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Abstract. The vibration signals acquired from rotating machinery are often complex, and fault 

features are masked by background noise. Feature extraction and denoising are the key for rotating 

machinery fault detection, and advanced signal processing method is needed to analyze such 

vibration signals. In this paper, an optimal lifting multiwavelet denoising method is developed for 

rotating machinery fault detection. Minimum energy entropy is used as the metric optimize the 

lifting multiwavelet coefficients, and the optimal lifting multiwavelet is constructed to capture the 

vibration signal characteristics. The improved denoising threshod method is used to remove the 

background noise. The proposed method is applied to turbine generator and rolling bearing fault 

detection to verify the effectiveness. The results show that the method is a robust approach to 

reveal the impulses from background noise, and it performs well for rotating machinery fault 

detection. 
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1. Introduction 

Rotating machinery is widely used in industry applications. The malfunctions of rotating 

machinery may lead to breakdowns, loss of production, and even human casualties. Effective fault 

detection techniques are necessary for guaranteeing the safety of rotating machinery [1]. 

A variety of available techniques have been proposed for rotating machinery fault detection. 

In [2], Kurtogram is developed to extract high-frequency features from several kinds of faulty 

signals from rotating machinery. In [3], multivariate EMD and full spectrum are employed for 

rotating machinery condition monitoring. In [4], vibration, acoustic emission and oil debris on-line 

monitoring are combined for rotating machiery condition monitoring. A neuro-fuzzy approach is 

proposed for rotating machinery fault diagnosis in [5]. In [6], a fault classifier based on weighted 

support vector data description is developed for rotating machinery fault diagnosis. However, 

vibration signal characteristics usually are hidden in the background noise. It is a challeging task 

to extract fault features from the background noise. 

Wavelet is a good time-frequency analysis tool, and it has the advantages to extract the fault 

features of rotating machinery from the background noise [7-9]. Since the vibration signal is 

complex and the characteristics are corrupted by the background noise, it is not a good way to 

capture fault features with a single wavelet function. Multiwavelet possesses two or more wavelet 

functions, and it has the potential to well match vibration signal characteristics and extract fault 

featues accurately. A multiwavelet denoising method with improved neighboring coefficients is 

applied to rolling bearing fault diagnosis in [10]. In [11], an improved adaptive redundant lifting 

multiwavelet is constructed for compound faults detection of rotating machinery. In [12], a 

customized multiwavelet lifting schemes is developted for gear fault detection. 

In this paper, an optimal lifting multiwavelet is presented. It is constructed to capture the 

rotating machinery fault features from the background noise. Lifting multiwavelet principle is 

reviewed in section 2. In section 4, optimal lifting multiwavelet is constructed. The optimal lifting 

scheme is applied to analyze the simulation experiment and rotating machinery vibration signals 

in section 4. Conclusions are given in section 5. 
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2. Lifting multiwavelet principle 

2.1. Summary of multiwavelet 

Multiwavelet has scaling functions vector Φ = [𝜑1, 𝜑2, . . . , 𝜑𝑟]
𝑇 and wavelet functions vector 

Ψ = [𝜓1, 𝜓2, . . . , 𝜓𝑟]
𝑇, where 𝑟 > 1 is an integer [13]. The subspace 𝑉𝑗 is denoted as: 

𝑉𝑗 = 𝑠𝑝𝑎𝑛{2𝑗 2⁄ 𝜑𝑖(2
𝑗𝑡 − 𝑘): 1 ≤ 𝑖 ≤ 𝑟, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑍}. (1) 

Similar to scalar wavelet, the vectors Φ  and Ψ  satisfy the following two-scale matrix 

refinement equation: 

Φ(𝑡) = √2∑𝐻𝑘Φ(2𝑡 − 𝑘)

𝑘

,    𝑘 ∈ 𝑍, (2) 

Ψ(𝑡) = √2∑𝐺𝑘Φ(2𝑡 − 𝑘)

𝑘

,   𝑘 ∈ 𝑍, (3) 

where 𝐻𝑘 and 𝐺𝑘 are lowpass and highpass matrix filters, respectively. 

