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Abstract. The dynamic responses of an elastic beam moving over a simple beam are 

investigated. The elastic beam is modeled as an Euler beam with both ends free, and connected 

to the simple beam by two spring units. With modal superposition method, the dynamic 

responses of these two beams are studied. The vibrations of the simple beam are almost the 

same due to the moving elastic beam and rigid beam, even the latter beam ignores the flexural 

vibration of the elastic beam. However, the acceleration of the moving elastic beam is much 

larger than that of the moving rigid beam, which can be attributed to the flexible vibration of the 

elastic beam. With various flexural stiffness of the elastic beam, the max accelerations of the 

elastic beam at midpoint are computed along with different moving velocities. It is observed 

that, with an increase of flexural stiffness of the elastic beam, the max acceleration of the elastic 

beam decreases evidently.  
 

Keywords: the elastic beam, the simple beam, flexible vibration, flexural stiffness. 

 

1. Introduction 

 

Traffic induced structural vibration has been an interesting topic in the field of civil engineering, 

such as railway and roadway bridge vibrations. Numerous researches on the dynamic behaviors of 

bridge under moving vehicle have been conducted [1-11]. In these studies, the moving vehicle is 

regarded as moving load [4, 5], moving mass [6, 7], moving oscillator [8, 9], and moving suspend 

beam considering pitching effect [10, 11]. 

As the demand of lightweight design for car structures, the structural stiffness of car frame will 

be decreased [12, 13]. To consider the flexible vibration of the moving structure, Zhang et al. 

modeled an elastic beam moving over another Euler beam with spring connected at two discrete 

points and some approximate analytical results were put forward [14]. Cojocaru et al. assumed a 

moving elastic beam connected to another beam with a series of rigid interfaces and the dynamic 

responses of this system were solved by means of symbolic computation [15, 16]. In the above 

mentioned work, some important conclusions have been brought out; while relatively little research 

attention so far seems to conduct the effect of flexural stiffness of the moving elastic beam on the 

dynamic responses of the system. 

In the present paper, the dynamic responses of the elastic beam moving over a simple beam are 

investigated with modal superposition method. The elastic beam is regarded as an Euler beam with 

both ends free, and it is connected to the simple beam by two spring units. Firstly, the dynamic 

responses of these two beams are compared under the moving elastic and rigid beam. Secondly, with 

different flexural stiffness of the elastic beam, the max accelerations of the elastic beam at midpoint 

are computed along with different moving velocities. It is observed that the increase of flexural 

stiffness of the elastic beam can lead to a notable decrease of its max acceleration. From practical 

view, these results are useful for lightweight design of car structures to relief much more flexible 

vibration and improve riding comfort. 
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2. Formulations 
 

In this paper, an elastic beam travels over a simple beam at a constant speed v, as shown in Fig. 1. 

In this model, the elastic beam is modeled as an Euler beam with both ends free, and connected to 

the simple beam by spring units at two discrete points. For the initial conditions, the rear spring unit 

of the elastic beam is located at the left-hand end of the simple beam. 

 

 

Fig. 1. An elastic beam moves over a simple beam 
 

2.1 The elastic beam 

 

As shown in Fig. 1, the vibration of the moving elastic beam is measured from its static 

equilibrium position, and its vibration can be divided into two parts: rigid vibration and flexible 

vibration [14]. The following symbols are used in Fig. 1: mv = the total mass, Iv = the pitch of inertia, 

EvIv = the flexural stiffness, Cv = the damping per unit length, ρA = the constant mass per unit length, 

lv = the total length, lt = the distance between the front and rear spring units, kv = the stiffness of each 

spring unit. When the elastic beam runs on the simple beam, the equation of motion for the elastic 

beam can be written as: 

 

( ) ( ) ( ) ( )
24 2

4 2
1

, , ,v v v
v v v j v j

j

Z x t Z x t Z x t
E I A C P x l

tx t
ρ δ

=

∂ ∂ ∂
+ + = − −

∂∂ ∂ ∑     (1) 

 

where Z(xv, t) is the vertical displacement of the elastic beam at time t (0 ≤ xv ≤ lv); j = 1, 2 represent 

the front and rear spring units, δ(·) is the Dirac delta function, jP  are the interaction forces from the 

spring units: 

 

( ) ( ), ,j v j b jP k Z l t Z x t = −         (2) 

 

where Zb(x, t) is the vertical displacment of the simple beam, lj = lv/2+(–1)
j+1

lt/2, xj is the distance of 

the front/rear spring units to the left-hand of the simple beam. 

