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Abstract. Although the Monte-Carlo Simulation (MCS) technique can evaluate a reliability of 

most structural systems, its processing time equals, approximately, the reciprocal of the 

probability of failure. While the Stochastic Finite Element (SFE) method could help to solve such 

a drawback, it is limited to specific computer programs, in which the mean and the coefficient of 

random variables are estimated by a perturbation, or by a weighted integral method. Therefore, 

SFE may not be easily applicable when using commercial software or systems that are not 

prepared with the prerequisite programming. To overcome these limitations, the RSM can be 

applied, because its accuracy depends on both the distance of axial points, and the linearity of the 

Limit State Functions (LSFs). The correlation among random variables and the response of a 

system is evaluated by composing a Bayesian belief nets (BBN). Consequently, the proposed 

Linear Adaptive Weighted Response Surface Method (LAW-RSM) with BBN modeling produces 

improved converged reliability indices than conventional RSMs and detail observation for the 

uncertainties in structural components.  

Keywords: risk assessment, response surface method, adaptive weighted, Bayesian belief 

networks.  

1. Introduction 

The research presented in this paper was motivated not just by the limitations in conventional 

probabilistic simulation methods, but the limitation of correlation modeling for systems as well. 

Monte-Carlo Simulation (MCS) is usually employed to any system for evaluating the spatial and 

time-dependent variability of uncertainties, regardless of the strength of the correlation among its 

components. However, the processing time of MCS is approximately proportional to the 

reciprocal of the probability of failure. To overcome this disadvantage, stratified sampling in 

survey engineering specifically applied to MCS, Latin hyper cube method, and Markov chain 

modeling have been developed. Essentially, they reduce the processing time by means of 

algorithms specially designed to do so. 

Other promising approach to reduce computational demands is the combination of the Monte 

Carlo based SFE with analytical procedures, such as the Response Surface Method (RSM). 

However, the more random variables the problem has, the more time spent to perform the 

FE-computations to determine points on the limit state, time that may even be higher than the one 

required by direct MCS. 

So far, some applications of the RSM have been mentioned, but no more details of such a 

method have been provided. Basically, the RSM was developed by Box and Wilson (1951), and 

offers an alternative way for simulating systems indirectly, in less time and with less effort than 

traditional approaches such as MCS. Although the RSM was first used for maximizing the 

efficiency of a chemical factory’s operational area, now it is widely employed in many civil 

engineering applications (Bucher et al., 1990; Rajaschekhar et al., 1996). Such a method has the 

following main two advantages: 

1) The implicit Limit State Function (LSF) consists of user-selected input variables, and 

2) The stochastic probability can be analyzed by selecting time or space-dependent input 
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variables for the LSF. 

The LSF (also called ‘performance function’), is an expression in which each random variable 

must be transformed into a standard normal Gaussian random variable. To do so, a mapping 

process is carried out, where the physical value of a vector called ‘𝑥’, for each random variable, 

should match a standard normal vector called ‘𝑢’, by associating the probability levels of the 

corresponding cumulative distribution functions. This process leads to the conversion of the 

probability of failure into a standard-normal space. 

After defining the performance function, the probability of its occurrence is easily obtained by 

differentiating the resultant equation. Therefore, unlike MCS, with the RSM it is possible to 

calculate such a probability, even for complicated structures with numerous degrees of freedom. 

Moreover, since the RSM reproduces the response of a complex structural system in an explicit 

form, it can be applied for predicting the behavior of, for instance, deteriorated concrete structures 

by cyclic freeze-thaw (Cho, 2007; Cho et al., 2013), or estimation the probability of bridge’s 

failure modes, or a technique for fatigue reliability evaluation of a steel welding member (Nowak 

et al., 2007; Park and Kang 2013). 

Having approximated the structure’s response to a fitted explicit LSF, the RSM is next utilized 

to calculate the probability of its occurrence. Using the fitted function of important selected 

variables, the LSF is then employed for the safety evaluations, with a significantly reduced amount 

of structural analyses, than that of MCS (note that a complete numerical example will be detailed 

later, showing the RSM application). 

