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Abstract. Driver fatigue is an important cause of traffic accidents and the detection of fatigue 

driving has been a hot issue in automobile active safety during the past decades. The purpose of 

this study is to develop a novel method to detect fatigue driving based on electroencephalogram 

(EEG). The volunteer is asked to perform simulated driving tasks under different mental state 

while EEG signals are acquired simultaneously from six electrodes at central, parietal and occipital 

lobe, including C3, C4, P3, P4, O1 and O2. Due to the non-linearity of human brain responses, 

correlation dimension is estimated with G-P algorithm to quantify the collected EEGs. Statistical 

analysis reveals significant decreases from awake to fatigue state of the correlation dimension for 

all the channels across 5 subjects (awake state: 3.87±0.13; fatigue state: 2.76±0.34; 𝑝 < 0.05, 

paired 𝑡-test), which indicates that the correlation dimension is a promising parameter in detecting 

fatigue driving with EEGs. 
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1. Introduction 

Fatigue driving is believed to be a major problem in public traffic [1]. Despite the 

methodological difficulties of reliably assessing the causes of fatal traffic accidents, it is concluded 

that 1-20 % of fatal traffic accidents are caused by driver fatigue [2, 3]. In China, fatigue driving 

is the leading cause of fatal traffic accidents on highway and hundreds of thousands of people are 

killed or wounded from it each year [4]. Consequently, the detection of fatigue driving has been 

an increasingly hot issue in automobile active safety during the past decades. 

Many attempts have been made to solve this problem. For example, changes in vehicle and 

driver behavior, such as steering angle, vehicle lateral position, vehicle speed and vehicle yaw 

rates, are used to detect driver fatigue. Fukuda et al. demonstrated that steering wheel movement 

is correlated with driver fatigue [5]. Takei et al. employed Fast Fourier Transform (FFT) and 

wavelet transform to analyze steering angle signals and features which can reflect driver fatigue 

were well extracted [6]. However, fatigue driving detection based on driver behavior is prone to 

interference by external conditions such as vehicle type, road condition and driving habits. 

Another way to detect fatigue driving is based on physical or physiological indicators related 

to the human body, such as EEG, eye blinking rate, heart rate and pulse rate. In the previous 

researches, driver fatigue can be subdivided into sleep related and task related fatigue [7].  

Wherein, EEG signals are direct measurement of human brains and are widely used in diagnosis 

of disease related to epilepsy [8-11]. Furthermore, EEG is also regarded as the “golden standard” 

of the detection of fatigue with high reliability and sensitivity since both sleep related and task 

related fatigue originated from human brains. Jap et al. measured continuous EEG spectral in 52 

drivers (36 males and 16 females) to detect fatigue driving [12]. Results show stable delta and 

theta activities over time, a slight decrease of alpha activity and a significant decrease of beta 

activity when the driver got fatigue. Simon et al. used alpha spindle in EEG as indicators of driver 

fatigue under real traffic conditions [13]. It indicates that alpha spindle parameters increase when 

the drivers are in fatigue condition. Compared with EEG alpha-band power algorithm, alpha 

spindle of EEG signals could increase both fatigue detection sensitivity and specificity. 

On the other hand, human brains are complicatedly non-linear and dynamical systems. As a 

result, EEG analysis methods, implementing theory of dynamical systems and, particularly, 
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deterministic chaos allow judging generalization of brain processes or their variability [14]. In this 

paper, we present a new EEG-based method to detect driver fatigue using correlation dimension. 

The content of this study is laid out in 4 sections with this section as introduction. We briefly 

describe the fundamental theory of correlation dimension and determination of parameters when 

calculating correlation dimension in section 2. In section 3, the simulated driving experiment with 

simultaneous EEG recording is introduced and EEG analysis result with correlation dimension is 

discussed in detail. Finally, the conclusions are given in section 4. 

2. Methods 

2.1. Fundamental theory of correlation dimension 

In chaos theory, correlation dimension is a measure of the complexity of a non-linear process 

which characterizes the distribution of points in the phase space. Correlation dimension is defined 

as: 

𝐷2 = lim
𝜀→0

ln ∑ 𝑝𝑖
2𝑁(𝜀)

𝑖=1

ln 𝜀
= lim

𝜀→0

ln 𝐶2(𝜀)

ln 𝜀
, (1) 

where 𝑁(𝜀) is the total number of hypercubes of slide length 𝜀 that covers the attractor, and 𝑝𝑖 is 

the probability of finding a point in the hypercube 𝑖. Usually, correlation dimension 𝐷2 can be 

estimated by G-P algorithm proposed by Grassberger and Procaccia in 1983 [15-16]. 

