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Abstract. A bearing is the most common and vital element in the majority of rotating machinery. 

Condition monitoring and performance assessment of rolling bearing have recently attracted 

significant attention. This paper proposes a set of methodologies to realize the efficient health 

monitoring and assessment of rolling bearing. Considering the difficulties and disadvantages in 

detecting the fault signal of rolling bearing with background noise, this paper presents a method 

based on the Duffing oscillator and Hu’s moment invariant for health monitoring. The proposed 

method mainly combines the chaotic oscillator and moment invariant, fully utilizing the sensitivity 

of the former to detect the fault signal and taking the latter as a quantitative index for fault 

identification without the need for a qualitative artificial judgment on the Duffing oscillator phase 

trajectory map. To provide the optimal performance of Hu’s moment invariant in automatic 

recognition for the phase trajectory map, the influencing principle of different oscillator 

parameters was analyzed. Therefore, the health state of rolling bearing can be automatically 

monitored by quantitatively identifying the transition state of the phase trajectory map. A health 

assessment model was established to evaluate the health state of bearings. Wavelet packet 

transform was used to extract the features (approximate entropy) of bearing vibration signal, 

which were input into the self-organizing map (SOM) network. The health state of rolling bearings 

was then assessed using the SOM network and confidence values. A case study on health 

monitoring and assessment for rolling bearing was conducted to demonstrate the effectiveness and 

accuracy of the proposed methods. 

Keywords: Duffing oscillator, Hu’s moment invariant, health monitoring, health assessment, 

rolling bearing. 

1. Introduction 

Rolling bearing is one of the most common fragile parts in mechanical equipment. According 

to statistics, this component is responsible for the 30 % of failures in rolling machines. Bearing 

failure is one of the foremost causes of breakdowns in rotating machinery, and such failure can be 

catastrophic, resulting in costly downtime. Therefore, bearing is important to numerous forms of 

machinery in manufacturing. Defect diagnosis and health assessment of rolling bearing have 

generated widespread interest in the area of manufacturing with a focus on preventing such failures. 

Previously proposed techniques are mainly based on vibration analysis [1-6]. However, the 

vibration signal of rolling bearing is always collected along with random noise. In terms of noise 

interference, traditional detection methods including spectral analysis [7], wavelet denoising [8], 

and mixture denoising diagnosis [9] aim to curb the noise through noise reduction and noise 

cancelling. These methods may achieve good results but may generate interference to useful 

signals to some degree.  

Therefore, we propose an approach for the defect diagnosis and health monitoring of rolling 

bearing based on a chaotic oscillator, which exhibits excellent noise inhibition. The advantages of 

using a chaotic oscillator for signal detection is that it has nonlinear gain, high sensitivity to weak 
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signals, bandwidth reduction, and a memory capacity useful for characterization. Signal detection 

with chaotic oscillator introduces a signal with a specific frequency as a periodic disturbance into 

the system and controls the system in the chaotic critical state. A large number of studies [10-15] 

on defect detection or diagnosis based on Duffing oscillator have been conducted, and satisfactory 

results have been achieved. 

When a Duffing oscillator is used to detect a fault signal, the phase trajectory map will appear 

from the chaotic state to the large-scale periodic state. However, distinguishing the phase 

trajectory map or the time-domain waveform through visual observation is difficult, which may 

yield wrong conclusions. A number of studies [16, 17] have discussed the use of traditional or 

modified Hu’s moment invariants for the implementation of automatic visual pattern recognition 

and fault detection of industrial machinery. 

Based on the aforementioned works, this study aims at combining moment invariant with 

Duffing oscillator to realize the health monitoring and diagnosis of rolling bearing. Different states 

of rolling bearing can be significantly identified during the transition of the phase trajectory map 

and critical moment invariant threshold between normal and faulty states. In this study, the effects 

of different parameter values, such as frequency of defect signal, sampling length, and external 

noise level, on the performance of moment invariant were determined. A health assessment model 

was used to evaluate the bearing health status. 

