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Abstract. To construct a precise model for investigating the dynamic characteristics and vibration 

control strategies of flexible manipulators, restraints of the joint should be fully considered and 

precisely described. Considering the effect of the elastic restraints of the joint, this paper 

investigated the mode and vibration characteristics of a flexible manipulator with elastic restraint 

joint (FMERJ). The elastic restraint model and boundary conditions of the FMERJ were 

established. With the boundary conditions, natural frequency equation and mode shapes of the 

FMERJ were derived. Subsequently, vibration responses of the FMERJ were obtained. Numerical 

results demonstrated that the mode and vibration characteristics of the FMERJ are obviously 

different from that of flexible manipulator with fixed restraint joint (FMFRJ) which was 

commonly idealized in present research, and the elastic restraints of the joint have a considerable 

effect on the dynamic characteristics and should be considered in precise dynamic analysis and 

further constructing vibration control strategies of the flexible manipulator. 

Keywords: flexible manipulator, joint, elastic restraint, boundary condition, mode shape, 

vibration control. 

1. Introduction 

Flexible manipulators are extensively used in industrial applications, particularly in aerospaces 

and robotics, for the motivations such as better energy efficiency, higher operation speed and 

improved mobility [1-2]. The lightweight and highly flexible nature, however, lead to a 

challenging problem that an unwanted residual vibration emerged when the manipulator reaches 

the predetermined position, which conspicuously affects the position accuracy and operation 

precision and reduces the service life of the manipulator [3-5]. Hence, many literatures have 

studied the vibration characteristics and control strategies to reduce the vibration of flexible 

manipulators [1, 4, 6-10]. 

The first step to effectively investigate vibration characteristics or design efficient control 

strategies is constructing a precise dynamic model. Generally, as shown in Fig. 1, a flexible 

manipulator can be modeled as a flexible beam connected by a moving rigid base [1, 3]. In this 

case, the flexible manipulator undergoes a rigid motion and flexible motion which interact through 

the joint. Research has indicated that restraints of mechanical joints have a considerable effect on 

the dynamic characteristics of structures [11-12]. In static analysis, the joint is commonly idealized 

as absolutely rigid and this assumption can obtain an acceptable result. Nevertheless, the fully 

rigid restraint is absent and extremely difficult to achieve. For example, for the flexible 

manipulator connected to the rigid base by welding or bolting which is commonly used in the 

experiment to investigate dynamic characteristics or design control strategies, the joint is not 

absolutely rigid and presents a certain elastic restraint. In dynamic analysis, the elastic restraints 

of the joint have a considerable effect on the results due to the coupling effect between the flexible 

manipulator and rigid base. Furthermore, Gaul [13] investigated that the joint will be affected by 

an external dynamic load during the rigid base moving, and the flexible manipulator will present 

more complicated dynamic behaviors. Hence, considering the restraints of the joint as absolutely 

rigid will introduce a certain precision error in dynamic analysis, moreover the error is significant 

for the operation precision of flexible manipulators. 
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Fig. 1. Dynamic model of a flexible manipulator 

A review of recent literatures, however, shows that most of the existing works considering the 

elastic restraint are mainly related to the natural characteristics of large-scale structures, such as 

high-rise buildings, bridges and shells [14-17], and the dynamic characteristic and vibration 

control of FMERJs have not obtained sufficient attentions. Considering the elastic restraints of the 

joint will enhance the interaction of rigid motion and flexible motion and increase nonlinear 

factors in dynamic analysis, and the dynamic model establishment and vibration control will 

consequently become complex [18]. In the present literatures, the joint is considered as fixed 

restraint when design or verify a control strategy. As specifically indicated in [3], to construct a 

more accurate dynamic model for investigating the dynamic characteristics of flexible 

manipulators, the elastic restraints of the joint should be fully considered and precisely described. 

In this paper, the elastic restraints of the joint are considered, and the mode and vibration 

characteristics of the FMERJ are investigated which are essential to further construct an effective 

vibration control strategy. In Section 2, the restraints of the joint are equivalent to torsional 

restraint and linear restraint, and the elastic restraint model and boundary conditions of the FMERJ 

are established. In Section 3, with the boundary conditions, natural frequency equation and mode 

shapes of the FMERJ are derived. Subsequently, the vibration responses of the FMERJ are 

obtained in Section 4. Results are presented and discussed in Section 5 which shows the 

characteristics of natural frequencies, mode shapes and vibration responses of the FMERJ. Finally, 

the paper is concluded with a brief summary in Section 6. 