Chui-Lian multiwavelet system was developed by Chui and Lian [14], its multiwavelet 

functions are illustrated in Figure 1. Chui-Lian multiwavelet has the good properties, such as 

symmetry and anti-symmetry, orthogonality, short support, and with 2 vanishing moment, which 

are very important for mechanical fault feature detection [15]. In this paper, we adopt Chui-Lian 

multiwavelets as the initial multiwavelet to construct the optimal lifting multiwavelet for fault 

feature extraction. 

  
Fig. 1. Multiwavelet functions of Chui-Lian multiwavelet 

2.2. Multiwavelet lifting scheme 

Lifting scheme provides a valuable approach for multiwavelet to customize the multiwavelet 

functions and achieve the good properties such as vanishing moments, orthogonality, symmetry 

and compact support. 

Proposition 1 [16-18]. Take the original multiwavelet function and multiscaling function 

vectors {Φ,Ψ,Φ̃,Ψ̃}  and the new multiwavelet function and multiscaling function vectors 

{Φ𝑛𝑒𝑤, Ψ𝑛𝑒𝑤, Φ̃𝑛𝑒𝑤, Ψ̃𝑛𝑒𝑤} that share a multiscaling function vector, namely, Φ = Φ𝑛𝑒𝑤. Then, 

{Φ𝑛𝑒𝑤, Ψ𝑛𝑒𝑤, Φ̃𝑛𝑒𝑤, Ψ̃𝑛𝑒𝑤} are constructed from {Φ,Ψ,Φ̃,Ψ̃} with lifting steps as follows: 

Φ𝑛𝑒𝑤(𝑧) = Φ(𝑧),

Ψ𝑛𝑒𝑤(𝑧) = 𝑇(𝑧2)(Ψ(𝑧) + 𝑆(𝑧2)Φ(𝑧)),

Φ̃𝑛𝑒𝑤(𝑧) = Φ̃(𝑧) − 𝑆∗(𝑧2)Ψ̃(𝑧),

Ψ̃𝑛𝑒𝑤(𝑧) = (𝑇∗(𝑧2))
−1

Ψ̃(𝑧),

 (4) 
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where 𝑆(𝑧) and 𝑇(𝑧) are of finite degree lifting matrices. 

From (4), we can add the vanishing moments with lifting to construct the new multiwavelet 

basis and obtain the desirable multiwavelet properties. 

Suppose the multiscaling function vector Φ has 𝑛 approximation order and the multiwavelet 

function vector Ψ has 𝑛 vanishing moments, then: 

∫ Φ(𝑥)𝑥𝑝𝑑𝑥 = 0,

∫ Ψ(𝑥)𝑥𝑝𝑑𝑥 = 0,
 (5) 

where 𝑝 = 0, . . . , 𝑛 − 1. Take 𝑀Φ,𝑛 = ∫ Φ(𝑥)𝑥𝑛𝑑𝑥 and 𝑀𝛹,𝑛 = ∫ Ψ(𝑥)𝑥𝑛𝑑𝑥, from (2), (3), (4) 

and (5), then the moments of Φ and Ψ are denoted as [16]: 

𝑀Φ,𝑛 = ∑∑𝐻𝑘 (
𝑛
𝑗) 𝑘𝑗𝑀Φ,𝑛−𝑗 ,

𝑘∈𝑍

𝑛

𝑗=0

𝑀Ψ,𝑛 = ∑∑𝐺𝑘 (
𝑛
𝑗) 𝑘𝑗𝑀Φ,𝑛−𝑗 .

𝑘∈𝑍

𝑛

𝑗=0

 (6) 

Given 𝜔(𝑥) with 𝑛 vanishing moments is the initial multiwavelet basis, the new multiwavlet 

basis 𝜔𝑛𝑒𝑤(𝑥) with specified numbers of vanishing moments 𝑘 is constructed via lifting steps as 

follows: 

𝜔𝑛𝑒𝑤(𝑥) = 𝜔(𝑥) − ∑𝑐𝑖𝜔𝑖(𝑥)

𝑚

𝑖=1

, (7) 

where 𝜔1(𝑥), . . . , 𝜔𝑚(𝑥)  are a combination of 𝑚  tanslates of multiscaling functions and 

multiwavelet functions, and 𝑐1, 𝑐2, . . . , 𝑐𝑚 are the lifting coefficients. Since ∫ 𝜔𝑛𝑒𝑤(𝑥)𝑥𝑝𝑑𝑥 = 0, 

