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Abstract. Sometimes a loud noise or high pitched squeal occurs when the brakes are applied. It 

is generated during the braking phase and is characterized by a harmonic spectrum. Brake squeal 

is induced by self-excited vibrations, consequences of local nonlinearities at the contact 

interface. Many researchers have examined the problem with experimental, analytical, and 

computational techniques, but there is still no method to fully annihilate brake squeal. This paper 

deals with presentation of a new model to analyze the brake squeal behavior. In this paper, a 

lumped-continuous vibration model is presented for the braking system and nonlinear equations 

are obtained using the Hamilton’s principle. Then, the linearization of nonlinear equations is 

done around the equilibrium point of system and linear stability analysis is discussed. 

Furthermore, the effects of different braking parameters such as friction coefficient, rotational 

speed, pad stiffness, calipers etc. on the brake squeal noise are investigated. 
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Introduction 

 

Automobiles are the main mode of transportation for people travelling from one place to 

another. Brakes are one of the most important safety and performance components in motor 

vehicles. A wide range of brake noise and vibration phenomena is described by many 

investigators. Squeal, groan, chatter, judder, moan, hum, and squeak are just a few of the names 

found in the literature [1]. Brake mechanisms are the place of complex dynamic behaviors which 

can lead to the emission of unpleasant sounds as squeal.  No precise definition of brake squeal 

has gained complete acceptance, but it is generally agreed that squeal is a sustained, high-

frequency (1–20 kHz) vibration of brake system components during a braking action [2]. Overall 

brake squeal can be annoying to the vehicle passengers, passers-by, pedestrians, etc. especially 

as vehicle designs become quieter. There has been significant progress in understanding the 

generation of brake squeal and in developing numerical methods for analyzing its characteristics 

[3–7]. However, as mentioned by Oberst and Lai [8], the problem of predicting and reducing 

brake squeal propensity remains as challenging as ever. This is because the nature of brake 

squeal is fugitive, transient due to its high dependency on a large number of interacting 

parameters, such as contact conditions, material properties and ever-changing operating 

conditions. Traditionally, research into brake squeal has been focused on three approaches using: 

(1) experimental methods to study the vibration and acoustic responses of a brake system; (2) 

numerical methods, predominantly finite element analysis techniques, to assess brake squeal 

propensity; and (3) simplified analytical models to gain insights into the mechanisms of brake 

squeal generation [9]. Most early works on instability analysis were performed with hand-

derived equations for mass-spring models that were used to represent real structures. The 

analyses for more complicated mass-spring models by Jarvis and Mills [10], Earles and Lee 

[11], North [12], Millner [13], and many others have revealed that even when the friction 

coefficient is constant, the model can be unstable if the friction force couples two degrees-of-

freedom together. A large-scale finite element analysis of the stability of the linearized brake 

system also confirms that instability arises when two modes coalesce under the influence of 

friction. For the first time Chan et al. [14] considered the disk and transitional disk vibrations as 

a plate and analytical components modes, respectively. In the work of Chowdhary et al. [15], 
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individual brake components were modeled and solved separately for their modal characteristics. 

Then, these were coupled together at the contact interface and the equations of motion were 

derived through the Lagrangian approach. Chakraborty et al. [16] also used thin plate model for 

the disc. They introduced nonlinear spring for the pads. Von Wagner et al. [17] further 

demonstrated that the frequency of the limit-cycle vibration of the disc was very close to that of 

the linear unstable vibration obtained through a complex eigenvalue analysis. Lee et al. [18] 

expressed modal sound radiation of a brake rotor in terms of analytical solutions of a generic 

thick annular disk having similar geometric dimensions. They used finite element method to 

determine structural modes and response. Joe et al. [19] proposed a linear, lumped, and 

distributed parameter model to represent the floating caliper disc brake system. The complex 

eigenvalues were used to investigate the dynamic stability, and, in order to verify simulations 

which are based on the theoretical model, an experimental modal test and dynamometer test 

were performed.  

Analytical methods cannot resolve the complex interactions between components of the 

braking system features to model them; however, they can provide sufficient understanding of 

the mechanisms causing the brake squeal phenomena. This paper deals with analytical analysis 

of brake squeal. First, an appropriate physical model is presented for the brake system, and then 

the governing equations are obtained using Hamilton’s principle. The linearization of nonlinear 

equations is performed around the balance point and linear stability analysis is discussed. 

Finally, system stability is analyzed in state space and the effect of different parameters on 

stability of brake system is investigated. 

