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Abstract. Lunar exploration is one of the most important projects in the world. A primary 

objective of the probe in lunar is to soft-land a manned spacecraft on lunar surface. The 

soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, 

the analysis of touchdown dynamics during landing stage is an important work. In this paper, 

firstly, based on the mechanical theory, a finite element model for the lunar lander is established. 

Secondly, the linear static structural analysis under particular conditions is performed to determine 

the nodal stress and displacement distributions and the modal analysis is conducted to obtain the 

frequencies and their corresponding vibration shapes. Finally, the weakness parts of the structure 

and the behavior of the system are obtained by analyzing the simulating results, which are 

beneficial to the optimizing design for the lunar Lander. 
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1. Introduction 

Along with the developments of sciences and technologies, a lot of explorations have been 

taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, 

has been a focus of the space discovery again recently because of its abundant resource and high 

value in use [1]. In particular, the lunar exploration project of China is underway, and a lunar 

lander will be developed and launched onto the lunar surface in the next step [2]. 

In order to conduct an effective probe, the lunar lander has to undergo the loads applied by the 

outer environment to prevent damages of the structure triumphantly. It is well known that 

structures can resonate, then small forces can result in important deformation, and possibly, 

damage can be induced in the structure [3-4]. As a result, linear static structural analysis and modal 

analysis are performed essentially to verify the structure of the lunar lander before being put into 

use. 

Modal analysis is a primary tool that structural engineers use regularly. It has become the 

backbone of linear structural dynamics and related fields like aero elasticity. The use of modal 

analysis is expanding rapidly, with one notable example being the widespread application of the 

method to investigate the structural dynamics characteristics of mechanical systems [5]. The 

modal pairs, which consist of frequencies and their corresponding vibration mode shapes, are used 

to predict the dynamic behavior and identify the cause of vibration problems. The important 

advantage of using natural modal analysis is the tremendous insight gained into the characteristics 

and behavior of the system. The frequencies and vibration mode shapes of the system can be 

obtained by performing the modal analysis, and then the weakness part of the structure and the 

behavior of the system are predicted [6]. 

On the other hand, Finite Element modeling is a widely used technique to model the dynamic 

behavior of a large class of systems namely structural element of mechanical devices [7-8]. Recent 

work at NASA Langley Research Center has examined the development and validation of finite 

element modeling techniques for aircraft structures to better predict the dynamic response [9]. 
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2. The finite element model of the lunar lander 

The structure of the lunar lander used in this paper, which must satisfy the structural, 

mechanical, and landing-performance constraints, is designed by NUAA. As shown in Fig. 1(a). 

Four steel outrigger trusses provide the attachment points for the landing-gear struts. Each of the 

four landing-gear assemblies consists of a primary strut (with a footpad at its lower end) and two 

secondary struts. The primary strut consists of an inner cylinder, an outer cylinder connected 

through a universal joint at its upper end to the outrigger truss (Fig. 1(b)), and a crushable 

aluminum honeycomb cartridge that acts in compression to absorb energy. Each secondary strut 

consists of an inner cylinder connected through a sleeve-journal universal joint to the outer 

cylinder of the primary strut, an out cylinder connected through a universal joint to the bottom 

surface of the module, and honeycomb cartridges which absorb energy while the double-acting 

secondary strut is lengthening or shortening [10-11]. 

 
(a) Configuration of the lunar lander 

 
(b) Configuration of the 3-D universal joint 

Fig. 1. Sketches of the lunar lander with the 3-D universal joint 

The geometrical accuracy of the CAD model and the discretization of this geometry into a 

finite element mesh are of paramount importance in obtaining a finite element model which is 

used to predict the behavior of the mechanical structure [12]. According to the lunar lander's 

configuration narrated above, a finite element models, including material properties and element 

properties, is developed in MSC.Patran (Fig. 2(a)). This finite element model consists of elements 

of bars, beams and shells, such as bar2, beam and quad4 [13-14]. The total number of finite 

element mesh is up to 93000, while the number of freedom degrees is up to 200000. 

 
(a) Sketch of the finite element model 

 
(b) Sketch of the simplified joint 

Fig. 2. Sketches of the finite element model with the simplified joint 
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As illustrated in Fig. 2(b), the 3-D universal joint is simplified by establishing MPC element, 

1-D Bush properties, and 0-D Mass properties [15]. In order to conduct a precise analysis, the 

finite element model simplified has to represent the original 3-D structure as regards its material 

and structural properties [16]. 

3. Structural analyses for lunar lander 

3.1. Constraints and loads 

The upper surface of the finite element model is constrained in all six degrees of the freedom. 

The loads corresponding to the case 𝑎 = 4 g are applied on the bottom surfaces of the four 

footpads as uniform pressure accounting for the forces applied by the lunar surface. Linear static 

structural analysis is submitted to MSC.Nastran to study the response of the landing system in 

terms of deflection and stress. 

3.2. Presentation of the displacement 

Fig. 3 shows the displacement contour of the results from the linear static structural analysis. 

