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Abstract. How to define the clearance between rope-guided conveyances and shaft wall 

reasonably has confused peers for more than one hundred years. In this paper, the fluid-structure 

interaction approach was used to simulate the lateral oscillations of rope-guided conveyances. 

With Yaoqiao vertical production shaft taken into account to validate this approach, user-defined 

functions coupled with ANSYS FLUENT were employed to conduct the two-dimensional 

numerical simulation, and the simulation results show that the lateral aerodynamic buffeting force 

when two conveyances pass each other is much larger than Coriolis force. What’s more important, 

with the lateral acceleration, velocity and displacement of the conveyances obtained, the 

simulation results can explain how the lateral aerodynamic buffeting force to oscillate the 

conveyance laterally successfully. This approach can be easily extended to three-dimensional 

simulations, to be more reasonable. 

Keywords: rope guide, lateral oscillation, fluid-structure interaction (FSI), aerodynamic buffeting 

force. 

1. Introduction 

With a number of advantages, such as short installation time, lower capital costs, lower 

maintenance requirements and smooth travel, more and more rope guides have been used all over 

the world, especially in short life mines with relatively shallow shafts [1, 2]. But how to define 

the clearance between conveyances and shaft wall reasonably has confused peers for more than 

one hundred years. In a considerable long time, the reasons why the conveyance moves laterally 

are unknown, and the design of rope guide was commonly based on what are appropriately 

described as “industry rules of thumb”, which have evolved from experience in existing 

reasonably shallow shafts [2, 3]. 

In order to figure out why the conveyance moves laterally, many researchers have done 

enormous work. Their work can be classified into four aspects including field performance tests 

[4-8], scale model tests [9, 10], theoretical analysis [2, 11] and computational fluid dynamics 

(CFD) [3, 12]. Earlier, Belyi thought that the Coriolis force during the conveyance travelling in 

the shaft as a result of the rotation of the earth was the main source of excitation which generated 

lateral oscillations and he derived a formula to calculate the clearance between conveyances [4]. 

With the development of laser-based oscillation-measuring instrument, Chen [5, 6] took hundreds 

of measurements in more than ten mines equipped with rope guides. However, Chen found that 

the Coriolis force was not the main source of excitation and Belyi’s calculation formula was 

deficient [5, 6]. By using onboard strapdown inertial navigation system (INS) to record skip 

position and attitude successfully, Buchinski found that hoisting speed, balance rope torque, 

Coriolis force, and position of guide ropes all have a profound effect on a skip’s lateral stability 

during flight [7]. Based on the physical similarity and dimensional analysis, scale models of mine 

shaft rope-guide system were thought to possess the same dynamic properties as the full-scale 

counterparts [9]. Hurlin [10] successfully measured the aerodynamic buffeting forces and 

moments between passing mine cages on a 1:33 dynamic scale model of the shaft. Van Der Lingen 

[11] established the differential equations of motion for the rope-guided conveyance, and the result 

indicates that pitching motion of the conveyance is unimportant. With the empirical formula to 
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calculate the aerodynamic forces, Greenway et al. [2] developed a three degree of freedom model 

of conveyance and solved this model by MATLAB numerically. 

With the development of CFD, numeric experiment has become a powerful tool to investigate 

the mine shaft rope-guide system. With the help of CFD, Hamilton [12] predicted the aerodynamic 

loads on conveyances. Based on numerous CFD analyses, Krige [3] established the aerodynamic 

coefficients for specific cases and developed the guidelines for the design of rope guides finally. 

Although many studies have been published concerning the later oscillations of rope-guided 

conveyance, how the lateral aerodynamic buffeting force to oscillate the conveyance laterally 

hasn’t been reported. In this study, fluid-structure interaction (FSI) method was used to reveal 

these details. 

2. Methodology 

The sketch of rope guide friction hoisting system is shown in Fig. 1. The longitudinal motion 

of the conveyances and ventilation induce the motion of air and the aerodynamic force, especially 

when the conveyances pass each other. Then the lateral aerodynamic forces cause the lateral 

motion of conveyances, and in reverse, the lateral motion of conveyances also change the air flow. 

So the lateral motion of conveyances interacts with the air flow. 

The computational demands of three-dimensional (3D) FSI simulation is very high, so 

two-dimensional (2D) FSI simulation is adopted in this study according to the same ratio between 

the cross sectional area of conveyance and that of shaft. In order to establish the mathematical 

model, it is assumed that the centre of gravity of the conveyance is exactly below the point at 

which the hoisting ropes are attached to the conveyance. Generally, for multi-rope hoisting 

systems, opposite handed pairs of ropes are used as hoisting ropes and non-rotating ropes are used 

as tail ropes to limit the torque applied to the conveyance. So the rotation of the conveyance about 

a vertical axis is neglected in 2D simulation for multi-rope hoisting systems. 

