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Abstract. This study presents an analytical method to predict the dynamic parameters of actual 
structure from measured FRF (Frequency Response Function) data. The inconsistency due to 
modeling errors between the actual structure and the finite element model exists. The number of 
measured data is less than the one of a full set of dofs and should be expanded to estimate the 
parameters. Considering that the stiffness and mass matrices are related with the real part of the 
expanded FRF data and the damping matrix with the imaginary part, the variation in the 
parameter matrices is evaluated. A numerical example evaluates the appropriateness of the 
proposed method.  
Keywords: FRF, damping matrix, parameter identification, finite element analysis, modeling. 

1. Introduction 

The FRFs have been used directly to update condensed analytical models for obtaining the 
proper model. A single FRF measured at several frequencies, along with a correlated analytical 
model of the structure in its original state, is used for updating structural parameters. However, 
it’s impossible to get the data of a full set of dofs and the sparse data should be expanded to get 
the information of the whole system. 

There have been many attempts to update the unknown physical parameters directly from the 
FRFs [1]. It has been reported [2] that FRF data provide more information than modal data, as 
the latter are extracted from a very limited frequency range related to resonance. Friswell and 
Penny [3] proposed an approach to reduce the model order so that the stated estimation process 
reduces to a least squares problem based on the FRFs. Fanning and Carden [4] presented a 
method for detecting added mass in structural systems from a single FRF measured at several 
frequencies in an identification algorithm. Cha and Tuck-Lee [5] developed approaches to 
update mass and stiffness matrices based on two sets of measured frequency response data. 
Kwon and Lin [6] proposed a frequency selection method for efficient FRF-based model 
updating. Lin and Zhu [7] developed model updating methods to identify mass, stiffness, and 
damping matrices of a damaged dynamic system based on the FRF method. Phani and 
Woodhouse [8] identified parameter matrices of viscous damping models based on measured 
FRFs. They compared matrix methods using a measured FRF matrix and modal methods using 
modal parameters. Inverting the FRF matrix to the dynamic stiffness matrix and comparing their 
real and imaginary parts with parameter matrices, Lee and Kim [9] identified damping 
characteristics of the system in matrix forms directly from its measured FRFs. Fritzen [10] 
proposed an analytical method to describe the parameter matrices by minimizing the error of a 
dynamic stiffness matrix and its inverse, and an identity matrix. Utilizing FRF data measured at 
specific positions, with dofs less than that of the system, as constraints to describe a damaged 
system, Rahmatalla et al. [11] predicted parameter matrices such as mass, stiffness and damping 
matrices of the system, and provided a damage identification method from their variations. 
Changes of FRF of a structure are correlated to changes of the stiffness and mass through 
damage sensitivity equations which have been derived using the change of eigenvectors and 
measured natural frequencies of damaged structures. Pascual et al. [12] presented a model 
updating method to avoid the numerical difficulties induced by the discontinuities in the FRFs. 
Esfandiari et al. [13], [14] provided a structural model updating technique using measured FRF 
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data and measured natural frequencies of the damaged structure without any expansion of the 
measured data or reduction of the finite element model. When solving damage sensitivity 
equations by the least square method, they estimated the mass, stiffness and damping properties.  

This study begins with the expansion of a few measured FRF data to a full set of dofs and 
presents the mathematical form of the updated FRF matrix. And this work presents an analytical 
method to estimate the dynamic parameters from the FRF variation between the actual system 
and the finite element model. The parameters include the stiffness, mass and damping matrices 
and are estimated from the variation in the real and imaginary parts of the expanded FRFs. A 
numerical example illustrates the appropriateness of the proposed method.  

2. Formulation 

2.1. Expansion of FRF data 

Structures can be modeled as discrete systems with the assumption of homogeneous and 
uniform systems without any defect. And the finite element analysis can be used to approximate 
the dynamic behavior of the systems. Using the finite element method, the dynamic equation for 
a damped dynamic system is a system of second-order differential equations. The dynamic 
response of a structure in the time-domain which is assumed to be linear and approximately 
discretized for  dofs can be described by the equations of motion: 

(1) 

where , , and  denote the  analytical mass, damping, and stiffness matrices, 
respectively,  and  is the  excitation vector.  

