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Abstract. Usage of permanent magnet synchronous machines (PMSM) in wind turbines recently 

became more of an issue. The development in permanent magnet synchronous machines through 

the latest technologies, especially about machine design, increases the importance of those 

machines. Developments in materials technology implement the development of cost effective 

and profitable products on electric machines and bring simplicity in design. Especially Soft 

Magnetic Composite (SMC) materials became to be used recently in machine designs due to its 

advantages such as low costs and providing 3D flux paths. In this work the 2D magnetic equivalent 

circuit (MEC) of PMSM machine, which includes SMC in its stator part, was composed and stated 

magnetic equivalent circuit was verified by finite element method. Also torque and radial forces 

of PMSM were calculated as well. When SMC materials are used in electric machines, flux flows 

in 3D. 3D finite element method takes quite long time. Due to 2D MEC analysis that was used in 

our work, the analysis periods become remarkably shorter. Besides the proposed MEC model 

enables to calculate performances of the machines, which have the desirable slot/pole 

combinations, correctly. Proposed model is applied on the recently improved fractional slot direct 

drive synchronous generators. 

Keywords: permanent magnet sychronous generator, vibration, radial force, wind turbine, MEC, 

FEA, SMC. 

1. Introduction 

As wind turbines become increasingly cost effective their use in the national supply grid 

increases. Various wind turbine concepts have been developed and built to maximize the energy 

harnessed, to minimize the cost and to improve the power quality during the last two decades. 

When focusing on the generator type, the generator system can be classified into electrically 

excited machines and the permanent magnet (PM) machines. The evolution of wind turbines to 

industry from mills started in the days of peak oil in 1970s. Associated with that crisis, technologic 

development became important as well as raw material demand. In early 80s popularity of wind 

power increased dramatically and wind farms started to be set up. Renewable energy resources 

became more important not only with the shortage of conventional raw materials, but also the two 

important issues of energy policy: reliability and sustainability, make it obligatory to use those 

resources. Within the renewable energy resources, undoubtedly wind power is being used 

preeminently. 

Permanent magnet synchronous machines have high power density and productivity. 

Permanent magnet synchronous machine may be seen as a machine exciting by a stable excitation 

current which contains magnets instead of rotor windings of traditional synchronous machine. 

Hence it acts like a traditional synchronous machine in a condition of fixed-frequency sinusoidal 

supply on PMSM. Because PMSM doesn’t contain windings on its rotor, loss of excitation on 

traditional synchronous machine surceases and by this means cooling of the machine becomes 

easier. There are three main torque components in permanent magnet synchronous motors. These 

are: moment arises from the interaction of the rotor field and stator currents, reluctance moment 

related to rotor structure and cogging torque arises from permanent magnets and slots. Within 

these torques, cogging torque doesn’t contribute to the centering torque although especially at low 
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speeds, the speed conduces to fluctuation and vibration. Surface-mounted permanent magnet 

synchronous machine does not contain reluctance torque. However its cogging torque is quite high. 

This torque component leads to torque ripple and increases vibration. 

Using fractional slot windings different combinations of numbers of poles and numbers of 

teeth are possible. However the magnetic field of these windings has more space harmonics, 

including sub-harmonics. Those unwanted harmonics lead to undesirable effects, such as localised 

core saturation, noise and vibration, and eddy current loss in the magnets, which are the main 

disadvantages of these winding types. The radial force density distribution on the stator surface, 

which results from the air-gap magnetic field under no-load (open-circuit) and on-load conditions, 

is the main cause of electromagnetically induced noise and vibration. It is important to define 

properly the magnetic flux density in the air gap of permanent magnet synchronous machine in 

order to evaluate the performance of machine like analytically obtained moment and Back-EMF. 

There are many parameters which effect the performance of machine. The feature of materials and 

the geometrical structure of the machine are the initial ones. Each part needs to be designed for 

the preliminary design. The design of those machines is related to the proper calculation of 

characteristics of preliminary designs. The geometry of the machine and the excitation of the stator 

windings affect the distribution of the magnetic field thereby influencing the torque. The other 

existing force component in the PMSM is the radial force which can potentially cause the radial 

vibrations in the stator. As mentioned the torque components are dependent upon the distribution 

of the magnetic field in the air gap [1].  

