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Abstract. The short thin cylindrical shells are important component used in rotating machinery 

and its function is to connect shafts and transmitted torque. The kind of components is always 

destroyed due to vibrational state, so it is necessary to further research on the vibration 

characteristics. In this paper, the vibration characteristics of short thin cylindrical shells are solved 

using the beam function method, the transfer matrix method and the finite element method 

respectively. The solving results of three calculating methods are compared by simulation in the 

clamped-free and clamped-clamped boundary conditions. The simulation results show that the 

solving results of the transfer matrix method are close to the results of finite element method, but 

the deviation of the results of the beam functions method is larger than the other two methods. 

Furthermore, the experiments of the short thin cylindrical shell in the clamped-free boundary 

conditions are studied. The experimental results verify that the transfer matrix method and the 

finite element method are applicability to solve the vibration characteristics of the short thin 

cylindrical shells. 

Keywords: short thin cylindrical shell, vibration characteristics, natural frequencies, beam 

functions method, transfer matrix method, finite element method. 

1. Introduction 

Short thin cylindrical shell usually means that the axial half-wave number is 1, and the ratios 

of thickness and other minimum parameter (i.e. diameter and length) is between 1/80 and 1/5 [1]. 

The short thin cylindrical shell has grown in importance with the increasing use of shell structures 

for a wide variety of applications in aerospace, shipbuilding, chemical machinery and other 

branches of engineering. It is important component used in rotating machinery and its function is 

to connect shafts and transmitted torque. It is subjected to centrifugal force, aerodynamic force, 

and vibration alternating force and other load during its working. The kind of components is 

always destroyed due to vibrational state. So it is necessary to further research on the vibration 

characteristics. 

Currently numerous studies have been made to understand the vibration characteristic of the 

short thin cylindrical shell. In order to calculate the inherent characteristic of cantilever cylindrical 

shell, the Rayleigh-Ritz method, the axis-symmetry finite element method and the exact analytic 

method are employed by C. B. Sharma and D. J. Johns [2-3]. By using of the Love’s shell 

equations, the influence of boundary conditions for a thin rotating stiffened cylindrical shell is 

researched by Lee [4]. Vibration characteristics of the laminated cylindrical shell are studied, then 

influence of boundary conditions and geometric parameters for system dynamics characteristics 

is analyzed by Zhang [5]. Studies for dynamic characteristic of boundary conditions for thin 

cylindrical shells have also been carried out by Lam and Loy [6]. Li Xuebin presents a new 

approach of separation of variables in circular cylindrical shell analysis for arbitrary boundary 

conditions [7]. The instant response of the laminated shell is subject to radial impacting loads and 

axial pressure load, and the boundary condition investigated in the study is clamped-simply. The 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Vibroengineering

https://core.ac.uk/display/323313463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1042. STUDY OF VIBRATION CHARACTERISTICS OF THE SHORT THIN CYLINDRICAL SHELLS AND ITS EXPERIMENT.  

ZHONG LUO, NING SUN, YU WANG, KAI ZHANG, QINGKAI HAN 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1271 

analysis is carried out using Love-type shell theory and the first order shear deformation theory 

by Jafari and Hamid [8, 9]. However, many of these studies are restricted to theory analyses. 

Studies for the contrast test of different analyze methods are seldom attempted, especially the 

experimental tests. 

In this paper, the vibration characteristics of short thin cylindrical shells are solved using three 

analytical methods which is the beam function method, the transfer matrix method and the finite 

element method respectively, and then using the results of experiment confirmed the correctness 

and validity of analysis methods. 

2. Analysis based on the beam function method 

Figure 1 shows the nomenclature of a short thin cylindrical shell. The reference surface of the 

cylinder is taken at the middle surface where an orthogonal coordinate system (����) is fixed. 

The coordinates system (����) is the coordinates system (�′�′�′�) translate � from origin � 

along � direction to one point of the middle surface. �-axis and ��-axis are parallel and in the same 

direction. �-axis and ��-axis are overlapping and in the same direction. �-axis and �-axis are 

overlapping. In the Figure 1, � is the radius, � is the length, ℎ is the thickness, � is the material 

density, 	 is the Young's modulus and 
 is the Poisson's ratio. The deformations of the cylindrical 

shell in the �, � and � directions are denoted by �(�,�, �), (�,�, �) and �(�,�, �), respectively. 

