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Abstract. This paper attempts to study the localization performance of a near-field acoustic 

emission (AE) beamforming by varying parameters such as array types, localization velocity, the 

maximum diameter of the array and the sensor spacing. To investigate how those parameters affect 

localization performance, an improved finite element method is established to obtain AE signals 

which take real propagation characteristics and have high signal to noise ratio. And AE signals of 

the finite element simulation under different parameters are obtained based on the presented 

method. Then AE beamforming is used to localize AE sources, and the influences of these 

parameters on the AE beamforming localization performing are analyzed. The results indicate that 

the parameters have impact on the localization accuracy clearly. This work can provide a reference 

for the selection of parameters when the beamforming is used to localize AE sources. 

Keywords: acoustic emission, beamforming, localization performance, finite element method. 

1. Introduction  

Acoustic Emission (AE) is a phenomenon of stress wave radiation caused by a dynamic 

reconstruction of material’s structure that accompanies processes of deformation and fracture [1]. 

Material deformation and crack propagation under stress is an important mechanism of structural 

failure. And like this damage source directly related to deformation and fracture mechanisms is 

known as AE source [2]. The AE technique, in the early 1950s, started with Kaiser’s research 

done in Germany. And in the following decades, AE technique had been improved continuously. 

Now, AE technique is used as a non-destructive testing tool to evaluate structural damage and has 

its potential advantages in dynamic damage monitoring and source localization, such as fatigue 

crack growth [3, 4]. Due to its potential advantages, AE technique has led to many applications in 

a variety of fields such as petrochemical industry, aerospace industry and detection of metal 

processing, etc. [5, 6]. 

AE source localization is an important step in whole damage identification process, by which 

the accurate AE source location can indicate information about the characteristic of the damage 

and even the size of the crack with relatively few sensors on large and complex structures. Current 

localization of AE sources is normally performed by using the time difference of arrival (TDOA) 

technique which uses the propagation velocity in a material to derive the source location in one, 

two or three dimensions from the arrival delay between sensors based on first threshold crossing. 

However, when the AE wave propagates in the solid medium, the AE signals may be significantly 

affected by multi-mode, dispersion, energy attenuation and other factors, which make it difficult 

to determine the arrival time accurately. Besides, when there is more than one AE source, the 

arrival time information may be confused, which is also one key problem of TDOA [7, 8]. To 

make the localization simple but effective, AE beamforming was introduced to localize AE source 

by McLaskey et al. [9] in civil engineering field applications on large plate-like reinforced 

concrete structures. Considering the specimens estimated in their work are large reinforced 

concrete structures in civil engineering while the structures generally seen in aviation fields are 

thin plates and shells, He et al. [10, 11] explored the possibility of AE source localization in a thin 

plate by near-field AE beamforming techniques and improved localization accuracy with two 
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uniform linear arrays. Nakatani and Kundu et al. [12-14] studied AE source localization on an 

anisotropic structure with a beamforming array technique, which expanded AE beamforming 

applications in composite materials. 

Although AE beamforming has been successfully used in damage localization by several 

scholars, its performance has not been studied in depth. Beamforming performance is mainly 

effect by some parameters such as sensor arrays, localization velocity, the maximum diameter of 

the array and the sensor spacing etc. Research on acoustic beamforming localization performance 

has been done deeply by many scholarships [15, 16]. However, the propagation characteristic of 

AE signal in solid is very different from acoustic signal in air, such as high frequency, multi-mode 

and dispersion, so some previous experiences on the acoustic beamforming may not be suitable 

for AE beamforming. For example, dispersion means that velocity of AE signal is not easy to 

calculate correctly, this can cause localization errors. Therefore, knowing how to use AE 

beamforming and its performance are crucial.  

This article aims to study how beamforming with different parameters, including sensor arrays, 

localization velocity, the maximum diameter of the array and the sensor spacing, affect 

localization performance. AE beamforming with different array parameters consisting of different 

sensor arrays and sensor spacing is implemented. In addition, in order to study AE beamforming 

localization performance more aviable, an improved FE simulation method is proposed to get pure 

AE signal under different array parameters and analyze the propagation characteristics of AE 

signal. On basis of this, effect of different parameters on the AE beamforming localization 

performance is analyzed. 