Recently SMC materials were used in a lot of AC applications like motors, transformers and 

sensors [2]. New Soft Magnetic Composite Materials (SMC) have a lot of advantages compared 

to conventional laminated steel in electromagnetic systems applications [3]. The most important 

ones of these advantages: 

• being isotopical magnetic and thermal materials, 

• having low eddy losses, 

• having low total losses at medium and high frequencies. 

In this study radial forces, Back EMF and torque of SMC permanent magnet synchronous 

machine are analyzed with two dimensional magnetic equivalent circuit theorem. The analyzed 

machine has 9 slots and 10 poles. SMC material and conventional steel are compared in this study. 

2. Properties of SMC material 

The main structure of SMC is bounded steel particules with high purity. These particules are 

bounded with organic material coating. Coated particules are pressed into rigid material using 

swage. Materials of this kind are usually magnetic isotopical because of being natural particle and 

this makes it easy to design [2-3]. SMC include iron particules coated with dielectric film. These 

iron particules spared each other with electrical insulation. Because of this, this kind of materials 

has high electric resistance. These materials are structured with pressing the particules. The 

resistivity of SMC depends on SMC’s mechanical and ferromagnetic characteristics, dimensions 

and density of iron particules, insulation material, pressing process and thermal behaviour. SMC 

material’s magnetic and mechanical characteristics depend not only on iron particules, but also on 

the oil and resin amount and cold or hot press process. If SMC material is unsintered, endurance 

will be low compared to laminated SMC or sintered SMC. SMC material’s characteristics can be 

made suitable for special applicaitons [4-5]. A schematic diagram of the component elements of 

a powder core is shown in Figure 1. 

Isotopical magnetic characteristics provide flux density in rotor magnetic circuit in axial 

direction, thus motor’s total axial length can be reduced without any loss in motor performance 

[7]. Magnetic circuits produce three dimensional flux lines and different radial topologies are used 

in order to obtain high motor performance [2]. Because of the three dimensional flux distribution 

of SMC materials, teeths can be extended axial, thus flux is increased on teeths and rotor yoke. 
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With this kind of design air gap active length became max [7]. SMC material is convenient 

especially for 3D flux machine structure [8]. In addition, it cancels the lamination’s magnetic field 

limitations. Because of the isolation of iron particules by surface coating and coherents, it has 

lower eddy losses than laminated steel especially in high frequencies. At total loss, hysteresis 

losses are higher. By the increase of exciting frequency, the increase of the SMC’s core losses is 

lower than in the electrical steel. SMC materials are very useful for motor operating at high 

frequencies, but at low and medium frequencies they are not as good as high degree laminated 

electrical steel. SMC is proper for large scale motors with low prices. 

 
Fig. 1. A schematic diagram of the component elements of a powder core [6] 

 
Fig. 2. The comparison of B-H curves related to electrical steel and SMC material 

There are a lot of studies in literature about development of SMC material’s two important 

characteristics. These two characteristics are: 

• increasing the purity and decreasing the deformation between particules by decreasing 

coersivity force and increasing magnetic particule’s magnetic permeability, 

• increasing the density, electrical resistance and thermal resistance under pressure [3]. 

For laminated silicon steel core machines good magnetic characteristics can be obtained 

through the plane flux line. This provides a two dimensional magnetic circuit. SMC insulator 

coating has isotropic magnetic characteristics. Thus three dimensional flux line can be obtained 

from electrical machines designed with this material.  

SMC material’s saturation is related to composite, purity and density. Saturation flux density, 

SMC material’s relative permeability and induction are lower than of the silicon steel. Induction 

is related to permeability in low magnetic fields. Saturation is important in high magnetic fields. 

