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Abstract. The propulsion of wing-mounted engine is a typical follower force and may cause 

significant influences upon wing flutter characteristics. An integrated flutter analysis method has 

been presented, within which the effects of engine thrusts and geometrical nonlinearities are both 

considered. Firstly the method has been applied to evaluate the effects of thrusts on the flutter 

boundary of a high-altitude, long-endurance aircraft wing. The numerical results have an excellent 

agreement with the published ones. Furthermore the finite element model of a wing carrying two 

engines has been established, and the influences of propulsion magnitude and position on wing 

flutter speed are mainly investigated. The results indicated that the effects of engine thrusts are 

indispensable for wing flutter analysis.  

Keywords: wing flutter, geometrically nonlinear, engine thrust, follower force, high-aspect-ratio 

wing.  

1. Introduction 

Modern transporters usually have high-aspect-ratio wings under which the engines are 

mounted. For this configuration the engine thrusts will couple with the aerodynamics and structure 

deflection, and this kind of coupling could cause aeroelastic instability. This problem was first 

investigated by W. T. Feldt [1], where the influences of thrust value on wing flutter speed were 

presented. The aeroelastic stability of a high-altitude, long-endurance wing subjected to a lateral 

follower force has been studied by M. J. Patil and D. H. Hodges [2, 3]. The ratio of bending 

stiffness to torsional stiffness and the value of thrust were considered as key parameters, and their 

effects on flutter speed and frequency were investigated. It is indicated that under the action of an 

actual thrust, which was obtained by full-aircraft trimming for a real flight condition, the predicted 

flutter speed can be changed up to 11 %. S. A. Fazelzadeh and A. Mazidi [4] have studied the 

bending-torsional flutter characteristics of a wing containing an arbitrarily placed mass subjected 

to a follower force. Most recently the effects of wing sweep and dihedral angle were also 

considered by Zhang Jian and Xiang Jingwu [5]. 

Such problems are much more complicated than conventional aeroelastic analysis, so in the 

previous literatures wings were all modeled as slender beams. But for a real plane the wing 

structure is complicated and actually can’t be modeled by a beam accurately. A common method 

is using the FEM software to establish the structure model [6]. So far, to the author’s knowledge, 

the researches which study the effects of the engine thrusts on the aeroelastic characteristics of a 

real, complicated wing structure have not yet been seen. 

Based on the secondary development of the MSC/Nastran software with its DMAP language, 

its static aeroelastic analysis module, nonlinear static analysis module and flutter analysis module 

were incorporated into an integrated nonlinear flutter analysis procedure. This method can be used 

for any metal or composite wings with complicated structure and configurations, and the effects 

of initial angle of attack, external stores, engine thrusts and the geometric nonlinearities are all 

considered simultaneously. 

2. Aerodynamic theory 

Since the aim of the present work is to study the subsonic aeroelastic stability of transporters, 
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the non-planar effect of the aerodynamic load is very small and will be ignored here [9, 10]. 

Considering the design requirements, such delicate design won’t allow airplane to be operated 

under large angle of attack or even encounter dynamic stall. So the subsonic doublet-lattice theory 

is adopted here for the flutter analysis [11].  

The wing’s lifting surface is discretized and divided into trapezoidal panels, and then the 

aerodynamic influence coefficients (AICs) are calculated. The non-dimensional downwash 

velocity at the collocation points can be written in terms of AICs as: 

𝐰 = 𝐀(𝑘, 𝑀∞)𝐟/𝑞, (1) 

where 𝐟 are the non-dimensional pressures of the lifting elements, 𝑞 is the dynamic pressure of 

free stream. 𝐀 is the AICs matrix, which is a function of reduced frequency (𝑘 = 𝜔 𝑏/𝑉)  and the 

free stream Mach number 𝑀∞. 𝜔 is the oscillation frequency, 𝑏 is the semi-chord length and 𝑉 is 

the free stream velocity. 

The forces and moments on the wing can be calculated by integrating the pressures over each 

lifting element, i. e.: 

𝐅𝐴 = 𝐒 ⋅ 𝐟, (2) 

where 𝐒 is the integrating matrix. 

In terms of the initial angle of attack of the undeformed wing and the structural deflections, 

the downwash at collocation points can be written as Eq. (3) explicitly: 

𝐰 = 𝐖(𝐱) + 𝐰0, (3) 

where 𝐱 are the displacement vector of structural nodes, 𝐖(𝐱) is the transformation matrix from 

the structural deflections to the downwash at collocation points. 𝐰0 is the downwash at collocation 

points caused by the initial angle of attack. 