2. AE beamforming method 

Beamforming is a signal processing technique used in sensor arrays for directional signal 

transmission or reception [17]. It is also used in acoustic source localization and develops several 

localization algorithms. For AE source localization, delay-and-sum algorithm is usually used. 

Delay-and-sum is a simple and effective array signal processing algorithm utilized in 

beamforming techniques [18]. Considering the distance between AE source and array of sensors, 

the analysis schemes based on beamforming techniques can be divided into near-field and far-field 

methods. A common rule of thumb is that the near-field sources are located at a distance of: 

� ≤ 2��

� , (1)

where � is the radial distance from an arbitrary array origin, � is the largest array dimension and 

�  is the operating wavelength [19]. The acquired wavefront from the sound source, in such 

conditions, is assumed spherical due to the transmission characteristics of waves. The far-field 

sources refer to those at locations � larger than � > 2�� �⁄ , of which the wavefront is usually 

assumed planar. 

The goal of present study is to estimate the source localization performance of thin plates or 

shells in aviation fields. The beamforming analysis for such structures is usually categorized into 

near-field, based on the aforementioned rule. The basic principle of near-field beamforming based 

on the delay-and-sum algorithm is illustrated in Fig. 1. The incident waves are spherical and thus 

the array output of these waves can be expressed by: 

���
, �� = 1
� � ������ − Δ���
��

�

���
, (2)

where �
 represents the distance of the focus to the reference point. The reference point may be 

arbitrary and it is the first sensor point on the left side in the Fig. 1. � is the number of the sensors 



1305. NEAR-FIELD BEAMFORMING PERFORMANCE ANALYSIS FOR ACOUSTIC EMISSION SOURCE LOCALIZATION.  

HAISHENG YU, DENGHONG XIAO, XIAOXIA MA, TIAN HE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUNE 2014. VOLUME 16, ISSUE 4. ISSN 1392-8716 2037 

and ��  is the weighting coefficient applied to the channel of sensor � . The variable ����� 

represents the signal acquired from the No. � sensor and Δ���
� indicates the individual time 

delay of No. � sensor to the reference point. Though different �� are adopted in the formula to 

control the beamwidth and sidelobes of the sensor array, a constant �� ≡ 1 is used in this work. 

And the time delay Δ���
� is adjusted in delay-and-sum beamforming in such a way that signals 

associated with a spherical wave, incident from the real source, are aligned in time before they are 

summed when the focus is located at the real source [20]. Conversely, signals are not able to be 

aligned before summation if positions of the focus and real source are not coincident. As shown 

in Fig. 1, the time delay Δ���
� is obtained by: 

Δ���
� �
|�
| � |�
 � �
�|

!
, (3)

where Δ���
� represent the distances of reference point to No. � sensor. And ! is the propagation 

velocity of signal. 

 
Fig. 1. Illustration of delay-and-sum beamforming 

The general assumption of beamforming is that the received wave is a plane wave or a 

spherical wave. Most researches of beamforming are for acoustic field, but rarely for AE wave 

field. So the further research on AE beamforming localization performance is needed. Some 

characteristic parameters that represent the localization performance of delay-and-sum consist of 

localization accuracy, resolution, and the main lobe width etc. [21]. When the focusing direction 

of array is consistent with the sound source direction, the energy output of the array is enhanced 

and the maximum value is obtained, referred to as main lobe, otherwise, energy attenuation, called 

side lobe. A good array should have a smaller width of the main lobe and smaller side lobe level, 

which will have a higher resolution and excellent anti-interference ability. The width of the main 

lobe is given by: 

"#$%
& � '

2(

)
, (4)

where ' � 1 is for the linear array, ' * 1.22 is for the circular array, and ) is the maximum 

diameter of array [20]. 

The resolution is mainly reflected in the width of the main lobe, the narrower the main lobe is, 

the better the resolution is, and it usually describes the ability to distinguish waves incident from 

directions close to each other. According to Rayleigh criterion, the resolution of beamforming is 

given by: 

+,- �
'.

cos23)
�, (5)
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where . is the distance between the sound source and the array. 3 is the off-axis angle. Obviously, 

resolution is related to the maximum diameter of array ) , the off-axis angle 3 , and signal 

frequency. The larger ) is, and the smaller 3 is, the better resolution is. 