2. Elastic restraint model and boundary conditions of the FMERJ 

In this section, elastic restraint model and boundary conditions of the FMERJ are presented. 

Considering the effect of elastic restraints, the restraints of the joint are equivalent to torsional 

restraint and linear restraint in the direction of the base moving as shown in Fig. 2. Here, 𝑘𝑡 and 

𝑘  denote the coefficients of torsional restraint and linear restraint, respectively, and 𝑦(𝑥, 𝑡) 
represents the transverse vibration displacement of x. For the construction of a dynamic model, 

assumptions are made as follows: (a) The beam satisfies the Bernoulli-Euler Beam assumptions 

and the axial deformation can be ignored. Consequently, transverse bending vibration of the beam 

is the primary motion. (b) The effect of gravity can be neglected which is always existed in real 

applications. 
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Fig. 2. Elastic restraint model of the FMERJ Fig. 3. Force and moment analysis  

of the fixed end of the FMERJ 

When excited, the flexible manipulator presents a bending deformation and the elastic restraint 

joint devotes a force and moment which can be expressed as 𝑘𝑦 and 𝑘𝑡
𝜕𝑦

𝜕𝑥
, respectively. The force 

and moment can be balanced by the shear force and moment of the flexible manipulator denoted 
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as 𝑄 and 𝑀, respectively, as shown in Fig. 3. 

Thus, the following equations can be obtained: 

𝑄 = −𝑘𝑦, (1) 

𝑀 = −𝑘𝑡
𝜕𝑦

𝜕𝑥
. (2) 

According to the differencial equation for small deflection and differencial equation of 

equilibrium, the shear force 𝑄 and moment 𝑀 can be stated as follows: 

𝑄 =
𝜕𝑀

𝜕𝑥
=
𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑦

𝜕𝑥2
), (3) 

𝑀 = 𝐸𝐼
𝜕2𝑦

𝜕𝑥2
, (4) 

where 𝐸 is Young’s modulus of the beam; 𝐼 is the cross-sectional moment of inertia about the 

neural axis of the beam, 𝐼 = 𝑏ℎ3/12, where 𝑏 is the width and ℎ is the thickness of the beam, 

respectively. 

Therefore, combining Eqs. (1)-(4), boundary condition of the fixed end of the FMERJ can be 

specified as: 

𝑥 = 0: 

{
 
 

 
 𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑦

𝜕𝑥2
) = −𝑘𝑦,

𝐸𝐼
𝜕2𝑦

𝜕𝑥2
= −𝑘𝑡

𝜕𝑦

𝜕𝑥
.

 (5) 

For shear force and moment of the free end are zero, boundary condition of the free end of the 

FMERJ can be expressed as: 

𝑥 = 𝐿: 

{
 
 

 
 𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑦

𝜕𝑥2
) = 0,

𝐸𝐼
𝜕2𝑦

𝜕𝑥2
= 0.

 (6) 

3. Natural frequencies and mode shapes of the FMERJ 

Natural frequency equation and mode shapes of the FMERJ are derived in this section. 

According to the assumptions presented in Section 2, a Bernoulli-Euler Beam is utilized. 

Moreover, based on the Bernoulli-Euler Beam theory, the influence of the shear deformation and 

cross-sectional moment of inertia about the neutral axis can be ignored in low-frequency vibration. 

Therefore, the differential equation of transverse free vibration can be expressed as [19]: 

𝐸𝐼
𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 0, (7) 

where 𝜌 and 𝐴 denote the mass density and cross-sectional area of the beam, respectively. 

Assuming that constant 𝑐 meets the relationship, 𝑐2 = 𝐸𝐼/𝜌𝐴, Eq. (7) can be simplified as: 

𝑐2
𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+
𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 0. (8) 
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Eq. (8) is a fourth-order partial differential equation and the general solution can be expressed 

as the sum of the normal modes. Using the method of variables separation, the transverse vibration 

displacement can be written as: 

𝑦(𝑥, 𝑡) = 𝜑(𝑥)𝑇(𝑡), (9) 

where 𝜑(𝑥) and 𝑇(𝑡) are functions of 𝑥 and 𝑡, respectively. 