Start

Duffing oscillator equation

(ω0=ωi)

Duffing oscillator equation

(ω0=ωo)
Duffing oscillator equation

(ω0=ωr)

 to-be-detected signal

Hu's moment invariant Hu's moment invariant Hu's moment invariant 

 Fault type

End

1 2 3

Estimate of fault severity

Confidence value

Health Monitoring 

Module

Health Assessment 

Module

Fig. 1. Procedure for the health monitoring and assessment of rolling bearing 

The proposed process is shown in Figure 1. Suppose that single-point faults occur, that is, the 

fault type is either one of inner-race, outer-race, and rolling element faults. First, three Duffing 

oscillators are set up according to the fault characteristic frequencies of the three fault types. The 

to-be-detected signal is then introduced to the three established Duffing oscillators, where  

𝜔0 = 𝜔𝑖, 𝜔0 = 𝜔𝑜, and 𝜔0 = 𝜔𝑟 (𝜔𝑖, 𝜔𝑜, 𝜔𝑟 represent the inner-race fault, outer-race fault, and 

rolling element angular frequencies, respectively). Hu’s moment invariants are then calculated by 

identifying the phase trajectories. The smallest among the three moment invariants 𝜑1, 𝜑2, and 

𝜑3 will be selected, and the corresponding pre-marked fault type is that which the introduced 

signal represents. Therefore, health monitoring is realized automatically based on Hu’s moment 

invariant calculation. Finally, the health assessment module is initiated after health monitoring. A 
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health assessment model based on feature extraction and self-organizing map (SOM) is 

established. The health degree of rolling bearing, which is called confidence value, can be 

estimated through the established assessment model. Therefore, the health assessment of rolling 

bearing can be accomplished. 

2. Principle of fault signal detection using chaotic Duffing oscillator 

This paper employs the Duffing–Holmes equation for modeling. This equation provides the 

most straightforward and effective model for common rigid-forced vibration in mechanical 

systems. Numerous related studies on the characteristics of the equation have been conducted. For 

the Duffing–Holmes oscillator, a slight change in the parameters can result in an essential change 

in state. The Duffing–Holmes equation is written as follows: 

�̇� − 𝑃�̈� + 𝑐�̇� − 𝑥 + 𝑥3=𝑓0cos(𝜔𝑡), (1) 

where 𝑐 is the damping coefficient; 𝑓0 and 𝜔 are the amplitude and the angular frequency of the 

internal periodic driving force, respectively; and 𝑥 is the nonlinear restoring force. 

An equivalent set of two first-order non-autonomous equations is as follows:  

{
�̇� = 𝑦,

�̇� = −𝑐𝑦 + 𝑥 − 𝑥3 + 𝑓0cos(𝜔𝑡).
 (2) 

After a time-scale transformation, a state equation can be obtained as Eq. (3): 

{
�̇� = 𝜔0𝑦,

�̇� = 𝜔0(−𝑐𝑦 + 𝑥 − 𝑥3 + 𝑓0cos(𝜔0𝑡)).
 (3) 

When the to-be-detected periodic signal and noise are introduced into the oscillator, Eq. (3) is 

modified into Eq. (4) as: 

{
�̇� = 𝜔0𝑦,

�̇� = 𝜔0(−𝑐𝑦 + 𝑥 − 𝑥3 + 𝑓0cos(𝜔0𝑡) + 𝑓1cos(𝜔1𝜏 + 𝜃) + 𝑁(𝑡)),
 (4) 

where 𝑓1, 𝜔1, and 𝜃 are the amplitude, frequency, and phase of the to-be-detected periodic signal, 

respectively. 𝑁(𝑡)  represents other signals, including the random noise and invalid periodic 

components. A detection model was constructed for the periodic signal. 