 
Fig. 1. Sketch of rope guide friction hoisting system 

2.1. Equations of lateral motion for the conveyance 

Generally, the conveyances are made up of structure steel, and the deformation displacement 

caused by aerodynamic force is much smaller than the lateral motion displacement. So the 
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conveyances are treated as rigid bodies travelling on the guide ropes. The lateral loads on the 

conveyances vary with the longitudinal velocity and the vertical position. 

Equations governing the behaviour of a conveyance travelling on rope guides have been 

derived previously by a number of authors [1, 2, 11]. However, FSI method hasn’t been reported 

to simulate the lateral motion of the conveyance. 

According to measurements [7, 8], the rotation of the conveyance about the horizon axis is 

very small, so this degree of freedom is omitted in this study, which is consistent with the reference 

2 and reference 3. The equation of lateral motion for the conveyance can be represented as follows: 

������ + ����� = 
����, (1)

where �  is the mass of conveyance, �  is the displacement, �  is the lateral equivalent spring 

stiffness, and 
� is the disturbing forces which mainly consist of lateral aerodynamic forces and 

Coriolis force [2, 3]. 

The lateral equivalent spring stiffness of rope-guided conveyance has nonlinear forms [1, 4, 13] 

and a linear form [3]. The linear form can be represented as follows [3]: 
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���

����
+ ��
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��
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��
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 , (2)

where �� is the number of rope guides guiding a single conveyance, ��  is the rope guide tension 

at conveyance elevation in the shaft, � is the overall length of the rope guides, �� is the rope guide 

length between the top of conveyance and the top anchor point, ��  is the rope guide length 

between the bottom of conveyance and the bottom anchor point, �� is the number of hoisting 

ropes for a single conveyance, ��  is the hoisting rope tension at conveyance, �� is the number of 

tail ropes for a single conveyance, and ��  is the tail rope tension at conveyance. 

2.2. Governing equations of air flow 

With respect to dynamic meshes, the integral form of the conservation equation for a general 

scalar, �,  on an arbitrary control volume, �,  whose boundary is moving can be written as  

follows [14]: 

�
�� � ����

�
+ � ������ − ���!� · �#�

$�
= � Γ∇� · �#�

$�
+ � '(��

�
, (3)

where � is the fluid density, ��� is the flow velocity vector, ���! is the mesh velocity of the moving 

mesh, Г is the diffusion coefficient, and '( is the source term of �. Here, *� is used to represent 

the boundary of the control volume, �. 

To construct the mass conservation equation, the momentum equation and the energy equation, 

the relevant entries for � and their rates of change per unit volume as defined in Eq. (3) are given 

in Table 1. 

Table 1. The relevant entries for � 

 � Г '( 

Mass conservation equation 1 0 0 

Momentum equation �+ , −*-/*�/ + '/ 
Energy equation � �/0 '� 

2.3. Numeric simulation flowchart 

The detailed flowchart of FSI simulation for the rope guide hoisting system is given in Fig. 2. 
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Fig. 2. Flowchart of FSI simulation for the rope guide system 

3. Application 

This simulation technique was used to assess the performance of the rope guide system 

installed in Yaoqiao vertical production shaft, which equipped with two rope-guided skips. 

3.1. Main shaft parameters 
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Fig. 3. Skip plan profiles 
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Shaft plan profiles are provided in Fig. 3, and Table 2 gives the main shaft parameters. The 

Coriolis force always acts in a westerly direction for an ascending conveyance and in an easterly 

direction for a descending conveyance, so the Coriolis force couldn’t induce the conveyance to 

move north or south directly, and then the Coriolis force is neglected in this 2D simulation. 

Furthermore, it is assumed that the conveyances have no lateral displacement or lateral velocity 

when they are at the beginning of the simulation. 

Table 2. The main shaft parameters of Yaoqiao production shaft 

Hoisting ropes 6 off, 28 mm, 2.62 kg/m 

Tail ropes 2 off, 40 mm, 6.696 kg/m 

Guide ropes 4 off per skip, 40.5 mm, 8.94 kg/m 

Skip mass 15 t 

Hoisting distance 320 m 

Hoisting speed 9.7 m/s 

Payload 9 t 

Shaft diameter 5 m 

Method of tensioning Weight 

Tension load indicated 5650 kg per guide rope 

Design ventilation Approx. 368 m3/min, downcast (0.312 m/s) 

Nominal clearances 550 mm skip to wall, 560 mm skip to skip 

3.2. User-defined function coupled with ANSYS FLUENT 

The transport equations were solved by ANSYS FLUENT with PISO scheme, and 

user-defined function (UDF) was programmed by C language to define the longitudinal motion 

and solve the equations of lateral motion for the conveyances with the modified Euler method. 