Substituting Eq. (9) into Eq. (8), the vibration differential equation becomes: 

𝑐2

𝜑(𝑥)

𝑑4𝜑(𝑥)

𝑑𝑥4
= −

1

𝑇(𝑡)

𝑑2𝑇(𝑡)

𝑑𝑡2
= 𝜔2. (10) 

In Eq. (10), the left part is merely related to 𝑥, while the middle part is merely related to 𝑡. To 

satisfy the equivalence, they should be an equivalent real constant, here assumed as 𝜔2. Therefore, 

Eq. (10) can be further simplified as: 

𝑑4𝜑(𝑥)

𝑑𝑥4
− (

𝜔

𝑐
)
2

𝜑(𝑥) = 0, (11a) 

𝑑2𝑇(𝑡)

𝑑𝑡2
+ 𝜔2𝑇(𝑡) = 0. (11b) 

The general solution of Eq. (11a) is: 

𝜑(𝑥) = 𝐶1cos𝛽𝑥 + 𝐶2sin𝛽𝑥 + 𝐶3cosh𝛽𝑥 + 𝐶4sinh𝛽𝑥, (12) 

where 𝛽4 = 𝜔2/𝑐2 = 𝜌𝐴𝜔2/𝐸𝐼 ; 𝐶1 , 𝐶2 , 𝐶3  and 𝐶4  are constants determined by the boundary 

conditions. 

By comparing with the undamped single degree of freedom (SDOF) system, it can be obtained 

that Eq. (11b) is similar with the expression of the undamped SDOF system, thus the general 

solution of Eq. (11b) can be described as: 

𝑇(𝑡) = 𝐵1cos𝜔𝑡 + 𝐵2sin𝜔𝑡, (13) 

where 𝐵1 and 𝐵2 are constants determined by initial conditions. Moreover, it indicates that 𝜔 

assumed in Eq.  (10) denotes the natural frequency of the flexible beam, and must be a positive 

real constant, or the solution of Eq. (11b) will divergent and cannot represent the vibration. 

For simplifying the analysis, 𝜑(𝑥), 𝜑′(𝑥), 𝜑′′(𝑥), and 𝜑′′′(𝑥) are expressed as: 

[
 
 
 
𝜑(𝑥)

𝜑′(𝑥)

𝜑′′(𝑥)

𝜑′′′(𝑥)]
 
 
 

=

[
 
 
 
𝐶1 𝐶2 𝐶3 𝐶4
𝐶2𝛽 −𝐶1𝛽 𝐶4𝛽 𝐶3𝛽

−𝐶1𝛽
2 −𝐶2𝛽

2 𝐶3𝛽
2 𝐶4𝛽

2

−𝐶2𝛽
3 𝐶1𝛽

3 𝐶4𝛽
3 𝐶3𝛽

3]
 
 
 

[

cos𝛽𝑥
sin𝛽𝑥
cosh𝛽𝑥
sinh𝛽𝑥

]. (14) 

Substituting Eq. (9) into Eq. (5) and Eq. (6), the boundary conditions described by Eq. (5) and 

Eq. (6) are specified as: 

𝑥 = 0: {
𝜑′′′(𝑥) = −

𝑘

𝐸𝐼
𝜑(𝑥),

𝜑′′(𝑥) = −
𝑘𝑡
𝐸𝐼
𝜑′(𝑥),

 (15) 

and 
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𝑥 = 𝐿: {
𝜑′′′(𝑥) = 0,

𝜑′′(𝑥) = 0,
 (16) 

respectively. 

Combining Eq. (14) and Eq. (15), the following equation can be obtained: 

[
𝐶3
𝐶4
]

[
 
 
 
 −

𝑘𝑘𝑡 + 𝜆
2

𝑘𝑘𝑡 − 𝜆2
2𝑘𝑡𝛽𝜆

𝑘𝑘𝑡 − 𝜆2

2𝑘𝜆

𝛽(𝑘𝑘𝑡 − 𝜆2)
−
𝑘𝑘𝑡 + 𝜆

2

𝑘𝑘𝑡 − 𝜆2]
 
 
 
 

= [
𝐶1
𝐶2
], (17) 

where 𝜆 = 𝛽2𝐸𝐼. 
Similarly, combining Eq. (14) and Eq. (16), the following equation are received: 

