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Abstract. According to the ASME-359 code, a scaled-down structure of Reinforced Concrete 

Containment Vessel (RCCV) of Advanced Boiling Water Reactor (ABWR) building is 

constructed for the seismic test on the shaking table. Several acceleration time history satisfing 

design response spectrum with different magnitudes are used in the test. Besides, the numerical 

finite element model of RCCV is built by SAP2000 for calculating the dynamic responses 

numerically. 
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1. Introduction 

After the disaster of nuclear power plant (NPP) in Fukushima Daiichi, the safety of nuclear 

energy becomes more important. The major function of the reinforced concrete containment vessel 

is isolating the radioactive materials released from the reactor pressure vessel. Hence, to ensure 

the safety of RCCV and to make it airtight is paramount missions. However, to make a full-scale 

model for seismic test is not easy to be realized due to the limited capable of the existing shaking 

table. For the reason, the assistance of scale-down technique [1] is essential for such huge structure 

in seismic test. In this study, a scale-down model of RCCV is designed by the ASME-359 code 

[2] and the main purpose of present test is to confirm the safety and the functionality of concrete 

structure while the model is subjected to a large seismic loading. The method used for checking 

the safety and the functionality of concrete structure is to detect the growing of cracks and the 

detecting implement is ultrasonic sensor. Some researches of structural damage monitoring are 

shown in the references [3-6]. In additional, the experimental data can be the comparison for the 

numerical modeling in verification. This test is carried out at National Center for Research on 

Earthquake Engineering (NCREE) in Taiwan. In order to avoid the natural frequencies of the 

scaled-down model too high to induce the dynamic responses during the seismic testing, the aspect 

ratio of this model is higher than that of full-scale model to reduce the frequencies of present 

scaled-down model. Not only a sine sweep signal but also a fictitious seismic signal is used for 

the input motions of shaking table. Also, the supersonic detector catches the voices in concrete 

and determines whether the micro cracks grow or not. Finally, the experimental planning, 

numerical models and data results will illustrate in this paper. 

2. Experiment planning 

The scaled-down specimen of RCCV consists of a square foundation, cylinder and top slab 

with a circular hole (Fig. 1). The dimensions of those components are as following: the length is 

� = 3.7 m and the thickness is �� = 0.3 m for the square foundation; the outer diameter is  

� = 2.5 m, the thickness is �� = 0.15 m and the is height � = 4 m for the cylinder; for the top 

slab the length is � = 3.7 m, the thickness is �	 = 0.4 m and the diameter of hole is 
 = 0.8 m. 

Those dimensions are designed from the stress analysis of the numerical model (Fig. 2) according 

to the ASME-359 code [1], where the strength of the model is set to bear the 1G ground 
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acceleration. The model is installed on the shaking table by 37 steel screws. The input motions 

and sensor location of testing will be described in the following. 

 

 

 
a) 

 
b) 

Fig. 1. Scaled-down specimen of RCCV  Fig. 2. Numerical models of scaled-down RCCV 

2.1. Input motion 

The fundamental frequency of the model is measured from the sine sweep vibration test where 

the input wave is 200 gal and the range of which is 1-50 Hz. Further, the acceleration time histories 

of fictitious seismic input motion in �- and �-direction are plotted in Fig. 3, where the PGA is 

0.4 G. The different magnitudes of input motion are produced by multiplying different scaling 

factors to the one shown in the Fig. 3. 

 
Fig. 3. Acceleration time histories in �- and �-direction 

2.2. Sensor installation 

The accelerometers and displacement meters are installed on the model at the elevations 

related to the bottom of foundation which are 0.3 m, 1.3 m, 2.3 m, 3.3 m and 4.7 m, shown in 

Fig. 4. 
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Fig. 4. The locations for the installed sensors 

3. Numerical modeling 

For the design of scale-down model of RCCV, the two numerical models build by SAP2000 

are shown in Fig. 2(a) and Fig. 2(b). One is a lumped-mass stick model, which is a simplified 

model for preliminary study of modal frequency. The other one is a 3D finite element model for 

stress analysis and design. The material properties of concrete used in SAP2000 are  


 = 210 kg/cm
2
 and � = 2.4 t/m

3
, which are Young’s modulus and density. 

3.1. Lumped-mass stick model 

For such simplified model, the effect of mass is condensed in the discrete nodes and beams 

contribute the stiffness of the structure. The properties of mass and rotational inertia of nodes can 

be calculated by some well-known methods, whereas the stiffnesses of elements are self-produced 

by giving sections of beam element from SAP 2000 program. The base of this model is fixed and 

the natural frequencies are listed in Table 1. 

