
 

1240 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2014. VOLUME 16, ISSUE 3. ISSN 1392-8716  

1232. Stochastic bifurcation characteristics of 

cantilevered piezoelectric energy harvester 

Jia Xu1, Ming-Yi Luan2, Zhi-Wen Zhu3, Kang-Kang Guo4 
1, 2, 3, 4School of Mechanical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China 
1Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control 

92 Weijin Road, Tianjin, 300072, P. R. China 
4Corresponding author 

E-mail: 1xujia_ld@163.com, 2mingyiluan@163.com, 3zhuzhiwentju@163.com, 4guokangkangtju@163.com 

(Received 11 October 2013; received in revised form 6 December 2013; accepted 13 December 2013) 

Abstract. Stochastic bifurcation characteristics of cantilevered piezoelectric energy harvester 

were studied in this paper. Von de Pol differencial item was introduced to interpret the hysteretic 

phenomena of piezoelectric ceramics, and then the nonlinear dynamic model of piezoelectric 

cantilever beam subjected to axial stochastic excitation was developed. The stochastic stability of 

the system was analyzed, and the steady-state probability density function and the joint probability 

density function of the dynamic response of the system were obtained, and then the conditions of 

stochastic Hopf bifurcation were analyzed. Numerical simulation shows that stochastic Hopf 

bifurcation appears when bifurcation parameter varies, which can increase vibration amplitude of 

cantilever beam system and improve the efficiency of piezoelectric energy harvester. Finally, the 

theoretical and numerical results were proved by experiments. The results of this paper are helpful 

to application of cantilevered piezoelectric energy harvester in engineering fields. 
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1. Introduction 

Piezoelectric ceramics is a kind of smart material. It can be used to convert mechanical energy 

into electrical energy, which is known as piezoelectric effect. Based on this effect, piezoelectric 

energy harvester can be designed to gather vibration energy of structures. Compared with other 

kinds of power generation systems, piezoelectric energy harvester has many advantages, such as 

small size, high electro-mechanical conversion efficiency, long service life, and low cost, which 

cause it be applied as green energy widely. 

Many scholars studied piezoelectric energy harvester. DuToit designed MEMS-scale 

piezoelectric mechanical vibration energy harvesters firstly [1]. Erturk developed the mechanical 

model of cantilevered piezoelectric vibration energy harvesters [2]. Priya proposed the criterion 

for material selection in design of bulk piezoelectric energy harvesters [3]. Liao studied 

parameters optimization and power characteristics of piezoelectric energy harvesters with RC 

circuit [4]. Although many advances were obtained, the modeling problem limits the application 

of cantilever piezoelectric energy harvester in industry fields. In order to optimize piezoelectric 

energy harvester effectively, it is necessary to build a model in high accuracy to describe the 

nonlinear characteristics of piezoelectric energy harvester. 

Due to the hysteretic characteristics of piezoelectric ceramics, most of the piezoelectric models 

were shown as equations with subsection function or double integral function, which were hard to 

be analyzed in theory [5-9]. Usually, research results could only be obtained by numerical or 

experiment method [10, 11]. In this paper, hysteretic nonlinear theory was introduced to develop 

a new kind of continuous piezoelectric model, and then stochastic bifurcation characteristics of 

cantilevered piezoelectric energy harvester were analyzed. 

2. Hysteretic nonlinear model of piezoelectric energy harvester 

The voltage-displacement curve of piezoelectric ceramics was shown in Fig. 1. Obviously, 

there is hysteretic nonlinearity in piezoelectric ceramics. 
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Fig. 1. The displacement-voltage curves of piezoelectric ceramics 

In this paper, Von del Pol hysteretic model was introduced to describe the hysteretic nonlinear 

characteristics of piezoelectric ceramics. The initial Von del Pol hysteretic model describes 

hysteretic loop which is symmetrical about the initial point (0, 0). It can be shown as follows: 

� = ���� = �	��� + � �1 − ��
���� �� , (1)

where �	��� is skeleton curve of hysteretic loop and usually expressed in polynomial function, � 

and � are coefficients which determine the difference between the skeleton curve and the real 

curve. The essence of Von del Pol item � �1 − ��
���� ��  are two parabolic lines which are 

symmetrical about the original point (0, 0). 

Supposing the displacement-voltage curves of piezoelectric ceramics is symmetrical about the 

point ���	, �	�, it can be shown as follows: 

� − �	 = ���� − �	� + ���� − �	�� + �� �1 − �� − �	�� �� �� , (2)

where � is voltage, � is displacement, �! (" = 1, 2, 3, 4) are coefficients, skeleton curve is chosen 

as �	��� = ��� + ����. �� = �	 since the loading curve have the same value as the unloading curve when � = 0, and &	 − ���	 − ���	� = 0 because the initial voltage of piezoelectric ceramics is zero. Thus, Eq. (2) 

can be rewritten as follows: 

� = ��� + ���� + ���� + ���� − �'����� , (3)

where �� = �� + 3���	�, �� = −3���	, �� = ��, �� = ��(
�) , �' = �(

�)*. 

