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Abstract. An analysis method is proposed to identify axial dynamic loads acting on the Francis 
turbine based on Chebyshev orthogonal polynomial expansion theory. Dynamic loads are 
expressed as functions of time and polynomial coefficients. The dynamic load identification model 
is constructed through discretized integral convolution of the loads, such as the Duhamel integral. 
However, the discretized numerical integral has a time-cumulative error problem that decreases 
the recognition accuracy of the dynamic load. Compared with the traditional method, the 
algorithm proposed in this paper constructs the relationship between the modal displacement and 
force using polynomial orthogonality and derivative relation between displacement and velocity 
or acceleration. The new method could avoid the Duhamel integral and time-cumulative error 
problem. This algorithm not only requires less measuring point information, but is also highly 
efficient. Compared with genetic algorithm identification, orthogonal polynomial algorithm is not 
easy falling into local convergence, and does not require multiple repetitions positive analysis trial 
to evaluate individual fitness value. Numerical simulations demonstrate that the identification and 
assessment of dynamic loads are effective and consistent when the proposed method is used. 
Keywords: hydro-generator set, dynamic load, orthogonal polynomial, identification. 

1. Introduction 

Nowadays, dynamic loads play an important role in many practical engineering problems  
[1-6]. The dynamic load must be known when various methods are used in dynamics analysis to 
ensure the reliability and safety of engineering structures. However, in some cases, such as axial 
dynamic loads of hydro-generator turbines, it is difficult to directly measure the dynamic loads 
due to limits of technical or economic conditions. However, the dynamic response is easily 
measured, which leads to the development of the theory of load identification. 

There are two main identification methods: frequency-domain technique and time-domain 
technique [7, 8]. The frequency-domain technique determines the load spectrums by the frequency 
response functions and the response spectrums measured, or calculates the modal forces in modal 
space through coordinate changes [9-12]. Compared with frequency-domain identification, the 
time-domain technique has good accuracy and clear physical meaning. H. Ocry, H. Glaser [13] 
determined the load firstly using the time-domain technique through modal coordinates changed 
in 1985. Recently, the time-domain technique has been greatly developed. 

In practical engineering problems, the physical, geometrical, and boundary characteristics are 
generally uncertain due to errors in manufacture and installation, as well as complex working 
conditions. This prevents traditional identification methods from achieving good accuracy. 
Therefore, developing an efficient method to estimate the load of the rotating machinery has 
theoretical value and wide engineering significance. R. Tiwari and V. C. simultaneously identified 
the residual unbalanced load and bearing dynamic parameters [14]. Chu and Zhang proposed an 
improved time-domain identification method through the Duhamel integral; Zhang also identified 
a two-dimensional distributed dynamic load through the Duhamel integral, and pointed out that 
the Duhamel integral has a time-cumulative error effect [15-17]. Some researchers determined a 
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hydro-electric unit dynamic load through genetic algorithm or heuristic search algorithm 
according to the measured displacement [18-21]. The two algorithms identification processes 
require a number of trials to obtain better population reproduction. Furthermore, the calculation 
efficiency is poor. Liu et al. identified structures for dynamic loads through various methods, such 
as the Galerkin method which weighed the total least squares method; Gegenbauer polynomial 
approximation method; second-order Taylor-Series expansion method, SVM regression approach; 
and virtual work principle [22-27]. Some scholars are committed to solve the impact of noise 
during the identification by proposing a method that integrates denoising, correction, 
regularization preconditioned iteration method, and Kalman filter or Monte Carlo filter method 
[28-30]. 

For a water turbine generator set, the distances of upper and lower guide bearings are 
asymmetrical relative to the rotor. The rotor rotates forming arcuate cyclotron, has not only 
horizontal displacement, but also vertical displacement (Angular displacement). That is the 
gyroscopic effect. Usually, modal uncoupling of gyroscopic systems is difficult to carry out 
without additional assumptions and simplifications. However, this study aims to identify the 
unknown desired axial dynamic load of a rotor bearing system based on Chebyshev orthogonal 
polynomial theory, instead of radial dynamic loads. This study constructs the unit shaft system 
and pier coupling vibration model consider vertical freedom only. The gyroscopic effect is not 
considered during the modal decoupling.  

This paper is organized as follows. Section 2 introduces the basic theories of the Chebyshev 
Polynomials and determines the algorithm of the dynamic load on the basis of orthogonal 
polynomial expansion. Compared with other research that used the traditional method, this study 
constructs the relationship between the modal displacement and force using the Chebyshev 
Polynomial orthogonality instead of the Duhamel integral. This method could avoid a Duhamel 
integral time-cumulative error effect. Moreover, Section 3 adopts the proposed method to solve 
the determined equation and identify the unknown desired dynamic load through numerical 
examples. Finally, Section 4 provides the conclusion. 

