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Abstract. This paper simplified the model and the equilibrium equations on the composite 

thin-walled beams. According to the boundary conditions of a cantilever beam, natural frequencies 

of box and circular beams in the directions of lead-lag, flapping and twisting were contrasted with 

those in a related reference to verify the validity of the model. An equivalent uniform solid beam 

whose length, cross section shape and line density were the same with those on the composite 

thin-walled beam was also built. By contracting and analyzing the natural frequencies of two 

beams, the orthogonal anisotropic effective elastic modulus expressions of composite thin-walled 

beams in the directions of �, �, � and twisting can be obtained. The approximate effective moduli 

on box and circular beams were calculated under the CUS, CAS configuration and other special 

layer styles. The effect of ply angel, ply thickness, the length, layer style and cross section on the 

effective moduli was also discussed. Finally, two calculating examples were furnished to 

demonstrate that much dynamic analysis on the composie beams can be made by the classic beam 

theory using an approximate effective modulus method. 

Keywords: composite, thin-walled beams, effective moduli, natural frequency, ply angle. 

1. Introduction 

How to predict theoretically the effective moduli of the composite beams had been a research 

hotspot in recent years for many scholars. Eshelby [1] published the study of an innfinitely large 

matrix elastic field. Based on the study of Eshelby, many models of predicting the effective moduli 

of the composite beams were established such as the composite spheres mode [2], the 

self-consistent method [3] and general self-consistent method [4].Torquato [5] discussed the 

effective stiffness matrix expressions of the two-phase isotropic composite in 1997. Bhattacharyya 

[6] published the effective moduli theory of the two-phase macro isotropic composite in 1999. He 

also obtianed the relationship between the effective modulus and fiber probability distribution 

function of the composite material, by combining Hi1l’s self-consistent method and Christensen’s 

general self-consistent method. 

Tsai [7] analyzed the bending deformation of the thin-walled beams, by using the modulus 

along the axis direction and the section moduli of different cross sections. Wild [8] calculated the 

equivalent modulus of the vertical plane in the fiber cylindrical tube, by using laminated plate 

theory and ignoring the effect of wall curvature of the pipe. Vinson [9] extended the classical 

laminate theory to the simple beam theory, deduced the beam stiffness coefficient from the 

laminate stiffness coefficient. Barbero [10] translated the model of thin-walled beams into the 

laminate with effective moduli, and built the first-order shear deformation theory of thin-walled 

beams, by using Whitney’s [11] calculation method of the effective moduli. These analyses are 

limited to the calculation of the equivalent elastic modulus of thin-walled beams, unable to 

calculate the equivalent shear modulus. 

Firstly, a simplified model which is verified by comparison with natural frequencies in related 

references will be esteblished on the composite thin-walled beams in this paper. Secondly, by 

contrastive analysis on a composite thin-walled beam and an equivalent uniform solid beam, an 

approximate effective modulus calculation method will be derived. Finally, how to apply the 

effective moduli to the composite thin-walled beams will be analyzed taking a turbine blade and 

a spinning beam for examples.  
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2. Natural frequencies on composite thin-walled beams 

2.1. The model and the equilibrium equations of the composite thin-walled beam 

 
Fig. 1. The model of the composite thin-walled beam 

According to the principle of conservation of energy, ignoring the coupling terms, the kinetic 

equations [12] of the composite thin-walled beam are as follows: 

������� − 	
��� = 0, (1)����� − ��� = 0, (2)��������� + 	
��� = 0, (3)��������� + 	
��� = 0, (4)

where, �� , ��  and ��  are the average displacement in � , �  and �  directions. �  is the average 

displacement in twisting direction. The composite stiffness is as follow: 

��� = � �� − ��
� � �� + � � !��"# ��$� � !1�"# ��& '# , 

��� =  1 � !1�"# ��( $ �)�, 
��� = � �� − ��

� � ���� + � � !��"# ���$� � !1�"# ��& '# , 
��� = � �� − ��

� � ���� + � � !��"# ���$� � !1�"# ��& '# . 

