + ∗( )cosh + 1 sinh ( − ) − 1 sin ( − ) ( − ) . (14)

Substitute Eq. (11) into Eq. (7), and express the result as the form of matrix, then: = 0, (15)

where = , , , … , . Because  ( = 1, 2, 3,…, ) are not all 0, the determinant of 
Eq. (12) should be 0, namely: | | = × = 0, (16)

where: 

= 1( + ) ∗( )sin + ∗( )cos + ∗( )sinh         + ∗( )cosh + 1 sinh ( − ) − 1 sin ( − ) ( − ) , , = 1,2,3, … , . (17)

According to the analysis above, in order to solve Eq. (16), the value of ∗( ) should be 
obtained ( = 1, 2, 3, 4; = 1, 2,…, ), which only need to satisfy Eq. (18). The equation is 
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simplified and fit for computer programing: − ∗( )sin (− ) − ∗( )cos (− ) + ∗( )sinh (− )       + ∗( )cosh (− ) = 0,− ∗( )cos (− ) + ∗( )sin (− ) + ∗( )cosh (− )       + ∗( )sinh (− ) = 0,− ∗( )sin ( − ) − ∗( )cos ( − ) + ∗( )sinh ( − )       + ∗( )h ( − ) + cos sinh ( − − ) + sin ( − − ) = 0,− ∗( )cos ( − ) + ∗( )sin ( − ) + ∗( )cosh ( − )       + ∗( ) ( − ) + sinh cosℎ ( − − ) + cos ( − − ) = 0,
 

= 1,2, … , . 
(18)

When there are plenty of supports and the higher-order determinant is hard to solve, the 
converse numerical solution method can be used. Firstly, determine the range and the gradient of 
value . Secondly, combine = ⁄ , = ⁄ , and Eq. (10) to calculate the 
corresponding  and , and then use Eq. (18) to obtain the value of corresponding ∗( )  
( = 1, 2, 3, 4; = 1, 2,…or ). Thirdly, put them into Eq. (16) and judge whether they are the 
roots of the equation set. Fourthly, put the satisfied value of  into = 2⁄  and the natural 
frequency  can be obtained. Finally, put the calculated  and the corresponding , , and ∗( ) into Eq. (14) and the mode shapes of the free-free-multi-supported beam can be obtained. 
Pay attention to the mode function Eq. (14), the second half of which are expressed by step 
function, and add judgement when programing. 

3. The segmental mode assuming method 

The method which divides the free-free beam with  supports into + 1 segments at each 
support, assume the mode function of each segment and then create the frequency equation and 
mode function through boundary and connecting conditions, is called Equivalent force method. 
The coordinate origin point of the model should be put on the place of the first support, making 
the coordinate fixed, as showed in Fig. 4. The length of each segment is , , ,…, . 

 
Fig. 4. The model of the segmental mode assuming method 

3.1. Vibration differential equation and constraint conditions in segmental mode assuming 
method 

According to the general solution of the free vibration of a beam [24], the mode function of 
each segment of the beam is assumed as: ( ) = sin + cos + sinh + cosh ,    = 1,2,3, … , + 1. (19)

The bending moment as well as the shear force of the beam’s free ends is 0, so the boundary 
conditions are as below: 
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= − sin − cos + sinh + cosh = 0,
= − cos + sin + cosh + sinh = 0,

= − sin − cos + sinh       + cosh = 0,= − cos + sin + cosh       + sinh = 0.