Thus, according to Eq. (1)-(3), the aerodynamic lift and moment can be rewritten in terms of 

the structural deflections as: 

𝐅𝐴 = 𝑞𝐒𝐀−1[𝐖(𝐱) + 𝐰0]. (4) 

3. Static aeroelastic analysis 

After building the nonlinear FEM model of the wing structure and coupling it with 

aerodynamic model, the steady AICs matrix 𝐀𝑆  and the transformation matrix 𝐖𝑆(𝐱) for each 

Mach number can be extracted from the static aeroelastic analysis module by the DMAP tool. The 

static aerodynamic lift and moment can be written as: 

𝐅𝐴𝑆 = 𝑞𝐒𝐀𝑆
−1[𝐖𝑆(𝐱) + 𝐰0]. (5) 

Then using the nonlinear static analysis module, the structural nonlinear equilibrium equation 

of the restoring force, aerodynamic load and engine thrusts can be written as: 

𝑔(𝐱) − 𝐅𝐴𝑆 − 𝐏 = 0, (6) 

where 𝑔(𝐱) is the restoring force due to the structural nonlinear deformation. 𝐏 is the engine thrust, 

which is a follower force. The structure deformation under the action of aerodynamic load and 

engine thrusts can be obtained by solving Eq. (6), which is a nonlinear algebraic equation and 

needs to be solved by iterative loops. 



1084. EFFECT OF ENGINE THRUST ON NONLINEAR FLUTTER OF WINGS.  

CHEN QUANLONG, HAN JINGLONG, YUN HAIWEI 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 1733 

4. Flutter analysis 

Ignoring the structural damping, the nonlinear aeroelastic equation of wing can be written as: 

𝐌�̈� + 𝐠(𝐱) − 𝐅𝑎𝑒𝑟𝑜 − 𝐏(𝐱) = 0. (7) 

The solution for the above equation can be assumed as follows: 

𝐱 = �̅� + �̂�, (8) 

where �̅� is the steady state value obtained by solving Eq. (6), �̂� is the small perturbation with 

respect to this equilibria. Therefore the aeroelastic equation can be linearized at the steady state, 

given: 

�̅� �̈̂� + �̅� �̂� − 𝑞𝐒𝐀−𝟏  𝐖(�̂�) − 𝐏(�̂�) = 0, (9) 

where �̅� and �̅� are the mass and stiffness matrixes at the steady state �̅�. The perturbation of 

engine thrust can be rewritten as: 

𝐏(�̂�) = �̅�𝑃  �̂�, (10) 

where �̅�𝑃 is the stiffness matrix of the follower force generated by engine thrusts. 

The normal modes were calculated for the steady state and then the appropriate modes were 

chosen to reduce the equation. The aeroelastic equation can be rewritten via the generalized 

coordinates as: 

𝐌𝑞�̈� + (𝐊𝑞 + 𝐊𝑃𝑞)𝐪 = 𝐅𝐴𝑞 , (11) 

where 𝐪  is the generalized coordinates vector, 𝐌𝑞  is the generalized mass matrix, 𝐊𝑞  is the 

generalized stiffness matrix, 𝐊𝑃𝑞 is the generalized stiffness matrix of follower force, 𝐅𝐴𝑞  are the 

generalized aerodynamic loads. 

The above matrices were then incorporated into the MSC/Nastran flutter analysis module by 

DMAP tool and the 𝑝-𝑘 method is applied to perform flutter analysis. The unmatched flutter 

velocity 𝑉𝐹 and the corresponding flutter Mach number are: 

𝑀∞𝐹 = 𝑉𝐹/𝑐∞, (12) 

where 𝑐∞ is the local velocity of sound. Comparing 𝑀∞𝐹 to the initial free stream Mach number 

𝑀∞  given at the beginning of the static aeroelastic analysis: if 𝑀∞𝐹 = 𝑀∞, then 𝑉𝐹 is the matched 

nonlinear flutter speed. Otherwise reset the free stream Mach number and solve Eq. (6)-(12) again, 

until the error is converged. 

5. Analysis procedures 

The analysis diagram of present work is shown in Figure 1. Flight condition parameters such 

as angle of attack, free stream Mach number and engine thrust are given before the analysis. Under 

this flight condition the steady AICs matrix and the transform matrix are obtained using the static 

aeroelastic module (Sol 144). Then the structural deflections under the action of aerodynamic 

loads and the engine thrusts are calculated by means of the nonlinear static analysis module 

(Sol 106).  