 
Fig. 1. The structures of the thin-walled cylindrical shells 

2.1. Dynamic functions 

The dynamic functions for a short thin cylindrical shell which describe the vibration 

characteristics of the vertical, tangential and radial vibrate can be written as [10]: 
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where � is the different membrane stiffness, � is the flexural rigidity; �� ���
���

, �� ���
���

 and �� ��	
���

 

are inertia item. 

In terms of the displacements � ,   and �  is derived for the free vibration of a rotating 

cylindrical shell and be written in the following form: �

� + �
� + �
�� = 0,��
� + ��� + ���� = 0,��
� + ��� + ���� = 0,
� (4)

where ���(�, � = 1, 2, 3) are differential operators and can be written as follows: �
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2.2. Analytical method 

The vibration mode functions of short thin cylindrical shell are derived for the axial beam 

function and the circumferential triangle function and can be written in the following form [10]: 
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where ��� , "#�  and $��  are the displacement amplitudes, and )  and *  are the axial and 

circumferential wave numbers, respectively. !��(�, �), !��(�, �), !�	(�, �) ,  � (�) ,  � (�)  and  	(�)  are written as !��(�) = !�	(�) = cos(*�++��),  !��(�) = sin(*�++��)  and  � (�) =  � (�) =  	(�) =  (�). 

The functions !�� (�, �)     (� = �,,�) are circumferential modal functions, where +� are the 

natural frequencies. The functions !� (�, �)   (� = �, ,�)  are the axial modal functions. The 

functions are written as the beam functions which can be expressed in a general form as Eq. (6): 
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 ��� = ,
cosh �-�� � + ,�cos �-�� � − . /,�sinh �-�� � + ,�sin �-�� �0, (6)

where -, . and ,�  (� = 1, 2, 3, 4) are some constants with value depending on the boundary 

condition [11]. The parameters are given as follow for the following boundary conditions. 

Table 1. The parameters corresponding to boundary conditions 

Boundary conditions The parameters 

S-S �� = π,�� = 1, �� = �� = �� = 0,�� = 1 

C-C �� = 4.7297,�� = 0.9825,�� = �� = 1,�� = �� = −1 

C-F �� = 3.9266,�� = 0.7341,�� = �� = 1,�� = �� = −1 

S-C �� = 1.8751,�� = 1. 0008,�� = �� = 1,�� = �� = −1 

The Eq. (5) is substituted into Eq. (4) and Galerkin’s method is applied. The Eq. (4) can be 

written as: 

1 1 2���� + ��� + ����3 ���π

�

�

�
��,�, ��4�4� = 0,   �, � = 1, 2, 3,   5 = �, ,�. (7)

After performing the integration, Eq. (7) can be written in a matrix form as: 
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where 7��  (� = 1, 2, 3;  � = 1, 2, 3) are equation coefficients and can be written as: 7
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where 9
, 9� and 9� are defined as: 

9
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. 

The Eq. (8) is solved by imposing non-trivial solutions condition and equating the determinant 

of the characteristic matrix to zero. A polynomial of the form can be obtained: 

+� + +�;
 + +�;� + +�;� + + ;� + ;� = 0, (9)

where ;� are equation coefficients and can be written as: ;
 = 7

 + 7�� + 7��,;� = −2(7�� + 7��), ;� = 7

7�� + 7

7�� + 7��7�� − 7
�7�
 − 7
�7�
 − 7��7��, ;� = 2�7
�7�
 + 7
�7�
 − 7
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7��7�� + 7
�7��7�
 + 7
�7�
7�� − 7
�7��7�
 − 7

7��7�� − 7
�7�
7��. 
Six +�� (� = 1, 2, … , 6)  are obtained by Eq. (9). Then the natural frequencies of the 

cylindrical shell are obtained by <�� = +��/(2π).  The six natural frequencies are 

corresponding to a group of vibration mode. The smallest number is the natural frequencies of the 

short thin cylindrical shell [12]. 
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3. Analysis based on the transfer matrix method 

3.1. Fundamental equations 

Figure 2 shows the nomenclature of a short thin cylindrical shell. The reference surface of the 

cylinder is taken at the middle surface where an orthogonal coordinate system (����) is fixed. 