Due to having low induction MMF can be increased by increasing the flux in the core, thus teeth 

area can be extended. Extention of teeth area is not possible without increment of slot opening, 

thus extention of teeth area enlarges the motor dimensions. The best way to increase the MMF is 

to use a permanent magnet with higher coercivity [8, 9]. Another method is changing of the SMC 

material’s structure. While prepareing the SMC material, if an external flux interaction can be 

provided, permeability will be increased and magnetic resistance will be decreased. This method 

is called external flux interaction. With this method steel losses of SMC can be decreased to  

0,00

0,50

1,00

1,50

2,00

2,50

0 20000 40000 60000 80000 100000 120000 140000

B
 (

Te
sl

a)

H (A/m)

Steel

SMC



1015. DYNAMICS AND TORQUE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS GENERATOR WITH SOFT MAGNETIC COMPOSITE MATERIAL.  

Y. ONER, I. SENOL, N. BEKIROGLU, E. AYCICEK 

1002  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

6.25 % [10]. The magnetization curves of SMC and silicon steel are shown in Figure 2. 

3. 10 pole 9 slots SMC malzemeli permanent magnet sychronous generator MEC analysis 

Two dimensional cross-section of machine is shown in Figure 3. The stator has windings 

concentrated around each stator pole. The number of winding turns of each phase is 216. The 

rare-earth magnet “Nd-Fe-B” is buried in the rotor iron. Residual magnetic flux density 𝐵𝑟  and 

coercive force 𝐻𝑐  of the permanent magnet are about 1.3 T and 1000 kA/m, respectively. The 

following assumptions have been made for the analysis provided: 

• the used materials have homogeneous properties, 

• 𝑁𝑠 = 𝑁𝑚, 

• firstly no load is applied, 

• the stator teeth and permanent magnets are rigid; no deformation due to radial and tangential 

force is experienced by these components, 

• hysteresis and eddy currents are neglected, 

• current is taken as sinusoidal,  

• SMC material is used in stator core. 

 

rri

rro

rsb

rso

rsi

 
Fig. 3. 2D cross-section of the permanent magnet synchronous machine 

For MEC method, first it is studied in the no load condition. 

Before Back-EMF calculation, air-gap flux density (𝐵𝑔) is found by the solution of MEC at 

Figure 4 as: 

[𝑋1] =

[
 
 
 
 
𝐺1 −𝐺𝑡,2 0 0 …

−𝐺𝑡,1 𝐺2 −𝐺𝑡,3 0 …

0 −𝐺𝑡,2 𝐺3 −𝐺𝑡,4 …
… … … … …
0 0 … −𝐺𝑡,𝑁𝑠−1 𝐺𝑁𝑠]

 
 
 
 

𝑁𝑠×𝑁𝑠

, (1) 

[𝑌1] =

[
 
 
 
 
 
 
−𝐺𝑙,1 0 0 0 0 …

0 −𝐺𝑙,2 0 0 0 …

0 0 −𝐺𝑙,3 0 0 …

0 0 0 −𝐺𝑙,4 0 …
… … … … … …
0 0 0 0 … −𝐺𝑙,𝑁𝑠]

 
 
 
 
 
 

𝑁𝑠×𝑁𝑠

, (2) 
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[𝑍1] =

[
 
 
 
 
𝐺𝑔𝑎𝑝1,1 −𝐺𝑚𝑢𝑡1,1 0 0 …

−𝐺𝑚𝑢𝑡1,1 𝐺𝑔𝑎𝑝2,2 −𝐺𝑚𝑢𝑡3,3 0 …

0 −𝐺𝑚𝑢𝑡2,2 𝐺𝑔𝑎𝑝3,3 −𝐺𝑚𝑢𝑡4,4 …
… … … … …
0 0 … −𝐺𝑚𝑢𝑡𝑁𝑠−1,𝑁𝑠−1 𝐺𝑔𝑎𝑝𝑁𝑠,𝑁𝑠]

 
 
 
 

𝑁𝑠×𝑁𝑠

, (3) 

[𝐺𝑛,𝑙𝑜𝑎𝑑] = [
𝑋1 𝑌1
𝑌1 𝑍1

], (4) 

[𝜙𝑝𝑚] = [𝐺𝑛,𝑙][𝐹𝑝𝑚], (5) 