It can be inferred from the Fig. 3 that the loads applied on the footpads bend the landing-gear 

assemblies from the joint point outwards. With the increase in the height, displacements appearing 

on the finite elements of the main struts are reduced from 0.0614 m to zero. With the increase in 

the distance to the center of the model, the displacements appearing on the finite elements of the 

secondary struts are on the increase. 

 
Fig. 3. Displacement contour 

The displacements are maximum at the outermost points of the footpads, and the maximum 

strain 𝛿max is equal to 0.0614 m.The landing-gear radius (𝑅) of the model is equal to 2.2 m, then 

the 𝛿max 𝑅⁄  is 2.8 %, which is a smaller rate. So, the stiffness of the structure is enough. However, 

the displacements on the inner cylinders of the main struts reduce quickly with the increase of the 

height, so the inner cylinders of the main struts bend to the out side sharply. So, the inner cylinders 

of the main struts are the weakness parts of the structure in the term of stiffness. 

3.3. Presentation of the displacement 

Fig. 4 displays the stress contour of the results from the linear static structural analysis. It can 

be inferred from the Fig. 4 that the distribution of the stress on the landing-gear struts is not 



1159. FINITE ELEMENT LINEAR STATIC STRUCTURAL ANALYSIS AND MODAL ANALYSIS FOR LUNAR LANDER.  

JINBAO CHEN, HONG NIE, ZEMEI ZHANG, LICHUN LI 

402 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716  

uniform. Several stress-larger areas appear on the outside of the primary struts (Fig. 4(a)), what is 

attributed to the sharp bend of the primary struts (as the displacement contour shown in Fig. 3). 

At the same time, the phenomenon of stress concentration occurs on the junction between the 

primary struts and the secondary struts, as shown in Fig. 4(b). 

It is found that the maximum stress generates inner side of the junction between the primary 

strut and the secondary strut. The maximum stress 𝜎max is equal to 210 Mpa which is less than 

allowed stress of material 484 Mpa. However, the junction between the primary struts and the 

secondary struts, and the inner cylinders of the primary struts are also dangerous parts in the term 

of strength under this operating condition. 

 
(a) Looking from the outside 

 
(b) Looking from the inside 

Fig. 4. Stress contour 

4. Modal analysis for lunar lander 

4.1. The basic theory for the modal analyses 

Multiple-degree-of-freedom systems (MDOF) are represented by the following Eq. (9): 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝑓(𝑡), (1) 

where 𝑀, 𝐶and 𝐾are respectively 𝑛 × 𝑛 mass, damping, and stiffness matrices, the 𝑛 dimensional 

vector variable 𝑥(𝑡)  indicates a position of a lumped mass 𝑀𝑖  on the structure, and the 𝑛 

dimensional vector variable 𝑓(𝑡) describes the externally applied force. 

Transforming Eq. (1) to the Laplace domain (assuming zero initial conditions) yields: 

𝑍(𝑠)𝑋(𝑠) = 𝐹(𝑠). (2) 

With 𝑍(𝑠) the dynamic stiffness matrix: 

𝑍(𝑠) = 𝑀𝑠2 + 𝐶𝑠 + 𝐾. (3) 

The transfer function matrix 𝐻(𝑠)  between displacement and force vectors,  

𝑋(𝑠) = 𝐻(𝑠)𝐹(𝑠), equals the inverse of the dynamic stiffness matrix: 

𝐻(𝑠) = [𝑀𝑠2 + 𝐶𝑠 + 𝐾]−1 =
𝑁(𝑠)

𝑑(𝑠)
. (4) 

With the numerator polynomial matrix 𝑁(𝑠) given by: 
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𝑁(𝑠) = 𝑎𝑑𝑗(𝑀𝑠2 + 𝐶𝑠 + 𝐾). (5) 

And the common-denominator polynomial 𝑑(𝑠), also known as the characteristic polynomial: 

𝑑(𝑠) = det(𝑀𝑠2 + 𝐶𝑠 + 𝐾). (6) 

When the damping is small, the roots of the characteristic polynomial 𝑑(𝑠)  are complex 

conjugate pole pairs, 𝜆𝑚 and 𝜆𝑚
∗ , 𝑚 = 1, . . . , 𝑁𝑚, with the number of modes system. The transfer 

function can be rewritten in a pole-residue form: 

𝐻(𝑠) = ∑ (
𝑅𝑚

𝑠 − 𝜆𝑚
+

𝑅𝑚
∗

𝑠 − 𝜆𝑚
∗

) .