(5)

The inertial parameters of the composite thin-walled beam are defined in Eq. (6): 

	
 = ∮ ,ℎ.�/��,   � = ∮ ,.�� + ��/ℎ.�/��. (6)

The coefficients of Eq. (5) are defined as follows: 

�.�/ = �̅�� − �̅���
�̅�� ,    �.�/ = 2 ��̅�2 − �̅���̅�2�̅�� � ,   �.�/ = 4 ��̅22 − �̅�2�

�̅���. (7)

�̅45 = 6 7845
9 �⁄

;9 �⁄ �< = 2 = 7845>
? �⁄

>@�
.ℎ> − ℎ>;�/,   A, B = 1,2,6. (8)

In Eq. (8), ℎ> and ℎ>;� are the upper and lower surface coordinates respectively in the Dth 
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lamina. E  is the number of layers. [745] = [H]H[745][H] is the erosive eccentric plane stress 

stiffness matrix. [745] (A, B = 1, 2, 6) is the erosive orthoaxis plane stress stiffness matrix. The 

elements in matrices are as follows: 

7�� = I��.I� − J��� I�/, 
7�� = J��I�I�.I� − J��� I�/, 
7�� = I�I�.I� − J��� I�/, 
722 = K��,   7�2 = 7�2 = 0. 

(9)

The transformation matrix can be defined in Eq. (10): 

H = L               	�                              N�                                            	N                  N�                               	�                                      −  	N     − 2	N                     2	N                          	� − N�     O ,   	 = cosS,    N = sinS . (10)

2.2. Solution of natural frequencies 

The boundary conditions on the cantilever beam are as follows: 

�.0/ = 0,   ��.V/ = 0. (11)

It is defined as following: 

WX� = ��� �⁄ . (12)

The general solution of the torsional vibration in Eq. (2) are as follows: 

�.�/ = ��sin YWX � + ��cos YWX �. (13)

The Eq. (14) can be gained from the boundary conditions in Eq. (11): 

�� = 0,   YWX ��cos YWX V = 0. (14)

The equation of solving the natural frequency can be gained from the second term of the 

Eq. (14): 

cos YWX Z = 0. (15)

The natural frequencies of the torsional vibration can be obtained from the Eq. (16): 

Y4 = .2A − 1/[WX2V ,   A = 1,2, …. (16)

The Eq. (14) is substituted in the Eq. (16). Then the torsional natural frequencies are gained 

from the Eq. (17): 
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Y4 = .2A − 1/[2V  ]���� ,   A = 1,2, …. (17)

The exprestions and the boundary conditions in longitudinal vibration are the same as those in 

torsional vibration.Then the longitudinal natural frequencies can be calculated by the the Eq. (18): 

Y4 = .2A − 1/[2V  ^���	
 ,    A = 1,2, …. (18)

The boundary conditions on the cantilever beam in � direction are as follows: 

��.0/ = 0,   ��� .0/ = 0,   ����.V/ = 0,   �����.V/ = 0. (19)

The general solution of the Eq. (4) are as follows: 

��.�/ = ��cos_� + ��sin_� + ���ℎ_� + ���ℎ_�. (20)

The Eq. (19) is substituted in the Eq. (20), then the Eq. (21) can be gained: 

` cos_V + �ℎ_V                               sin_V + �ℎ_Vsin_V − �ℎ_V                                  − .cos_V + �ℎ_V/ ` = 0. (21)

The natural frequency can be solved, after the Eq. (21) is simplified: 

cos_V�ℎ_V = −1. (22)

The first four roots of the Eq. (22) are as follows: 

_�V = 1.875,   _�V = 4.694,   _�V = 7.855,   _�V = 10.996, (23)

when A ≥ 3, the values are as follows: 

_4V = !A − 12" [,   A = 3,4 …. (24)

The natural frequencies in � direction are obtained in Eq. (25): 

Y4 = ._4V/�^ ���	
V� ,   A = 1,2 …. (25)

The equations and the boundary conditions in � direction are the same with those in � direction. 