𝜙𝑔𝑝𝑚 = 𝑘𝑙𝜙𝑝𝑚, (6) 

ℜ𝑚 =
𝑙𝑚

𝜇𝑟𝜇0𝐴𝑚
, (7) 

ℜ𝑔 =
𝑔

𝜇0𝐴𝑔
, (8) 

ℜ𝑠 =
𝑤𝑠𝑏

𝜇0𝜇𝑟𝑒𝑐,𝑠𝑡𝑒𝑙𝑙𝐴𝑠
, (9) 

𝐵𝑔𝑝𝑚 =
𝜙𝑔𝑝𝑚

𝐴𝑔
, (10) 

where ℜ𝑚 is the reluctance of the magnet, ℜ𝑔 is the reluctance of air gap, ℜ𝑟 is the reluctance of 

rotor, ℜ𝑠 is the reluctance of stator, ℜ𝑙 is leakage reluctance and 𝐾𝑙  is the leakage factor and its 

value is less than one. 

t,1 t,2

 

sy,1

g,1
g,2

m,1 m,2

1

1,1

l,1

st,N

sg,N

sm,N

sN
F

2F1F
 

Fig. 4. MEC for slotted structure at no load condition 

Here are: 

𝐺𝑁𝑠 =
1

ℜ𝑠𝑦,𝑁𝑠 + 𝑅𝑡,𝑁𝑠 + 𝑅𝑡,𝑁𝑠−1 + 𝑅𝑙,𝑁𝑠
,  

𝐺𝑔𝑎𝑝𝑁𝑠,𝑁𝑠 =
1

ℜ𝑔,𝑁𝑠 +ℜ𝑙,𝑁𝑠 + ℜ𝑔,𝑁𝑠−1 +ℜ𝑚,𝑁𝑠 + ℜ𝑚,𝑁𝑠−1
, 

𝐺𝑚𝑢𝑡1,𝑁𝑠 =
1

ℜ𝑔,𝑁𝑠−1 + 𝑅𝑚,𝑁𝑠−1
. 

Second it is studied on load condition. The following equation is used in order to obtain the 
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number of MEC column at load condition: 

𝐺𝐶𝐷(10, 9) = 1, 

Column number = 
𝑁𝑠

𝐺𝐶𝐷(𝑁𝑠, 2𝑝)
= 9. 

(11) 

The magnet reluctance 𝑅𝑚  [A/Wb] and gap reluctance 𝑅𝑔  [A/Wb] are calculated different 

from the no-load model magnet reluctance, because the armature reaction flux crosses the air gap 

and magnets over one slot pitch 𝜏𝑠 [m] (see Fig. 5): 

[𝑋2] =

[
 
 
 
 
𝐺𝑙𝑜𝑎𝑑1 −𝐺𝑙𝑜𝑎𝑑𝑡,2 0 0 …

−𝐺𝑙𝑜𝑎𝑑𝑡,1 𝐺𝑙𝑜𝑎𝑑2 −𝐺𝑙𝑜𝑎𝑑𝑡,3 0 …

0 −𝐺𝑙𝑜𝑎𝑑𝑡,2 𝐺𝑙𝑜𝑎𝑑3 −𝐺𝑙𝑜𝑎𝑑𝑡,4 …
… … … … …
0 0 … −𝐺𝑙𝑜𝑎𝑑𝑡,𝑁𝑠−1 𝐺𝑙𝑜𝑎𝑑𝑁𝑠]

 
 
 
 

𝑁𝑠×𝑁𝑠

, (12) 

[𝑌2] =

[
 
 
 
 
 
 
−𝐺𝑚,𝛿,1 0 0 0 0 …

0 −𝐺𝑚,𝛿,2 0 0 0 …

0 0 −𝐺𝑚,𝛿,3 0 0 …

0 0 0 −𝐺𝑚,𝛿,4 0 …
… … … … … …
0 0 0 0 0 −𝐺𝑚,𝛿,𝑁𝑠]

 
 
 
 
 
 

𝑁𝑠×𝑁𝑠

, (13) 