In the frequency-domain methods each component is described by frequency-dependent data. 
A relationship between FRF and modal parameters for successful modal testing is established by 
inserting  and  into Eqn. (1). Then expressing it in the frequency-domain, it 
follows that: 

(2a) 

where  denotes the excitation frequency,  is an external force vector with an element being 
unit and all other elements zeros, and . The relation of Eqn. (2a) for the actual structure 
can be written by: 

(2b) 

where ,  and  represent the mass, damping and stiffness matrices of the actual structure, 
respectively, and  is the modal displacement vector of the actual structure. Using the FRF 
matrix, the responses of the structure, described by  and  to an external excitation, 
described by , are given by:  

(3a) 
(3b) 

where  is the FRF matrix of the finite element model, whose 
elements can be the receptances. And  is the FRF matrix of the 
actual structure. 

Expressing the FRF variation between the actual system and the finite element model by  
the actual FRF matrix  can be established as: 
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(4) 

The elements in the FRF matrix are derived as follows. Equations (2) can be transformed as: 

(5a) 
(5b) 

where  and  denote circular natural frequency and damping ratio corresponding to the i-th 
mode, respectively. And  and  denote circular natural frequency and damping ratio of the 
actual structure, respectively. Applying modal transformation, the real eigenvalues and 
eigenvectors lead to the representation of the FRF matrices for an excitation frequency : 

(6a) 

(6b) 

where  and 
 
are the i-th mode shape vectors of the finite element model and actual structure, 

respectively. For the case of a displacement response at station  and a disturbing force at station 
, the numerical frequency response can be constructed as: 

(7a) 

 (7b) 

where  denotes the pth element of the vector .  
It is impossible to experimentally collect all FRF data corresponding to the full dofs and to 

explicitly match the actual structure with the analytical model. It indicates that the physical 
parameters should be corrected to describe the actual system. To update the parameters it is 
necessary to expand the measured data or to reduce the dofs of the dynamic system.  

Assume that the FRFs of the system were measured at  different positions of the 
 set of unitary excitations. The measured  FRF matrix and the response vector 

have the relationship of:  

(8) 

where  is an  Boolean matrix to define the measured locations. The subscripts m and u 
represent the measured and unmeasured dofs, respectively, and m and u represent the  
and  measured and unmeasured displacement matrices, respectively, and 

m

u
.  is the  excitation matrix,  where  denotes the i-th 

unitary vector of excitation, and m

u
. And m  and u are the  and  

force matrices corresponding to the measured and unmeasured locations. m  denotes the 
 measured FRF matrix corresponding to the  rows in the FRF matrix. 

The measured FRF matrix relation of Eqn. (8) can be regarded as constraint conditions to 
describe the FRF matrix of the whole system. Utilizing the generalized inverse method shown in 
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Ref. [15], the updated dynamic equation of Eqn. (3b) can be explicitly derived. The updated 
response vector  is derived as: 

(9) 

m  (10) 

where the superscript ‘+’ indicates the Moore-Penrose inverse.  indicates the variation in the 
displacement. The dynamic parameters can be grasped by investigating the displacement 
variation. And the updated FRF matrix can be written in the form of Eqn. (4) and the variation in 
the FRF matrix can be predicted by: 

(11) 

The variation in the parameter matrices can be explained by the FRF variation of Eqn. (11). 
The updated FRF matrix obtained from a few measured FRF data can be written by: 

(12) 

The accuracy of the FRF matrix depends on the number of measured FRF data. The FRF 
variation  will be more accurately calculated with the increase in the number. Its 
effectiveness will be investigated by establishing the updated parameter matrices. 

2.2. Update of parameter matrices 

The parameter matrices are calculated by the following process. Post-multiplying both sides 
of  by , it can be expressed by: 

(13) 

and inserting , ,  and  into Eqn. (13), 
and arranging the result, the variation in the parameters can be rewritten by: 

(14) 

Expanding Eqn. (14) in a specific frequency range of  it is 
expressed as: 

 

(15) 
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The variation in the parameter matrices can be estimated by Eqn. (15). It can be observed 
that the variation can be predicted by the expansion of a few measured FRFs and Eqn. (15). The 
accurate estimation of the updated FRF matrix helps the determination of the exact parameter 
matrices of the structure. It indicates that the effectiveness of the proposed method requires 
enough number of measured FRF data.  