 

Modeling of brake system 

 

A lumped-continuous vibration model is used for modeling the brake system as shown in 

Fig. 1. This model consists of a rotating circular disk with angular velocity of Ω. Displacement 

in the direction normal to the disk is presented by wd. The caliper is modeled by two bodies (m1, 

m2) above and below the disc. Displacement of the first and second mass is represented with wc1 

and wc2 respectively. They are connected to a pin by two rods with length of λ. The rods are 

massless and are connected to each other by a torsional spring with stiffness of kT. The lower 

mass is connected to the internal pad by a spring with stiffness of kc and a damper with damping 

coefficient of dc. Pads are assumed to be massless and are modeled by a spring and damper with 

stiffness and damping coefficient of kp and dp, respectively (Fig. 1).
 

 

 
Fig. 1. The model of a brake system [20] 

 

Analytical modeling 

 

Hamilton’s principle is expressed as [21]: 
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Potential energy of lower springs can be obtained from Eq. (5): 
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AL is the area of the hoof. Potential energy of torsional spring is obtained as following: 
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Fig. 2. Direction of friction force 
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Based on assumed modes assumptions, we selected only one mode of the plate to obtain new 

lumped system against continuous system. We can obtain the natural frequencies of the plate by 

using the method suggested by Meirovitch [21]. The corresponding natural frequency is 
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System stability analysis 

 

The obtained equations represent a dynamic system with four degrees of freedom. For 

stability analysis of the system, the above-mentioned differential equations are taken into state 

space and stability analysis is carried out there. For this purpose, the equations are written in a 

matrix form: 
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Equations in state space will be as following: 
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For the stability analysis in state space, the eigenvalues of matrix Φ should be obtained and 

stability analysis will be done according to those values. If the eigenvalues have positive real 

parts, the system will be unstable and break squeal phenomenon will occur. 

 

Results and discussion 

 

The general specifications of the brake disk are shown in Table 1. Next issue is variation of 

the eigenvalues with the rotational speed of the disc. In the equations, rotational speed of the 

disc should be considered as constant in order to obtain the results; while disc rotational speed 

varies during the braking process. Therefore, variation of rotational speed with eigenvalues is 

shown in Fig. 3. It is evident that increasing the rotational speed of the disk, results in system 

instability. On the other hand, it seems that the eigenvalues of the matrix Φ are proportional to 

pad stiffness. The variation of eigenvalues with pad stiffness is represented in Fig. 4. It is clear 

that by increasing pad stiffness system may become unstable and thus possibility of brake squeal 

occurrence increases. 

 
Table 1. System specifications 

Parameter Value 

Disk inner radius 0.08 m 

Disk outer radius 0.2 m 

Disk height 0.025 m 

m1 0.5 kg 

m2 1 kg 

Rod length 2 m 

 

 
Fig. 3. Variation of eigenvalues with rotational speed 

 

 
Fig. 4. Variation of eigenvalues with pad stiffness 
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Other system parameters such as caliper mass, length of rods and torsional stiffness of the 

springs have less effect on system stability. Fig. 5 is presented in order to demonstrate effect of 

these parameters on the eigenvalues of the matrix Φ. Variation of brake system stability, with 

damping coefficient is more complex. So that, at lower ranges, the damping coefficient variation 

does not have much effect on the system stability. But at higher ranges, it results in system 

instability. However, it seems that by increasing pad stiffness the brake system has more 

tendencies to become stable as illustrated in Fig. 6. 

 

 
Fig. 5. Variation of eigenvalues with m1 and m2  

 

 
Fig. 6. Variation of eigenvalues with damping coefficient 

 

Conclusions 

 

In this paper, brake squeal noise in automobiles is analytically investigated by a lumped-

continuous model. A new model is presented for the brake system. This model includes both 

lumped and continuous components. Then the governing equations of system are obtained using 

Hamilton’s principle and are solved by the assumed-modes approach. At last, system stability is 

analyzed in state space and the effect of different parameters on stability of brake system is 

investigated. The obtained results are as follows: 

• Brake system is stable for low friction coefficient, but, by increasing friction coefficient the 

brake system becomes unstable while other system parameters remain constant. On the other 

hand, since friction coefficient has a direct effect on braking torque, so, probably, there should 

be an optimal value for it. 

• Brake system is stable for low rotational speeds, but by increasing the disc rotational speed, 

the system becomes unstable. It is better for braking to be an instantaneous process to prevent its 

occurrence.  
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• Increasing the mass of caliper resulted in reaching the system from oscillating mode to stable 

mode, that taking into account other design parameters of caliper, an optimal value can be 

achieved for its mass. 

• Increasing the pad stiffness led to system instability, on the other hand, pad stiffness is 

directly proportional to the braking. The pad stiffness values are obtained through experimental 

data. 
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