The vibration of the elastic beam can be regarded as the combination of rigid motion and 

flexible motion. When the rigid modes are included in the flexible modes, the first mode is chosen 

as the bounce of rigid mode and its shape function is taken as Y1(xv) = 1. The second mode is the 

pitch and its shape function is Y2(xv) = xv – lv/2. When NMv modes are considered, the vertical 

displacement of the elastic beam can be written as [17]: 
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( ) ( ) ( ) ( ) ( )
3

,
2

vNM

v
v v v v m m v

m

l
Z x t Z t x t p t Y xθ

=

 
= + − + 

 
∑       (3) 

 

where Zv(t) and θv(t) are the modal amplitude of the bounce and pitch motion respectively, Ym(xv) 

and pm(t) are the modal amplitude and mode shape function of the flexible vibration for the elastic 

beam. 

Consider a beam with both ends free, when m > 2, the mode shape functions of the elastic beam 

can be given as [18]: 

 

( ) ( ) ( ) ( ) ( )cosh cos
cosh cos sinh sin

sinh sin

m m
m v m v m v m v m v

m m

Y x x x x x
λ λ

β β β β
λ λ

−
= + − +  −

  (4) 

 

where λm and βm satisfy: 

 

1 cosh cos 0, /m m m m vlλ λ β λ− = =         (5) 

 

Substituting Eq. (3) into Eq. (1), and multiplying by Yi(xv) and integrating the resultant equation 

with respect to xv between 0 and lv, and considering the orthogonality conditions of the natural 

vibration modes, the equations of motion in terms of the NMv modal displacements can be given as: 

 

( )
2

1

0v v j

j

m Z t P

=

+ =∑ɺɺ          (6) 
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Let 
4

2 ,v v i
vi

E I

A

β
ω

ρ
=  2 ,v

vi vi

C

A
ξ ω

ρ
=  the Eq. (8) can be given as: 

 

( ) ( ) ( ) ( )
2

2

1

2 3v i vi vi v i v vi i i j j v

j

m p t m p t m p t Y l P    i NMξ ω ω
=

+ + = − =∑ɺɺ ɺ ⋯     (9) 

 

Therefore Eqs. (6), (7) and (9) are expressed for the rigid motion and flexible motion of the 

elastic beam. 

 

2.2 The simple beam 

 

As shown in Fig. 1, the equation of motion for the simple beam due to moving elastic beam can 

be written as: 

 

( ) ( ) ( ) ( )
4 2

4 2

, , ,
,

b b b
b b b b b

Z x t Z x t Z x t
E I m C F x t

tx t

∂ ∂ ∂
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∂∂ ∂
     (10) 
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where EbIb is the flexural stiffness, mb is the constant mass per unit length, Cb is the damping per 

unit length, Fb(x, t) is the external force acting on the simple beam from the elastic beam: 

 

( ) ( )
2

1

1
,

2
b v j j

j

F x t m g P x xδ
=

 = + ⋅ − 
 ∑        (11) 

 

Based on the modal superposition method, the solution of Eq. (10) can be expressed as: 

 

( ) ( )
1

( , )
bNM

b n n

n

Z x t q t xφ
=

= ∑        (12) 

 

where qn(t) is the nth modal amplitude and φn(x) is the nth mode shape function of the beam. 

For simple beam, the natural frequency and mode shape functions can be expressed as: 

 
2

b b
n

b b

E In

l m

π
ω

 
=  
 

         (13) 

( ) sinn
b

n x
x

l

π
φ

 
=  

 
         (14) 

 

Substituting Eqs. (11) and (12) into Eq. (10), and multiplying by φk(x) and integrating the 

resultant equation with respect to x between 0 and lb, and considering the orthogonality conditions 

of the natural vibration modes, the equation of motion of the kth generalized system in terms of the 

generalized displacement qk(t) is given as: 

 

( ) ( ) ( ) ( )2k k k k k k k k kM q t M q t K q t F tξ ω+ + =ɺɺ ɺ        (15) 