[𝑍2] =

[
 
 
 
 
𝐺𝑙𝑜𝑎𝑑,𝑔𝑎𝑝1,1 −𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡1,1 0 0 …

−𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡1,1 𝐺𝑙𝑜𝑎𝑑,𝑔𝑎𝑝2,2 −𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡3,3 0 …

0 −𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡2,2 𝐺𝑙𝑜𝑎𝑑,𝑔𝑎𝑝3,3 −𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡4,4 …
… … … … …
0 0 … . −𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡𝑁𝑠−1,𝑁𝑠−1𝐺𝑙𝑜𝑎𝑑,𝑔𝑎𝑝𝑁𝑠,𝑁𝑠]

 
 
 
 

𝑁𝑠×𝑁𝑠

, (14) 

[𝐺𝑙𝑜𝑎𝑑] = [
𝑋2 𝑌2
𝑌2 𝑍2

], (15) 

[𝜙𝑠] = [𝐺𝑙𝑜𝑎𝑑][𝐹𝑠], (16) 

ℜ𝑚 =
𝑙𝑚

𝜇𝑟𝜇0𝐴𝑚
, (17) 

ℜ𝑔 =
𝑔

𝜇0𝐴𝑔
, (18) 

ℜ𝑠 =
𝑤𝑠𝑏

𝜇0𝜇𝑟𝑒𝑐,𝑠𝑡𝑒𝑙𝑙𝐴𝑠
. (19) 

Total flux: 

𝜙𝑔𝑠 = 𝑘𝑙𝜙𝑠, (20) 

𝐵𝑔𝑠 =
𝜙𝑔𝑠

𝐴𝑔
, (21) 

[𝐵𝑔] = [𝐵𝑔𝑝𝑚] + [𝐵𝑔𝑠]. (22) 

Here are: 

𝐺𝑙𝑜𝑎𝑑,𝑔𝑎𝑝 =
1

2 × ℜ𝑔 + 2 × ℜ𝑚 + ℜ𝑚,𝛿
,   𝐺𝑙𝑜𝑎𝑑,𝑚𝑢𝑡 =

1

ℜ𝑔 + ℜ𝑚
. 
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Ф1
Ф2

Ф3 Ф4 Ф5

Ф14

Ф7

Ф15Ф9 Ф10

m,

Ф13

t

g

Ф6

Ф11

m,

Ф8

Ф12

m,

Ф16

AMMF AMMF AMMF

s

m

m,m,m,m,m,

t t t t t t t t

mmmmmmmm

g g g g g g g g

sssssss

 
Fig. 5. MEC at load condition 

4. 10 pole 9 slots SMC malzemeli permanent magnet sychronous generator FEA analysis 

This machine is analysed by the software Flux 3D. The rotor air gap flux density and the motor 

torque value are calculated. In order to compare the performance of motors with different  

materials, the PMSM with SMC material and the PMSM with steel M19 material have the same 

stator and rotor structure with the same size, the rated power of the two motors are both 1.5 kW. 

The dimensions related to rotor and stator are shown in Table 1 and Table 2. In Fig. 6 the stator 

slot is shown. 

Table 1. Stator parameters of the PMSM 

Stator inner radius 20.6 mm 

Stator outer radius 38 mm 

Airgap length 0.6 mm 

Airgap width 7.5 mm 
 

Table 2. Rotor parameters of the PMSM 

Rotor inner radius 8 mm 

Rotor outer radius 20 mm 

Magnet length 2.5 mm 
 

 
Fig. 6. Stator slot dimensions 
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In Fig. 7 magnetic flux density is shown for both SMC material machine and steel machine. 

As it can be seen from the figures SMC machine has a lower magnetic flux density. Thus torque 

and Back EMF values would be lower, but the decrement of torque and Back EMF is very small. 

Also see data in Table 3 and Table 4. 