The Reynolds number is about 3.4×106, far larger than 2300, so the airflow in shaft is turbulent. 

The shear-stress transport (SST) �-1 model was adopted to simulate the turbulent airflow, and 

the detailed theory can be found in reference 15. The displacements of conveyance have been 

implemented using a dynamic mesh with the remeshing algorithm in ANSYS FLUENT. Fig. 4 

illustrates the unstructured mesh and the total number of control volumes is around 4×105. The 

time step size was set to 0.002 seconds in order to get enough time resolution for the dynamic 

analysis. The total simulation time is 14 seconds for the travelling conveyances, and a total number 

of 7000 time steps, with approximately 30 iterations for each time step, were necessary to resolve 

each case. 

 
Fig. 4. Mesh used for calculations 
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3.3. Results 

Before and after two skips pass each other, the series of pressure contours are shown in Fig. 5. 

Here, 234 denotes the distance between the two centers of gravity of skips. 

 
 

 
a) 234 = 6.79 m 

 
b) 234 = 4.85 m 

 
c) 234 = 2.91 m 

 
d) 234 = 0.97 m 

 

 
e) 234 = –0.97 m f) 234 = –2.91 m g) 234 = –4.85 m h) 234 = –6.79 m 

Fig. 5. Pressure contours 

Fig. 6 shows the lateral aerodynamic force, lateral acceleration, velocity and displacement of 

the southern full skip during travelling upward, and Fig. 7 shows the lateral aerodynamic force, 
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lateral acceleration, velocity and displacement of the northern empty skip during travelling 

downward. Here, 5 denotes the distance between the center of gravity of skip and the cross point. 

 
a) Lateral aerodynamic 

force 

 
b) Lateral acceleration 

 
c) Lateral velocity 

 
d) Lateral displacement 

Fig. 6. Simulation results for the southern full skip during travelling upward 

 
a) Lateral aerodynamic 

force 

 
b) Lateral acceleration 

 
c) Lateral velocity 

 
d) Lateral displacement 

Fig. 7. Simulation results for the northern empty skip during travelling downward 

3.4. Discussion 

As Fig. 5 shows, the pressure contours change quickly when two skips pass each other. When 

two skips are far away, the pressure at upwind surface of skips are larger than other surface. When 
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two skips pass each other, the negative pressure zones grow at the sides of two skips. 

As Fig. 6(a) and Fig. 7(a) exhibit, there is a considerable lateral aerodynamic buffeting force 

when two conveyances pass each other, and the maximum lateral aerodynamic force is about 

960 N. As the air flow is turbulent, the lateral aerodynamic force is still oscillating after two 

conveyances pass each other, but the amplitude becomes much small, about 200 N. And the trend 

is in accordance with the Hurlin’s measurement on a scale model [10]. In this case, the maximum 

Coriolis force is about 21.5 N, so the lateral aerodynamic force is mach lager than the Coriolis 

force. 

As Fig. 6 and Fig. 7 illustrate, the lateral aerodynamic buffeting force gives the conveyance a 

lateral impact acceleration, and then the conveyance begins to oscillate laterally. Moreover the 

tendency of motion for conveyance is in agreement with the Chen’s measurement on Yaoqiao 

vertical production shaft [6]. The full skip oscillates from about –34.2 mm to +38.5 mm during 

travelling upward, and the empty skip oscillates from about +45.1 mm to –65.5 mm during 

travelling downward. The maximum skip deflection near the wall is less than the opposite 

direction. The simulation compared with Chen’s measurement is given in Table 3. As this article 

aims to reveal the details how the lateral aerodynamic force acts on conveyance, some other factors, 

such as initial rope guide motion and external displacement [3], are ignored, and maximum skip 

deflection is less than Chen’s measurement [5].  

Table 3. The simulation compared with Chen’s measurement [5] 

Maximum skip deflection  

during skip travelling upward 

Maximum skip deflection  

during skip travelling downward 

Our simulation Chen’s measurement Our simulation Chen’s measurement 

72.7 mm 66-125 mm 110.6 mm 134-150 mm 

4. Conclusions 

This paper presents a numerical methodology based on fluid-structure interaction technique to 

properly simulate the lateral oscillations of rope-guided conveyances. Although cases of 

two-dimensional flow are studied in the present work, an extension to three-dimensional problems 

of this method can be expected. The fluid-structure interaction method is a technically sound 

approach to predicting the behaviour of rope-guided hoisting systems, and can provide the 

designer with the ability to calculate the lateral oscillations of rope-guided conveyances in a 

consistent manner. 
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