If 𝑐 is fixed and 𝑓0 increases gradually from 0 to more than a certain threshold 𝑓𝑎and continues 

increasing to exceed another threshold 𝑓𝑏, then the time domain output and phase trajectory state 

of Duffing oscillator changes. The changing law in the phase plane is as follows: small-scale 

periodic state→chaotic state→large-scale periodic state. When 𝑐 = 0.5, 𝜔0 = 2π∙100 rad/s, and 

the account (simulation) step ℎ = 0.001, Eq. (3) can be solved by discretization using the fourth-

order Runge–Kutta algorithm. To facilitate the observation on the transition of oscillator phase 

trajectories, the initial value {𝑥(0) = 0, 𝑦(0) = 0} was considered, and the first 100 data points 

were discarded. The corresponding phase trajectories are shown in Figure 2. 

As shown in Figure 2, the Duffing oscillator is in the small-scale periodic state when 𝑓0 = 0.15, 

𝜔0 = 1, in the chaotic state when 𝑓0 = 0.69, and in the large-scale periodic state when 𝑓0 = 0.7382. 

The driving force threshold (critical value), where the phase trajectory state of the Duffing 

oscillator shifts from the chaotic state to the large-scale periodic state, was 0.7381 based on 

repetitive simulation tests. 
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(a) 𝑓0 = 0.15 

 
(b) 𝑓0 = 0.69 

 
(c) 𝑓0 = 0.7381 

 
(d) 𝑓0 = 0.7382 

Fig. 2. Phase trajectories of the Duffing oscillator with different parameters 

 
(a) 𝑓 = 0.7381, 𝜎 = 0.01 

  
(b) 𝑓 = 0.7381, 𝜎 = 0.1 

 
(c) 𝑓 = 0.738, 𝜎 = 1 

 
(d) 𝑓 = 0.7381, 𝜎 = 10 

Fig. 3. Phase trajectory of the Duffing oscillator with pure noise:  

(a) 𝜎 = 0.01; (b) 𝜎 = 0.1; (c) 𝜎 = 1; and (d) 𝜎 = 10 
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To verify the suitability of the Duffing oscillator for weak signal detection under strong noise 

disturbance, we set 𝑓0 = 0.7381 and kept the system in the critical chaotic state. By sequentially 

adding pure white Gaussian noise 𝑁(𝑡) (as described in Eq. (4)) into the oscillator and increasing 

the standard deviation of the noise 𝜎 from 0.01 to 10, phase maps were generated, as shown in 

Figure 3 (a), (b), (c) and (d), respectively. The chaotic state did not shift into the large-scale state 

as the intensity of the added noise increased, which indicates that the state of the chaotic system 

can remain relatively steady under noise perturbation. 

3. Automatic identification of chaotic phase trajectories based on moment invariant  

3.1. Hu’s moment invariant 

For any 2-D image with a grey distribution function of 𝑓(𝑥, 𝑦), the moment (sometimes called 

“raw moment”) of order (𝑝 + 𝑞) is defined as: 

𝑚𝑝𝑞 = ∬ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (5) 

where 𝑝, 𝑞 = 0, 1, 2, ... . 

The central moment is defined as: 

𝑢𝑝𝑞 = ∬ (𝑥 − 𝑥0)𝑝(𝑦 − 𝑦0)𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (6) 

where 𝑥0 =
𝑚10

𝑚00
 and 𝑦0 =

𝑚01

𝑚00
 are the components of the centroid. 

During discrete transformation, the raw and central moments of 𝑓(𝑥, 𝑦) are expressed as 

follows:  

𝑚𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞

𝑁

𝑦=1

𝑀

𝑥=1

𝑓(𝑥, 𝑦), (7) 

𝑢𝑝𝑞 = ∑ ∑(𝑥 − 𝑥0)𝑝

𝑁

𝑦=1

𝑀

𝑥=1

(𝑦 − 𝑦0)𝑞𝑓(𝑥, 𝑦), (8) 

where 𝑝, 𝑞 = 0, 1, 2, ... . 