The coordinates system (����) is the coordinates system (�′�′�′�) translate � from origin � 

along � direction to one point of the middle surface. �-axis and ��-axis are parallel and in the same 

direction. �-axis and ��-axis are overlapping and in the same direction. �-axis and �-axis are 

overlapping. In the figure, � is the radius, � is the length, ℎ is the thickness, � is the material 

density, 	 is the Young's modulus and 
 is the Poisson's ratio. The deformations of the cylindrical 

shell in the �, � and � directions are denoted by �(�,�, �), (�,�, �) and �(�,�, �), respectively. 

The short thin cylindrical shell is divided into = sections along its length. The length of every 

section is �
, ��, . . . , ���
, ��  �> ≤ =�, respectively.  

 
Fig. 2. The segmented mode of the thin-walled cylindrical shells 

The bigger of =, the more accurate of the result is, but it spends more time on achieving the 

result. Thus, the = can’t be too large or too small. As shown in Table 2, the natural frequencies 

are very close when = is 3, 4 and 5. Considering the time and accuracy, the = is 3 in this paper. 

Table 2. The natural frequencies with different � (� = 1, � = 6) 

� 1 2 3 4 5 

Natural frequencies 14045.8 1377.44 1369.03 1369.02 1369.02 

Based on the Kirchhoff theory, the shear "� and transversal shear ?� are the following [13]: 

"� = @� +
1� �A���� , (10)

?� = =�� +
1�A�� . (11)

Using the Love shell theory, the shell's equilibrium equations are expressed as vibration 

differential equation [14]: 
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�=��5 +
�=����� − �� ������ = 0,�?��� −
�A����� +

�=���� +
@�� − �� ����� = 0,�"��� −
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'&
&(

, (12)

The relationship of generalized force, corner and middle surface displacement are:  

=� = � /���� + 
 �1� ��� +
���0, (13)

A� = � ��!��� −

�� �������, (14)

"� =
�A�� −

2�� ��1 − 
� ��������, (15)

?� = � 1 − 

2

�1� ���� +
����−

1�� �(1 − 
)
�������, (16)

!� = −
���� , (17)

where �, � are the shell’s membrane stiffness, bending respectively. 

The differential equations consist of Eq. (10)-(12), which contain 8 equations and 8 unknown 

variables. The unknown variables include 3 elastic displacement components, 1 rotation angle and 

4 generalized force components. The unknown variables are expressed state vector which are 

defined as [15]: 

B(�) = [�  � !� A� "� ?� =�]�. (18)

Simplified Eq. (12) – Eq. (17) aiming at keeping only the state vector elements yields the 

following matrix equation: 

dB(�)4� = CB(�). (19)

The coefficient matrices C of 8×8 order can be expressed in a general form as: 
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. (20)

According to the geometric characteristics of thin-walled cylindrical shell, the middle surface 

generalized displacement and generalized force internal force of the short thin cylindrical shell 
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along the � direction are written as: 

B��,�, �� = ��
DE
EE
EEE
EF �G��� cos�*��G��� sin�*���H��� cos�*��!G���� cos�*��AI���� cos�*��"J���� cos�*��?K���� sin�*��=I���� cos�*��LM

MM
MMM
MN

�

��


�

�


 O�+�. (21)

Substituting Eq. (21) into Eq. (19), the differential equation of modal function can be written 

as [16]: 

4BJ(�)4� = CIBJ(�), (22)

where BJ(�) = [�G G �H !G� AI� "J� ?K� =I�]�. 

The coefficient matrices CI of 8×8 order can be expressed in a general form as: 

CI =

DE
EE
EE
EF 0 �
� �
� 0 0 0 0 �
,��
 0 0 ��� 0 0 ��- 0

0 0 0 ��� 0 0 0 0
0 ��� ��� 0 ��� 0 0 0��
 0 0 ��� 0 ��� ��- 0
0 ��� ��� 0 ��� 0 0 ��,
0 �-� �-� 0 �-� 0 0 �-,�,
 0 0 �,� 0 0 �,- 0 LM

MM
MM
MN
. (23)

Suppose the cylinder is divided into = sections, stress state of any point on the arbitrary cross-

section of shell as shown in Figure 3. 