𝑝 = 0, . . . , 𝑘 − 1, then, 𝑐1, 𝑐2, . . . , 𝑐𝑚 are obtained with the following equation: 

[
 
 
 

∫ 𝜔(𝑥)𝑥𝑛𝑑𝑥

∫ 𝜔(𝑥)𝑥𝑛+1𝑑𝑥
⋮

∫ 𝜔(𝑥)𝑥𝑘−1𝑑𝑥]
 
 
 

−

[
 
 
 

∫ 𝜔1(𝑥)𝑥𝑛𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑛𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑛𝑑𝑥

∫ 𝜔1(𝑥)𝑥𝑛+1𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑛+1𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑛+1𝑑𝑥
⋮ ⋮ ⋯ ⋮

∫ 𝜔1(𝑥)𝑥𝑘−1𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑘−1𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑘−1𝑑𝑥]
 
 
 

[

𝑐1

𝑐2

⋮
𝑐𝑚

] = [

0
0
⋮
0

]. (8) 

3. Optimal lifting multiwavelet construction 

3.1. Optimal lifting multiwavelet construction based on energy entropy 

Lifting multiwavelet gives us the freedom to modify the initial multiwavelet basis properties, 

and we can use the freedom to construct the finer multiwavelet basis. It motivates us to construct 

the optimal lifting multiwavelet to well match the signal characteristics. 

Energy entropy is an effetive tool to capture the fault features [19]. In order to construct the 

optimal lifting multiwavelet, minimal energy entropy of different decompostion frequency band 

signals is used as the metric to optimize the lifting multiwavelet coefficients in this paper. 

Given the vibration signal 𝑥(𝑛)  is decomposed into 𝑗  level with multiwavelet, and the 

approximation signal and detail signals for each multiwavelet function are 𝐴𝑗(𝑛) , 𝐷𝑗(𝑛) , 

𝐷𝑗−1(𝑛), …, 𝐷1(𝑛), respectively. 

The energy 𝐸𝑖 of the detail signal 𝐷𝑖(𝑛) is calculated as: 
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𝐸𝑖 = ∑|𝐷𝑖(𝑛)|2

𝑛

, (9) 

where 𝑖 = 1,2, … , 𝑗. The energy 𝐸𝑗+1 of the approximation signal 𝐴𝑗(𝑛) is calculated as: 

𝐸𝑗+1 = ∑|𝐴𝑗(𝑛)|2

𝑛

. (10) 

The energy entropy is defined as: 

𝑝𝑙 =
𝐸𝑙

∑ 𝐸𝑚
𝑗+1
𝑚=1

, (11) 

𝐻 = −∑𝑝𝑙log𝑝𝑙

𝑗+1

𝑙=1

, (12) 

where 𝑝𝑙  is the energy probability distrubution of 𝐸𝑙  in the whole vibration signal energy 

∑ 𝐸𝑚
𝑗+1
𝑚=1 , and 𝐻 is the energy entropy value. The minimum energy entropy is adopted to construct 

the optimal lifting multiwavelet. 

In this paper, an optimal lifting multiwavelet is constructed to capture the vibration signal 

characteristics. The construction process is as follows: 

(1) Given that the vanishing moment of the initial multiwavelet basis is 𝑛, the vanishing 

moment of the new multiwavelet basis via lifting steps is 𝑘, and 𝑚 translates of multiwavelet 

functions and multiscaling functions are used to modify the initial multiwavelet basis. 