Given a time series {𝑥𝑖}, 𝑖 = 1,2, … 𝑛, the phase space {𝑋𝑗}, 𝑗 = 1,2, … 𝑁 is constituted as: 

𝑋𝑗 = (𝑥𝑗 , 𝑥𝑗+𝜏, … , 𝑥𝑗+𝜏(𝑚−1)), (2) 

where 𝑚 represents the embedding dimension and 𝜏 indicates the time delay. It can be proved that 

the correlation integral 𝐶2(𝜀) is approximately equal to the probability that the Euclidean distance 

between a pair of points 𝑋𝑝, 𝑋𝑞 in phase space [15], which can be calculated with: 

𝐶2(𝜀) = lim
𝑁→∞

(
1

(𝑁 − (𝑚 − 1)𝜏)(𝑁 − (𝑚 − 1)𝜏 − 1)
) × ( ∑ ∑ Θ(𝜀 − ‖𝑋𝑝 − 𝑋𝑞‖) 

𝑁−(𝑚−1)𝜏

𝑞=𝑝+1

𝑁−(𝑚−1)𝜏

𝑝=1

), (3) 

where Θ is the Heaviside step function and ‖ ‖ represents the maximum norm. 𝜀 is the radius of 

the sphere and 𝑁 is the number of samples. 𝑋𝑝 − 𝑋𝑞 is determined as: 

‖𝑋𝑝 − 𝑋𝑞‖ = √∑ (𝑥𝑝+𝜏(𝑘−1) − 𝑥𝑞+𝜏(𝑘−1))2𝑚
𝑘=1  . (4) 

In order to estimate the correlation dimension, the curve ln𝐶2(𝜀)~ln𝜀 is plotted. With the 

increment of the embedding dimension 𝑚, the slope of the curve will tend to be a constant, which 

represents the value of correlation dimension. 

2.2. Parameters optimization 

Since EEG signals reflect cortical dynamics in human brains, correlation dimension is often 

interpreted as a measure of complexity of information processing, and it can used as an index of 

the integration of information in the brain. Previous studies also show that correlation dimension 

is very useful in comparing different physiologic states. For correct estimation of correlation 

dimension, it is necessary to set correct embedding dimension 𝑚 and time delay 𝜏. 

Generally, there are no universal algorithms to estimate the optimal value of time delay 𝜏. 
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Instead, there are some recommendations to use. The main idea of these recommendations is that 

the delay vectors should be independent of each other [17]. This could be achieved by analyzing 

mutual information between the original signal and its shifted versions. According to the most 

common practice, the first minimum of the mutual information is selected to ensure the 

components of the reconstruction vectors would be relatively independent [18]. Following this 

idea, vectors built-up from delay coordinates are used for the reconstruction. As a result, the 

vectors are constructed with a time delay 𝜏 = 20, which corresponds to 20 ms.  

Then, an EEG time series including 60,000 points (sampling frequency 𝑓𝑠 = 1000 Hz) is used 

to estimate the optimal embedding dimension. Correlation dimension 𝐷2 is calculated by G-P 

algorithm, with time delay 𝜏 = 20 and varied embedding dimension 𝑚 = 1,2, … ,10. Results show 

that the estimated correlation dimension 𝐷2 increases with embedding dimension 𝑚, as shown in 

Fig. 1. Specifically, correlation dimension increases sharply when embedding dimension ranges 

from 1 to 7 and becomes relatively stable when embedding dimension is larger than 8. Thus, the 

optimal value of embedding dimension 𝑚 is set to 8. 

 
Fig. 1. Determination of optimal embedding dimension 𝑚 

3. Experiment design and results 

3.1. Experiment design 

The experiment is carried out on a simulated driving platform which is composed of an 

electronic steering wheel (Logitech G25) and a car racing simulator software (TORCS). The 

Logitech G25 is an electronic steering wheel designed for simulated racing video games on the 

PC using a USB interface (Logitech, Newark, CA). It has a pressure sensitive D-Pad, manual 

sequential and paddle shifters, 900° steering angle, brake, clutch and accelerate pedal. Here, we 

use the automatic transmission mode to simplify the operation. TORCS (The Open Racing Car 

Simulator) is an open source 3D car racing simulator available for Microsoft Windows and 

developed by Eric Espie and Chritophe Guionneau. It is designed to enable pre-programmed AI 

drivers to race against one another, while allowing the user to control a vehicle using either a 

keyboard, mouse, or wheel input like Logitech G25. When the subject performs driving tasks on 

the simulated driving platform, EEG signals are recorded simultaneously for further analysis, as 

shown in Fig. 2. Thereinto, one of three different driving roadmaps in Fig. 3 is selected randomly 

for a driving task. Subjects are asked to finish the experiments in two different cognitive states: 

awake and fatigue. The awake experiment is conducted at 9:00-11:00 AM and the fatigue 

experiment is executed when the subject is extremely drowsy after sleep deprivation. 
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Fig. 2. EEG signal acquisition on a simulated driving platform 

 
Fig. 3. Driving roadmaps 

3.2. Subjects and EEG recordings 

Subjects are studied after giving informed written consent in accordance with a protocol 

approved by the institutional review board of Xi’an Jiaotong University. Five right-handed healthy 

male subjects (age 21-26) participated in the experiments. They are requested to sit on a 

comfortable armchair in an ordinary lighting office room with no electromagnetic shielding. All 

of them have normal or corrected-to-normal eyesight. The subjects are asked to reduce body 

movements to collect EEG signals with less noise. EEG signals are acquired with a g.USBamp 

(g.tec inc., Austria) system and sampled at 1000 Hz. Exploring cup electrodes are fixed to the 

scalp at C3, C4, P3, P4, O1, O2 according the International 10-20 System, as shown in Fig. 4. The 

reference electrode is located at left earlobe (A1). The acquired EEG signals are band-pass filtered 

from 2 to 60 Hz and notch filtered between 48-52 Hz to remove power line interference. All 

electrode impedances are kept below 5 𝑘Ω during experiments. 