 
(a) 

 
(b) 

Fig. 7. (a) Flux density of permanent magnet sychronous machine with steel stator,  

(b) flux density of permanent magnet sychronous machine with SMC stator 

Table 3. The comparison of FEA and MEC  

for SMC machine 

For steel FEM MEC 

𝐵𝑔𝑚𝑎𝑥  1.15 1.1 

𝐵𝑡𝑚𝑎𝑥  1.8 1.77 

𝐵𝑠𝑦𝑚𝑎𝑥  1.5 1.45 
 

Table 4. The comparison of FEA and MEC  

for steel machine

For SMC FEM MEC 

𝐵𝑔𝑚𝑎𝑥  1.05 1.0 

𝐵𝑡𝑚𝑎𝑥  1.4 1.35 

𝐵𝑠𝑦𝑚𝑎𝑥  0.8 0.75 
 

5. Winding structure 

The winding array effects the performance of electric machines, back electromotive force in 

particular. The winding type of an electrical machine is determined by the number of 𝑞, slot per 

pole per phase of the machine following the below regulars:  

• integral 𝑞 > 1, integral-slot distributed winding,  

• 𝑞 = 1, integral-slot concentrated winding,  

• fractional 𝑞 > 1, fractional-slot distributed winding,  

• fractional 𝑞 < 1, fractional-slot concentrated winding. 

The distributed winding is the most common configuration for large electrical machines. With 

one slot per pole per phase, its winding factor is equal to 1. Concentrated windings can present the 

drawback of a low winding factor and high torque ripple. The advantages of this configuration are 

the shorter end-windings and the simple mounting [13]. 

There are many works on generating concentrated winding method. J. Cross and P. Vigoure 

presented specialized concentrated two layer windings [14]. The winding configuration vectors 

are derived in seven steps: 

1. For the values less than 1; 𝑞, slot per pole per phase, reduces till two non divisible integers 

𝑞 =
𝑏

𝑐
. 

2. Repeatable series of 0 and 1 sequence are found by the equality above. Initial repeatable 

sequence is obtained by this equation: 000. . .0⏟    
𝑏−𝑐

111. . .1⏟    
𝑏

⏞          
𝑐

. 
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3. Initial sequence is to be permuted in a manner that the 1 s must be distributed regularly 

among 0 s. 

4. Permutated sequence is written side by side 3 times. 

5. Classical sequence is in the form of A+C-B+A-C+B-. 

6. First layer of winding is arrayed by the correspondence of 1 s. 

7. Second layer of winding is attained by shifting the first line as far as a screw pitch. 

A winding structure is designed for the 9 slot and 10 pole configuration in this study:  

𝑞 =
9

3∗10
=

3

10
. In this situation there will be 3 ones and 7 zeros in the sequence. 

(1) Initial sequence: 0000000111. 

(2) Optimum sequence: 1001001000. 

(3) Permutated sequence is written side by side 3 times: 1001001000|1001001000|1001001000.  

(4) Classical sequence: A+C-B+A-C+B-: 

1  0  0  1  0  0       1  0  0  0  1  0      0  1  0  0  1  0      0   0  1  0  0  1     0  0  1  0  0  0, 

A+C-B+A-C+B-     A+C-B+A-C+B-     A+C-B+A-C+B-     A+C-B+A-C+B-    A+C-B+A-C+B-. 

(5) The first layer of winding will be ordered as come up to number 1: 

A+  A- A+  C+   C- C+ B+  B-  B+. 

(6) The second layer of winding is obtained by shifting the first line about a tooth: 

A+  A- A+ C+   C- C+ B+  B- B+, 

     A- A+ A- C- C+ C- B- B+ B-. 

(7) The last winding structure can be drawn as below (see Fig. 8). 