2. Dynamic load identification based on orthogonal polynomial decomposition 

Generalized Chebyshev orthogonal polynomials can be used to approximate any continuous 
single-valued function. As long as the order is reasonable and sufficient, it is better to identify the 
time-varying dynamic load [17]. 

The fitting form of the generalized time interval [0, ] is as follows: 

( ) = ( ), (1)

( ) = 1√ ,
( ) = √2√ 2 ⋅ − 1 ,
( ) = √2√ 2 2 ⋅ − 1 − 1 .…

 (2)

The recursive formula is shown below: ( ) = 2 2 ⋅ − 1 ⋅ ( ) − ( ), ≥ 2. (3)

The Chebyshev orthogonal polynomial coefficients  are determined by: 
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= ℎ( ) ⋅ ( ) ( ) , (4)

where, ℎ( ) is weight function. 
The system motion equation for an arbitrary  order multi-degrees is: 

[ ] ( )⋮( )⋮( ) + [ ] ( )⋮( )⋮( ) + [ ] ( )⋮( )⋮( ) = 0⋮( )⋮0 , (5)

where [ ], [ ], and [ ] are the mass matrix, damping matrix, and stiffness matrix of the system; ( ), ( ), ( ) are acceleration, velocity and displacement of the measuring point. ( ) is 
the load on node , which is waited to be identified. 

Assuming that damping is proportional damping, modal coordinate transformation is 
introduced: 

( ) = [Φ] ( ) = ⋯⋯⋮ ⋮ ⋱ ⋮⋯ ( ) , (6)

where, [Φ] is principal modal matrix, ( ) is the th modal displacement: [ ][Φ] ( ) + [ ][Φ] ( ) + [ ][Φ] ( ) = ( ) . (7)

Left-multiplied [Φ] , the system can be decoupled into  single degree of freedom systems 
according to modal shape orthogonality: ∗ ( ) + ∗ ( ) + ∗ ( ) = ( ) = ( ), = 1,2, ⋯ , (8)

where ∗, ∗, ∗ and ( ) are the modal mass, modal damping, modal stiffness, and modal force 
in the th order; and ( ), ( ), ( ) are modal acceleration, velocity, and displacement in the 
th order. 

Chebyshev orthogonal polynomial expansion of the th order modal force ( ) is: 

( ) = ( ). (9)

According to Duhamel integral: 

( ) = 1∗ ( ) ( )sin[ ( − )]  
      = ∑ ∗ ( ) ( )sin[ ( − )] = [ ⋯ ] ⋮ , (10)

where, ∗ = 2 ∗, = 1 − , = ∗ ( ) ( )sin[ ( − )] . 
Substitute Eq. (10) into Eq. (6): 
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= [ ⋅ [ ] ⋅ [ ] ⋯ ⋅ [ ]] ⋮ , (11)

where, [ ] = [ ⋯ ], = ⋯ .  
It is assumed that each order modal force needs  terms expression to satisfy accuracy 

requirement. The system has  order modals. The number of coefficients to be identified is ∗ . 
Dispersing the measuring point displacement at different ∗  times in the calculation interval 
could obtain ∗  equations. All the orthogonal polynomials coefficients could be obtained by 
solving the equations. Subsequently, the dynamic load could be identified according to Eqs. (8) 
and (9). 

The method above constructs the relationship between modal displacement and modal force 
by Duhamel integral in modal space. Eq. (10) shows that integral upper limit of the Duhamel 
integral is calculated instantaneously. In others words, the Duhamel integral calculation must be 
performed at each discrete time; the integral results are different at different times. Thus, the 
method above not only requires a large amount of computation, but also has a time-accumulation 
error problem. 

The problem could be improved by decreasing time step and increasing orthogonal 
polynomials order number. However, it needs more calculation and require more measuring point 
information. 

In this study, a new algorithm is proposed to solve the problem. The algorithm constructs the 
relationship between modal displacement and modal force by polynomial orthogonality and 
derivative relation between the displacement and velocity or acceleration. This method could 
avoid Duhamel integral and integral time-cumulative error problem as well as increase 
identification accuracy. 

The orthogonal polynomial expansions of the th order modal force, displacement, velocity 
and acceleration are as follows: 

( ) = ( ) ,
( ) = ( ) ,
( ) = ( ) ,
( ) = ( ) .

 (12)

Substitute Eq. (12) into Eq. (8): 

∗ ( ) + ∗ ( ) + ∗ ( ) = ( ). (13)

Assuming that the calculation of time interval is [0, ], multiply ( )ℎ( ) on both sides of 
Eq. (13) and integral in interval [0, ]. According to polynomials weighted orthogonality: ∗ + ∗ + ∗ = , = 0,1,2, ⋯ ∞, (14)
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where ,  and  are determined by: 

= ( ) ⋅ ( ) ⋅ ℎ( ) ,
= ( ) ⋅ ( ) ⋅ ℎ( ) ,
= ( ) ⋅ ( ) ⋅ ℎ( ) .