When variation occurs on the coordinate position of the image, 𝑚𝑝𝑞 changes correspondingly, 

whereas 𝑢𝑝𝑞  becomes sensitive to rotation with the translation invariant. In this study, the 

normalized central moment is: 

𝑦𝑝𝑞 =
𝑢𝑝𝑞

𝑢00
𝑟 , (9) 

where 𝑟 =
𝑝+𝑞+2

2
, and 𝑝 + 𝑞 = 2, 3, ... . 

If the image features are directly depicted using the raw and central moments, they will not be 

invariant to translation, rotation, or scale changes. However, the normalized central moment is 

invariant to translation as well as scale changes. 

Hu [13] employed the results of the algebraic invariant theory and derived seven famous 

moment invariants using the second- and third-order central moments, which possess the invariant 

characteristics of translation, scale, and rotation in the case of continuous images. Hu’s moment 

invariants are defined as: 
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𝜓1 = 𝜂20 + 𝜂02, 
𝜓2 = (𝜂20 − 𝜂02)2 + 4𝜂11

2 , 
𝜓3 = (𝜂30 − 3𝜂12)2 + (3𝜂21 − 𝜂03)2, 
𝜓4 = (𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2, 
𝜓5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2], 
𝜓6 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] + 4(𝜂30 + 𝜂12)(𝜂21 + 𝜂03), 
𝜓7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2]. 

(10) 

Relevant studies indicated that only the description of a 2-D object based on the second-order 

moment invariant is irrelevant to translation, rotation, and scale. Higher-order moments are highly 

sensitive to imaging errors, slight deformations, and other factors, such that the corresponding 

moment invariants cannot effectively recognize the object. 

In Hu’s invariant set, only 𝜓1 and 𝜓2 are derived from the second-order moment invariant, 

whereas the other moments 𝜓3~𝜓7 are based on the third-order moment invariant. The moment 

invariants 𝜓1  and 𝜓2  based on the second-order moment can be used to identify objects with 

significantly different shapes; otherwise, their moment invariants will be highly similar and thus 

difficult to recognize. In this paper, 𝜓1  was used for the automatic diagnosis (i.e. health 

monitoring) of the object. 

3.2. Automatic identification of phase trajectory map using moment invariant 

As mentioned previously, 𝜓1 was used as a quantitative index of the automatic diagnosis of 

the phase map in this paper. A large number of simulation works have shown that the phase 

trajectory maps in different states possess different 𝜓1, which can achieve automatic identification 

by quantitatively recognizing the phase trajectory state.  

For Eq. (3), suppose that the sampling frequency is 1000 Hz, the sampling length is 5000, 

𝜔0 = 2π∙60 rad/s, and 𝑓0 ranges from 0.8 to 0.85 with a step size of 0.0001. The critical transition 

point (critical threshold point) can then be accurately derived as 0.8267, where the phase trajectory 

state changes from the chaotic to the large-scale periodic state. Figure 4 and Figure 5 show the 

change process of phase maps before and after the critical point. Figure 6 quantitatively reveals 

the change process of phase maps with 𝑓0 ranging from 0.8 to 0.85. 

 
Fig. 4. Time domain waveform and phase trajectory map, 𝑓0 = 0.8267;  

the Duffing oscillator is in the chaotic sate 

By comparing the transition conditions of the phase trajectory map and Hu’s moment invariant 

in Figure 6, the moment invariant value was found to vary around 21 when the phase trajectory is 
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in the chaotic state but stabilized at approximately 18 when the phase trajectory shifts from the 

chaotic to the large-scale periodic state. 

 
Fig. 5. Time domain waveform and phase trajectory map, 𝑓0 = 0.8268;  

the Duffing oscillator is in the large-scale periodic state 

 
Fig. 6. Evolution of Hu’s moment invariant from chaotic state to large-scale periodic state 

3.3. Effect of different oscillator parameters on moment invariant 

This section mainly discusses how Hu’s moment invariant changes in phase trajectory map 

under different parameters. Through the simulation, we determine the influence principle of 

different parameters, which provides the basis for the application of Hu’s moment invariant in the 

automatic recognition of phase trajectory maps. 