 (20)

According to the continue conditions then: (0) = 0,(0) = 0,= − ,
= ,( ) = 0,(0) = 0, = ,

= ,     = 3,4,5, … , + 1.
 (21)

Put Eq. (19) into (21) and get the Eq. (22): + = 0,+ = 0,+ = −( + ),− + = − + ,sin + cos + sinh + cosh = 0,+ = 0,cos − sin + cosh       + sinh = + ,− sin − cos + sinh       + cosh = − + ,
 

= 3,4,5, ⋯ , + 1. 
(22)

3.2. The frequency equation and mode function in segmental mode assuming method 

Combine Eq. (20) and (22) then: = 0, (23)
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where:  = , , , , , , , , , , , , … , , , , . 
Cause the coefficients of each mode function , , , , , , , , , , , , …, 

, , ,  is not all 0, the coefficient matrix of the system of simultaneous equations: | | ( )× ( ) = 0. (24)

Eq. (24) is the frequency equation of the free-free-multi-supported beam subjected to an axial 
load, and the coefficient matrix  should meet the laws as Eq. (25). 

The symbol ( : , : ) means the submatrix extracted from the ath to bth row and the cth 
and dth column of matrix : 

(1: 2,1: 4) = − sin − cos sinh cosh− cosh sin cosh cosh ,(3: 4,4 − 3: 4 ) = − sin − cos sinh cosh− cos sin cosh sinh ,
(5: 8,1: 8) = 0 1 0 1 0 0 0 00 0 0 0 0 1 0 10 0 0 00 − 0 0 0 − ,     = 3,4,5, … , + 1,
(4 − 3: 4 , 4 − 7: 4 ) =

      sin cos sinh cosh 0 0 0 00 0 0 0 0 1 0 1cos − sin cosh sinh − 0 − 0− sin − cos sinh cosh 0 0 − .
 (25)

When there are plenty of supports and the higher-order determinant is hard to solve, the 
converse numerical solution method can be used. Firstly, determine the range and the gradient of 
value . Secondly, combine = ⁄ , = ⁄ , and Eq. (10) to calculate the 
corresponding  and , and then use Eq. (25) and judge whether they are the roots of the 
equation set. Thridly, put the satisfied value of  into = 2⁄  and the natural frequency  can 
be obtained. Finally, put the calculated  and the corresponding , , and ∗( ) into Eq. (19) 
and the mode shape of the free-free-multi-supported beam can be obtained. The mode function 
Eq. (19) is also a segmented function, which can be expressed by step function as Eq. (26): ( ) = ( ) ( + ) − ( ) + ( ) ( ) − ( − )        + ( ) ( − ) − ( − − ) + ⋯       + ( ) ( − − − ⋯ − ) − ( − − − ⋯ − )        + ( ) ( − − − ⋯ − ) − ( − − − ⋯ − − ) . (26)

4. Vibration of the guide bar 

4.1. The structure parameter of guide bar 

This article takes the guide bar of a homemade warp knitting machine as the prototype, and 
the structure parameter of it is as below. 

(1) Guide bar is made of Magnalium, of which the density = 1800 Kg/m3, and the elasticity 
modulus = 45 GPa. 
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Table 1. The first six mode shapes of the guide bar with two methods 
 Equivalent force method Segmental mode assuming method 

The 1st mode shape 

  

The 2nd mode shape 

  

The 3rd mode shape 

The 4th mode shape 

  

The 5th mode shape 

  

The 6th mode shape 
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(2) The length of the guide bar = 3.6 m. Take the end driven by spherical hinge as the 
beginning, then the length of each segment of the guide bar =  0.16 m, =  0.6 m,  = 0.68 m, = 0.72 m, = 0.65 m, = 0.6 m, = 0.19 m. The axial load subjected by 
the guide bar = 5 N. 

(3) The bending vibration of a guide bar will first occur in direction with the smallest cross 
sectional moment of inertia, and the calculated cross sectional moment of inertia  = 4.11×10-8 m4. 

4.2. The vibration of the guide bar with equivalent force method and segmental mode 
assuming method 

The vibration of guide bar is analyzed by the equivalent force method and segmental mode 
assuming method. The first six mode shapes are showed in Table 1, where  is the axial 
coordination of the guide bar defined by each method, and u is the amplitude (by normalization 
processing, taking the max amplitude as 1). It can be seen from Table 1 that the 1st mode shape 
consists of a single half wave in each span, and the amplitude of the mid span reaches the largest. 
The 2nd mode shape consists of two half waves in the mid span, while the 3th mode shape in the 
3th and 5th spans, the 4th mode shape in the 4th and 6th spans, the 5th mode shape in the 2th and 
6th spans, the 6th mode shape in each span. The mode shape is complex depending on the material 
properties and support location of the guide bar.  