 (15)

According to the derivative relation between the displacement and acceleration or velocity: 

( ) = ( ),
( ) = ( ) . (16)

Substitute Eq. (16) into Eq. (15):

   = ( ) ⋅ ( ) ⋅ ℎ( ) = ,
= ( ) ⋅ ( ) ⋅ ℎ( ) = , (17)

= ( ) ⋅ ( ) ⋅ ℎ( ) ,
= ( ) ⋅ ( ) ⋅ ℎ( ) . (18)

Substitute Eq. (17) into Eq. (14). The new relationship is constructed between displacement 
and force in mode space: ( ∗[ ][ ] + ∗[ ][ ] + ∗[ ]) = , = 1,2, … , , (19)

where [ ] is the unit matrix, and: 

[ ] = ⋯⋯⋮ ⋮ ⋮ ⋮⋯ , [ ] = ⋯⋯⋮ ⋮ ⋮ ⋮⋯ ,
where ,  are the coefficient vectors of the modal displacement and force in th order.  

The measuring point time domain displacement could be expressed by principal modal matrix 
and modal displacement. The orthogonal polynomial coefficients could be solved by constructing 
equations through dispersing the measuring point displacement at different times. Consequently, 
dynamic load identification could be performed. 

The algorithm proposed in this paper constructs the relationship between modal displacement 
and force according to polynomial orthogonality and derivative relation between the displacement 
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and velocity or acceleration. This method could avoid Duhamel integral and increase identification 
accuracy. Although each element in [ ] or [ ] matrices must be calculated during the integration, 
the integral upper limit is the same. That is, the integral result remains constant at different times. 
Implementing integral operation at each discrete time becomes unnecessary. The algorithm 
increases recognition accuracy and improves calculation efficiency. 

The modal mass, stiffness, frequency and shape must be known during load identification. The 
frequency and mode shape could be easily obtained through modal analysis. The modal mass 
could be obtained through Eq. (20) as demonstrated in an earlier study [31]: 

∗ = 2.0 , (20)

where  is the th order modal kinetic energy. Furthermore, the modal stiffness and damping 
could be deduced. 

3. Numerical examples  

This study used a practical hydro-generator unit as example. A hydro-generator shaft system 
and pier coupling vertical vibration model was constructed. The pier was regarded as a rigid 
foundation. The thrust bearing and frame centrosome was regarded as a spring element. The large 
shaft was simplified as a non-mass elastic beam. Its mass was distributed into three nodes, which 
represent the exciter, rotor and runner. The rotor arm was simplified as a non-mass elastic rod. 
The average quality was assigned to the edge of the rotor bracket and frame centrosome. The mass 
spring system model is shown in Fig. 1. Moreover, the values and meanings of all parameters are 
shown in Table 1 [5-6]. 

 
Fig. 1. Vertical vibration simplified model of the hydro-generator 

The total stiffness matrix of the system is: 

[ ] = − 0 0 0− + + + − − −0 − 0 00 − 0 00 − 0 0 + . (21)
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Table 1. Values and meanings of the parameters of the simplified vertical vibration model 

 Equivalent 
value  Equivalent meaning 

 8.28×104 kg Exciter mass+1/2 shaft segment mass from top to rotor support frame  

 1.042×106 kg Rotor support frame centrosome mass +1/2 total arms mass +1/2 total shaft 
mass 

 3.29×105 kg Runner mass+ water addition quality+1/2 shaft segment mass from rotor 
support frame to runner 

 9×105 kg Magnetic yoke and magnetic pole mass at rotor edge 
 1.2×105 kg Under frame centrosome mass+1/2 total under frame arms mass 

 7.25×1010 (N/m) tensile stiffness of the shaft segment 
 5.72×1010 (N/m) tensile stiffness of the shaft segment 
 2.32×1010 (N/m) Total vertical stiffness of rotor frame arms 
 2.20×1012 (N/m) thrust bearing equivalent vertical stiffness between m2 and m5 
 9.41×109 (N/m) Total vertical stiffness of under frame arms 

The lumped mass matrix is: [ ] = diag , , , , . (22)

The damping matrix was acquired using the Rayleigh proportional damping model. The 
damping ratio  was 0.05. The first and second order circular frequencies were used to calculate 
the coefficients of mass matrix and stiffness matrix in Eq. (23): [ ] = [ ] + [ ] (23)

where = 2 ( + )⁄ , = 2 ( + )⁄ . 
The modal parameters obtained through model analysis are shown in Table 2. 