The structure of cantilevered piezoelectric energy harvester was shown in Fig. 2. It can be 

regarded as cantilever composite beam. The mechanical model of cantilevered piezoelectric 

energy harvester was shown in Fig. 3, where the thickness of adhesive layer was ignored. 

According to Hamilton's principle, we obtained: 

+ [-�. − / + 01� + -0]34 = 05*

56
, (4)

where . is kinetic energy of structure, / is potential energy of structure, 01 is electric energy of 

piezoelectric ceramics, 0 is work done by external force: 
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. = 1
2 + 78̅:� �3�8̅

;<=
+ 1

2 + 7>̅:� �3�>̅
;?@

, (5)

/ = 1
2 + &8̅A8̅3�8̅

;<=
+ 1

2 + &>̅A>̅3�>̅
;?@

, (6)

01 = 1
2 + B�C�3�>̅

;?@
, (7)

-0 = + -:D3� +E
	

-:�F, 4�D + -GH=, (8)

where 7! �" = I̅,  J@ � is density of substrate and PZT piezoelectric ceramics, where the subscript I̅ 

is substrate, J̅ is PZT piezoelectric ceramics; �! is volume, &! is stress, A! is strain; : = :��, 4� is 

deflection of composite cantilever beam, B�  is electric field intensity, C�  is electrostrictive 

displacement, D = KL�4� is axial stochastic excitation, K is intensity of stochastic excitation, L�4� 

is Gauss white nosie whose mean is zero and intensity is 2C, G is electric potential, H= is electric 

charge. 

 
Fig. 2. The structure of cantilevered piezoelectric energy harvester 

 
Fig. 3. The mechanical model of cantilevered piezoelectric energy harvester 

The dynamic equation of piezoelectric cantilever beam subjected to axial stochastic excitation 

can be obtained as follows: 

�M + 2NO�� + P� − Q�� + Q�R��� + 1
2 Q�R��� − R��� + R��� = K�L�t�, (9)

where NO is damping, P is stiffness, Q and R! �" =  1, 2, 3, 4� are coefficients. 

Substituting Eq. (3) into Eq. (9), we obtained: 
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�M + T1����� + T������ � − U�� + U��� + U��� + U��� + U'�' + UV�V = K�L�4�, (10)

where: 

T���� = 2NO − Q����� − �'��� + Q�R����� − �'���� + Q�R������� − �'����       +Q�R������� − �'����� + Q�R������� − �'�����, (11)

T���� = 1
2 Q�R����� − �'����, (12)

U� = P + Q���, (13)

U� = Q� �R��� − �� + 1
2 R����� − R�, (14)

U� = Q��R��� − �� + ����� + R�, (15)

U� = Q� �R� + 1
2 R���� + R������, (16)

U' = Q�R�����, (17)

UV = 1
2 Q�R����. (18)

3. Stochastic stability analysis of system 

Let � = H, �� = J, Eq. (10) can also be shown as follows: 

XH� = J,
J� = −T1�H�J − T��H�J� + U�H − U�H� − U�H� − U�H� − U'H' − UVHV + KHL�4�. (19)

The Hamiltonian function of Eq. (19) can be shown as follows: 

Y = 1
2 �J� − 1

2 U�H� + 1
3 U�H� + 1

4 U�H� + 1
5 U�H' + 1

6 U'HV + 1
7 UVH]�. (20)

According to the quasi-nonintegrable Hamiltonian system theory, the Hamiltonian function Y�4� converges weakly in probability to an one-dimensional Ito diffusion process. The averaged 

Ito equation about the Hamiltonian function can be shown as follows: 

3Y = ^�Y�34 + &�Y�3U�4�, (21)

where U�4� is standard Wiener process, ^�Y� and &�Y� are drift and diffusion coefficients of Ito 

stochastic process, which can be obtained in stochastic averaging method as follows: 

^�Y� = −NmY` − 1
4 Q�R���`� − �1

8 Q��' + 1
4 Q�R������ `� 

            + 1
16 Q�R�����' − �����`' + √2K�CY`, (22)

&��Y� = √2
2 K�CY`2, (23)

where ` is the solution of the following equation: 

− 1
2 U�`� + 1

3 U�`� + 1
4 U�`� + 1

5 U�`' + 1
6 U'`V + 1

7 UV`] = Y. (24)

Then the associated largest Lyapunov exponent of the system is: 
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c = lim5→g
1
4 lnY� �⁄ = √2Q�R��� − K�C

4�P + Q2��� . (25)

Now the local stochastic stability of the system can be discussed as follows: 

1) The trivial solution Y = 0 is locally asymptotic stable if and only if c < 0, which means the 

vibration amplitude of the system will tend to zero; 

2) The trivial solution Y = 0 is locally asymptotic unstable if and only if c > 0, which means 
the vibration amplitude of the system will tend to be large; 

3) Bifurcation should appear near the trivial solution Y = 0 if and only if c = 0, which means 

the vibration amplitude of the system will jump between the small value and the large value. 

The largest Lyapunov exponent can only estimate the local stability. In this paper, the 

boundary classification method was used to analyze the global stability of the trivial solution of 

the system. Generally, the boundaries of diffusion process are singular, and the boundary 

classification is often determined by diffusion exponent, drift exponent and character value [12]. 