 

where ωk, ξk and Mk are the modal frequency, damping ratio, and modal mass of the kth mode, 

respectively, and ( )2
k k kK M ω=  means the geneneralized stiffness of the kth mode. The 

generalized force Fk(t) is expressed as: 

 

( ) ( )
2

1

1

2
k v j k j

j

F t m g P xφ
=

 = + ⋅ 
 

∑          (16) 

 

3. Solution 

 

Subsequently, substituting Eqs. (2), (3), (12) into Eqs. (6), (7), (9) and moving the terms with 

( ), , ,v v m nZ p qθ  to the left side of the differential equation, the equations of motion for the elastic 

beam can be written as: 

 

( ) ( ) ( ) ( ) ( ) ( )
2 2

3 1 1 1

2 0
v bNM NM

v v v v v m j m v n j n

m j n j

m Z t k Z t k Y l p t k x q tφ
= = = =

+ + − =∑∑ ∑∑ɺɺ    (17) 
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Substituting Eqs. (2), (3), (12), (16) into Eq. (15) and moving the terms with 

( ), , ,v v m nZ p qθ  to the left side of the differential equation, the equation of motion for the 

simple beam can be written as: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 1 1

2 2 2
1

1 1 3 1
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1
2 2
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+

= = = =

+ + + Φ − Φ
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∑∑ ∑

∑ ∑∑ ∑

ɺɺ ɺ

   (20) 

 

where ( ) ( )nk n j k jx xφ φΦ =  and ( ).k k jxφΦ =  

As shown in Eqs. (17), (18), (19) and (20), the elastic beam and the simple beam are coupled 

and interacting with each other. By combining Eqs. (17), (18), (19) and (20) together, the equations 

of motion in modal space are given in a matrix form as: 
 

[ ]{ } [ ]{ } [ ]{ } { }M U C U K U F+ + =ɺɺ ɺ        (21) 

 

where [M], [C], [K] denote the mass, damping and stiffness matrices; { } { } { }( ), ,U U Uɺ ɺɺ  are the 

vectors of displacement, velocity, and acceleration, respectively; and {F} represents the vector of 

exciting forces applied to the dynamic system. 

To compute both the dynamic responses of the simple beam and the elastic beam, the equations 

of motion as given in Eq. (21) will be solved using a step-by-step integration method, i.e. 

Newmark-β method [19]. The integration scheme of Newmark-β method consists of the following 

equations: 
 

{ } { } { }( ) { } { }0 2 3t t tt t t t
U a U U a U a U

+∆+∆
= − − −ɺɺ ɺ ɺɺ         (22) 

{ } { } { } { }6 7t t t t t t
U U a U a U

+∆ +∆
= + +ɺ ɺ ɺɺ ɺɺ         (23) 

 

where the coefficients are: 
 

0 1 2 32

4 5 6 7

1 1 1
, , , 1,

2

1, ( 2), (1 ), .
2

t tt

t
t t

γ
α α α α

β β ββ
γ γ

α α α γ α γ
β β

= = = = −
∆ ∆∆

∆
= − = − = ∆ − = ∆

      (24) 
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In this study, β = 1/4 and γ = 1/2 are selected, which implies a constant acceleration with 

unconditional numerical stability. 

 

4. Numerical investigation 

 

Fig. 1 shows an elastic beam crossing a simple beam at a constant speed v, and the properties of 

these two beams are listed in Table 1 and Table 2, where ωv and ωb denote the first natural 

frequencies of the elastic beam and the simple beam, respectively. In the illustrative example, a 

time step of 0.0001 s and ending time of tend = (lb – lt)/v are employed to compute the dynamic 

responses of the elastic beam and the simple beam. 

 
Table 1. Properties of the elastic beam 

mv (kg/m) lv (m) lt (m) EvIv (kN m2) Iv (kg m2) kv (N m-1) ξv ωv (Hz) 

18000 3.6 3.0 2.6×104 7.2×104 3.6×106 1.5 % 19.81 

 
Table 2. Properties of the simple beam 

mb (kg/m) lb (m) EbIb (kN m2) ξb ωb (Hz) 

28125 15 1.8×107 2.5 % 5.59 

 

To compute the dynamic response of the simple beam under the moving elastic beam, a 

sufficient number of modes in Eqs. (3) and (12) are required for accuracy of the response computed 

from Eq. (21). For the simple beam, 20 modes are sufficient to determine the dynamic response of 

the simple beam [20], which are also used in this paper. For the elastic beam, in order to verify that 

a sufficient number of modes has been used in the analysis, we first compute the acceleration 

response of the elastic beam at midpoint using either 8, 14, or 20 modes (NMv = 10, 16, or 22) with 

the moving speed at 15 m/s. 