3. Application 

Consider the estimation of the parameter matrices of a plane truss structure model shown in 
Fig. 1. The nodal points and the members are numbered as shown in the figure. The truss is 
composed of 15 nodes and 33 members. Corresponding to each pair of nodal displacement 
components  is expressed by a set of forces . All members have elastic modulus 
of 200 GPa, cross-sectional area of 2.5×10-3 m2, and density of 7860 kg/m3. 

 
Fig. 1. A planar truss structure 

For this application, we assumed that the actual structure includes 0-23 % manufacturing 
errors in all truss members. They were randomly given for this numerical experiment. The 
physical parameter matrices are updated using the proposed method and measured FRF data. 
Assume that the FRF matrix of the first 15 rows corresponding to the 1st to 8th node was 
measured by numerical simulation. The FRF matrix was updated with the measured noise-free 
FRF data in the range of 8.4-8.8 Hz in steps of 0.02 Hz. Figure 2 exhibits the difference in the 
parameter matrices between before and after the correction by this proposed method. The 
difference comes from the inconsistency with the actual parameter matrices that cannot be 
expressed by the finite element model. The parameter update should be performed for solving 
such inconsistency. The parameter should be corrected by a few measurement data only because 
it is difficult to collect all measurement data on the full set of dofs. Figure 3 displays the 
difference between the actual and the updated parameter matrices. The difference is due to the 
neglecting of the half of FRF data, which do not provide all information on the actual truss 
structure. It is shown that the proposed method rarely describes the accurate parameter matrices 
and its accuracy will be improved with the increase in the number of measurements. 

Table 1 compares the natural frequencies of the 1st to 5th mode. In the table, the “Initial” 
represents the numerical results of the finite element model, the “Actual” is the ones of the 
actual truss including the manufacturing errors and the “After correction” denotes the ones 
corrected by this proposed method. It is exhibited that the proposed method properly describes 
the global characteristics of the structure despite of the inconsistency of the parameters of the 
truss members. 

Table 1. Natural frequencies of initial, actual and corrected structure (rad./sec.) 
Mode number 1st 2nd 3rd 4th 5th 
Initial 54.6 161.8 224.5 412.5 569.2 
Actual 54.9 163.1 225.2 411.2 571.7 
After correction 54.9 163.0 225.1 411.0 570.2 
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(a)  (b)  

(c)  
Fig. 2. Difference in parameter matrices between before and after correction:  

(a) stiffness matrix, (b) mass matrix, (c) damping matrix 

(a) (b) 

 
(c) 

Fig. 3. Difference between actual and numerically derived parameter matrices:  
(a) stiffness matrix, (b) mass matrix, (c) damping matrix 
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(a) 

 
(b) 

Fig. 4. FRF magnitude and FRF difference: (a)  (b)  

Figure 4 exhibits the FRF magnitudes of   and  corresponding to the 
horizontal and vertical components at node 13. In the plots, “A” represents the FRF of the finite 
element model, “B” the actual structure, “C” the estimated FRF obtained by Eqn. (12), and “D” 
the FRF rebuilt by the updated parameter matrices. The FRF figures were plotted in the range of 
0.01-50 Hz in steps of 0.02 Hz. The figures exhibit some difference between the actual truss, B, 
and the finite element model, A. And it is observed that the C and D plots coincide with the 
actual plot B. It indicates that the proposed method properly describes the FRF curves although 
it rarely provides the accurate parameter matrices. It can be overcome by increasing the number 
of the measured FRF data. 

4. Conclusions 

This study provided the analytical method to describe the inconsistent physical parameters 
between the actual structure and the finite element model. Beginning with the measured FRF for 
less than the full set of dofs, this work predicted the updated FRF matrix. And the stiffness and 
mass matrices were estimated from the real part of the expanded FRF data and the damping 
matrix was predicted from the imaginary part. The proposed method properly describes the FRF 
curves although it rarely provides the accurate parameter matrices. It can be overcome by 
increasing the number of the measured FRF data. 
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