𝑁𝑚

𝑚=1

   (7) 

The residue matrices 𝑅𝑚
∗ , 𝑚 = 1,2, . . . , 𝑁𝑚 are defined by: 

𝑅𝑚 = lim
𝑠→𝜆𝑚

𝐻(𝑠)(𝑠 − 𝜆𝑚). (8) 

It can be shown that the rank of the matrix 𝑅𝑚 is 𝑚 that 𝑅𝑚 can be decomposed as: 

𝑅𝑚 = 𝜓𝑚𝜓𝑚
𝑇 = {

𝜓𝑚(1)

𝜓𝑚(2)
…

𝜓𝑚(𝑁𝑚)

} [𝜓𝑚(1) 𝜓𝑚(2) … 𝜓𝑚(𝑁𝑚)], (9) 

with 𝜓𝑚 a vector representing the “modal shape” of mode 𝑚. From Eq. (7), it is obvious that the 

full transfer function matrix is completely characterized by the modal parameters, the poles  

𝜆𝑚 = −𝜎𝑚 + 𝑖𝜔𝑑,𝑚, and the mode shape vectors 𝜓𝑚, 𝑚 = 1,2, . . . , 𝑁𝑚. 

4.2. Constraints for the modal analyses 

The bottom of the rocket nozzle frame is fixed in all six degrees of freedom, while the other 

parts of the system are free in all six degrees of freedom. Modal analysis with the clamped 

boundary conditions is submitted to MSC.Nastran to extract the first six modes, and the natural 

frequencies and their corresponding vibration mode shapes are obtained. 

4.3. Presentation of results 

The pre-processing and post-processing of the finite element data are accomplished using 

MSC/Patran. The natural frequencies and their corresponding mode shapes are recovered, plotted, 

and animated in three dimensions to provide a visual understanding of the dynamic response. 

Only the lower frequencies and vibration mode shapes are of interest because they adequately 

describe the dynamic behavior of the model [17-19]. Table 1 lists the frequencies and maximum 

displacements of the first six flexible modes. 

As shown in Table 1, the frequency range in the analysis is from 9 Hz to 36 Hz, while the 

range of their corresponding maximum displacements is from 0.07 m to 0.5 m. The corresponding 

vibration mode shapes for the frequencies of the lunar lander are shown in Fig. 5. 

The first mode shape is the rotation of the entire model around the 𝑧 axis (Fig. 5(a)), while the 

second mode shape is the rotation of the entire model around the 𝑥 axis (Fig. 5(b)). As shown in 

the Fig. 5(c), the third mode shape is the stretching along the 𝑦 axis direction. It is noteworthy that 

the bottom of the rocket nozzle is fixed in all six degrees of freedom, so flexible deformation 

occurs on the bottom surface of the model. 
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Table 1. Frequencies and maximum displacement of the first six flexible modes 

Mode 
Frequency 

(Hz) 

Maximum 

displacement (m) 

1 9.145 0.0661 

2 9.246 0.0657 

3 13.193 0.0403 

4 34.972 0.363 

5 35.310 0.371 

6 35.499 0.498 

 

 
(a) The 1st mode 

 
(b) The 2rd mode 

 
(c) The 3rd mode 

 
(d) The 4th mode 

 
(e) The 5th mode 

 
(f) The 6th mode 

Fig. 5. Sketch of the mode shapes of the first six modes 
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As shown in Fig. 5(d), the vibration shape of the 4th mode is the inward bend of two primary 

struts around the junction points between the primary struts and the module, while the others bend 

outwards. All the four primary struts bend inwards for the 5th mode, whereas all of them bend 

outwards for the 6th mode. To sum up, the vibration shapes for the mode 4, mode 5 and mode 6 

are the bends of the primary struts around the junction points between the primary struts and the 

module. 

As shown in Table 1, the value of each frequency is close to the contiguous one. It indicates 

that the lunar lander is likely to resonate, when the frequency of the external excitation is in the 

range from 9 Hz to 36 Hz. Then, small external exciting forces can result in important deformation, 

and possibly, damage can be induced in the structure of the lunar lander.  

It is referred from the Fig. 5 that the maximum displacement of each mode shape is at the 

outside of the footpads. In particular, the maximum displacement for the 6th mode is up to 0.498 m. 

In other word, the primary struts of the landing-gear assemblies and the bottom surface of the 

module are the weakness parts of the lunar lander in the term of modal. 

5. Conclusions 

(1) The nodal stress and displacement distributions under the loads corresponding to 𝑎 = 4 g 

are obtained by performing a linear static structural analysis in MSC.Nastran. The results indicate 

that the stresses are maximum at the point of junction between the primary strut and the secondary, 

while the displacements are maximum at the outside of the footpads. The inner cylinders of the 

primary struts and the junction parts between the primary struts and the secondary struts are the 

weakness parts of the structure in the term of stiffness because of the sharp bends. 

(2) The modal analysis with the clamped boundary condition fixing the bottom of the rocket 

nozzle in all the six degrees of freedom is conducted to determine the first six modes. The 

frequencies range is 9 Hz to 36 Hz, while their corresponding maximum displacements are from 

0.06 m to 0.5 m. The vibration mode shapes for the first three modes are the flexible deformation 

of the bottom surface of the module, whereas another one is the bends of the primary struts. So, 

the bottom surface and the inner cylinders of the primary struts are the weakness parts in the term 

of the vibration. 

(3) The optimizing design for the lunar lander is need to perfect the stiffness and strength of 

the weakness parts. 
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