Then the natural frequencies in � direction can be gained as followings: 

Y4 = ._4V/�^ ���	
V� ,   A = 1,2 …. (26)

2.3. Natural frequencies on composite thin-walled beams 

The characteristic parameters of the composite thin-walled beams are gained from the 

reference [13], so the natural frequency can be compared and analyzed. The parameters are  
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ℎX = 0.635 mm,  ,X = 1672 kg/m3,  I�� = 25.8 Gpa,  I�� = 8.7 Gpa,  K�� = K�� = 3.5 Gpa,  g�� = 0.34. 

The Table 1 shows the natural frequencies of the composite thin-walled box beams. The width 

of the box beams is h = 0.32 m, the width-height ratio is h W⁄ =5, the length-width ratio is  V h⁄ = 14.37. The thickness of the composite laminate is ℎ = 10.16 mm. The Table 2 shows that 

the width-height ratio has effect on the natural frequencies of the composite thin-walled box beams. 

The Table 3 shows that the natural frequencies of the composite thin-walled box beams will 

change with different length-width ratios. The natural frequencies of the composite thin-walled 

circular beams are listed in the Table 4, in which the diameter is � = 352 mm, the length-diameter 

ratio is V �⁄ =26, and the thickness of the composite laminate is ℎ = 10.16 mm. The Table 5 

shows that the natural frequencies of the composite thin-walled circular beams will vary in the 

length-diameter ratios. All calculation results of the natural frequencies are compared with that in 

reference [13]. The numerical deviations are relatively small, so the model and the equilibrium 

equations can be used to calculate approximately the natural frequencies on the thin-walled 

composite beam. 

Table 1. Natural frequencies of composite box beams (V h⁄ = 14.37, h/W = 5) 

Layer style Yj� Yj� Yk� Yk� Yl� Yl� 

[0]16 3.1 19.7 11.1 69.5 39.4 118.3 

Ref.[13] 3.1 19.8 11.0 65.6 37.7 113.3 

[90]16 1.8 11.4 6.4 40.3 39.4 118.3 

Ref. [13] 1.8 11.5 6.5 39.7 37.7 113.3 

[02/902/452/–452]s 2.4 14.8 8.4 52.4 47.9 143.8 

Ref. [13] 2.4 14.8 8.3 50.9 46.9 140.9 

[45/–45]8 2.1 12.9 7.3 45.7 55.2 165.4 

Ref. [13] 2.0 12.7 7.1 44.1 54.6 164.2 

Table 2. Natural frequencies of composite box beams in different width-height ratios (V/h = 14.37) 

Layer style Yj� Ref. [13] Yk� Ref. [13] Yl� Ref. [13] 

[0]16 h/W = 10 

 

1.6 

 

1.6 

 

10.4 

 

10.4 

 

23.4 

 

22.5 

7.5 2.1 2.1 10.7 10.6 29.5 28.1 

5 3.1 3.1 11.1 11.0 39.4 37.3 

2.5 6.0 6.0 12.0 11.9 57.9 55.7 

1 13.5 13.4 13.5 13.4 71.0 67.8 

[90]16 h/W = 10 

 

0.9 

 

0.9 

 

6.1 

 

6.1 

 

23.5 

 

22.5 

7.5 1.2 1.2 6.2 6.2 29.5 28.1 

5 1.8 1.8 6.4 6.5 39.4 37.7 

2.5 3.5 3.5 7.0 7.0 58.0 55.6 

1 7.9 7.9 7.9 7.9 71.0 67.9 

[02/902/452/–452]s h W⁄ = 10 

 

1.2 

 

1.2 

 

7.9 

 

7.8 

 

28.5 

 

27.9 

7.5 1.6 1.6 8.0 8.0 35.9 34.9 

5 2.4 2.4 8.4 8.3 47.9 46.9 

2.5 4.5 4.5 9.1 9.0 70.5 69.3 

1 10.2 10.1 10.2 10.1 86.3 84.5 

[45/–45]8 h/W = 10 

 

1.0 

 

1.0 

 

6.8 

 

6.7 

 

32.8 

 

32.6 

7.5 1.4 1.3 7.0 6.9 41.2 40.7 

5 2.1 2.0 7.3 7.1 55.2 54.6 

2.5 3.9 3.8 7.9 7.7 81.0 80.6 

1 8.8 8.7 8.8 8.7 99.3 98.3 
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Table 3. Natural frequencies of composite box beams in different length-width ratios (h/W = 5) 