(2) In order to construct the oprimal lifting multiwavelet, make 𝑚 > 𝑘 − 𝑛 , and the 

equation (8) becomes an underdetermined equation. We add a (𝑚 − 𝑘 + 𝑛) × 𝑚  random 

parameter matix to equation (8), and its element is denoted as 𝑝𝑖,𝑗 , 𝑖 = 1, . . . , 𝑚 − 𝑘 + 𝑛 ,  

𝑗 = 1, . . . , 𝑚. The equation (8) becomes a determined equation as follows: 

[
 
 
 
 
 
 
 

∫ 𝜔(𝑥)𝑥𝑛𝑑𝑥

∫ 𝜔(𝑥)𝑥𝑛+1𝑑𝑥
⋮

∫ 𝜔(𝑥)𝑥𝑘−1𝑑𝑥

∫ 𝜔(𝑥)𝑥𝑘𝑑𝑥
⋮

∫ 𝜔(𝑥)𝑥𝑚+𝑛−1]
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 

∫ 𝜔1(𝑥)𝑥𝑛𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑛𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑛𝑑𝑥

∫ 𝜔1(𝑥)𝑥𝑛+1𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑛+1𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑛+1𝑑𝑥
⋮ ⋮ ⋯ ⋮

∫ 𝜔1(𝑥)𝑥𝑘−1𝑑𝑥 ∫ 𝜔2(𝑥)𝑥𝑘−1𝑑𝑥 ⋯ ∫ 𝜔𝑚(𝑥)𝑥𝑘−1𝑑𝑥
𝑝1,1 𝑝1,2 … 𝑝1,𝑚

⋮ ⋮ ⋱ ⋮
𝑝𝑚+𝑛−𝑘,1 𝑝𝑚+𝑛−𝑘,2 … 𝑝𝑚+𝑛−𝑘,𝑚 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑐1

𝑐2

 
 
⋮
 
 

𝑐𝑚]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
0
0
⋮
0
0
0]
 
 
 
 
 
 
 

. (13) 

The lifting coefficients vector is calculated from euation (13). Genetic algorithm is a good 

optimization method [18]. In this paper, minimum energy entropy is used as the metric, and we 

adopt genetic algorithm to optimize the lifting coefficients vector and select the optimal lifting 

coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑚 to capture the signal characteristics. 

(3) By using the optimal lifting coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑚, we can further perform 𝑧 transform 

to obtain the optimal multiwavelet with (4). 

3.2. The proposed method for rotating machinery fault detection 

Denoising and extraction of weak fault features from background noise are the important topic 

for rotating machinery fault diagnosis. In this paper, we use the optimal lifting multiwavelet which 

is constructed in Section 3.1, and propose an optimal lifting multiwavelet denoising method for 

rotating machinery fault detection. 
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Hard threshold and soft threshold are the common wavelet denoising methods [20]. We 

perform the improved threshold method to deal with the multiwavelet detail signal coefficients 

𝑑𝑗,𝑘 at level 𝑗. 

�̂�𝑗,𝑘 = {
𝑑𝑗,𝑘, |𝑑𝑗,𝑘| ≥ 𝜆𝑇𝑗 ,

0, |𝑑𝑗,𝑘| < 𝜆𝑇𝑗 ,
 (14) 

where 𝜆 is a constant, and its value is selected according to the noise level. 𝑇𝑗 is the denoising 

threshold at level 𝑗, and it is obtained by [21]: 

𝑇𝑗 =
𝜎𝑗√2𝑙𝑛(𝑁𝑗)

ln(𝑗 + 1)
, (15) 

where 𝜎𝑗  is the signal standard deviation at level 𝑗 , and 𝑁𝑗  is the multiwavelet detail signal 

coefficients length at level 𝑗. 
The procedures of the proposed method for rotating machinery fault detection are as follows: 

(1) Perform the optimal lifting multiwavelet to decompose the vibration signal. 

(2) The multiwavelet detail signal coefficients are thresholded with the improved threshold 

method. 

(3) The thresholded multiwavelet detail signal coefficients are reconstructed. 

(4) The rotating machinery fault features are extracted. 

4. Applications to the fault diagnosis of rotating machinery 

4.1. Fault detection of a turbine generator 

In a thermal-electric plant, a turbine generator set consists of high pressure turbine, low 

pressure, generator and exciter. The rotating speed of the set is 3000 r/min, and its rotating 

frequency is 𝑓 = 50 Hz, namely, the rotating period is 20 ms. Eddy current transducers were 

mounted to acquire vibration signals of the set. The sampling frequency is 2000 Hz. 

It was found that the vibration of the high pressure turbine was violent and it was greater than 

others while the set running. For detecting the fault, the vibration signal is acquired from bearing 

bush of the high pressure turbine. The vibration signal of the high pressure turbine is shown in 

Figure 2, and the useful information is hidden in the background noise. 