3.3.1. Effect of to-be-detected frequency on moment invariant 

Suppose that the sampling rate is 1000 Hz, the sampling length is 5000, the amplitude of the 

internal periodic driving force is 0.6, and the amplitude of the external signal ranges from 0 to 0.5 

with a step size of 0.01. The to-be-detected frequency 𝜔1 was set as 10, 30, 60, 100, 200, 300, 

400, 500, and 700 Hz sequentially, and the simulation result of Hu’s moment invariant in different 

phase trajectory maps along with the frequency’s variation was obtained, as shown in Figure 7. 

Figure 7 shows that with an increase in the to-be-detected frequency, the inflection point where 

the phase trajectory map transfers from the chaotic to the large-scale state migrated. The chaotic 
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oscillator was destroyed, such that weak signal detection cannot be realized. Therefore, the to-be-

detected frequency must be approximately 10 Hz to 300 Hz for 1000 Hz sampling frequency to 

enable the chaotic oscillator to realize weak signal detection. If the to-be-detected frequency is 

high, the sampling frequency has to increase accordingly. As the to-be-detected frequency 

increases, Hu’s moment invariant of the chaotic oscillator in the chaotic state increases but remains 

at 18 in the large-scale state. Thus, the to-be-detected frequency should not be extremely low so 

that the accuracy of the moment invariant can be improved. 

 
Fig. 7. Hu’s moment invariant of phase trajectory map under different to-be-detected frequencies 

3.3.2. Effect of sampling length on moment invariant 

Suppose that the to-be-detected frequency 𝜔1  is 60 Hz, the sampling rate is 1000 Hz, the 

amplitude of the internal periodic driving force is 0.6, and the amplitude of the external signal 

ranges from 0 to 0.5 with a step size of 0.01. The internal sampling length was set as 1, 2, 3, 4, 5, 

6, 7, and 10 k sequentially. The changing behavior of Hu’s moment invariant with different values 

of sampling length in different phase trajectory maps was obtained, as shown in Figure 8. 

 
Fig. 8. Hu’s moment invariant of phase trajectory map at different sampling lengths 
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Figure 8 shows that when the sampling rate is 1000 Hz and the to-be-detected frequency is 

60 Hz, the inflection point remains at the same value, without position changing. This 

phenomenon verifies the argument in section A. Moreover, the corresponding Hu’s moment 

invariant is smaller as the value of sampling length is smaller. Thus, the sampling length must not 

be too little if Hu’s moment invariant is used as a quantitative index. Otherwise, the judgment 

accuracy will be affected. Therefore, the best sampling length is more than 2000. Under a specified 

storage capacity of data acquisition equipment, higher sampling length will improve the 

performance of Hu’s moment invariant. 

3.3.3. Effect of noise on moment invariant 

Suppose that the to-be-detected frequency 𝜔1  is 60 Hz, the sampling rate is 1000 Hz, the 

amplitude of the internal periodic driving force is 0.6, the amplitude of the external signal ranges 

from 0 to 0.5, and the step size is 0.01. Different intensity levels of white Gaussian noise 𝑁(𝑡) 

with a mean of 0 and variance of 𝜎2 were introduced into the oscillator. The variance 𝜎2 was set 

as 0, 0.1, 0.2, 0.3, and 0.4, respectively. Under the same condition, the simulation result of Hu’s 

moment invariant in different phase trajectory maps with different noise levels was obtained, as 

denoted in Figure 9. 

 
Fig. 9. Hu’s moment invariant of phase trajectory map under different noise intensity 

Chaotic oscillator has excellent inhibition for noise. However, as the surrounding noise signal 

increases, the oscillator map in large-scale periodic state changes, and the corresponding moment 

invariant improves continuously, thus diminishing regularity. When the system noise is strong, 

the availability of oscillator detection is relatively low. Therefore, the raw data should be 

processed before the Duffing oscillator and moment invariant are used for health monitoring. 