[
−cos𝛽𝐿 −sin𝛽𝐿
sin𝛽𝐿 −cos𝛽𝐿

] [
𝐶1
𝐶2
] + [

cosh𝛽𝐿 sinh𝛽𝐿
sinh𝛽𝐿 cosh𝛽𝐿

] [
𝐶3
𝐶4
] = 0. (18) 

Then, combining Eq. (17) and Eq. (18), the result can be presented as: 

[
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝐶1
𝐶2
] = 0, (19) 

where: 

𝐴11 = −cos𝛽𝐿 −
𝑘𝑘t + 𝜆

2

𝑘𝑘t − 𝜆2
cosh𝛽𝐿 +

2𝑘𝜆

𝛽(𝑘𝑘t − 𝜆2)
sinh𝛽𝐿,  

𝐴12 = −sin𝛽𝐿 +
2𝑘t𝛽𝜆

𝑘𝑘t − 𝜆
2
cosh𝛽𝐿 −

𝑘𝑘t + 𝜆
2

𝑘𝑘t − 𝜆
2
sinh𝛽𝐿,  

𝐴21 = sin𝛽𝐿 −
𝑘𝑘t + 𝜆

2

𝑘𝑘t − 𝜆2
sinh𝛽𝐿 +

2𝑘𝜆

𝛽(𝑘𝑘t − 𝜆2)
cosh𝛽𝐿,  

𝐴22 = −cos𝛽𝐿 +
2𝑘t𝛽𝜆

𝑘𝑘t − 𝜆2
sinh𝛽𝐿 −

𝑘𝑘t + 𝜆
2

𝑘𝑘t − 𝜆2
cosh𝛽𝐿.  

For mode shapes expressed by Eq. (12) must exist a non-zero solution, the coefficient, 𝐶1, 𝐶2, 

𝐶3 and 𝐶4 cannot be all zero. Therefore, to assure the non-zero solution of Eq. (19), value of the 

determinant of the coefficients should be zero and meets the following condition: 

|
𝐴11 𝐴12
𝐴21 𝐴22

| = 0. (20) 

By expanding the determinant, the natural frequency equation of the FMERJ can be obtained 

as: 

𝜆

𝛽
(
𝑘 + 𝑘t𝛽

2

𝑘𝑘t − 𝜆
2
cos𝛽𝐿sinh𝛽𝐿 −

𝑘 − 𝑘t𝛽
2

𝑘𝑘t − 𝜆
2
sin𝛽𝐿cosh𝛽𝐿) −

𝑘𝑘t + 𝜆
2

𝑘𝑘t − 𝜆
2
cos𝛽𝐿cosh𝛽𝐿 − 1 = 0. (21) 

According to the relationships, 𝛽4 = 𝜌𝐴𝜔2/𝐸𝐼 and 𝜆 = 𝛽2𝐸, by solving Eq. (21), the natural 

frequencies of the FMERJ can be expressed as: 

𝜔𝑗 = α(𝛽𝑗𝐿)
2, (22) 
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where 𝑗 = 1, 2, …, and 𝛼 = √
𝐸𝐼

𝜌𝐴𝐿4
. 

Subsequently, combining Eq. (12), Eq. (17) and Eq. (19), the mode shapes of the FMERJ are 

obtained as: 

𝜑𝑗(𝑥) = 𝐶1𝑗

[
 
 
 
 cos𝛽𝑗𝑥 −

𝑘𝑘𝑡 + 𝜆𝑗
2

𝑘𝑘𝑡 − 𝜆𝑗
2 cosh𝛽𝑗𝑥 +

2𝑘𝜆𝑗

𝛽𝑗(𝑘𝑘𝑡 − 𝜆𝑗
2)
sinh𝛽𝑗𝑥

+𝜁𝑗 (sin𝛽𝑗𝑥 +
2𝑘𝑡𝛽𝑗𝜆𝑗

𝑘𝑘𝑡 − 𝜆𝑗
2 cosh𝛽𝑗𝑥 −

𝑘𝑘𝑡 + 𝜆𝑗
2

𝑘𝑘𝑡 − 𝜆𝑗
2 sinh𝛽𝑗𝑥)

]
 
 
 
 

, (23) 

where: 