These parameters are usually affected by the array of beamforming which is composed by a 

number of sensors arrayed according to the spatial geometric position. It is obviously that the array 

parameters include spacing between sensors, the pore size of the array, the spatial distribution 

patterns of the sensors, the number of the sensors and other geometrical parameters. 

To obtain AE signals under the condition of different array parameters, this paper uses an 

improved finite element (FE) simulation method, by which the propagation characteristics of AE 

signals is investigated and the performance of AE beamforming can be analyzed comprehensively. 

3. AE signal simulation based on FEM 

The FE simulation model is a homogeneous plate with properties of steel and specifically 

elasticity modulus, and parameters are set as follows: 4 = 209×109 N/m2, Poisson’s ratio 5 = 0.3; 

density 6 = 7800 Kg/m3. Simulation process is achieved with ABQUS. 

In the frequency range of interest, only the zero-order symmetric mode, 7&, and anti-symmetric 

mode, 8& , are present. These two modes are selectively excited in the model by applying 

appropriate nodal loads. For a maximum frequency of 200 kHz, the minimum wavelength is for 

8& and it is given by, ��9: = !;/=�>? = 15.7 mm, considering a theoretical phase velocity of 

shear wave !; = 3230 m/s. In present study the value of ��9: is assigned as 20 mm. 

The package used in the present study, ABAQUS/EXPLICIT, uses an explicit integration 

based on a central difference method [22]. The stability of the numerical solution is dependent 

upon the temporal and the spatial resolution of the analysis. 

To avoid numerical instability, ABAQUS/EXPLICIT recommends a stability limit for the 

integration time step Δ@ equal to: 

Δ@ = ��9:
!A

. (6)

The maximum frequency of the dynamic problem, =�>?, limits both the integration time step 

and the element size. A good rule is to use a minimum of 20 points per cycle at the highest 

frequency, that is: 

Δ@ = 1
20=�>?

. (7)

The size of the finite element, DE , is typically derived from the smallest wavelength to be 

analyzed, ��9:. For a good spatial resolution 20 nodes per wavelength are normally required: 

DE = ��9:
20 . (8)

From Eq. (8), the corresponding limit on the element size is DE = 1 mm. According to Eq. (7), 

this transient problem is solved with an integration time step, Δ@ = 0.25 μs. 

In the laboratory, the AE waves in plates are generated passively by using a mechanical pencil 

lead break input, and actively using a surface bonded piezoelectric actuator [23]. To model impact, 

delamination, or crack propagation, a transient excitation such as a delta or step function is needed. 

In order to stimulate AE signal, the past used a couple forces with triangular (or rectangular) 

forcing function =��� acting at two nodes of  the finite element model as buried dipole source, 

then by adjusting the size of the force and time, AE signals with different main frequency 

component can be obtained. Usually the total distance of the two points acting as buried dipole 



1305. NEAR-FIELD BEAMFORMING PERFORMANCE ANALYSIS FOR ACOUSTIC EMISSION SOURCE LOCALIZATION.  

HAISHENG YU, DENGHONG XIAO, XIAOXIA MA, TIAN HE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUNE 2014. VOLUME 16, ISSUE 4. ISSN 1392-8716 2039 

source is 1 mm with 1 N force magnitude [24, 25]. In this paper, on the basis of previous methods, 

another couple of forces are also added perpendicular to the original. It is shown in Fig. 2. The 

chosen excitation time investigated is 2.5 μs. The sampling rate of 5 MHz is sufficient to resolve 

the observed signals frequency content in the range up to a maximal frequency of 0.2 MHz. 

Simulation results are shown in Fig. 3. After the improvements, the AE signal is closer to real 

propagation characteristics. 

 
Fig. 2. The acting forces and time function of applied load 

 
a) 

 
b) 

Fig. 3. FE simulation results of AE signal: a) Wave propagation scenes at 60 μs with only one couple of 

axisymmetric forces; b) Wave propagation scenes at 60 μs with two couples of axisymmetric forces 

4. The localization performance of beamforming with different parameters 

  
Fig. 4. Sensor arrays and AE source locations Fig. 5. The waveforms and frequency spectrum  

of AE signal received by one sensor 

The FE simulation model is a steel plate has the dimensions of 1000 mm length, 800 mm width 

and 5 mm height. Fig. 4 shows the different sensor arrays with spacing of 30 mm (circular array 
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is approximately equal to 30 mm). Linear array and cross array consist of the sensors on straight 

line. Circular arrays are made of the sensors on circle line. Different array parameters can be 

obtained by choosing different number of sensors. Coordinate system is established with � and F, 

and origin of coordinate is on the center of the leftmost sensor. The AE sources are respectively 

marked with 1# (30 mm, 300 mm), 2# (90 mm, 600 mm) and 3# (380 mm, 600 mm). 