3.4. Process of health assessment for rolling bearing 

The health assessment procedure includes the following two steps. 

3.4.1. Feature extraction 

Approximate entropy (ApEn) is a measure of time series complexity from the perspective of 

reflecting the overall characteristics of signal [20] and has high anti-noise ability for random and 
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ascertain signal. Only a short time-series is needed to calculate the ApEn of a signal. ApEn has 

been used with satisfactory results to assess mechanical equipment fault signals [21]. Thus, ApEn 

can be considered as a quantitative index of bearing defect severity. For ApEn calculation, the 

parameters of dimension m and tolerance value 𝑟 are quite crucial. According to the existing study 

[20, 21], ApEn values for all data sets were calculated with 𝑚 = 2 and 𝑟 = 0.25∙std(signal). 

Wavelet packet transform (WPT) constructs a more sophisticated method for orthogonal 

decomposition based on multi-resolution analysis, which can divide the full frequency band of 

signal into multi-level, so that each band’s signal contains more elaborate information about the 

original signal. Therefore, wavelet packet decomposition is suitable to extract both low and high 

frequency characteristics.  

After wavelet packet decomposition and reconstruction, the ApEn index of all bands reflecting 

signal characteristics will be calculated. If wavelet packet decomposition scale is too little, fault 

characteristics cannot be extracted effectively. However, large scale will also increase the 

dimension of characteristic vector. Therefore, during feature extraction, eight ApEn indexes from 

different frequency bands can be calculated using three-scale decomposition based on the 

characteristic of vibration signal. 

3.4.2. SOM assessment model 

SOM is an artificial neural network representing a multi-dimensional feature space in one- or 

two-dimensional space. SOM for health assessment can be trained only with normal operation 

data. In this study, SOM was trained iteratively using the aforementioned feature vectors. For each 

input vector, a best matching unit whose weight vector is closest to the input feature vector can be 

found in the SOM. The distance between the two vectors, which can be defined as the minimum 

quantization error (MQE), actually indicates the current operation status [22]. Hence, the 

performance degradation trend can be visualized by the trend of the MQE. Then, the MQE can be 

converted into confidence value (CV) ranging from 0 to 1 with some normalization approach, in 

which MQE increases while the CV decreases. Correspondingly, a suitable normalization function 

should have two characters: (1) CVs in different bearing faults should be close to 0 and 

approximate; (2) bearings close to the normal state have a CV close to 1.  

As shown in Figure 10, normal bearing data was used to train SOM network after feature 

extraction with combined WPT and ApEn. Then, the fault feature vectors were input, which were 

also extracted using WPT and ApEn methods, into the trained SOM model. The health state of 

bearing can be assessed by CV values. 

 

Normal data

Fault data
WPT ApEn

Feature Extraction

SOM model CV

MQE

 
Fig. 10. Flow chart of health assessment model 

4. Case study. Application to health monitoring and assessment for rolling bearing  

In this section, a case study on health monitoring and assessment of rolling bearing is presented. 

A group of vibration data from a bearing test rig was employed for verification. The test rig 

includes a 2-horsepower motor and a torque transducer/encoder. A deep groove testing bearing 

(6205-2RS JEM SKF) was installed on the motor. Table 1 shows the size parameters of the testing 

rolling bearing. Several types of single-point faults with the diameters of 0.007, 0.014, and 
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0.021 inches were introduced to the test bearings using electro-discharge machining, including 

inner ring, outer ring, and rolling element. The vibration data were collected using an 

accelerometer, which was installed at the 12 o’clock position of the drive-end of the motor housing 

by using a magnetic base.  