Table 2. Modal parameters of the vertical vibration model 

Modal 
order 

Parameter 
Circular 

frequency 
(Hz) 

Modal 
mass (Kg) 

Modal 
stiffness 
(N/m) 

Modal 
damping 
(N·s/m) 

Modal shape (−) 

1 59.75 2.08×106 7.42×109 1.24×107 [0.87,0.86,0.88,1,0.86]T 
2 204.24 1.59×106 6.66×1010 3.26×107 [−0.65,−0.62,−0.81,1,−0.62]T 
3 474.47 4.45×105 1.00×1011 3.99×107 [−0.40,−0.29,1,0.04,−0.30]T 
4 972.32 9.01×104 8.51×1010 3.27×107 [1,−0.08,0.02,0.002,−0.08]T 
5 4531.06 1.34×105 2.73×1012 1.04×109 [0.005,−0.12,0.001,0.0001,1]T 

Construct axial hydro-thrust for Francis turbine according to the literature [19]: = 142.7 × 10 cos(2π × 0.29 + 1.04) + 438.9 × 10 cos(2π × 1.25 + 4.39)     −287.4 × 10 cos(2π × 2.5 + 5.07) + 489.7 × 10 cos(2π × 8.75 + 1.43). (24)

The dynamic load above was applied to the runner node, which is node 3. The under-frame 
centrosome displacement could be obtained through calculation. The response and additional  
10 % random noise was regarded as the known measuring point displacement. The axial 
hydro-thrust was identified using the orthogonal polynomial decomposition algorithm. 

The identification used two cases. Case 1 constructed the relationship between modal 
displacement and force through the Duhamel integral. Case 2 constructed the relationship 
according to the polynomial orthogonality and derivative relationship between displacement and 
velocity or acceleration as mentioned above. The identified dynamic loads of the two cases are 
shown in Fig. 2 and Fig. 3. The figures show that the algorithm proposed in this paper avoids 
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Duhamel integral and improves time-cumulative error effect. The integral result of the [ ] and [ ] 
matrices remain constant at different times. Implementing integral operation at each discrete time 
has become unnecessary. The algorithm increases recognition accuracy and improves calculation 
efficiency. 

Fig. 2. Identification result of Case 1 
 

Fig. 3. Identification result of Case 2 

Fig. 4 shows relative instantaneous error and time-cumulative error of the two algorithms. The 
cumulative errors are sum of absolute value of the relative error in each calculation time. The 
cumulative error of the proposed method could converge at a certain time step. However, the 
cumulative error of the Duhamel integral method would diverge with time step. There are two 
kinds of factor which lead to the cumulative error. First, the discrete step could not be infinitely 
small because of the calculation efficiency. For example, in Fig. 5, the cumulative error is 
difference between the discrete summation and continuous integral. Second, the finite element 
load applying method could not be an ideal state step mutation. For instance, in Fig. 6, difference 
of the load applying methods also lead to a cumulative error. 

 
Fig. 4. Identification error of the two cases 

 
Fig. 5. Cumulative error due to discretion 

An empirical method in literature [32] could be used to determine the order number of the 
orthogonal polynomial. However, the formula mainly be applied to two-dimensional orthogonal 
polynomials for distributed dynamic load identification. For one-dimensional orthogonal 
polynomials, the cumulative error convergence trend chart with orthogonal polynomial order 
number could be used to determine the order number. Fig. 7 shows the curves of identification 
cumulative error with the orthogonal polynomials order number. The cumulative error decreases 
as the order increases. When the order number is up to 16, the error is convergent, and the result 
is credible. 

The identified dynamic load was applied to the structure. The whole structure dynamic 
response can be obtained. Using the displacement response of node 5 multiplied by the stiffness 
of , the dynamic load transferred from the under frame and the pier could be obtained, that is, 
the vertical exciting load of the pier. 
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Fig. 6. Cumulative error due to load handing method

 
Fig. 7. Cumulative error with polynomials order 

4. Conclusions 

An analysis method is proposed to identify dynamic loads based on Chebyshev orthogonal 
polynomial expansion theory. This algorithm not only requires less measuring point information, 
but is also highly efficient. Compared with genetic algorithm identification, orthogonal 
polynomial algorithm is not easy falling into local convergence, and does not require multiple 
repetitions positive analysis trial to evaluate individual fitness value. 

The traditional dynamic load identification model is constructed through discretized integral 
convolution of the loads, such as the Duhamel integral. The discretized numerical integral has a 
time-cumulative error problem that decreases the recognition accuracy of the dynamic load. 
Compared with the traditional method, the algorithm proposed in this paper constructs the 
relationship between the modal displacement and force using polynomial orthogonality and 
derivative relation between displacement and velocity or acceleration. The new method could 
avoid the Duhamel integral and time-cumulative error problem. Performing an integral calculation 
for a coefficient matrix at each discrete time becomes unnecessary. The proposed algorithm has 
higher identification accuracy and efficiency than the traditional Duhamel integral algorithm.  
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