The propagation velocity of the AE signals is 5390 m/s by TDOA. The waveforms and 

frequency spectrum of one signal acquired by FE simulation are shown in Fig. 5. It can be seen 

that most energy of signals are within the range of frequencies less than 0.4 MHz. Consequently, 

it has been known that most waves transmitted in a thin steel plate are 8& and 7& waves. Fig. 6 

shows the relation between frequency and propagation velocities of 7& and 8& waves. 

 
Fig. 6. Dispersion curves of 7& and 8& waves in 5 mm steel plate 

This paper employs delay-and-sum beamforming to localize AE sources only with 7& wave 

which can be obtained by setting a small threshold. And beamforming localization performance 

is discussed from the following four aspects. 

4.1. Beamforming arrays 

Beamforming has the following basic arrays, linear array, circular array, and cross array [26]. 

The parameters of different arrays are shown in Table 1. With delay-and-sum beamforming for 

AE source identification, the localization results of three AE sources identified by different arrays 

are shown in Table 2. 

Table 1. The parameters of different arrays 

Sensor arrays  Number of sensors Maximum diameter (mm) 

Linear array (large) 7 180 

Linear array (small) 5 120 

Cross array (large) 13 180 

Cross array (small) 9 120 

Circular array (large) 12 180 

Circular array (small) 8 120 

The localization results of AE source 1# with linear array are given in Fig. 7. The contours in 

figures represent the outputs of array based on beamforming and the maximal output region is the 

identified AE region, in which the focused position with maximum energy value is the identified 

AE source. The zone of the maximum peak is the main lobe width of the main lobe, and the other 

small peak regions are side lobes which have bad influence on localization accuracy. The smaller 

the width of the main lobe is, the higher localization accuracy is. And the more clearly distinction 

between main lobe and side lobe is, the better localization performance is. The star “*” is the real 

location of AE source, and the diamond “◇” is the identified AE source. 
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Table 2. The localization results of different arrays 

Sensor arrays AE sources Localization results (�, F) (mm) 

Linear array (large) 

1# (30, 301) 

(90, 604) 

(384, 617) 

2# 

3# 

Cross array (large) 

1# (30, 300) 

(90, 601) 

(383, 602) 

2# 

3# 

Circular array (large) 

1# (30, 301) 

(90, 602) 

(385, 607) 

2# 

3# 

 

 
a) 

 
b) 

Fig. 7. Energy output contours of linear array (big) localization result at AE source 1#:  

a) three-dimensional contour output picture; b) planar output picture 

It is clearly seen from Table 2 that, with the same array diameter and sensor spacing, all three 

arrays can localize the real AE sources approximately. These arrays all have wonderful 

localization accuracy at AE source 1# which is close to the center of the array and AE source 2# 

which is on the center line of the array. The localization accuracy of cross array and circular array 

are superior to the linear array at AE source 3# that is away from the sensor arrays and has a large 

deviation from the center line of the array. However, the linear array with a minimum number of 

sensors and good performances has more advantages than the circular array and cross array in 

practical engineering applications. 

4.2. The impact of selected velocity on the localization accuracy 

For the acoustic signal in the air, the propagation velocity is almost fixed. However, the AE 

signal have dispersion, that is, components of different frequency have different propagation 

velocities. In this paper, the AE signal is obtained by finite element simulation, in which the 

velocity of main frequency components can be calculated exactly, but in practical engineering 

applications, the velocity is not accurate. From Eq. (6), it is shown that Δ���
� is affected by 

velocity, !. Therefore, velocity is influential on the localization results and knowing its impact on 

localization accuracy is necessary. Figs. 8-10 show the impact of velocities on the localization 

accuracy of three different arrays at AE source 3#. It can be seen that, for linear array, the 

localization accuracy of x-direction is affected a little, while F-direction has large deviation. And, 

for the cross array, the localization accuracy on both of � and F directions are stable. However, 

the localization accuracy of the circular array is affected largely by velocity. 
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a) 