The vibration data were collected at 12,000 samples per second, and the motor speed was 

1772 rpm. Relative to background noise, the incipient fault signal is very weak. Suppose the 

contact between the rolling elements and inner/outer race is pure rolling, an impact will occur 

when the rolling elements pass through the local defect. The impact has a periodicity due to the 

uniform rotation of rolling bearing. The impact frequencies, i.e., characteristic frequencies, vary 

for the defects in different locations. In this study, the inner-race, out-race, and rolling element 

faults of the bearing were chosen for the verification of health monitoring. Table 2 shows that the 

fault characteristic frequency of the inner-race of the testing bearing was 5.4152 times as high as 

the rotation frequency. Therefore, the corresponding fault characteristic frequency was 

159.9289 Hz. The outer-race and ball fault characteristic frequencies were 105.8731 and 

139.2054 Hz, respectively. 

Table 1. Size parameters of the testing rolling bearing (Unit: inch) 

Inside diameter Outside diameter Thickness Ball diameter Pitch diameter 

0.9843 2.0472 0.5906 0.3126 1.537 

Table 2. Defect frequencies (Unit: Hz) 

Inner race Outer race Cage train Rolling element 

5.4152 𝑓𝑟 3.5848 𝑓𝑟 0.39828 𝑓𝑟 4.7135 𝑓𝑟 

𝑓𝑟: rotation frequency 

4.1. Health monitoring for rolling bearing with Duffing oscillator 

4.1.1. Health monitoring for rolling bearing with inner-race defect 

According to the characteristics of the testing bearings, the to-be-detected frequency should 

be in low frequency band. Thus, the acquired raw data was first re-sampled by decreasing the 

sampling rate from 12 KHz to 4 KHz. The signal was pre-processed with mean-removing and 

constant-proportional reduction to avoid introducing the high-amplitude vibration signal into the 

oscillator and destroying the oscillator state.  

As shown in Table 2, the characteristic frequency (fault frequency) of the to-be-detected 

bearing was 159.9289 Hz. According to the analysis and optimization of different parameters for 

moment invariants in Section 3.3, 𝜔0 = 2π∙159.9289, 𝑐 = 0.5, the sampling points 𝑛 = 5000, 

and the sampling interval ℎ = 0.0001. The amplitude of the initial internal periodic driving force 

𝑓0 is defined as 0.8267, which is the critical threshold and is obtained through several experiments. 

The Duffing oscillator used in this work is: 

{
�̇� = 𝜔0𝑦,

�̇� = 𝜔0(−𝑐𝑦 + 𝑥 − 𝑥3 + 𝑓0cos(𝜔0𝑡) + 𝑠𝑖𝑔𝑛𝑎𝑙),
 (11) 

where 𝑠𝑖𝑔𝑛𝑎𝑙 is the to-be-detected normal or fault signals from the testing rolling bearings. 

The above equations were solved using the fourth-order Runge–Kutta algorithm, and the result 

is shown in Figure 11. 

The moment invariant value of the phase trajectory map with chaotic state was approximately 

20, as shown in Figure 11(a). However, the moment invariant value of the phase trajectory map 

with large-scale periodic state abruptly dropped and stabilized at approximately 18, as shown in 

Figure 11(b). Therefore, the rolling bearing is in the fault state, which has a moment invariant 

value of about 18. Hence, the health state (normal or faulty) of rolling bearings can be 
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automatically distinguished by calculating the corresponding moment invariants of their phase 

trajectory maps. 

 
(a) 

 
(b) 

Fig. 11. Phase trajectories before and after adding inner-race fault signal:  

(a) phase trajectory without inner-race fault signal in the chaotic state;  

(b) phase trajectory with inner-race fault signal imported in the large-scale periodic state 

4.1.2. Health monitoring for rolling bearing with outer-race defect  

Based on the procedure described earlier, the outer-race fault data from the vibration signal 

were re-sampled at a sampling rate of 4 KHz and were then mean-removed and constant-

proportionally reduced. The to-be-detected outer-race fault frequency was 105.8731 Hz,  

𝜔0 =2π∙105.8731, 𝑐 = 0.5, 𝑛 = 5000, the sampling interval ℎ = 0.0001, and 𝑓0  was 0.8267. 