In order to approach the steady state, the steady aerodynamic loads are computed again 

according to the new structural deflections. Thus iterative loops are applied to make the 
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aerodynamic loads match the structural deflections, which finally turn into the actual equilibrium 

point of the wing. Reduce the equations at the steady state, incorporate the generalized mass and 

stiffness matrix into the flutter analysis module (Sol 145) and calculate the flutter speed. Repeat 

the above procedures until the difference between 𝑀∞  and 𝑀∞𝐹  is converged and the 

corresponding flutter speed is defined as the nonlinear flutter speed for this flight condition. 

 
Fig. 1. Diagram of nonlinear flutter analysis 

6. Example 1: HALE wing 

The first model to be studied is a high-altitude long-endurance wing and its structural 

properties and flight conditions are given in Table 1. Its finite element model is established 

through MSC/Patran software. The wing’s structure is a slender beam which was divided into 32 

nonlinear beam elements, and its mass is modeled by 32 lumped mass elements. And 32×5 lifting 

elements were used for the aerodynamic panel. The wing root is clamped support and a lateral 

follower force is applied at the position of 15 m from the root in span. The initial angle of attack 

was not considered in this example. More details of the wing structure can be seen in reference 

[2]. 

The parameter 𝜆 , non-dimensional thrust 𝑃  and non-dimensional flutter speed 𝑣  were 

defined as: 

𝜆 =
𝐸𝐼2

𝐺𝐽
, (13) 

𝑃 =
𝑝𝑙2

√𝐺𝐽𝐸𝐼2

, (14) 

𝑣 =
𝑉𝐹

𝑏𝜔𝜃

, (15) 

where 𝑝 is the engine thrust, 𝑙 is the half span length, 𝑉𝐹 is the flutter speed, 𝑏 is the semi-chord 
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length and 𝜔𝜃  is the first uncoupled torsional frequency. 

Using the nonlinear flutter analysis method presented above, the influences of parameters 𝜆 

and 𝑃 on flutter speed were investigated. 

Table 1. HALE wing data 

Structure data 

Half span 16 m 

Chord 1 m 

Mass per unit length 0.75 kg/m 

Moment of inertia 0.1 kg-m 

Spanwise elastic axis 50 % chord 

Center of gravity of wing 50 % chord 

Bending rigidity (spanwise) 2e4 N-m2 

Bending rigidity (chordwise) 4e4 N-m2 

Torsional rigidity Varies with 𝜆 

Flight condition 

Altitude 20 km 

Air density 0.889 kg/m3 

The 𝑣-𝑔 and 𝑣-𝑓  locus of HALE wing at the condition of 𝜆 = 2 and 𝑃 = 2 are shown in 

Figure 2. When the damping 𝑔 of the first torsional mode crosses the zero axes, the wing is at the 

critical condition of flutter which means aeroelastic instability. It is seen from Figure 2 that the 

flutter speed and frequency are 35.3 m/s and 3.76 Hz respectively. This instability is caused by 

the coupling of the first torsional mode and the second flap bending mode. 

Figure 3 shows the 𝑣-𝑔 and 𝑣-𝑓 curves at the condition of 𝜆 = 2 and 𝑃 = 3. It is seen that there 

are two instability branches. The flutter speed and frequency are 35.4 m/s and 1.5 Hz, and the 

flutter modes are the first and second flap bending modes. In contrast with Figure 3, the component 

of torsional deformation in the flap bending mode increases as the engine thrusts increase, which 

could result in the variation of  flutter form and consequently change flutter speed remarkably. 

  

  
Fig. 2. 𝑣-𝑔 and 𝑣-𝑓 curves at 𝜆 = 2, 𝑃 = 2 Fig. 3. 𝑣-𝑔 and 𝑣-𝑓 curves at 𝜆 = 2, 𝑃 = 3 

The effect of non-dimensional thrust on flutter boundary for several values of 𝜆 is illustrated 

in Figure 4. For low levels of thrust the flutter speed increases slightly as thrust goes up. But if the 

thrust level continues to increase, the curve displays an inflection point which indicates the 
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variation of flutter mode, and this variation leads to a sharp decrease of the flutter speed. The 

inflection point moves down as 𝜆 increases and disappears gradually while 𝜆 is larger than 5. 

Furthermore, for the purpose of method verification, present results are compared in Figure 4 

with reference [2] and a good agreement can be achieved. Small differences are observed and can 

be explained by the fact that the doublet-lattice theory is used here instead of finite-state 

aerodynamic model used in reference [2]. But the errors are very small and can be ignored in 

engineering. This simulation example demonstrates the validity of the developed nonlinear flutter 

analysis procedures. 

