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Abstract. Generalized flexibility matrix method has recently been introduced for identifying 

damages with the aim of overcoming some shortcomings of the approaches based on flexibility 

matrix. Researchers that use flexibility matrix to detect damages in structures face truncation 

errors ensue from cut off higher-order mode shapes, which are difficult to measure in practice. In 

this paper, a new procedure is presented to detect the damage site in a beam-type structure, where 

generalized flexibility matrix in conjunction with continuous wavelet transform (CWT) is utilized. 

Since flaws and cracks cause changes in flexibility of a system, this characteristic can be used as 

a damage indicator. Gaussian wavelet transform with four vanishing moments as a signal 

processing method is implemented to find the irregularity in a vector obtained from generalized 

flexibility matrix which is considered as a sign of damage. This method does not need to have 

either prior knowledge about the intact structure or its finite element model. The proposed 

technique is evaluated by numerical and experimental case studies. 

Keywords: damage detection, generalized flexibility matrix, Gaussian wavelet transform. 

1. Introduction 

Presence of damage in engineering structures such as space vehicles and infrastructures may 

cause tragic, irreversible and monetary losses. Having been motivated by a desire to assess the 

influence of damages on structures, researchers have developed various damage detection 

techniques [1-3]. Vibration-based damage identification methods have been expanded as 

non-destructive techniques (NDTs) over the past three decades [4-9]. An extensive review of 

NDTs has been provided by Witherell [10]. 

Vibration-based methods are rooted in the fact that damages and flaws, which may ensue from 

anthropogenic or environmental loads, lead to change in the dynamic behavior of structures and 

therefore these dynamic characteristics can be used as practical tools in damage identification. 

Natural frequencies reduce due to the damages while damping ratio increases and, moreover, crack 

causes an abrupt irregularity in mode shapes of the structure. The location of a crack is determined 

by identifying this abnormality in the mode shapes or other quantities acquired from them such as 

stiffness matrix or flexibility matrix. 

Use of spatial wavelet transform to localize damage in beam-type structures was firstly 

proposed by Liew and Wang [11]. Their work revealed the robustness of discrete wavelet 

transform compared to traditional eigenvalues based techniques. Hong et al [12] used a specific 

kind of continuous wavelet transform (CWT) called Mexican hat to discern the damage in a beam. 

Masoumi and Ashory [9] proposed a procedure to apply CWT on uniform load surface (ULS) and 

showed that using CWT in conjunction with ULS provides reliable and less prone to noise method 

for identifying damages in structures. They used ULSs obtained from noise free mode shapes and 

contaminated mode shapes to demonstrate the ability of the method in the front of noisy data. 

Furthermore, an experiment was performed on a cantilever beam to evaluate the applicability of 

the approach. Techniques based on wavelet transforms have been briefly reviewed by Masoumi 

and Ashory [13]. 

In this work, one of the vibration parameters, namely generalized flexibility matrix, which has 
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recently been developed from flexibility matrix [14], is used to form a vector and then this vector 

is analyzed by Gaussian wavelet transform to find the location of damage in a beam-type structure. 

2. Theoretical Base of the Procedure 

Original flexibility matrix for a system with 𝑚 measured modes is obtained by [15]: 

𝑓𝑖,𝑗 ≈∑
𝜙𝑘
𝑖𝜙𝑘

𝑗
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where 𝜙𝑘
𝑖 , 𝜙𝑘

𝑗
 are 𝑖th and 𝑗th element of 𝑘th mode shape and 𝜔𝑘 presents the 𝑘th natural frequency. 

In order to decrease truncation error caused by cutting off the higher order modes, Li et al [14] 

proposed generalized flexibility matrix method. Generalized flexibility matrix is given by the 

expression [14]: 
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In Eq. (2) the power of natural frequency in denominator is twice the power of natural 

frequency in Eq. (1), therefore higher order modes, which are not measurable as easy as first three 

or four modes during modal testing, play less effective role and truncation error is more negligible. 