 
Fig. 8. Winding structure for 9 slot and 10 pole configuration  

6. Permanent magnet sychronous generator radial force analysis 

The most frequent source of vibration in permanent magnet synchronous machine is caused 

by radial force due to the electromagnetic force. The problems of vibration and noise are extremely 

troublesome when the forcing frequencies of the radial force match one or more of the mechanical 

or structural resonant frequencies in the machine. Therefore it isimportant to know the air gap flux 

density distribution accurately for the prediction of Back-EMF waveform, cogging torque and 

radial force [15]. An alternative to deriving the electromagnetic torque using an energy balance 

approach is to derive the components of force from the magnetic field using a Maxwell Stress 

Tensor method. Specifically, within the airgap of the machine the local radial components of force 

density can be expressed [16]: 

𝑓𝑟 =
1

2𝜇0
(𝐵𝑟

2 − 𝐵𝑡
2), (23) 

𝐵𝑟 = 𝐵𝑔𝑝𝑚 + 𝐵𝑔𝑠, (24) 

𝐵𝑡 = 𝐵𝑡𝑝𝑚 + 𝐵𝑡𝑠 , (25) 

where 𝐵𝑔𝑝𝑚, 𝐵𝑡𝑝𝑚, 𝐵𝑔𝑠 and 𝐵𝑡𝑠 denote the tangential and radial flux densities created by the PM 

and stator windings respectively. If for the structure that is being discussed in this work a winding 

structure for 9 slot 10 pole configuration is generated, the equation (23) can be put forth like below 

as the tangential force is of a negligible level in comparison with the radial force: 

𝑓𝑟 =
1

2𝜇0
𝐵𝑟
2. (26) 
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The radial force equality is generated after the magnetic flux density is generated through the 

equality above. 

After magnetic flux density is obtained from the above equations, radial force is obtained from 

equation (26) (see Fig. 9). 

 
Fig. 9. Radial force from FEA and MEC 

7. Permanent magnet sychronous generator torque analysis 

Cogging torque and electromagnetic torque of a PM machine are calculated according to 

Maxwell’s stress tensor method as: 

𝑇 =
𝐿

𝜇0
∮𝑟𝐵𝑛𝐵𝑡𝑑𝑙

𝑆

. (27) 

According to Arkkio’s method, it is better to compute the average value of the electromagnetic 

torque over the entire air-gap surface. So the torque can be calculated as: 

𝑇 =
𝐿

𝜇0
∮𝑟𝐵𝑛𝐵𝑡𝑑𝑆

𝑆

, (28) 

where 𝑆 is air gap surface constituted by the layers between stator and rotor, 𝑔 is air gap length. 

According to virtual work method, electromagnetic torque is equal to the derivative of the 

magnetic co-energy Wm with respect to rotor angle at constant current [17]: 

𝑇 =
𝜕𝑊′

𝜕𝜃
. (29) 

According to equation (29) it is obtained: 
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𝑇 =
𝜕𝑊′

𝜕𝑡

𝜕𝑡

𝜕𝜃
=

𝜕𝑊′
𝜕𝑡
𝜕𝜃
𝜕𝑡

=
𝑃

𝜔
=
𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐

𝜔
. (30) 

According to the torque results given in Figure 10, the difference between the results of MEC 

and FEA is less than 1 % when steel is used in stator and according to the torque results given in 

Figure 11, the difference between the results of MEC and FEA is 2 % when steel is used in stator. 

 
Fig. 10. SMC-PMSM torque wave form 

 
Fig. 11. Steel-PMSM torque wave form 

8. Conclusions 

After magnetic flux distribution was found by magnetic equivalent circuit method, radial force 

density and torque were calculated. As seen in Figure 10 and Figure 11, it is observed that torque 

decreased by 12.5 % when SMC material is used in the stator of PMSMs. Since the SMC material 

is cost efficient and it doesn’t have any mold cost during the production phase, SMC material is 

much more cost-effective in comparison with steel. Moreover the labor cost is lower because it is 

more shapeable. 

When the torque results obtained by magnetic equivalent circuit method and by finite element 

method are compared, it is seen that the difference isn’t more than 2 %. Radial forces of the 

investigated machine are very low. Because of that ripple and vibrations are remarkably low. 
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Radial forces are directly proportional to the square of air-gap flux density. When the air-gap flux 

density increases, radial forces increase. At the same time the power obtained from the machine 

increases as well. Nominately radial forces must be taken into account when the machine 

optimization is done. Thereby the vibration and torque resonance of the machine become 

decreased. A combination of analytical and FEA methods is used during the analysis of radial 

forces. 
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