6  

b) 

Fig. 8. Localization results comparison between different velocities of linear array:  

a) localization with accurate velocity; b) deviation from accurate velocity with 300 m/s 

 
a) 

 
b) 

Fig. 9. Localization results comparison between different velocities of cross array:  

a) localization with accurate velocity; b) deviation from accurate velocity with 300 m/s 

  
Fig. 10. Localization results comparison between different velocities of circular array:  

a) localization with accurate velocity; b) deviation from accurate velocity with 300 m/s 
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a) 

 
b) 

Fig. 11. Localization results comparison between large and small size of linear array:  

a) Localization results of linear array (small) is (386 mm, 624 mm);  

b) Localization results of linear array (large) is (384 mm, 617 mm) 

 
a) 

 
b) 

Fig. 12. Localization results comparison between large and small size of cross array:  

a) Localization results of cross array (small) is (386 mm, 609 mm);  

b) Localization results of cross array (large) is (383 mm, 603 mm) 

 
a) 

 
b) 

Fig. 13. Localization results comparison between large and small size of cross array:  

a) Localization results of round array (small) is (388 mm, 616 mm);  

b) Localization results of round array (large) is (385 mm, 608 mm) 
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4.3. The maximum diameter of array 

The maximum diameter of the sensor array is an important parameter affecting the 

beamforming localization performance. Figs. 11-13 show that localization results of different 

arrays with big and small sizes in the condition of AE source 3#. It is seen clearly that, for these 

three arrays, the larger maximum dimension of the array is, the better localization accuracy is, and 

the smaller main lobe width is. However, large size means increasing the number of sensors, so 

these factors should be considered in practical engineering applications. 

4.4. The sensor spacing 

Sensor array requires spatial sampling of the input signal as the same as time domain sampling 

theorem which should ensure that frequency aliasing does not occur to generate pseudo signals. 

For beamforming method, this requirement becomes that the pseudo main lobe should not appear 

during localization process. Appearance of pseudo main lobe is directly related to the distance 

between sensors. If the sensor spacing is too large, it may produce the big side lobes (the false 

main lobes), even a pseudo AE source. From Fig. 14, it can be seen that side lobes become bigger 

when the sensor spacing is changed from 30 mm to 60 mm. 

 
a) 

 
b) 

Fig. 14. Localization results comparison between different sensor spacing of linear array:  

a) the distance between sensors is 30 mm; b) the distance between sensors is 60 mm 

5. Conclusions 

The AE propagation characteristics are analyzed on the views of establishing the finite element 

model of AE signal propagation in the plate. The influences of some parameters on AE 

beamforming localization performance are investigated through simulation of AE signals, such as 

the AE sensor arrays, the selected velocity, the maximum diameter of array, and the sensor spacing.  

According to the results, the following conclusions can be obtained: 

1) All three kinds of arrays can get a good accuracy at the AE source which is close to the 

center of the array or is on the center line of the array. The localization accuracy of cross array 

and circular array are superior to the linear array at AE source which is away from the sensor 

arrays and has a large deviation from the center line of the array. 

2) When AE beamforming is used, especially AE source is farther away from the array center, 

localization velocity has an influence on the localization accuracy. From different types of three 

arrays, cross array has the better stability and circular array is affected largely by localization 

velocity. 

3) For these three arrays, with the same sensor spacing, the larger maximum dimension of the 

array, the better localization accuracy. 

4) When the sensor spacing becomes large, the side lobes of array will become big. 
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5) According to conclusion (1-4), the appropriate array parameters in engineering practice are 

recommended: a) Arrangement of linear array is simple, and the number of linear array is the least. 

In most cases, linear array can meet AE localization in practical engineering applications. So it 

should be the priority for selection; b) When high-precision localization is required, the cross array 

and circular array should be considered. The circular array has a better main lobe and smaller side 

lobe, but its localization accuracy easily effected by selected velocity. If the AE wave velocity can 

be calculated exactly, the circular array is a good choice. The cross array has the best localization 

accuracy and can reduce the effect of localization velocity. If components of AE signal and the 

velocity can’t be calculated exactly, the cross array should be considered; c) The sensor spacing 

should be selected as small as possible to ensure no pseudo localization sources. 
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