When Y → 0,  we obtained that:  ^�Y� → O�Y�,  &��Y� → O�Y��,  Rl = 2,  ml = 1,  
nl = √2o2p1q)

r1* , where Rl is diffusion exponent, ml is drift exponent, nl is character value, F is left 

boundary. Thus, the left boundary Y = 0 belongs to the first kind of singular boundary. 

According to the classification for singular boundary, we obtained: 

1) The left boundary Y = 0 is repulsively natural if nl > 1; 

2) The left boundary Y = 0 is strictly natural if nl = 1; 

3) The left boundary Y = 0 is attractively natural if nl < 1. 

When Y → ∞,  we obtained that: ^�Y� = O�Y8 7⁄ �,  &��Y� = O�Y9 7⁄ �,  Rt = u
] ,  mt = v

] , 

where w is the right boundary. Thus, the right boundary Y = ∞ belongs to the first kind of singular 

boundary. Thus, the right boundary Y = ∞ is an entrance boundary. 

The necessary and sufficient conditions for globally asymptotic stability of the trivial solution 

require that the left undary be attractively natural and the right boundary be entrance. Thus, the 

trivial solution Y = 0  is globally asymptotically stable if and only if nl < 1, which means 

√2Q�R��� < K�C. The influence of the character value to the stability was shown in Fig. 4. 

 
Fig. 4. The influence of the character value to the stability 

4. Stochastic bifurcation and simulation 

The averaged FPK equation of Eq. (19) is: 

x�
x4 = − x

xY [^�Y��] + 1
2

x�[&��Y��]
xY� , (26)

where � is probability density. 

Thus, the stationary probability density function of the system is: 
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��Y� = T̅Yyexp 2√2CK� } �√2 � Nm � 18 Q��' � 14 Q�R������ Y~��
� 14 Q�R���Y~� � 116 Q�R�����' � �����Y� �⁄ �, (27)

where T̅ is a normalization constant, � � √2o2p1q)~�r1*r1* . 

The result of numerical simulation were shown in Fig. 5-8, where P � 0.5, C � 0.5, F � 1, �O � 0.05, � � 40, B � 2×10
11, T � 8×10

-4, � � 6×10
-11, �� � 3.8, �� � –0.27, �� � 0.014. 

  
Fig. 5. The steady-state probability density of the 

system when �� � 2 and �' � 4.5 

Fig. 6. The joint probability density of the system 

when �� � 2 and �' � 4.5 

 

 
Fig. 7. The steady-state probability density of the 

system when �� � 3.5 and �' � 4 

Fig. 8. The joint probability density of the system  

when �� � 3.5 and �' � 4 

From Fig. 5-8, we can see that: 

1) The hysteretic nonlinear damping coefficients �!  (" � 4, 5) can induce stochastic Hopf 

bifurcation of the system. From Fig. 6 and Fig. 8, we can obviously see that there are two limit 

cycles in the stationary probability density, which means that there are two vibration amplitudes 

whose probability are both very high. Jumping phenomena between the two vibration amplitudes 

will appear when the conditions are changed; 

2) The stationary probability density of the response of the system can be changed through 

adjusting the parameters �! (" � 4, 5). It means that different PZT piezoelectric ceramics materials 

will cause different vibration amplitudes of the system since the parameters �!  (" � 4, 5) are 
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determined by PZT piezoelectric ceramics. It provide a way to improve the efficiency of the 

energy harvester since the stationary probability density of the big vibration amplitude can be 

increased by choosing appropriate PZT piezoelectric ceramics. 

The experimental results of cantilevered piezoelectric energy harvester were shown in Fig. 9 

and Fig. 10, where the vibration amplitude was shown as output voltage of sensor. We can see 

that system paremeters �!  (" = 4, 5) can influence the vibration of the system, and jumping 

phenomena between the two vibration amplitudes appears when the conditions are changed. 

  
Fig. 9. The response of cantilevered piezoelectric energy harvester when �� = 3.5 and �' = 4 

 
Fig. 10. The response of cantilevered piezoelectric energy harvester when �� = 2 and �' = 4.5 

5. Conclusions 

Stochastic bifurcation characteristics of cantilevered piezoelectric energy harvester had been 

studied in this paper. Von de Pol differencial item was introduced to interpret the hysteretic 

phenomena of piezoelectric ceramics, and then the nonlinear dynamic model of piezoelectric 

cantilever beam subjected to axial stochastic excitation was developed. The stochastic stability of 

the system was analyzed, and the steady-state probability density function and the joint probability 

density function of the dynamic response of the system were obtained, and then the conditions of 

stochastic Hopf bifurcation were analyzed. Numerical simulation shows that stochastic Hopf 

bifurcation appears when bifurcation parameter varies, which can increase vibration amplitude of 

cantilever beam system and improve the efficiency of piezoelectric energy harvester. Finally, the 

theoretical and numerical results were proved by experiments. The results of this paper are helpful 

to application of cantilevered piezoelectric energy harvester in engineering fields. 
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