𝜁𝑗 =
𝐶2𝑗
𝐶1𝑗

=

(𝑘𝑘𝑡 − 𝜆𝑗
2)sin𝛽𝑗𝐿 − (𝑘𝑘𝑡 + 𝜆𝑗

2)sinh𝛽𝑗𝐿 +
2𝑘𝜆𝑗
𝛽𝑗

cosh𝛽𝑗𝐿

(𝑘𝑘𝑡 − 𝜆𝑗
2)cos𝛽𝑗𝐿 − 2𝑘𝑡𝛽𝑗𝜆𝑗sinh𝛽𝑗L + (𝑘𝑘𝑡 + 𝜆𝑗

2)cosh𝛽𝑗𝐿
. (24) 

Generally, the coefficient 𝐶1  can be assigned 𝐶1 = 1, and Eq. (23) can be subsequently 

simplified as: 

𝜑𝑗(𝑥) = cos𝛽𝑗𝑥 −
𝑘𝑘𝑡 + 𝜆𝑗

2

𝑘𝑘𝑡 − 𝜆𝑗
2 cosh𝛽𝑗𝑥 +

2𝑘𝜆𝑗

𝛽𝑗(𝑘𝑘𝑡 − 𝜆𝑗
2)
sinh𝛽𝑗𝑥 

      +𝜁𝑗 (sin𝛽𝑗𝑥 +
2𝑘𝑡𝛽𝑗𝜆𝑗

𝑘𝑘𝑡 − 𝜆𝑗
2 cosh𝛽𝑗𝑥 −

𝑘𝑘𝑡 + 𝜆𝑗
2

𝑘𝑘𝑡 − 𝜆𝑗
2 sinh𝛽𝑗𝑥). 

(25) 

4. Vibration responses of the FMERJ 

In this section, vibration responses of the FMERJ are obtained. Substituting the natural 

frequencies 𝜔𝑗 and mode shapes 𝜑𝑗 obtained by Eq. (22) and Eq. (25), respectively, into Eq. (9) 

and Eq. (13), the primary transverse vibration of the FMERJ can be obtained as: 

𝑦𝑗(𝑥, 𝑡) = 𝜑𝑗(𝑥)(𝐵1𝑗cos𝜔𝑗𝑡 + 𝐵2𝑗sin𝜔𝑗𝑡). (26) 

According to the assumed modes method [3], vibration responses of the FMERJ can be 

expressed as: 

𝑦(𝑥, 𝑡) =∑𝜑𝑗(𝑥)(𝐵1𝑗cos𝜔𝑗𝑡 + 𝐵2𝑗sin𝜔𝑗𝑡)

∞

𝑗=1

, (27) 

where 𝐵1𝑗 and 𝐵2𝑗 are determined by initial conditions. 

Assuming that initial displacem ent and initial velocity of the FMERJ are 𝑦(𝑥, 0) and 𝑦̇(𝑥, 0), 
respectively, results can be obtained as: 

{
 
 

 
 𝑦(𝑥, 0) =∑𝜑𝑗𝐵1𝑗

∞

𝑗=1

,

𝑦̇(𝑥, 0) =∑𝜑𝑗𝜔𝑗𝐵2𝑗 .

∞

𝑗=1

 (28) 
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Multiplying Eq. (28) with 𝜌𝐴𝜑𝑖  and integrating along the length direction, based on the 

orthogonality of mode shapes depicted as follows: 

∫ 𝜌𝐴𝜑𝑖𝜑𝑗𝑑𝑥
𝐿

0

= 0,   (𝑖 ≠ 𝑗). (29) 

𝐵1𝑗 and 𝐵2𝑗 can be determined as: 

{
 
 

 
 𝐵1𝑗 =

1

𝑀𝑝𝑗

∫ 𝜌𝐴𝑦(𝑥, 0)𝜑𝑗𝑑𝑥
𝐿

0

,

𝐵2𝑗 =
1

𝜔𝑗𝑀𝑝𝑗

∫ 𝜌𝐴𝑦̇(𝑥, 0)𝜑𝑗𝑑𝑥,
𝐿

0

 (30) 

where 𝑀𝑝𝑗 = ∫ 𝜌𝐴𝜑𝑗
2𝑑𝑥

𝐿

0
, which is called the mode mass. 