 
Fig. 4. Effects of 𝜆 variation on flutter speed 

7. Example 2: a transporter wing with two engines 

The finite element model of a wing carrying two engines is shown in Figure 5. It is a traditional 

metal structural wing, its structure data are given in Table 2. The weight of each engine is 240 kg 

and the reference thrust is 20000 N. The following two cases are both considered: 1) the 

propulsion is applied at the front of the engine in order to simulate propeller engine; 2) the 

propulsion is applied at the end of the engine to simulate jet engine. The thrusts are assumed to be 

uniformly distributed along the circumferential direction. 

Table 2. Wing structure data 

Half span 12.43 m 

Chord 6.06 m 

Taper ratio 3.88 

Swept angle 25 degrees 

Length of store 3.9 m 

Radius of store 1.2 m 

Location of first store 3.36 m 

Location of second store 7.21 m 

The wing is clamped supported and flight is at sea level with 3° angle of attack, where the air 

density is 1.225 kg/m3. The parameter 𝜇 is defined as the ratio of engine thrust to the reference 

thrust. 

Table 3 displays the wing tip static deflection for the flow velocity of 246 m/s. The flap 

bending value is defined as positive while tip goes up and the torsion displacement is positive for 

nose up. It is seen that the aerodynamic moment makes the wing nose down, while the engine 

thrusts decrease the torsional deflection and generate nose up pitching moment. This effect is 

much more obvious when the thrusts were applied at the end of the store. Since the torsional 

deflection could influence the aerodynamic force, the flap bending displacement will increase 
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under the action of engine thrusts, especially for the case that the thrusts act on the end of the 

stores. 

 
Fig. 5. Model of a wing carrying two engines 

Table 4 compares the natural frequencies of linear and nonlinear models of the wing structure. 

The aerodynamic loads and the propulsion are not included in the linear model, while the nonlinear 

model takes such effects into consideration and the corresponding results are calculated for  
𝑉 = 246 m/s and initial angle of attack of 3°. It is seen that when 𝜇 = 0, which means there are 

only aerodynamic loads acting on the wing, the 1st and 2nd flap bending and 1st torsion 

frequencies all increase because of the prestressed stiffness generated by structure deformation. 

When 𝜇 = 1 the torsional frequency exhibits a slight decrease because the thrusts alleviate the 

torsional deflection of the wing structure. 

Table 3. Wing tip displacement of the nonlinear model at equilibrium position 

 𝜇 = 0 𝜇 = 1 front 𝜇 = 1 back 

Flap bending (m) 0.72 0.80 0.81 

Torsion (deg) -2.20 -1.73 -1.65 

Table 4. Comparison of natural frequency results using linear and nonlinear methods (Hz) 

 
Linear 

Nonlinear 

𝜇 = 0 𝜇 = 1 

First flap bending 2.77 2.83 2.83 

Second flap bending 8.78 8.93 8.89 

First torsion 10.29 11.33 11.22 

Third flap bending 19.37 19.26 19.24 

The 𝑣-𝑔 and 𝑣-𝑓  curves of the linear model are shown in Figure 6. The flutter speed and 

frequency are 265.7 m/s and 8.97 Hz respectively. It is clear that the flutter is caused by the 

coupling of the second flap bending mode and the first torsional mode. 

The nonlinear flutter analysis of the wing structure under the action of engine thrusts is 

performed via the method presented above. The 𝑣-𝑔 and 𝑣-𝑓 locus for 𝜇 = 0 are illustrated in 

Figure 7. The corresponding flutter speed and frequency are 273.8 m/s and 9.53 Hz respectively. 

When 𝜇 = 1 and the propulsions are applied at the back end of the engine stores, the flutter speed 

and frequency are 246.4 m/s and 9.85 Hz respectively, and the 𝑣-𝑔 and 𝑣-𝑓 curves are shown in 

Figure 8. It is observed that for both linear and nonlinear models the instabilities are all of the type 

of classical bending-torsion coupling flutter. While 𝜇 = 1 and the thrusts act at the front of the 

engine store, the corresponding flutter speed is 249.2 m/s, which is a litter higher than that of the 

previous one. It’s 𝑣-𝑔 and 𝑣-𝑓 curves are similar to Figure 8 and are not necessary to be given 

again. 

It is noted from Figures 6-8 that without propulsion the flutter speed of the nonlinear model is 
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3.05 % higher than that of the linear model. The flap bending and torsional frequencies are all 

increased by the effects of prestressed stiffness and geometrical nonlinearity. When the thrusts are 

applied at the front of the stores the nonlinear flutter speed is 7.26 % lower than the linear one, 

because of the follower force effect. And this effect is much more obvious when the thrusts are 

loaded at the back end of the engine stores. 