Table 1. The natural frequencies of numerical models 

Mode 
Lumped-mass stick model 

(fixed base) 

3D finite element model 

(fixed base) 

3D finite element model 

(spring support) 

1 26.8 (� dir.) 28.9 (� dir.) 18.6 (� dir.) 

2 26.8 (� dir.) 28.9 (� dir.) 18.6 (� dir.) 

3 104 (Vertical dir.) 61 (Tourtion dir.) 60 (Tourtion dir.) 

3.2. Finite element model 

To implement the section design for the scale-down model of RCCV, a 3D finite element 

model is build and shown in Fig. 2(b). The element types of foundation and cylinder are identical, 

which are shell element, whereas solid elements are used for top slab. Based on the checking steps 

shown in [1] the calculation of stresses for the foundation, cylinder and top slab under the designed 

base earthquake loading should be smaller than the allowable stresses. For free vibration analysis, 

two kinds of constrain are discussed. One is fixed end and the other is spring support, where the 

spring constant are defined by the use of screws made of steel according to such connecting way 

presented in this test. The frequencies of the two models, fixed base and spring support one, as 

also shown in Table 1. To compare the frequencies of the stick model with 3D finite element 

model, Table 1 shows that there are not much different in fixed base, which means the 

simplification of the stick model is reliable. From the results in spring support, it can be found that 

the frequencies in horizontal directions are lower than those of fixed end, which means that the 

connection by those steel screws is not stiffness enough to simulate the foundation bonded on 

sharking table perfectly. 
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4. Results and verifications 

 
a) 

 
b) 

Fig. 5. The first mode frequencies measured from the experiemental data by using transfer function in  

a) �-direction and b) �-direction 

 
a) 

 
b) 

Fig. 6. The rocking due to uneven foundation in  

a) static state condition and b) horizontal shaking condition 

 
a) 

 
b) 

Fig. 7. Respectral acceleration of experiment and numerical results at point located on the top of slab in  

a) �-direction and b) �-direction 

From the sine sweep test, it can be found that the fundamental frequency in �- and �-direction 

are about 12 and 13 Hz (Fig. 5), respectively, which is different to the values from the numerical 

results, 18.6 Hz. The reason may be attributed to that the foundation of the model is not flat enough, 

and then only half of the screws are in function when the foundation is rocking (Fig. 6). Hence, a 

modification should be done in numerical model, which is giving a discount of 50 percent in the 

stiffness of spring. By considering this modification, the frequency of the re-model reduces to the 

value of 13.66 Hz, which matches the one of experiment. Under the seismic loading and modal 

damping �� = 0.09 and �� = 0.14 used in �- and �-direction, the associated spectral acceleration 

(damping 5 %), time histories of acceleration and of displacement obtained from experiment and 
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calculated by numerical analysis are plotted in Fig. 7-9. Those figures show that the responses 

between experiment and numerical model are agree with each other and the modification of 

stiffness of spring for this case is reasonable. 

 
a) 

 
b) 

Fig. 8. Time histories of acceleration of experiment and  

numerical results at point located on the top of slab in a) �-direction and b) �-direction 

 
a) 

 
b) 

Fig. 9. Time histories of displacement of experiment and  

numerical results at point located on the top of slab in a) �-direction and b) �-direction 
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5. Conclusions 

According to the ASME-359 code, a scaled-down model of RCCV is design to bear the seismic 

input motions on shaking table to ensure the safety and functionality of the model by ultrasonic 

detection. From the results of ultrasonic detection, some very tiny cracks are formed during the 

test. But such cracks do not affect the function of RCCV. Furthermore, a modification of numerical 

model is executed to compare the dynamic responses with the one of experimental model. By 

fitting the numerical dynamic behaviors to the real scaled-down model, the modified numerical 

model is successful in modeling the experimental model. From the suggestion of R. G. 1.61 [7], 

the material damping of concrete structure is 4 % for OBE, which is smaller than the values  

�� = 0.09 and �� = 0.14 used in present numerical model. The additional damping more than 4 % 

may come from the connection between the scared-down RCCV and the shaking table, where the 

bond is not perfect and there is a slight friction resulted. From this experience of the scaled-down 

model for seismic testing, we can know that to ensure the perfectly bond between the model and 

the shaking table is very important and such check can reduce the uncertainty for the experimental 

test. 
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