From the convergent verification of computed results in Fig. 2, the first 20 modes (NMv = 22) 

are sufficient to compute the acceleration response of the elastic beam moving over the simple 

beam. For this reason, the same number of modes will be considered in the following examples. 
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Fig. 2. Test of convergence 

 

4.1 Comparison of the moving elastic and rigid beam 

 
Firstly, the moving beam is regarded as an elastic beam and a rigid beam, respectively. When 

the moving beam runs over the simple beam at 15 m/s, the displacement responses of the simple 

beam at midpoint are computed, as shown in Fig. 3. It can be noticed that the displacement 

responses of the simple beam at midpoint under the moving elastic and rigid beam are almost the 
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same. It also means that the effect of flexibility of the moving beam on the vibration of the simple 

beam can be negligible, and this is because the forces acting on the simple beam have little 

variation from the gravity of the moving beam [21]. 
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Fig. 3. Displacement responses of the simple beam at midpoint 

 

When the moving beam runs over the simple beam at 15 m/s, the acceleration responses of 

the elastic and rigid beam at midpoint are computed, as shown in Fig. 4. It can be seen that the 

accleeration response of the elastic beam at midpoint is a little larger than that of the rigid beam, 

which can be attritubted to the flexible vibration of the elastic beam excited by bridge vibration. 

This phenomean is confirmed by the acceleration spetruem analysis, as shown in Fig. 5. The 

first dominant frequencies of the moving elastic and rigid beam are 5 Hz, which is close to the 

natural frequency of the simple beam (See Table 2). Besides the first dominant frequency at 5 

Hz, there is another dominant frequency for the moving elastic beam at 20 Hz, which is 

consitant with the natural frequency of the elastic beam (See Table 1). 
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Fig. 4. Acceleration responses of the elastic beam at midpoint 

 

4.2 Effect of different flexural stiffness 

 

Acctually, the flexible vibration of the elastic beam is excited by bridge vibration as 

indicated in Section 4.1, and the effect of different flexural stiffness on the vibration of the 

elastic beam will be performed by considering various flexural stiffness, i.e., EvIv/10, EvIv, and 

10EvIv. Then, the max accerelations of the elastic beam at midpoint are plotted against the 

moving velocities at 5, 10, 15, 20, and 25 m/s in Fig. 6. And the results are also compared with 

the moving rigid beam. 
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Fig. 5. Accelerations spectrum of the elastic beam at midpoint 
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Fig. 6. Max accelerations of the elastic beam at midpoint vs moving velocities 

 

It can be seen from the Fig. 6 that, with the increase of flexural stiffness of the elastic beam, the 

max acceleration of the elastic beam at midpoint decreases observably. In this numerical example, 

when the flexural stiffness of the elastic beam is eaqual to 10EvIv, resulting in the natural frequency 

of 62.65 Hz, the max acceleration of the elastic beam is almost the same with the rigid beam. 

Therefore, to supress the flexible vibration of the elastic beam, its flexural stiffness should be 

improved at a certain value, which is important for the lightweight design of car structures. 

 

5. Conclusions 

 

In this paper, the dynamic responses of an elastic beam moving over a simple beam are 

investigated using modal superposition method. In this model, the elastic beam is modeled as an 

Euler beam with both ends free, and connected to the simple beam by two spring units. On the base 

of this study, the following conclusions can be drawn: 

(1) The displacements of the simple beam at midpoint are almost the same under the moving 

elastic and rigid beam, whereas the acceleration of the moving elastic beam at midpoint is a little 

larger than that of the moving rigid beam. This can be attributed to the flexible vibration of the 

elastic beam excited by simple beam vibration. 

(2) With various flexural stiffness of the elastic beam, the max accelerations of the elastic beam 

at midpoint are computed along with different moving velocities. It is observed that an increase of 

the flexural stiffness of the elastic beam can lead to a notable decrease of its max acceleration. From 
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practical view, the results are useful for lightweight design of car structures to relief much more 

flexible vibration and improve riding comfort. 
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