  

  
Fig. 6. 𝑣-𝑔 and 𝑣-𝑓 curves of linear flutter Fig. 7. 𝑣-𝑔 and 𝑣-𝑓 curves at 𝜇 = 0 

 

 
 

Fig. 8. 𝑣-𝑔 and 𝑣-𝑓 curves at 𝜇 = 1 and loaded at the back end 

 
Fig. 9. Effects of 𝜇 on the wing flutter speed 
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Figure 9 shows the effect of the non-dimensional thrust on the wing flutter speed. It can be 

observed that the flutter speed exhibits a significant decrease as the thrust level increases, 

especially when the thrusts are applied at the back end of the stores. Comparing to the case without 

thrust, the flutter speed of the wing with a reference thrust is decreased by 10.01 % and 8.98 % 

corresponding to loads acting at the back and front of the nacelle respectively. 

8. Conclusion 

The purpose of this paper is to investigate the flutter characteristics of a complex structure 

wing subjected to engine thrusts. To this end an integrated flutter analysis method, which includes 

the effects of thrusts and geometrical nonlinearity, has been developed based on the secondary 

development of MSC/Nastran software with its DMAP tool. The aeroelastic stability of a HALE 

wing, which is subjected to a follower force, has been studied with this method firstly and the 

effects of several parameters were investigated. The numerical results are compared with 

published results and an excellent agreement was observed. 

The flutter characteristics of a complex wing structure carrying two engines are also analyzed. 

The influences of the thrust magnitude and location on wing flutter speed are considered. The 

results show that the flutter speed is 273.8 m/s without thrust and decreased to 246.4 m/s when a 

20000 N thrust is applied at the back end of each nacelle. The influences reduce the flutter speed 

more than 10 %, so the effects of engine thrust are significant and cannot be neglected for wing 

flutter analysis. 

References 

[1] Feldt W. T., Herrmann G. Bending-torsional flutter of a cantilevered wing containing a tip mass and 

subjected to a transverse follower force. Journal of the Franklin Institute, Vol. 296, Issue 11, 1974, 

p. 467-468. 

[2] D. H. Hodges, M. J. Patil, S. Chae Effect of thrust on bending-torsion flutter of wings. Journal of 

Aircraft, Vol. 39, 2002, p. 371-376. 

[3] D. H. Hodges Lateral-torsional flutter of a deep cantilever loaded by a lateral follower force. Journal 

of Sound and Vibration, Vol. 247, 2001, p. 175-183. 

[4] S. A. Fazelzadeh, A. Mazidi Bending-torsional flutter of wings with an attached mass subjected to a 

follower force. Journal of Sound and Vibration, Vol. 323, 2009, p. 148-162. 

[5] Zhang Jian, Xiang Jinwu Stability of high-aspect-ratio flexible wings loaded by a lateral follower 

force. Acta Aeronautic et Astronautic Sinica, Vol. 31, Issue 11, 2010, p. 2115-2123. 

[6] Xie C. C., Leng J. Z., Yang C. Geometrical nonlinear aeroelastic stability analysis of a composite 

high-aspect-ratio wing. Shock and Vibration, Vol. 15, Issue 3, 2008, p. 325-333. 

[7] Ran Yuguo, Han Jinglong, Yun Haiwei Development of aeroelastic response solution sequence with 

DMAP language for freeplay nonlinear structure. Journal of Nanjing University of Aeronautics and 

Astronautics, Vol. 39, Issue 1, 2007, p. 41-46. 

[8] Ran Yuguo, Liu Hui, Zhang Jinmei, Han Jinglong Analysis of the nonlinear aeroelastic response 

for large-aspect-ratio wing. Acta Aerodynamic Sinica, Vol. 27, Issue 4, 2009, p. 394-399. 

[9] M. J. Patil, D. H. Hodges On the importance of aerodynamic and structural geometrical nonlinearities 

in aeroelastic behavior of high-aspect-ratio wings. Journal of Fluids and Structures, Vol. 19, 2004, 

p. 905-915. 

[10] Xie Changchuan, Wu Zhigang, Yang Chao Aeroelastic analysis of flexible large aspect ratio wing. 

Journal of Beijing University of Aeronautics and Astronautics, Vol. 29, Issue 12, 2003, p. 1087-1090. 

[11] Guan De Unsteady Aerodynamic Calculation. Beijing University of Aeronautics and Astronautics 

Press, Beijing, 1991. 