Substituting Eq. (30) into Eq. (27), the vibration responses of the FMERJ are subsequently 

obtained as: 

𝑦(𝑥, 𝑡) = 𝜌𝐴∑𝑀𝑝𝑗𝜑𝑗(𝑥)(cos𝜔𝑗𝑡 ∫ 𝑦(𝑥, 0)𝜑𝑗𝑑𝑥
𝐿

0

+
1

𝜔𝑗
sin𝜔𝑗𝑡 ∫ 𝑦̇(𝑥, 0)𝜑𝑗𝑑𝑥

𝐿

0

)

∞

𝑗=1

. (31) 

5. Results 

Results are divided into three parts. Firstly, natural frequencies of the FMERJ are presented. 

Secondly, characteristics of mode shapes of the FMERJ are analyzed. Thirdly, characteristics of 

vibration responses of the FMERJ are shown. Properties of the flexible beam which is considered 

as a manipulator in the numerical simulations, are length 𝐿 = 650 mm, width 𝑏 = 50 mm, 

thickness 𝑡 = 2 mm, Young’s modulus 𝐸 = 197 GPa, volumetric density 𝜌 = 7850 kg/m3 and 

Poisson’s ratio 𝜇 = 0.26. The elastic restraints of the joint are investigated for the case that the 

flexible manipulator is connected to a rigid base by bolting. In the computations, only the first 

three modes are considered. 

5.1. Natural frequencies of the FMERJ 

The first three natural frequencies of the FMERJ are presented in Table 1, and compared with 

that of flexible manipulator with fixed restraint joint (FMFRJ) which neglects the elastic restraint 

and is commonly idealized in present research. 

Table 1. First three nature frequencies of the flexible manipulator with different restraints joint: elastic 

restraint and fixed restraint (24.07, 150.84, 422.36) 

 
𝑘 = 1.0×105 𝑘 = 1.0×106 𝑘 = 1.0×107 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

𝑘𝑡 = 1.0×105 37.47 267.72 438.82 37.77 267.75 638.01 37.80 267.77 651.23 

𝑘𝑡 = 1.0×106 24.70 144.04 339.10 24.31 151.35 418.28 24.85 155.93 436.84 

𝑘𝑡 = 1.0×107 24.00 140.27 335.82 24.08 149.92 414.33 24.14 151.21 422.87 

𝑘𝑡 = 1.0×108 23.93 139.90 335.52 24.06 149.77 413.96 24.07 150.75 421.58 

It is obvious from the results that natural frequencies of the FMERJ are obviously different 

from that of FMFRJ, and the elastic restraints of the joint have a considerable effect on the natural 

frequencies. Moreover, the effects of linear restraint and torsional restraint on the natural 

frequencies are different. Specifically, the first three natural frequencies increase with the linear 
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restraint while decrease with the torsional restraint, and the trend is more obvious for higher order 

frequencies. When the restraint stiffness of the joint is great enough, the frequencies present a 

minor change and gradually toward the situation of FMFRJ. Therefore, for the restraint stiffness 

of the bolted connection is usually less than 1.0×107 and cannot reach that of fixed restraint, the 

elastic restraints of the joint should be considered. 

5.2. Mode shapes of the FMERJ 

The characteristics of the first three mode shapes of the FMERJ are presented in Fig. 4. It can 

be obtained that the elastic restraints of the joint have a considerable effect on the mode shapes. 

The mode shapes of the FMERJ are conspicuously different from that of FMFRJ. As shown in 

Fig. 4(a), the first mode shape gradually towards stable with an increasing restraint stiffness of the 

joint, and cannot reach that of FMFRJ however. Figs. 4(b) and 4(c) indicate that the second and 

third mode shapes can consistent with that of FMFRJ when the restraint stiffness of the joint is 

great enough. Therefore, for the situation of bolting, considering the mode shapes of the FMERJ 

as that of FMFRJ will generate a certain error in precise analysis, especially for the lower order 

mode shapes. 

Furthermore, the results of Fig. 4 show that the frequency of the third mode shape of the 

FMERJ is obviously higher that of FMFRJ, and increases with an increasing linear restraint. 

Moreover, it can be obtained from Fig. 4 that the mode shapes of the FMERJ are similar to that of 

flexible manipulator with hinged restraint joint (FMHRJ). As the torsional restraint increased, the 

restraint state of the joint varies from hinged restraint to fixed restraint and the frequencies become 

smaller, particularly for the higher order mode shapes. It can be further drawn that the torsional 

restraint has a more significant effect on the restraint state. 