 
Fig. 3. Stress state of any point on the arbitrary cross-section 

According to theory of solving differential equation, the general solution to state equation is 

the following: 

BJ���� = PI����BJ����
�, (24)

where �� is the length of > th shell segment, P is transfer matrix and can be written as:  



1042. STUDY OF VIBRATION CHARACTERISTICS OF THE SHORT THIN CYLINDRICAL SHELLS AND ITS EXPERIMENT.  

ZHONG LUO, NING SUN, YU WANG, KAI ZHANG, QINGKAI HAN 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1277 

PI(��) = exp2CI��3. (25)

The modal function can be obtained by reusing transfer matrix and yields the following matrix 

equation: 

BJ(�) = QI(+)BJ(0), (26)

where: 

QI(+) = PI.(�.)PI.�
(�.�
) ⋯ �PI�(��)PI
(�
). (27)

The coefficient matrices C are obtained by Eq. (22). Using the Eq. (24) and Eq. (26), the 

transitive relation of the state vectors can be obtained. The transfer matrix Q is 8×8 matrix and can 

be written by calculating Eq. (27): 

R&&
S
&&T
��!�A�"�?�=�%&
&'
&&(

=

EE
EE
EE
EF9

 9
� 9
� 9
� 9
� 9
� 9
- 9
,9�
 9�� 9�� 9�� 9�� 9�� 9�- 9�,9�
 9�� 9�� 9�� 9�� 9�� 9�- 9�,9�
 9�� 9�� 9�� 9�� 9�� 9�- 9�,9�
 9�� 9�� 9�� 9�� 9�� 9�- 9�,9�
 9�� 9�� 9�� 9�� 9�� 9�- 9�,9-
 9-� 9-� 9-� 9-� 9-� 9-- 9-,9,
 9,� 9,� 9,� 9,� 9,� 9,- 9,,MM

MM
MM
MN

R&&
S
&&T
��!�A�"�?�=�%&
&'
&&(

, (28)

where 9��  (� = 1,2, ⋯ ,8; � = 1,2, ⋯ ,8) are the transfer matrix coefficients. 

3.2. Analytical method 

The transfer matrixes are different on the different boundary conditions. The transfer matrixes 

are given as follows for the following boundary condition, and then the natural frequencies can be 

obtained. 

a. Clamped-clamped 

Set 5 = 0, � =  = � = !� = 0; 

Set 5 = �, � =  = � = !� = 0. 

Substitute Eq. (29) into Eq. (28), Eq. (29) are expressed as following: 

Q� = U9
� 9
� 9
- 9
,9�� 9�� 9�- 9�,9�� 9�� 9�- 9�,9�� 9�� 9�- 9�,V. (29)

The determinant of the coefficients of the matrix W� is zero: 

Det(W�) = 0. (30)

The matrix W� is the function of natural frequencies. So the natural frequencies corresponding 

to modal are obtained. 

b. Clamped-free 

Set 5 = 0, � =  = � = !� = 0; 

Set 5 = �, A� = =� = "� = ?� = 0; 
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Q� = U9

 9
� 9
� 9
�9�
 9�� 9�� 9��9�
 9�� 9�� 9��9�
 9�� 9�� 9��V. (31)

The determinant of the coefficients of the matrix W�  is zero. So the natural frequencies 

corresponding to modal are obtained. 

4. Numerical computation based on finite element method 

In the classical vibration theory, the basic equation of dynamic problems based on finite 

element methods is presented as follows [17]: 

XYZ (�) + [Y\ (�) + ]Y(�) = ^, (32)

where X is the total mass matrix, [ is the total damping matrix, ] is the total stiffness matrix, ^ 

is the total additional exciting force matrix, Y, Y\  and YZ  are the joint displacement, velocity and 

acceleration column matrixes respectively. 

As the natural vibration frequency of structural system is calculated with the consideration that 

the free vibration is conducted under undamped conditions. The equation of the natural vibration 

frequency is expressed as: 

XYZ (�) + ]Y(�) = 0. (33)

The solutions can be presumed as the following types: 

Y = _sin+(� − ��), (34)

where ! is the * order vector quantity, + is the natural frequency. 

The Eq. (33) is substituted into Eq. (34), and then generalized eigenvalue problems are 

obtained as follows: 

]_− +�X_ = 0,   or   []− +�X]_ = 0. (35)

According to the linear algebra theory, the necessary and sufficient conditions which allow 

Eq. (35) with untrivial solution are as follows: 

det(]− +�X)=0, (36)

where *  characteristic solutions can be obtained by solving these equations, such 

as �+
�,!
�, �+��,!��, … , (+��,!�), among which +
,+�, … ,+� stand for * natural frequencies of 

system, and correspond to 0 ≤ +
 < +� <⋅⋅⋅< +�. 