Layer style Yj� Ref. [13] Yk� Ref. [13] Yl� Ref. [13] 

[0]16 V/h =  7.187 

 

12.5 

 

12.5 

 

44.3 

 

42.8 

 

78.8 

 

75.3 

14.37 3.1 3.1 11.1 11.1 39.4 37.7 

28.75 0.78 0.8 2.8 2.8 19.7 18.8 

115 0.05 0.05 0.17 0.18 4.9 4.7 

[90]16 V/h = 7.187 

 

7.3 

 

7.3 

 

25.7 

 

25.5 

 

78.8 

 

75.3 

14.37 1.8 1.8 6.4 6.5 39.4 37.7 

28.75 0.4 0.4 1.6 1.6 19.7 18.8 

115 0.03 0.03 0.1 0.1 4.9 4.7 

[02/902/452/–452]s V/h = 7.187 

 

9.4 

 

9.4 

 

33.4 

 

32.7 

 

95.9 

 

93.7 

14.37 2.4 2.4 8.4 8.3 47.9 46.9 

28.75 0.6 0.6 2.1 2.0 23.7 23.4 

115 0.04 0.04 0.13 0.13 6.0 5.8 

[45/–45]8 V/h = 7.187 

 

8.2 

 

8.0 

 

29.2 

 

28.2 

 

110.2 

 

109.2 

14.37 2.1 2.0 7.3 7.1 55.2 54.6 

28.75 0.5 0.5 1.8 1.8 27.6 27.3 

115 0.03 0.03 0.1 0.1 6.9 6.8 

115 0.03 0.03 0.1 0.1 6.9 6.8 

Table 4. Natural frequencies of composite circular beams (V/� = 26) 

Layer style Yj� Yj� Yk� Yk� Yl� Yl� 

[0]16 3.3 20.4 3.3 20.4 41.2 123.4 

Ref. [13] 3.2 19.9 3.2 19.9 39.5 118.7 

[90]16 1.9 11.9 1.9 11.9 41.2 123.4 

Ref. [13] 1.9 11.7 1.9 11.7 39.5 118.7 

[02/902/452/–452]s 2.5 15.3 2.5 15.3 50.1 150.2 

Ref. [13] 2.4 15.0 2.4 15.0 49.2 148.0 

[45/–45]8 2.1 13.4 2.1 13.4 57.6 172.8 

Ref. [13] 2.0 13.0 2.0 13.0 57.0 172.0 

3. Effective moduli on composite thin-walled beams 

3.1. Establishment and solution of the equivalent beam 

The equivalent beam is the same with the composite thin-walled beam in the length, the cross 

section shape and the linear density. It has the independent shear modulus and the orthotropic 

elastic moduli in �, � and � directions. The expressions of the equivalent beam are as follows: 

Im���� − ,��� = 0, K�� − ,�� = 0, In�n������ + ,���� = 0, Io�o������ + ,���� = 0, 
(27)

where, Im , Io  and In  are the orthotropic elastic moduli in �, � and � directions. K is the shear 

modulus of the equivalent beam. � is the cross-sectional area of the equivalent beam. The density 

of the equivalent box beam is as follows: 

, = 2EℎX,X.W + h/� . (28)
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Table 5. Natural frequencies of composite circular beams in different length-diameter ratios 

Layer style Yj� Ref. [13] Yk� Ref. [13] Yl� Ref. [13] 

[0]16 V/� = 6.5 

 

52.3 

 

49.0 

 

52.3 

 

49.0 

 

164.7 

 

158.0 

13 13.1 12.8 13.1 12.8 82.4 79.0 

26 3.3 3.2 3.3 3.2 41.2 39.5 

104 0.2 0.2 0.2 0.2 10.2 9.9 

[90]16 V/� = 6.5 

 

30.3 

 

29.4 

 

30.3 

 

29.4 

 

164.7 

 

158.0 

13 7.6 7.5 7.6 7.5 82.4 79.0 

26 1.9 1.7 1.9 1.7 41.2 39.5 

104 0.12 0.12 0.12 0.12 10.2 9.9 

[02/902/452/–452]s V/� = 6.5 

 