Equation (10) was also solved using the fourth-order Runge–Kutta algorithm. The result is shown 

in Figure 12. 

 
(a) 

 
(b) 

Fig. 12. Phase trajectories before and after adding outer-race fault signal:  

(a) phase trajectory without outer-race fault signal in the chaotic state;  

(b) phase trajectory with outer-race fault signal imported in the large-scale periodic state 

As shown in Figures 12 (a) and (b), the moment invariant value of the phase trajectory without 

outer-race fault signal added was 19.2 and 17.8 when the outer-race fault signal was imported. 

Thus, the normal and outer-race fault signals can be automatically distinguished by the 

corresponding moment invariant values. 
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4.1.3. Health monitoring for rolling bearing with rolling element defect 

The raw vibration signal was re-sampled and then pre-processed with mean-removing and 

constant-proportional reduction before being input into the chaotic oscillator, where  

𝜔0 = 2π∙139.2054, 𝑐 = 0.5, 𝑛 = 5000, ℎ = 0.0001, and 𝑓0  was 0.8267. The phase trajectories 

before and after adding fault signal are shown in Figure 13. The moment invariant values of phase 

trajectories with/without fault signal were 18.7 and 17.8, respectively.  

 
(a) 

 
(b) 

Fig. 13. Phase trajectories before and after adding rolling element fault signal:  

(a) phase trajectory without rolling element fault signal in the chaotic state;  

(b) phase trajectory with rolling element fault signal imported in the large-scale periodic state 

 
Fig. 14. CV curve of rolling bearing with different fault severities and types 

4.2. Health assessment for rolling bearing 

According to the above-mentioned procedure in Section 2.4, normal bearing vibration signal 

was used first to train SOM network for 100 times. In this study, 20 normal signal samples were 

chosen, and eight ApEn values were calculated after wavelet packet decomposition for each 

training sample. Then, 180 fault vibration signal samples with three defect extents (0.007, 0.014, 

0.021 inches), each of which includes inner-race, rolling element, and outer-race fault type, were 

introduced to the trained SOM model in sequence. Finally, the CVs curve indicating the 

performance degradation was obtained, as shown in Figure 14. The CVs of the first 20 points from 

the normal data were high, and the trend of the CV curve decreased as the fault severity increased. 



990. APPROACH TO HEALTH MONITORING AND ASSESSMENT OF ROLLING BEARING.  

LU CHEN, TAO LAIFA, FAN HUANZHEN, WANG ZHAOBING 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716 759 

Therefore, health assessment for rolling bearing can be well achieved based on the SOM 

assessment model and CV. 

5. Conclusions 

The characteristics of chaotic Duffing oscillator and Hu’s moment invariants were analyzed, 

and the principle of the health monitoring method with combined Duffing oscillator and moment 

invariant was described. Moreover, the effects of different parameter values on the performance 

of moment invariant were determined, thus confirming the application conditions and limitations 

of the moment invariant. A health assessment model based on feature extraction with ApEn, WPT, 

and SOM network was presented. The increasing fault severity was correspondingly characterized 

by the decreasing CVs.  

The case study for the health monitoring of rolling bearing showed that the value of moment 

invariant shifts rapidly and evidently as the state of phase trajectory map changes. Consequently, 

the moment invariant, as the quantitative criterion, can be used to identify the state of the phase 

map clearly and automatically without errors from qualitative eyeballing. Meanwhile, the SOM 

assessment model provides the desired result for bearing health state with CVs. The methods of 

health monitoring and assessment can generally enhance the automation level of fault detection 

and provide the reasonable health status for rolling bearing. Therefore, the methods have practical 

application value and can realize health monitoring and assessment for the entire life cycle of 

rolling bearing. 
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