For every natural frequencies of structure, relative amplitudes of each node from one group 

can be concluded based on Eq. (35). Eigenvectors such as _
,_�, … ,_�  represent *  natural 

modes of vibration of structure. Their amplitudes can be set as follows: 

_�
�X_� = 1   (� = 1, 2, 3, … ,*). (37)

Natural mode of vibration is orthogonal compared to matrix X. Natural mode of vibration is 

defined as: 

` = [_
 _� … _�]. (38)
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Then it can be obtained as follows: 

a� = diag(+
� +�� … +��). (39)

The characters of characteristic solution can be also expressed as: 

`�a` = b,     `�]` = a�, (40)

where `  and a�  are the natural mode of vibration matrix and natural frequency matrix 

respectively. 

5. The results of the three analytical methods 

The natural frequencies of the static state of the cylindrical shell under clamped – free and 

clamped boundary conditions are calculated by the transfer matrix method, the beam function 

method and the finite element method, respectively, and make further verification of the natural 

frequencies. Table 3 shows the basic parameters of the thin-walled cylindrical shell. 

Table 3. The basic parameters of the thin-walled cylindrical shell 

Young 

modulus 

� (Pa) 

Poisson's 

ratio 

� 

Density 

	 

(kg/m3) 

Length 


 
(mm) 

Thickness 
� 

(mm) 

Inside 

radius 

� (mm) 

External 

radius 

� (mm) 

Material 

2.12×1011 0.3 7850 95 2 142 144 Structural steel 

Table 4. The first 20 order natural frequencies in the clamped – free boundary conditions (Unit: Hz) 

Order 1 order 2 order 3 order 4 order 5 order 

Modal shape 

description 

� = 1, 

� = 6 

� = 1, 

� = 5 

� = 1, 

� = 7 

� = 1, 

� = 4 

� = 1, 

� = 8 

Transfer matrix 1369 1424 1500 1701 1768 

Beam function 1717 1858 1734 2168 1893 

Finite element 1380 1450 1497 1739 1756 

Order 6 order 7 order 8 order 9 order 10 order 

Modal shape 

description 

� = 1, 

� = 9 

� = 1, 

� = 3 

� = 1, 

� = 10 

� = 1, 

� = 11 

� = 1, 

� = 2 

Transfer matrix 2131 2230 2567 3062 3091 

Beam function 2174 2701 2552 3010 3636 

Finite element 2115 2274 2550 3048 3137 

Order 11 order 12 order 13 order 14 order 15 order 

Modal shape 

description 

� = 1, 

� = 12 

� = 2, 

� = 7 

� = 2, 

� = 8 

� = 2, 

� = 6 

� = 2, 

� = 9 

Transfer matrix 3612 3611 3633 3752 3801 

Beam function 3536 3369 3411 3457 3572 

Finite element 3607 3686 3721 3818 3909 

Order 16 order 17 order 18 order 19 order 20 order 

Modal shape 

description 

� = 2, 

� = 5 

� = 1, 

� = 13 

� = 2, 

� = 10 

� = 1, 

� =  1 

� = 2, 

� = 4 

Transfer matrix 4062 4215 4092 4437 4519 

Beam function 3683 4124 3841 4935 4062 

Finite element 4118 4223 4225 4476 4564 

The natural frequencies of the cylindrical shell under clamped – free are calculated by the 

transfer matrix method, the beam function method and the finite element method respectively. 

Table 4 and Fig. 4 shows that the results of the transfer matrix method and the finite element 

method calculation are very close, the result of beam function method calculation is close to those 
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of transfer matrix method and the finite element method calculation only at the place of 6th order, 

the 8th order, the 9th order and the 11th order, the frequencies of other orders are quite different. 

The natural frequencies of the cylindrical shell under both ends clamped boundary conditions 

are calculated by the transfer matrix method, the beam function method and the finite element 

method, respectively. Table 5 and Fig. 5 shows that the results of transfer matrix method and the 

finite element method calculation are very close, the result of beam function method calculation 

is close to those of transfer matrix method and the finite element method calculation only at the 

place of 8th order, the 10th order and the 12th order, the frequencies of other orders are quite 

different. 