39.3 

 

37.7 

 

39.3 

 

37.7 

 

200.2 

 

196.8 

13 9.8 9.6 9.8 9.6 100.1 98.4 

26 2.5 2.4 2.5 2.4 50.1 49.2 

104 0.15 0.15 0.15 0.15 12.5 12.3 

[45/–45]8 V/� = 6.5 

 

34.3 

 

32.6 

 

34.3 

 

32.6 

 

230.4 

 

228.9 

13 8.5 8.3 8.5 8.3 115.2 114.5 

26 2.1 2.0 2.1 2.0 57.6 57.0 

104 0.13 0.13 0.13 0.13 14.4 14.3 

The density of the equivalent circular beam is caculated in Eq. (29): 

, = EℎX,X[�� . (29)

The principle moments of inertia on the equivalent box beam in � and � directions are as 

follows: 

�o = Wh� 12⁄ ,   �n = W�h 12⁄ . (30)

The principle moments of inertia on the equivalent circular beam in � and � directions are as 

follows: 

�o = �n = [�� 64⁄ . (31)

By using the classical beam theory, the torsional natural frequencies of the cantilever beam are 

obtained in Eq. (32): 

Y4 = .2A − 1/[2V  ^K, ,   A = 1,2, …. (32)

The longitudinal natural frequencies of the equivalent beam are obtained as followings: 

Y4 = .2A − 1/[2V  ^Im, ,   A = 1,2, …. (33)

The natural frequencies of the equivalent beam in � direction are as follows: 
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Y4 = ._4V/�^ Io�o,�V� ,   A = 1,2 …. (34)

Natural frequencies on the equivalent beam in � direction are obtained as followings: 

Y4 = ._4V/�^ In�n,�V� ,   A = 1,2 …. (35)

The paremeters in Eqs. (34) and (35) are calculated: 

_�V = 1.875,   _�V = 4.694,   _4V = !A − 12" [,   A = 3,4 …. (36)

The effective moduli can be gained by the contrastive analysis of the composite thin-walled 

beam and the equivalent solid beam. They are only applied to an approximate dynamic analysis 

on the thin-walled composite beams. The approximate calculation equations are as follows: 

K = ,���� ,   Im = ,���	
 ,   Io = ,����	
�o ,   In = ,����	
�n . (37)

3.2. Numerical analysis on the effective moduli 

The parameters of the composite thin-walled box beam in Table 6 are chosen as follows. The 

width is h =  0.32 m.The length-width ratio is V h⁄ =14.37. The thickness of the composite 

laminate is ℎ = 10.16 mm.The effective moduli on the composite thin-walled box beams are 

presented in Table 6. When the width-height ratios decrease, the elastic moduli in �, � and � 

directions become small under the layer styles of [0]16 and [90]16, but the  shear modulus increases. 

With the decreasing width-height ratio ratios, the elastic moduli in �, � directions and the shear 

modulus become small under the layer style of [02/902/452/–452]s, but the elastic modulus in � 

direction increases. When the width-height ratios become small, the elastic modulus in � direction 

and the shear modulus decrease under the layer style of [45/–45]8, the elastic modulus in � 

direction increases, and the elastic moduli in � direction decreases at first, then increases. 

For a CUS configuration, the layer style of skin laminations at the left, right, top and bottom 

side are all [S]16, For a CAS configuration, the layer styles of skin laminations are as follows. [S]16 

at top flange, [–S]16 at bottom flange, and [S/–S]8 at left and right web. Fig. 2 and Fig. 3 show the 

effective moduli on the composite thin-walled box beams under the CUS and CAS configuration.  

The elastic moduli on the composite thin-walled box beams decreases with increasing ply 

angels in Fig. 2. When the width-height ratios become small, the elastic moduli in �  and � 

directions decrease, but the elastic modulus in � direction increases. Table 6 also shows, when the 

ply angle comes to zero, the elastic modulus is maximal. In order to improve the elastic moduli of 

the composite thin-walled beams, adding the ply thickness, adopting small ply angle and large 

width-height ratio are all good choices. 