Based on the selection of axis points, the resultant reliability index can be changed. In fact, 

this dependency might be improved by a response surface augmented moment method (RSMM) 

(Lee et al., 2006) using 3𝑛 full factorial experimental design, with 5 levels and weights, resulting 

from the estimation of the respective moment. 

The main objective and scope of this piece of research are to review the benefits and limitations 

of conventional RSM techniques, and to compare their convergence while changing the linearity 

of LSFs, by means of a numerical example. 

It is important to mention that both cases only consider the use of quadratic polynomial 

response surfaces, without cross product. This particular type has been used, because it can help 

to fill the existing gap between an exact solution (theoretically obtained), and the iteratively fitted 

one.  

Since the latter one is a linear regression determined by an iterative method, the aim of this 

piece of research is to compare both quadratic and linear approaches and, precisely, identify the 

exact solution. In the end, it is intended to develop an improved RSM that converges more rapidly 

than traditional ones, regardless of the evaluation of linear or nonlinear LSFs.  

Regarding correlation modeling for structural systems bayesian belief nets model is introduced 

in section 2.2, applied to an example in section 3.2. 

2. Problems of basic response surface method 

2.1. Diverging example 

To analyze this type of problem, a face slab of a Concrete Face Rock-fill Dam (CFRD) has 

been selected (see Fig. 1). Such a section of the continuous slab is considered as a cantilever beam 

for the analysis, being the support the lower part. With the setting of a combination of fixed and 

seismic load equivalent to 0.154 g, the maximum moment external loads at the critical location of 

the cantilever beam were calculated with Strand-7, a commercial finite element program. 

The continuous face slab of the target CFRD dam is supported by uniformly compacted 

foundation. Hence the settlement of structure will be ignorable. The material model is mainly 

composed of 24 MPa compressive strength concrete and reinforcements of 300 MPa ultimate 

strength, which limits surface crack in terms of over 0.4 % reinforcing volume ratio. The material, 
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structural and geometric information for the selected elements are like the following Fig. 1. As 

can be seen, the maximum moment was 8.51 kN-m. 

 
(a) Mesh for FE Model 

 
(b) 𝑀𝑚𝑎𝑥 =51 kN-m 

Fig. 1. (a) FE Model and (b) resultant factored external moment of the example structure 

Next, three axial points were chosen to construct the response function with a gap of ± 

(standard deviation) between center points (the average of random variables), and axial points. 

The performance of the target beam was then calculated using the LSFs for estimating the 

probability of flexural failure, when the value of the function is less than or equal to zero.  

A maximum crack width is now calculated in order to predict the probability for this width to 

exceed the design criteria. To do so, a response surface based on a quadratic RSM has been utilized, 

and compared with the results of both MCS and FOSM. Under an external service moment of 

7.30∙106 kN-mm at the critical location of the cantilever beam, the serviceability LSF for the crack 

width was evaluated as: 

𝑔(⋅) = 𝑤𝑎𝑙𝑙𝑜𝑤   −  𝑤max, (1) 

𝑤𝑎𝑙𝑙𝑜𝑤 = 0.0035 × 𝑡𝑐 = 0.037 mm, (for a general corrosive environment), (2) 

𝑤max = 1.08 ⋅ 𝛽 ⋅ 𝑓𝑠√
𝑑𝑐,min ⋅ 𝐴𝑠
100000

  = 0.009 mm, (3) 

where: 

𝑡𝑐 =
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡

2
= 10.50 mm, 

𝑑𝑐,min = 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 𝑑𝑒𝑝𝑡ℎ = 20 mm, 
𝛽 = (𝐻 − 𝑘 ⋅ 𝐷)/(𝐷 − 𝑘 ⋅ 𝐷) = 1.068, 
𝐻 = 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚, 

𝑘 = −𝑛𝑝 + √(𝑛𝑝)2 + 2𝑛𝑝 = 0.229, 
𝑝 = 0.003775, 

𝑛 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑎𝑛𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝐸𝑠/𝐸𝑐 = 200000 (4700√𝑓𝑐𝑘)⁄ = 9, 

𝑓𝑐𝑘 = 𝑡ℎ𝑒 28𝑡ℎ 𝑑𝑎𝑦 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 
𝐷 = 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚 = 400 mm, 

𝑓𝑠 = 𝑡ℎ𝑒 𝑠𝑡𝑒𝑒𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑀𝑒 𝐴𝑠 (𝐷 −
𝑥

3
)⁄ = 14.518 MPa, 
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𝑥 = 𝑘 ⋅ 𝐷 = 86.930 mm, 

𝐴𝑠 = 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑖𝑛𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠 =
2 ⋅ 𝑑𝑦 ⋅ 𝐵

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠
=  8000 mm2, 

𝑑𝑦 = 𝑑𝑐,min = 20 mm. 
Table 1 shows the random variables used in each case (where 𝑀𝑒 is the unfactored external 

moment), as well as their mean values and coefficients of variation (C.O.V.) assuming a normal 

distribution. 

Table 1. Random variables and statistical values 

Random variables Notation for the Random variables Mean value C.O.V. Distribution 

𝑀𝑒 (N-mm) 𝑋1 7.30E+06 0.12 Normal 

𝐴𝑠 ( mm
2) 𝑋2 87.972~351.9 0.015 Normal 

𝐷 (mm) 𝑋3 400 0.015 Normal 

𝑓𝑐𝑘 (N/mm2) 𝑋4 0.24 0.119 Normal 

𝑑𝑐,min (mm) 𝑋5 20 0.015 Normal 

The performance of the target beam has been calculated using the LSFs presented in Eqs. (4) 

and (5), composed by a quadratic RSM as follows: 

𝑔(⋅) = 𝑤𝑎𝑙𝑙𝑜𝑤 − (𝑎0 +∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝑎𝑖𝑥𝑖
2

𝑛

𝑖=1

), (4) 

and the LSF for MCS or FOSM is: 

𝑔(⋅) = 𝑤𝑎𝑙𝑙𝑜𝑤 − 1.08 ⋅ 𝛽 ⋅ 𝑓𝑠√
𝑑𝑐,min ⋅ 𝐴𝑠
100000

, (5) 

where 𝑔(⋅) is again the LSF and ai represents the coefficients of the response function. Making 

use of the values calculated above, and assuming a 0.1 coefficient of variation for the 𝑤𝑎𝑙𝑙𝑜𝑤, the 

statistical values of the selected random variables are estimated in Table 5. The load term in the 

LSF is evaluated by RSM+FOSM, FOSM, and MCS, equivalent to the expected maximum crack 

width calculated as 𝑋6  in the same Table, following the Korean Concrete Institute 

recommendations. 

The coefficients of the response surface constructed by a least square method, while varying 

the area of reinforcements in Table 2, are as follows: 

𝑔(⋅) = 𝑤𝑎𝑙𝑙𝑜𝑤 −

(

 
 

0.734 + 1.899 ⋅ 10−8𝑥1 − 9.564 ⋅ 10
−3𝑥2 − 1.151 ⋅ 10

−3𝑥3
+1.012 ⋅ 10−10𝑥4 + 3.869 ⋅ 10

−3𝑥5 + 6.262 ⋅ 10
−22𝑥1

2

+4.521 ⋅ 10−5𝑥2
2 + 9.769 ⋅ 10−7𝑥3

2 − 2.108 ⋅ 10−12𝑥4
2

−3.869 ⋅ 10−5𝑥5
2

)

 
 
. (6) 

The response surface functions (expressions in parenthesis in Eq. (6) are used as the demand 

terms in the LSFs. After constructing the LSFs of such Eq. (6), the reliability indices can be 

calculated by FOSM. In contrast, reliability indices for Eq. (6) were evaluated by MCS and FOSM. 