CWT of space-domain signal 𝑓(𝑥) is defined as: 
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In Eq. (3), 𝜓∗(𝑥) is the complex conjugate of wavelet function and 𝜏, 𝑠 are translation and 

scale parameters respectively. Any kind of function can be chosen as mother wavelet function 

provided that it fulfills the following condition: 

∫
|�̂�(𝜔)|2

|𝜔|
𝑑𝜔 < ∞

∞

−∞

, (4) 

where �̂�(𝜔) is the Fourier transform of 𝜓(𝑥). Furthermore, number of vanishing moments of a 

wavelet function 𝑛 is determined using: 

∫ 𝑥𝑛𝜓(𝑥)𝑑𝑥 = 0

+∞

−∞

. (5) 

Aside from boundaries, CWT with 𝑛 vanishing moments and small scale 𝑠 is equivalent to 𝑛th 

derivative [16]. Although increasing the number of vanishing moments provides better outcomes, 

support length must be at least 2𝑛– 1  for a wavelet with 𝑛  vanishing moments and this 

extrapolation and expanding the support length causes flawed results. In this paper, a real wavelet 

called Gaussian wavelet with four vanishing moments is utilized, which is given by [16]: 

𝜓(𝑥) = (−1)4(3 − 12𝑥2 + 4𝑥4)𝑒−𝑥
2 2

2√2 𝜋⁄
4

√105
. (6) 



968. USING CONTINUOUS WAVELET TRANSFORM OF GENERALIZED FLEXIBILITY MATRIX IN DAMAGE IDENTIFICATION.  

M. R. ASHORY, M. MASOUMI, E. JAMSHIDI, B. KHALILI 

514  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

Gentile and Messina [16] showed that Gaussian wavelets are able to provide essential 

information from a signal which corresponds to the respective derivatives. Furthermore, Rucka 

and Wilde showed that Gaussian wavelet is one of the most useful and practical wavelets to find 

singularities in displacement signals [17]. 

 
Fig. 1. The procedure for computing wavelet coefficients 

As presented in Fig. 1, to clarify how the wavelet coefficients are determined for a signal 𝑓(𝑥) 
using Gaussian wavelet transform, five steps should be considered. First, Gaussian wavelet 

(Eq. (6)) is taken to compare it to the first part of the original signal (Fig. 1a). Then, for a specific 

scale and translation parameter the wavelet coefficient which shows the correlation of the wavelet 

with this section of the signal is calculated. Third, the wavelet is translated to the right and previous 

steps are repeated until computing all coefficients for the original signal (Fig. 1b). Next, the 

wavelet is scaled (Fig. 1c) and all previous steps are repeated. Finally, all steps are iterated to 

compute the wavelet coefficients for all scales. Obtained coefficients are used to plot a 3-D graph, 

which represents wavelet coefficients for all of the scales and translation parameters (Fig. 1d) [18]. 

3. Damage Identification Approach 

In order to find the damage site, four steps are followed: 

1. First two or three mode shapes of damaged beam are obtained. For experimental case these 

modes are acquired using ICATS software. 

2. Generalized flexibility matrix is formed using Eq. (2). 

3. For each degree of freedom 𝑗, 𝛿 is defined as: 

𝛿𝑗 = max
𝑗
|𝐹𝑖,𝑗|. (7) 

4. CWT is used to examine the vector to localize damage. Irregularity in this vector, which 
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indicates the damage, is magnified by wavelet transform. By going from coarser scales to finer 

scales, we are able to find damage site at a specific fine scale. Using five steps procedure, 

described at the previous section, wavelet coefficients are calculated. These coefficients suddenly 

change when there is a singular point at 𝛿 which provides damage location. 

4. Numerical Analysis 

As a numerical case, a cantilever beam of 1 m length is modeled by 60 elements having the 

same length in order to evaluate the proposed method. Nine damage scenarios are considered 

which are listed in Table 1. Damages are induced as reduction in Young’s modulus and mass 

matrix remains unchanged [19]: 

𝐸𝑒𝑞

𝐸
= [(1 − 𝛾)3 +

4.41

12

(1 − 𝛾)
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−1

, (8) 

where 𝛾 is the ratio of 𝑎 to ℎ, a is the depth of crack, ℎ is the height of the cross section area and 

𝑑 corresponds to the half-width of the crack. Parameters are shown in Fig. 2. 

 
Fig. 2. Layout of the numerical case study [16] 

Table 1. Damage scenarios 

 Location (m) 𝛾 (%)  Location (m) 𝛾 (%)  Location (m) 𝛾 (%) 

Case I 0.2 20 Case IV 0.6 20 Case VII 0.9 20 

Case II 0.2 30 Case V 0.6 30 Case VIII 0.9 30 

Case III 0.2 40 Case VI 0.6 40 Case IX 0.9 40 

As presented in Table 1, nine damage cases are considered and induced at different locations. 

For each damage case, reduction in frequency due to damage was calculated. These results along 

with natural frequencies obtained for first three modes are presented in Table 2. 

When the damage is located near the clamped end (for cases I, II and III), reduction in 

frequency is more noticeable for the first and third natural frequency, while the second natural 

frequency experiences a small decrease. On the other hand, occurring damage at the locations near 

to the free end (for cases VII, VIII and IX) leads to inconspicuous changes in frequency for the 

first mode and, for these locations, most reduction is obtained in the third natural frequency. 