 
Fig. 4. The international 10-20 system for EEG electrode placement 

3.3. Results 

Five participants are asked to perform the driving tasks for 10 times under awake and fatigue 

state, respectively. Each driving task is to finish one lap randomly selected from the driving 

roadmaps in Fig. 3. Generally it takes 1.5-2.5 minutes to finish on lap. Typical EEG signals while 
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performing driving tasks in awake and fatigue state are shown in Fig. 5. From the acquired time 

series, it is rather difficult to decide whether the subject is in awake or fatigue state. 

 
(a) 

 
(b) 

Fig. 5. Acquired EEG signals while performing simulated driving tasks in (a) awake and (b) fatigue state 

Then, the middle 1 minute EEG signals, which include less noise, are used to calculate the 

correlation dimension to differentiate fatigue from awake state. The statistical results of 

correlation dimension of EEG signals in awake and fatigue state across all 5 subjects are shown 

in Table 1 and 2. It indicates that the correlation dimension in awake state for all 5 electrodes are 

larger than 3.5, whereas the correlation dimension in fatigue state for most electrodes are below 3. 

Table 1. Correlation dimension in awake state 

Electrode 

Subject 
C3 C4 P3 P4 O1 O2 

1 3.71 3.97 4.21 4.02 3.87 4.03 

2 3.94 3.87 3.67 3.96 3.80 3.74 

3 3.52 4.09 3.81 3.97 3.73 3.67 

4 3.89 3.76 3.64 3.95 4.00 3.88 

5 3.84 4.15 3.92 3.87 3.71 3.90 

Mean 3.78 3.968 3.85 3.954 3.822 3.844 

Standard deviation 0.1508 0.1420 0.2062 0.0484 0.1053 0.1265 
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Table 2. Correlation dimension in fatigue state 
Electrode 

Subject 
C3 C4 P3 P4 O1 O2 

1 2.03 2.91 2.02 2.03 2.97 2.01 

2 2.29 3.23 2.66 3.16 3.05 2.10 

3 3.08 3.12 3.22 3.07 2.53 2.75 

4 2.46 2.79 2.81 2.67 3.11 3.05 

5 3.21 2.99 2.82 2.89 2.78 2.86 

Mean 2.614 3.008 2.706 2.764 2.888 2.554 

Standard deviation 0.4565 0.1544 0.3901 0.4035 0.2107 0.4195 

Further, a comparison of correlation dimension between awake and fatigue state is made to 

see if they are significantly different. Fig. 6 visualizes the results by showing the means for O1, 

O2, P3 and P4 electrode over all subjects. It indicates that the correlation dimension of awake state 

is significantly larger than that of fatigue state (𝑝 < 0.05, paired 𝑡-test). Similar statistical results 

can be found on C3 and C4 electrode. Briefly, there is significant change in EEG on central, 

parietal and occipital lobe when the subjects get fatigue. More importantly, the correlation 

dimension of EEG signals is efficient to quantify the difference between awake and fatigue, which 

indicates that the correlation dimension is a promising parameter in detecting fatigue driving with 

EEG signals. 

 
Fig. 6. Comparison of correlation dimension in awake and fatigue state for O1, O2, P3 and P4 electrode. 

Values represent averages over all subjects. Error bars indicate the standard deviation of the means  

(*𝑝 < 0.05, paired 𝑡-test) 

4. Conclusion 

In this paper, a novel method to detect driver’s fatigue based on EEG is proposed. Subjects are 

asked to perform simulated driving tasks under awake and fatigue states while simultaneous EEG 

at central, parietal and occipital lobe are acquired. Correlation dimension is used to quantify the 

change of EEGs to differentiate fatigue from awake states and optimal parameters including 

embedding dimension and time delay when calculating correlation dimension is discussed. Results 

show that for all the 6 electrodes across 5 subjects, there is significant decrease of correlation 

dimension when the subjects are getting fatigue (awake state: 3.87±0.13; fatigue state: 2.76±0.34; 

𝑝 < 0.05, paired 𝑡-test). Thus, correlation dimension is proved to be a promising parameter in 

detecting fatigue driving with EEGs. 

However, the fatigue state in our experiments is derived by sleep deprivation, which means 

the subjects are in heavy fatigue condition. It would be better if mild fatigue can be correctly 

detected. This is what our research work will focus on next. 
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