Fig. 2(d) shows, when S = 38° the shear modulus on composite thin-walled box beams is 

maximal, and becomes small with increasing width-height ratios. Table 6 also shows, when the 

layer style of skin laminations is [45/–45]8, the shear moduli is maximal, and is higher than that 

under CUS configuration. For improving the shearing modulus on the composite thin-walled 

beams, we can add the ply thickness and the width-height ratio, or adopt the layer style [45/–45]8. 

Fig. 3 shows, the effective elastic moduli on the composite thin-walled beams under the CAS and 

CUS configuration are in substantial agreement. The difference of the shear modulus is obvious. 
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Table 6. The effective moduli of composite box beams (V/h = 14.37) 

Layer style Im (GPa) Io (GPa) In (GPa) K (GPa) 

[0]16 h/W = 1.5 

 

4.10 

 

16.59 

 

4.00 

 

0.42 

1 3.28 6.55 6.55 0.37 

0.6 2.62 2.12 12.74 0.25 

[90]16 h/W = 1.5 

 

1.38 

 

5.60 

 

1.35 

 

0.42 

1 1.10 2.21 2.21 0.36 

0.6 0.88 0.72 4.30 0.25 

[02/902/452/–452]s h/W = 1.5 

 

2.33 

 

9.42 

 

2.27 

 

0.62 

1 1.86 3.72 3.72 0.54 

0.6 1.49 1.21 7.23 0.38 

[45/–45]8 h/W = 1.5 

 

1.77 

 

7.18 

 

1.73 

 

0.82 

1 1.42 2.84 2.84 0.71 

0.6 1.13 9.19 5.51 0.50 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Effective moduli on composite thin-walled box beams (CUS) 

Table 7 shows the different effective moduli under different layer styles when E = 20, 16, 12. 

Fig. 4 shows the effective moduli on the composite thin-walled circular beams under the CUS 

configuration when E = 20, 16, 12. The parameters of composite thin-walled circular beams are 

chosen as follows: � = 352 mm, V �⁄ =26, ℎX = 0.635 mm. 
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Table 7. The effective moduli of composite circular beams (V/� = 26) 

Layer style Im (GPa) Io (GPa) In (GPa) K (GPa) 

[0]20 3.72 7.45 7.45 0.55 

[0]16 2.98 5.96 5.96 0.44 

[0]12 2.23 4.47 4.47 0.33 

[90]20 1.26 2.51 2.51 0.55 

[90]16 1.00 2.01 2.01 0.44 

[90]12 0.75 1.51 1.51 0.33 

[02/902/453/–453]s 2.02 4.05 4.05 0.86 

[02/902/452/–452]s 1.70 3.38 3.38 0.65 

[02/902/45/–45]s 1.35 2.71 2.71 0.43 

[45/–45]10 1.61 3.2 3.2 1.07 

[45/–45]8 1.29 2.58 2.58 0.86 

[45/–45]6 0.97 1.93 1.93 0.64 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Effective moduli on composite thin-walled box beams (CAS) 

4. The calculating examples 

4.1. The example I 

There are some expressions of wind turbine blades in reference [14]. Retention of the first and 

second order Taylor quantity, neglecting higher-order quantity and gravity, ignoring the 

aerodynamic parameters and the nonlinear terms, the motion equations in �, � and � directions 

can be gained in Eqs. (38), (39) and (40).The typical blade parameters are chosen for carrying out 
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the calculation and analysis of the wind turbine blades. As the cross section of blades is universal, 

the rectangular blade is selected for numerical simulation. The variable parameters are as follows. 

The pre-twist angle S = 2[.� − 60/�120/360,  the chord length � = 4 − 3� × 2.8/180, 

thickness of the blade h = 0.25�. � is the distance from the center of rotation. And the pitch angle _ = 0.035 rad,  length of the blade q = 60 m,  rotating speed Ω = 0.8 rad/s.  The composite 

parameters are ℎX = 0.635 mm,  ,X = 1672 kg/m3,  I�� = 25.8 Gpa,  I�� = 8.7 Gpa,  K�� = K�� = 3.5 Gpa , g�� = 0.34 . The composite wind blade is calculated under a CUS 

configuration. The layer style of skin laminations at the left, right, top and bottom side are all 