Three kinds of reinforcement areas are considered for varying demand terms in the LSFs. The 

compared results of RSM (+FOSM) against MCS and FOSM, show increased differences than 

those in the previous example (only 6 %), being now 53.4 % the maximum difference, when the 

reinforcement area is 351.9 mm2 (see Table 3). 
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Table 2 Coefficients of RSM with varying area of reinforcements (unit = see Table 1) 

Analysis 

cases 

Random variables 𝐴𝑠 = 87.972 𝐴𝑠 = 175.944 𝐴𝑠 = 351.9 

𝑋1 = 𝑀𝑒 𝑋2 = 𝐴𝑠 𝑋3 = 𝐷 𝑋4 = 𝑓𝑐𝑘 𝑋5 = 𝑑𝑐,min 𝑋6 = 𝑤max 𝑋6 = 𝑤max 𝑋6 = 𝑤max 
CASE1 7.30E+06 351.9 400 0.24 20 1.39E-01 6.97E-02 0.034824189 

CASE2 8.18E+06 351.9 400 0.24 20 1.56E-01 7.69E-02 0.039003091 

CASE3 6.42E+06 351.9 400 0.24 20 1.23E-01 6.22E-02 0.030645286 

CASE4 7.30E+06 357 400 0.24 20 1.37E-01 6.86E-02 0.034309546 

CASE5 7.30E+06 347 400 0.24 20 1.41E-01 7.07E-02 0.035354506 

CASE6 7.30E+06 351.9 406 0.24 20 1.37E-01 6.86E-02 0.034278666 

CASE7 7.30E+06 351.9 394 0.24 20 1.42E-01 7.08E-02 0.035387295 

CASE8 7.30E+06 351.9 400 0.269 20 0.139 0.06965 0.034824189 

CASE9 7.30E+06 351.9 400 0.211 20 0.139 0.06965 0.034824189 

CASE10 7.30E+06 351.9 400 0.24 20.3 0.140 0.07000 0.034997429 

CASE11 7.30E+06 351.9 400 0.24 19.7 0.139 0.06930 0.034649207 

Again, this value compared with the results obtained earlier, related to the differences among 

the simulation methods, reveals bigger discrepancies between RSM (+FOSM) and FOSM (or 

MCS), mainly as a result of the increased nonlinearity in the LSF – Eq. (2) and Eq. (5).  

In Table 3, the three different methods are used and compared for the evaluation of the same 

LSFs. This example shows the diverging issues already mentioned, which lead directly to the 

proposition of an improved RSM. 

In Table 3, the negative reliability indices indicate that there are severe discrepancies between 

ultimate limit state and serviceability limit state. Note that the safety margin for the serviceability 

limit state is relatively low, due to the risk of the two events. Having analyzed these examples 

with traditional approaches, now one that overcomes the limitations of the previous two will be 

presented. 

Table 3 Reliability index and Probability of failure by three different evaluation methods for the three 

ultimate resistance cases of investigation with increasing area of reinforcements 

Amount of 

reinforcement 

Reliability 

index 

Quadratic 

RSM 
FOSM [25] MCS 

Comparison by 

 
𝐴𝑠 = 87.972 mm2 𝛽 -6.043 -6.489 NA* 0.931 

𝐴𝑠 = 175.94 mm2 𝛽 -4.137 -4.637 NA* 0.892 

𝐴𝑠 = 351.9 mm2 𝛽 0.512 0.966 0.951 0.534 

NA*: If the probability of failure (𝑃𝑓) is too small, it is almost not feasible to obtain the  

𝑃𝑓 by Monte-Carlo Simulation.  

2.2. Bayesian Belief Network model (BBN) 

The correlation among random variables for infra structures has been studied in a various way. 

The most well-known general modeling technique is event tree analysis (ETA) or fault tree 

analysis (FTA), which are convenient for qualitative analysis but hard to model for various sources. 

Markov process modeling overcame the weakness of ETA and FTA although it is not appropriate 

for modeling complex system. 

The correlation modeling has been specifically dealt by bayesian update modeling technique. 

Since 1985, BBN could model a highly correlated causal system in an inductive way, which cannot 

determine the distribution of effects from results to cause direction. Therefore, the inverse way of 

BBN is proposed in this research in order to identify the role of random variables to consequential 

result considering correlation among random variables of each member.  

BBN are a graphical structure known as a directed acyclic graph (DAG). A DAG is a set of 

nodes and arcs, or directed edges, between nodes, such that there is no directed cycle.  