The first six natural frequencies calculated by these two methods are showed in Table 2. It can 
be seen from Table 2 that the relative error of natural frequencies calculated by these two methods 
are within 0.1 %, which depends mainly on the gradient of value  when programing, so the 
results are consistent. It’s obvious that both these two methods do well in obtaining the natural 
frequency and mode shape of the multi-supported guide bar. 

Table 2. The first six natural frequencies of the guide bar with two methods 
 Equivalent force method Segmental mode assuming method 

The 1st natural frequency / Hz 113.3183 113.2706 
The 2nd natural frequency / Hz 135.2021 135.1958 
The 3rd natural frequency / Hz 157.4042 157.4106 
The 4th natural frequency / Hz 199.8986 200.2106 
The 5th natural frequency / Hz 227.9099 227.9576 
The 6th natural frequency / Hz 348.1514 348.1069 

5. Analysis on the effect of support location 

In the guide bar shogging system, guide bar with long length but small section, supported by 
many bearings, will vibrate under high speed movement, which influents the movement 
smoothness, causes transverse error, leads to “needle rubbing” phenomenon. Three methods are 
taken to increase the stiffness of the system for reducing vibration. 

(1) Increase the cross-section area of the guide bar. 
(2) Use high modulus and high elasticity materials. 
(3) Optimize the support location of the guide bar. 
Increasing the cross section area of the guide bar not only waste materials and make the system 

heavy, but also increase motor response time and energy consumption; Using high modulus and 
high elasticity materials (like Carbon fibre composite) to replace Magnalium materials not only 
make the production process complex but also increase the costs of the whole system; Optimizing 
the support location of the guide bar can reduce the vibration without adding materials, changing 
production process and increasing the costs. The impact of supports location on the natural 
frequencies and mode shapes will be studied later. 
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5.1. The impact of support location on natural frequencies 

In the guide bar shogging system, the supports of guide bar are often arranged symmetrically 
for designing and assembling purposes. Use segmental mode assuming method to study the effect 
of the supports location and the constraint conditions are listed as below. 

(1) Equality constraint: = = 0.175 m,= ,= ,= 3.6 m.  (27)

(2) Inequality constraints: 0.5 m 0.75 m,0.5 m 0.75 m. (28)

 

 
a) The 1st natural frequency 

 
b) The 2nd natural frequency 

 
c) The 3rd natural frequency 

 
d) The 4th natural frequency 

 
e) The 5th natural frequency 

 
f) The 6th natural frequency 

Fig. 5. First six natural frequencies change with the supports location 

For the vibration of the guide bar, first six modes account for most of the vibration energy, so 
the impact of the supports location on the first six natural frequencies is studied. According to the 
constraints condition, guide bar is symmetric with the total length as well as the length of the two 
cantilever sections fixed, so when  and  changes from 0.5 m to 0.75 m,  changes from 
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0.625 m to 0.25 m. Let  and  changes by 0.01 m, and the first six corresponding natural 
frequencies are plotted as Fig. 5. It can be known from Fig. 5 that the first six natural frequencies 
changes with the supports location within constraint conditions, but the change law is different. 
So, the supports location where first six natural frequencies reached the maximum and the 
minimum are different, too.  

The supports location where the natural frequencies reach the maximum and the minimum 
were calculated, as showed in Table 3. It can be known from Table 3 that when the length of 
segment = 0.50 m and = 0.50 m, the 1st natural frequency of guide bar = 54.8289 Hz; 
when =  0.66 m and =  0.64 m, the 1st natural frequency of guide bar  researches to 
116.4218 Hz, increasing the natural frequency by 2.12 times. When designing the guide bar 
shogging system of a warp knitting machine, the 1st natural frequency should be designed higher 
than the motor speed in order to avoid resonance. So, length of segment  and  should be 
designed around 0.65 m. 