[S]96. The model of a composite turbine blade is in Fig. 5. 

 
a) 

 
b) 

 
c) 

Fig. 4. Effective moduli on composite thin-walled circular beams (CUS) 

Fig. 6 represents the displacements of the composite blade in the directions of lead-lag, 

flapping and twisting. The initial displacements of blade tip are s2 = 0.5432, J2 = 2.0272,  �2 = 0.2673. The initial displacements of other node must be selected by the linear vibration mode 

for the displacement continuity of continuous bar. The simulation of linear system can be achieved 

by Matlab/Simulink presented in [16-18]. The natural frequencies in Fig. 6 accord with those in 

Fig. 2. Much dynamic analysis on the composie blade can be made by the classic beam theory 

according to the approximate solution of the effective moduli: 

	s� − Ω�	.�.q − �/s�/� + .Itutcos�.S/ + Ivuwsin�.S//s′′′′ + yItut − Ivuwzcos.S/sin.S/J′′′′ − Ω�	cos._/.scos._/ − Jsin._// = 0, (38)

	J� − Ω�	�..q − �/J�/� + .Itutsin�.S/ + Ivuwcos�.S//J���� + .Itut− Ivuw/cos.S/sin.S/s′′′′ + Ω�	sin._/.scos._/ − Jsin._// = 0, (39)
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.�{ + 	Z
{� /�� − K|�� = 0. (40)
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Fig. 5. The model of a composite turbine blade 

 

 
a) 

 
b) 

 
c) 

Fig. 6. The displacements of a composite thin-walled box blade (CUS) (the red represents S = 0°,  

the blue represents S = 30°, the green represents S = 60°, the black represents S = 90°) 

4.2. The example II 

The model [15] of a composite thin-walled spinning beam was established in Fig. 7. 

Neglecting the torsional terms, the two-dimensional motion equations can be gained in Eq. (41). 

The chosen parameters are: the diameter � = 352 mm, the length-diameter ratio V �⁄ = 26. The 

composite parameters of the circular beam are ℎX = 0.635 mm, ,X = 1672 kg/m3, I�� = 25.8 Gpa, 
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I�� = 8.7 Gpa, K�� = K�� = 3.5 Gpa, g�� = 0.34. The composite thin-walled circular beam is 

calculated under a CUS configuration. The layer style of skin laminations at the left, right, top and 

bottom side are all [S]6: 

	s� − 	Ω�s − 2	ΩJ} + I�s′′′′ = 0, 	J� − 	Ω�J + 2	Ωs} + I�J′′′′ = 0. (41)

 
Fig. 7. The model of a composite thin-walled spinning beam 

Fig. 8 represents the radial displacements of a composite spinning thin-walled circular beam, 

when the spinning speed Ω = 0,200 rpm. The initial displacements of blade tip are  s2 = J2 = 0.0727. The initial displacements of other node must be selected by the linear vibration 

mode for the displacement continuity of continuous bar. The simulation of linear system can be 

achieved  by using a finite difference method [19-20].The natural frequencies in Fig. 8 are agree 

with those in Fig. 4. More dynamic analysis on the composie beam can be made by the classic 

beam theory. 

 
a) Ω = 0 rpm 

 
b) Ω = 200 rpm 

Fig. 8. The displacement of a composite spinning thin-walled circular beam (CUS)  

(the red represents S = 0°, the blue represents S = 30°,  

the green represents S = 60°, the black represents S = 90°) 

5. Conclusions 

An approximate solution of the effective moduli was derived by an equivalent beam method. 

It can apply all the classic beam theories to the composite thin-walled beams, and made the study 

of the composite beams more easily. Many factors such as the layer style, the number of layer, ply 

angle and cross section which had effect on the effective moduli were discussed, which was useful 

to theoretical analysis and design optimization on the composite thin-walled beams. The algorithm 

is simple and clear, and can provide a new way to solve the macro moduli of the composite 

thin-walled beams. However, it is inaccurate, and can only be used to an approximate calculation 

and analysis. The variable complicated cross section is the main emphasis of future research. And 
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improving accuracy of the algorithm is a problem that calls for immediate solution.  
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