RSM

FOSM+MCS

2
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BBN is typically built by first finding an appropriate structure either by interviewing an expert, 

or by selecting a good model from training data, and then using a training sample to estimate the 

parameters (Darwiche, 2000). The resulting belief net is then used to answer queries based on 

joint probability.  

Compared with event tree analysis (ETA) or fault tree analysis(FTA), BBN could evaluate and 

detect a partial failure in a probabilistic quantification, which is not allowed in ETA or FTA. It 

additionally overcome the exponentially increased complexity in stochastic modeling of Markov 

Model by employing zipping techniques. This feature is shown by showing superiority to Markov 

Chain Monte Carlo Simulation as well, i.e., Metropolis method or Gibbs Sampling in terms of 

simplification by zipping. 

The steps of uncertainty analysis in a BBN model are as follows: 

1) defines a set of random variables;  

2) defines a joint distribution for these random variables;  

3) defines other variables which are functions of the random variables; 

4) Monte Carlo samples the entire joint distributions (probabilistic and functional variables); 

5) communicates the probabilistic prediction results, 

where, the random variables are assigned marginal distributions, followed by a specification of a 

DAG to capture conditional relations. Probabilistic influence between parent and child is 

represented as conditional rank correlation. A joint probability density for the probabilistic nodes 

is built using the joint normal copula to realize the dependence relations. This density can be 

updated analytically, or sampled and analyzed with Monte Carlo Simulations. 

3. The linear adaptive weighted response surface method 

3.1. Improvement techniques 

In spite of the two issues discussed before, the merits of the basic RSM are remarkable, and 

perhaps that is the reason why it has been widely applied for carrying out reliability analysis. The 

approximation of structural responses, however, would show relatively large errors depending on 

the nonlinearity form of the LSFs. Irfan et al. (2005) proposed a weighted regression method in 

which the response surface function was formulated by assigning higher weights to the variable 

that was closer to the limit state. To do so, they adopted an 𝑛 × 𝑛 diagonal matrix of weights and 

the best design, amongst the responses from the performance function corresponding to the design 

matrix, was selected. Consequently, the distance among input random variables is optimally 

determined. This occurs when the LSFs approaches to zero. Thus, the best response can be given 

as: 

𝑓𝑏𝑒𝑠𝑡 = min(|𝑔(𝑥)𝑖|), (7) 

where 𝑓𝑏𝑒𝑠𝑡 is the determined best value amongst the axis points, and 𝑔(𝑥)𝑖 is the fitted response 

on the response surface, composed by center and axis points at the iteration step. 

The component of the weighted matrix in each iterative calculation can be expressed in the 

following manner: 

𝑤𝑖 = exp (−
𝑔(𝑥)𝑖 − 𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡
), (8) 

where 𝑤𝑖  is the component of the weighted matrix, and needs to be multiplied by the center or 

axis points, for composing an improved response surface for the next iterative step. Consequently, 

the longer arm length between axis points is reduced, providing closer design points than the old 

axis points. 
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To improve the convergence and accuracy when dealing with nonlinear LSFs, a first 

approximation could be to integrate the weighted matrix with the adaptive iteration developed by 

Rackwitz-Fiessler, leading to the establishment of the adaptive weighted response surface (AWRS) 

function. However, having combined the improved techniques (both linear and nonlinear response 

surface functions using basic, adaptive, and adaptive weighted method) the authors concluded that 

the linear adaptive weighted response surface method (LAW-RSM), was the best alternative. The 

following examples are aimed at demonstrating this statement. 

3.2. Validation of the LAW-RSM 

The random variables in the example of the simply supported beam selected for analysis are: 

distributed load (W), span length (L), modulus of elasticity (E), and the moment of inertia (see 

Fig. 2). 

 
Fig. 2. Scheme of the beam considered in Example 1 

The limit state being considered is deflection, and the allowable deflection is specified to be 

𝐿/360. The maximum deflection is 0.0069𝑊𝐿4/𝐸𝐼, and it occurs at 0.446𝐿 from either end of 

the beam.  

The limit state function is:  

𝑔(𝑊, 𝐿, 𝐸, 𝐼) =
𝐿

360
− 0.0069

𝑊𝐿4

𝐸𝐼
. (9) 

The mean and coefficient of variation for each of the variables under study are presented in 

Table 4.  