Finally when damages are located at the middle parts (for cases IV, V and VI), the largest 

reduction is observed in the second and third natural frequencies. For each location, an increase 

in damage severity results in a decrease in natural frequency compared to intact beam. First two 

mode shapes were utilized to form 𝛿 and then spline interpolation and extrapolation were used to 

obtain the refined grid points. Finally, Gaussian wavelet transform was implemented to localize 

abnormality in 𝛿 as a sign of damage. Figs. 3-5 show 𝛿 and obtained wavelet coefficients for all 

aforementioned damage cases. 
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Table 2. Comparison of natural frequencies between intact beam and damaged beams 

Frequency (Hz) Mode I Reduction Mode II Reduction Mode III Reduction 

Intact 8.1538 - 51.0990 - 143.0788 - 

Case I 8.0829 0.0709 51.0976 0.0014 142.6227 0.4561 

Case II 8.0174 0.1364 51.0963 0.0027 142.2030 0.8758 

Case III 7.9732 0.1806 51.0955 0.0036 141.9210 1.1578 

Case IV 8.1458 0.0080 50.6828 0.4163 142.4963 0.5825 

Case V 8.1382 0.0156 50.2976 0.8015 141.9678 1.1110 

Case VI 8.1330 0.0208 50.0375 1.0616 141.6166 1.4622 

Case VII 8.1538 0.0001 51.0888 0.0102 142.9105 0.1683 

Case VIII 8.1537 0.0001 51.0792 0.0199 142.7499 0.3289 

Case IX 8.1537 0.0001 51.0725 0.0265 142.6388 0.4400 

 
Fig. 3. 𝛿 and wavelet coefficients for (a) Case I, (b) Case II, (c) Case III 

 
Fig. 4. 𝛿 and wavelet coefficients for (a) Case IV, (b) Case V, (c) Case VI 

While the wavelet coefficients are nearly zero far from the damage site, they suddenly increase 

around the location of crack. Although there is no noticeable irregularity in 𝛿 at damage site, it 

can be observed that wavelet transform identifies damage location for cases I-VI. But when the 
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damage is at the free end of the cantilever beam (for cases VII, VIII and IX), this method is unable 

to find the location. For each location, an increase in severity leads to an increase in the maximum 

wavelet coefficient which appears at damage site. 

 
Fig. 5. 𝛿 and wavelet coefficients for (a) Case VII, (b) Case VIII, (c) Case IX 

5. Experimental Verification 

As depicted in Fig. 6a, a free-free beam with a 40 % damage induced at 0.51 m from one end, 

was tested to verify the method experimentally. Dimensions of the beam were 0.94×0.05×0.01 m 

and it was excited using a hammer type BK8202 at 48 points and force signal was amplified by 

an amplifier type BK-2647A. An accelerometer type DJB-A/120 V was mounted at 0.48 m from 

one end. 

The sampling time is set to 488.3 µs. Responses and force signals were measured and 

frequency responses functions (FRFs) were extracted through Pulse software 8 [20]. These FRFs 

are shown in Fig. 6b for only first three natural frequencies. The Modent modulus of ICATS 

software [21] was used to obtain the first three mode shapes of the beam. These modes are given 

in Fig. 7a.  

 
Fig. 6. (a) Hammer modal testing on the free-free beam, (b) FRFs from the hammer test 

Generalized flexibility matrix and 𝛿 were formed based on Eq. (2) and Eq. (7) respectively. 

Spline interpolation and extrapolation were used to increase the number of grid points of 𝛿 and 
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then Gaussian wavelet transform was applied on 𝛿 to find the damage location. Fig. 7b provides 

the obtained wavelet coefficients of 𝛿 for the damaged beam where maximum value of wavelet 

coefficients was obtained at the damage site. 

 
Fig. 7. (a) First three mode shapes from hammer test, (b) wavelet coefficients of 𝛿 for hammer test 

6. Conclusions 

In this work, a new approach based on generalized flexibility matrix was put forward to detect 

damage in beam-type structures and an experiment along with numerical simulations were 

performed to investigate the applicability of the proposed method. Gaussian wavelet transform 

was applied on a vector obtained from generalized flexibility matrix of damaged beam to discern 

the location of crack. This approach possesses the following advantages: 

Less number of modes is required to obtain accurate results in comparison to original 

flexibility technique, thanks to lower contribution of higher order modes. 

Not only prior knowledge of intact beam is not required but also there is no need to have 

numerical or finite element model of intact structure. 

This approach is relatively immune to noise due to the advantages of using wavelet transform. 
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