5.3. Vibration responses of the FMERJ 

To investigate the effect of the elastic restraints of the joint on the steady-state responses of 

the flexible manipulator, the end point (𝑥 = 0.65) is considered. In the computation, the initial 

displacement and initial velocity are assigned 𝑦(0.65,0) = 0.001  and 𝑦̇(0.65,0) = 0, 

respectively. 

The vibration responses of the FMERJ are presented in Fig. 5. It is obvious that the elastic 

restraints of the joint have a considerable effect on the vibration responses of the flexible 

manipulator. Fig. 5 clearly shows that the response amplitudes of the FMERJ are smaller than that 

of FMFRJ and the difference will significantly impact the precise dynamic analysis of the FMERJ. 

This further indicates that the elastic restraints of the joint have a noticeable effect on vibration 

reduction, and the mechanism can be used for structure design of flexible manipulators. 

Furthermore, it can be obtained from Fig. 6 that the response frequencies of the FMERJ are 

obviously higher than that of FMFRJ. This indicates that, due to the elastic restraints of the joint, 

the vibration responses of the FMERJ are more intense. Moreover, Fig. 5(a) shows that linear 

restraint has a smaller effect on the response frequencies, while the effect of torsional restraint on 

the response frequencies are considerable as presented in Figs. 5(b) and 5(c). Conclusions can be 

drawn that the effect of the elastic restraints of the joint on the vibration responses of the flexible 

manipulator is noticeable. For the positioning of the end-effector for precision jobs should involve 

very small amplitudes of vibration, ideally no vibration at all [3], considering the restraints of the 

joint as the ideal situation of fixed restraint will introduce a certain error in precise dynamic 

analysis and vibration control of flexible manipulator. 

To compute the vibration responses of the flexible manipulator, the number of terms in the 

infinite series or the value of 𝑗  in Eq. (31) should be assigned. Fig. 6 presents the vibration 

responses of the FMFRJ with different assumed terms. It can be obtained that when the value of 𝑗 
is greater than 3, the results present a minor change and rapidly toward stable. As indicated in [3], 
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only the first several modes are usually retained and the higher modes are neglected in the assumed 

mode method. Thus, the infinite series in Eq. (31) only keeps the first three terms in the 

computation. 

 
a) The first mode shape of the FMERJ 

 
b) The second mode shape of the FMERJ 

 
c) The third mode shape of the FMERJ 

Fig. 4. First three mode shapes of the FMERJ 
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a) Effect of liner restraint on the vibration responses of the FMERJ 

 
(b) Effect of torsional restraint on the vibration responses of the FMERJ 

 
(c) Effect of liner restraint and torsional restraint on the vibration responses of the FMERJ 

Fig. 5. Vibration responses of the FMERJ 
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Fig. 6. Vibration responses of the FMFRJ with different assumed terms 

6. Conclusions 

In this paper, considering the elastic restraints of the joint, mode and vibration characteristics 

of a flexible manipulator with elastic restraint joint (FMERJ) are investigated which is significant 

to construct a dynamic model and vibration control strategy. It was obtained that the elastic 

restraints of the joint had a noticeable effect on the dynamic characteristics of flexible 

manipulators, and natural frequencies, mode shapes and vibration responses of the FMERJ were 

obviously different from that of flexible manipulator with fixed restraint joint (FMFRJ). 

Specifically, the natural frequencies of the FMERJ were obviously impact by the elastic restraints 

of the joint, for increasing with the linear restraint and decreasing with the torsional restraint which 

was more noticeable for higher order frequencies. Furthermore, the mode shapes of the FMERJ 

were conspicuously different from that of FMFRJ, and torsional restraint had a more significant 

effect on the restraint state. Moreover, the elastic restraints of the joint had a considerable effect 

on the vibration responses of the flexible manipulator, the response amplitudes of the FMERJ 

were smaller than that of FMFRJ while the response frequencies of the FMERJ were higher than 

that of FMFRJ. This further indicated that elastic restraints of the joint had a noticeable effect on 

vibration reduction and the mechanism can be used for structure design of flexible manipulators. 

It demonstrated that the effect of the elastic restraints of the joint on dynamic characteristics were 

noticeable and should be considered in precise dynamic analysis and vibration control of flexible 

manipulators. 
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