Table 4. Parameters of random variables in Example 1 

Index Variable Mean C.O.V. Description 

𝑋1 𝐼 8E-4 m4 0.1875 Moment of Inertia 

𝑋2 𝐸 2.00E+07 kN/m2 0.25 Elasticity Modulus 

𝑋3 𝑊 10 kN/m 0.04 Distributed Load 

- 𝐿 5 m 0 Span length 

In the example considered, the linear RSM was accurate with the weighted regression method. 

As can be seen in Table 5, while the application of the quadratic LAW-RSM resulted in a 

difference of 42.23 %, compared with the results of the classical MCS, the LAW-RSM showed 

less than 3 % of difference with such a simulation approach. However, the convergence and 

accuracy will be changed depending on the linearity order of limit state function. 
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Table 5. Comparison of converged reliability indices from applied RS methods 

Analysis Method 
Reliability 

Index, 𝛽 

Probability of 

Failure, 𝑃𝑓 
Error 

(%) 
Comments 

MCS 3.107 9.450E-04 0 
Number of Simulations = 

1,000,000 

Linear 

RSM 

1. Basic 1.848 3.230E-02 -40.52  

2. Adaptive 2.588 4.827E-03 -16.70 Rackwitz-Fiessler 

3. Adaptive 

Weighted 
3.196 6.967E-04 2.86 

Rackwitz-Fiessler with 

Exponential weighting 

Quadratic 

RSM 

4. Basic 1.362 8.665E-02 -56.17  

5. Adaptive 1.794 3.641E-02 -42.26 Rackwitz-Fiessler 

6. Adaptive 

Weighted 
1.795 3.633E-02 -42.23 

Rackwitz-Fiessler with 

Exponential weighting 

3.3. Correlation model for random variables in BBN  

BBN were a convenient alternative to develop the model. They are graphs, whose nodes are 

connected by arcs. While nodes represent variables, arcs represent the strength of the relationship 

between them (Hanea, 2008). The employed bayesian belief net is answer queries for the following 

probability density function based on conditional probability: 

𝑃(𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛|𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦, 𝐿𝑜𝑎𝑑𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑆𝑝𝑎𝑛𝑙𝑒𝑛𝑔𝑡ℎ), (10) 

Following Markov condition for BBN (chain rule) the above joint probability is then calculated 

as:  

𝑃(𝑋1, 𝑋2, , , 𝑋𝑛) =∏𝑃 (
𝑋𝑖

𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)
)

𝑛

𝑖=1

, (11) 

where, 𝑃𝑥𝑦  is a coefficient of correlation between random variables, 𝑥𝑖  and 𝑢𝑖 denotes each 

random variable, 𝑛 represents the total number of random variables, 𝑆𝑥 , 𝑆𝑦 are standard deviation 

of variables, and 𝑥̅, 𝑦̅ are mean value of random variables. 

Four variables were considered as important for the model, they are: (i) moment of inertia, 

(ii) elasticity, (iii) distributed load intensity and (iv) length of a span (see Table 4). The analytical 

conditioning in BBNs on four probabilistic nodes can be conditionalized, whereby the conditional 

distribution is computed in a few minutes. This is possible with the joint normal copula. Random 

variables are treated as transformations of joint normal variables.  

If 𝑍 = (𝑍𝑖 , . . . , 𝑍𝑛) denotes a joint normal distribution of normal variables 𝑍𝑖 with mean zero 

and unit variance, then random variables 𝑋𝑖 , . . . , 𝑋𝑛 are written as 

(𝑋𝑖 , . . . , 𝑋) = (𝐹1
−1𝛷(𝑍1), …𝐹𝑛

−1𝛷(𝑍𝑛)), (12) 

where 𝐹𝑖 is the cumulative distribution function of random variable 𝑋𝑖, and 𝐹𝑛 is the cumulative 

distribution function of the standard normal variable. If 𝐹𝑖  is continuous invertible, this 

transformation is rank preserving, the rank correlations of 𝑋𝑖, 𝑋𝑗 will be the same as that of 𝑍𝑖, 𝑍𝑗.  