 
Fig. 2. Vibration signal of the high pressure turbine 

The spectrum of the vibration signal is illustrated in Figure 3. The vibration frequency 

components mainly consist of rotating frequency 50 Hz and its harmonics, and no obvious fault 

frequencies can be found. 



1149. AN OPTIMAL LIFTING MULTIWAVELET FOR ROTATING MACHINERY FAULT DETECTION.  

JIANG HONGKAI, WANG HAN, ZHOU YONG 

308 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716  

 
Fig. 3. The spectrum of the vibration signal 

The proposed optimal lifting multiwavelet denoising method is used to analyze the vibration 

signal of the high pressure turbine, and the result is illustrated in Figure 4. The background noise 

is removed. From the result, there exist strong impulse and its period is 40 ms, and it occurs one 

time every two rotating period. The frequency of the strong impulse is 25 Hz, and it is equal to 

the half of the rotating frequency 50 Hz. The strong impulses are the reason that leads to violent 

vibration of high pressure turbine. Thus, the fault feature of high pressure turbine in time domain 

is well detected with the proposed method. 

 
Fig. 4. Vibration signal analyzed result with the proposed method 

  
Fig. 5. Vibration signal analyzed result with multiwavelet denoising method 

For comparison, multiwavelet denoising method and wavelet denosing method are used to 

analyze the same vibration signal, and the results are shown in Figure 5 and Figure 6, respectively. 

In Figure 5, the background noise is also removed with multiwavelet denoising method, but not 
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all impulses are detected. In Figure 6, many impulses are removed as noise. The fault features are 

not well extracted. 

 
Fig. 6. Vibration signal analyzed result with wavelet denoising method 

4.2. Fault detection of rolling bearing 

Rolling bearings are the important parts in industry. A rolling bearing with inner raceway fault 

was used to verify the effectiveness of the proposed method. The parameters of the rolling bearing 

are shown in Table 1. 

Table 1. Rolling bearing parameters 

Pitch diameter Rolling element diameter Rolling element number Contact angle 

65 mm 15 mm 8 0° 

The rotating speed was 460 r/min, and the sampling frequency was 20 kHz. The inner raceway 

characteristic fault frequency of rolling bearing is 38 Hz, and the impulse period is 26 ms. The 

vibration signal of rolling bearing is illustrated in Figure 7. The vibration signal is complex, and 

we can not obtain the useful fault information. 

 
Fig. 7. Vibration signal of the rolling bearing 

The proposed optimal lifting multiwavelet denoising method is applied to analyze the rolling 

bearing vibration signal, and the result is presented in Figure 8. The background noise in the 

vibration signal is removed, and the periodic impulses are well detected. The impulse period is 

26 ms, and its frequency is 38 Hz, which is the same as the inner raceway characteristic fault 

frequency of rolling bearing. 

Multiwavelet denoising method and wavelet denosing method are also adopted to analyze the 

same rolling bearing vibration signal, and the results are presented in Figure 9 and Figure 10, 
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respectively. From the results, multiwavelet denoising method and wavelet denosing method fail 

to detect rolling bearing inner raceway fault feature, and the impulses are not well detected. 

  
Fig. 8. Rolling bearing vibration signal analyzed result with the proposed method 

 
Fig. 9. Rolling bearing vibration signal analyzed result with multiwavelet denoising method 

  
Fig. 10. Rolling bearing vibration signal analyzed result with wavelet denoising method 

5. Conclusions 

In this paper, we have developed an optimal lifting multiwavelet denoising method for rotating 

machinery fault detection. Firstly, minimum energy entropy is used as the objective function, the 

lifting multiwavelet coefficients are optimized to match the vibration signal characteristics, and 

the optimal lifting multiwavelet is constructed. Then, the denoising threshold method is improved 

to remove the background noise. 

The proposed method is applied to the analysis of a turbine generator vibration signal and 

rolling bearing vibration signal. The application results show that it performs better than 

multiwavelet denoising method and wavelet denoising method. Therefore, the proposed method 

is an effective tool to detect rotating machinery fault features from the background noise. 
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