 
Fig. 4. The frequencies comparison of the three methods in the clamped – free boundary condition 

Table 5. The first 20 order natural frequencies in the both ends clamped boundary condition (Unit: Hz) 

Order 1 order 2 order 3 order 4 order 5 order 

Modal shape 

description 

� = 1, 

� = 7 

� = 1, 

� = 8 

� = 1, 

� = 6 

� = 1, 

� = 9 

� = 1, 

� = 5 

Transfer matrix 3051 3105 3136 3285 3369 

Beam function 3239 3282 3332 3449 3572 

Finite element 3115 3172 3198 3358 3428 

Order 6 order 7 order 8 order 9 order 10 order 

Modal shape 

description 

� = 1, 

� = 10 

� = 1, 

� = 4 

� = 1, 

� = 11 

� = 1, 

� = 3 

� = 1, 

� = 12 

Transfer matrix 3576 3761 3964 4322 4435 

Beam function 3726 3967 4100 4522 4559 

Finite element 3657 3816 4059 4368 4547 

Order 11 order 12 order 13 order 14 order 15 order 

Modal shape 

description 

� = 1, 

� = 2 

� = 1, 

� = 13 

� = 1, 

� = 1 

� = 1, 

� = 14 

� = 2, 

� = 7 

Transfer matrix 5034 4981 5759 5592 5804 

Beam function 5209 5094 5881 5696 5696 

Finite element 5066 5126 5770 5774 5943 

Order 16 order 17 order 18 order 19 order 20 order 

Modal shape 

description 

� = 2, 

� = 6 

� = 2, 

� = 8 

� = 2, 

� = 5 

� = 1, 

� =  0 

� = 2, 

� = 9 

Transfer matrix 5862 5836 5996 6103 5963 

Beam function 5930 5929 6059 6189 6067 

Finite element 5974 6012 6086 6101 6179 
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Fig. 5. The frequencies comparison of the three methods in the both ends clamped boundary condition 

6. Experimental test and comparison 

A method for identification the natural frequencies and the mode shape of cantilever circular 

cylindrical shells is presented, when striking it with a hammer. The hammering test system is 

shown in Fig. 6, they are impact measurement system consisting of modal hammer, polytec, LMS 

measurement system and a high-performance computer and so on.  

 
Fig. 6. Impact measurement system for modal of cantilever circular cylindrical shells 

Table 6. The results of experiments and finite element method 

Order Modal shape description Experiment Finite element Difference (%) 

1 1,6 1065.3 1380 22.80 

2 1,7 1310.6 1497 12.45 

3 1,8 1627.9 1756 7.29 

4 1,9 2005.6 2115 5.17 

5 1,10 2436.1 2550 4.47 

6 1,11 2916.0 3048 4.33 

The natural characteristics are obtained by the way of multi-point excitation and a single point 

response, the drum is divided into five laps, and 36 points per circle, the sensors are fixed in the 
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point (lap 10th point), an incentive hammer hammers sequentially 5×36 points. 

The results are shown in Table 6 and Fig. 7. The results of the transfer matrix method and the 

finite element method are close to that of experiments, while the results vary wildly between the 

transfer matrix method and the beam functions method, however the operation time of the beam 

functions method is short, and its calculation process is simple.  

 
Fig. 7. Three algorithms compared to experimental results 

7. Conclusions  

In this paper, analytical method (beam functions method), semi-analytical method (transfer 

matrix method) and numerical methods (finite element method) are presented to solve the natural 

characteristics of thin-walled cylindrical shell. The results in the clamped-free and 

clamped-clamped boundary conditions are focused on comparison. Furthermore, the experiments 

of the short thin cylindrical shell in the clamped-free boundary conditions are studied, which 

demonstrated that: 

(1) Results of transfer matrix method and finite element method are basically similar, while 

great difference is obtained by beam functions method. 

(2) Further studies by experiment have confirmed that the results obtained by transfer matrix 

method and finite element method are more accurate and efficient. 

(3) Due to the influence of factors such as geometrical dimension, material parameters, 

machining accuracy and chucking ways, the biases between experimental results and calculation 

results is inevitable, but identical trends are observed during the study. 
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