The rank correlation of normal variables is computed from the product moment correlation 

with the Pearson transformation. For details see (Hanea et al., 2006) 

Conditioning on the value 𝑋𝑖 = 𝑥  entails conditioning 𝑍  on 𝑍𝑖 = 𝛷
−1(𝐹𝑖(𝑥)) . Letting  

𝑍(𝑋𝑖 = 𝑥) denote this conditional distribution, the conditional distribution of 𝑋𝑖 , . . . , 𝑋𝑛 , when 

𝑋𝑖 , . . . , 𝑋𝑛 are joined by the joint normal copula, is given by: 



1104. RELIABILITY ASSESSMENT BASED ON AN ADAPTIVE RESPONSE SURFACE METHOD CONSIDERING CORRELATION AMONG RANDOM 

VARIABLES. TAEJUN CHO, CHANGHWAN JANG, JEONGBAE LEE, SEONGSOO KIM 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 1969 

(𝑋1, … 𝑋𝑛|𝑋𝑖 = 𝑥) = 𝐹1
−1𝛷(𝑍1(𝑋𝑖 = 𝑥)), …𝐹𝑛

−1𝛷(𝑍𝑛(𝑋𝑖 = 𝑥)). (13) 

The results of conditioning among random variables could be presented in graphical format in 

various ways. As showin in Fig. 3, if used with the results of Monte Carlo simulation, it may be 

hard to understand due to the complex correlation. 

 
Fig. 3. Correlation among random variables shown in Cobwebs 

 
a) 

 
b) 

Fig. 4. (a) BBN model among random variables and (b) probability density function of each varibale 

Therefore we have selected quantified regression analysis between two variables. One of the 

most important variables in structural analysis would be deflection. The correlation between 
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deflection and other variables are investigated presented in Fig. 4 and Fig. 5. By the results, it 

turns out that due to the contribution of span length to the load intensity the correlation between 

deflection and span length show the largest sensitivity while modulus of elasticity show the lowest 

correlation, shown in Figure 5. This is quite different with simply supported beam case, where 

deflection is directly proportional to Moment load while it is reversely proportional to elasticity 

of modulus times inertia of secondary moment of the sections. 
Consequently, while the proposed improved RSM method could present faster converged and 

improved evaluation of reliability of structures, Bayesian belief net model additionally provide 

contribution of each random variables in terms of correlation among components. 

  

  

  

  
a) Correlation of deflection on random variables b) Conditional expectation of deflection on random 

variables 

Fig. 5. Correlation and conditional expectation of deflection on other random variables 

4. Conclusions 

A few stage analyses have shown that the RSM could construct a regression model, from the 

responses of any complicated structural system, which may be very efficient for carrying out a 

reliability analysis, or a statistical prediction from the constructed response surface. This in turn 
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helps to save time and effort significantly when performing millions of iterative calculations. 

However, the accuracy of RSM varies depending on the distances of axial points, as well as the 

linearity of the LSFs. Selecting more efficient techniques from previous improved RSM models, 

and having discarded inexact or slowly converged ones, an improved linear adaptive weighted 

response surface method (LAW-RSM) was developed. 

The weighting matrix was determined based on the closeness to LSF as a zero value, which 

additionally increases the convergence with closeness to the failure point and optimal 

determination of the distance among input random variables. To find the failure point more 

effectively, new centre points were iteratively calculated by the Rackwitz-Fiessler method, rather 

than the Bucher’s approach.  

Based on the findings, a computer program has been developed and verified, by means of two 

examples, with the LSFs in the linear and quadratic forms of response surface functions. The 

developed LAW-RSM shows better converged results, regardless of the linearity of LSFs, than 

the other five RSM methods considered in this piece of research. By updating design points to the 

failure points, with weighting on important random variables in LAW-RSM, the authors believe 

that the two main features of engineering analysis, the accuracy and the stability of calculations, 

have been obtained by constructing the LSF.  

In addition, conditioning on random variables is modeled in a Bayesian belief net model 

(BBN). BBN provides the quantification of correlation among structural components, which is 

essential in more economic and safer structural design. 
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