Table 3. The supports location where the natural frequencies reach the maximum and the minimum 
 The 1st natural frequency The 2nd natural frequency The 3rd natural frequency 

 / Hz  / Hz  / Hz  / Hz  / Hz  / Hz 
116.4218 54.8289 164.8049 98.8352 192.4979 126.2099 

 / m 0.66 0.50 0.55 0.75 0.50 0.50 
 / m 0.64 0.50 0.52 0.75 0.50 0.71 
 The 4th natural frequency The 5th natural frequency The 6th natural frequency 

 / Hz  / Hz  / Hz  / Hz  / Hz  / Hz 
263.2423 165.9190 327.3817 218.5197 386.9852 284.1712 

 / m 0.50 0.75 0.75 0.72 0.72 0.60 
 / m 0.74 0.75 0.66 0.54 0.54 0.50 

5.2. The impact of support location on mode shapes 

Guide bar is made of homogenous material and has uniform section. When there is great 
difference in vibration amplitude among segments, bending stresses concentrates at the 
large-amplitude segments and cause breakage while less stress exists in small-amplitude segments 
and hinder the exploiting of their performance. Usually, for avoiding the fracture of the 
large-amplitude segments, guide bar with larger section is used, not only wasting materials, but 
also increasing motor response time and energy consumption. 

Let  and  changes by 0.01 m under the constraint conditions, the corresponding mode 
shapes at each location are plotted in Fig. 6, where  is the axial coordination of the guide bar 
defined by each method, and u is the amplitude (by normalization processing, taking the max 
amplitude as 1). It can be known from the curve that each mode in different location has similar 
shape but different amplitude distribution. The short segments tend to have small amplitude while 
long segments have large amplitude. Only when the length of each segment is approximately equal 
can the bending deformation be homogeneous, avoiding the stress concentrate phenomenon 
caused by local large amplitude. Therefore, the length of each segments should be designed 
roughly equal when arranging supports locations. In this case, the length of segment  and  
should be designed around 0.65 m. 

6. Conclusions 

1) Two methods (equivalent force method and segmental mode assuming method) of 
calculating the natural frequencies and mode shapes of a free-free-multi-supported beam subjected 
to an axial load is found, considering the structure characteristic of the guide bar, which has long 
length but small section, supported by many bearings, and subjected to an axial load. The results 
prove that these two methods are convenient for computer programing and have the same results 
in obtaining the natural frequencies and mode shapes of a free-free-multi-supported beam 
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subjected to an axial load, solving the problem that the vibration function of this kind of beam 
cannot be simplified with the boundary condition of two ends. 

 
a) The 1st natural frequency 

 
b) The 2nd natural frequency 

 
c) The 3rd natural frequency 

 
d) The 4th natural frequency 

 
e) The 5th natural frequency 

 
f) The 6th natural frequency 

Fig. 6. First six mode shapes change with the supports location 

2) The segmental mode assuming method is used to analyze the impact of the support location 
on the natural frequencies and mode shapes of the guide bar. The graphs of the change of natural 
frequencies with support locations are calculated, as well as the support locations where the natural 
frequencies reached the maximum and the minimum, providing a reference for the support 
location selection for the guide bar. 

3) The curves of the change of the mode shapes with support location are plotted, which show 
that the short segment has small amplitude while long segment has large amplitude. Only when 
the length of each segment is approximately equal can the bending deformation be homogeneous, 
avoiding the phenomenon that bending stresses concentrates at the large-amplitude segments and 
cause breakage while less stress exists in small-amplitude segments and hinder the exploiting of 
their performance, providing a reference for the structure design of the guide bar. 
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