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Abstract. In the current study an analytical model to determine fundamental frequency of 

perforated plate is formulated. Non-homogeneity in Young’s modulus and density due to 

perforation is expressed by using unit step function in Rayleigh’s Quotient. In the present 

analysis the boundary condition considered is clamped at all edges. Perforated plate is 

considered as plate with uniformly distributed mass and holes are considered as non-

homogeneous patches. The deflected middle surface of the plate is approximated by a function 

which satisfies the boundary conditions. The proposed approach is validated by comparing 

results with finite element method modal analysis. 
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1. Introduction  

 

Perforated plates are widely used in nuclear power equipment, heat exchangers and pressure 

vessels. The holes in the plate are arranged in various regular penetration patterns. Industrial 

applications include both square and triangular array perforation patterns. Cutouts are found in 

mechanical, civil, marine and aerospace structures commonly as access ports for mechanical and 

electrical systems, or simply to reduce weight. Cutouts are also made to provide ventilation as 

well as to modify the resonant frequency of structures. 

Leissa [1-7] compiled some works done in the field of homogeneous and non-homogeneous 

plates. Sobczyk [8] studied free transverse vibrations of elastic rectangular plates with random 

material properties. Laura et al. [9] studied non-homogeneous rectangular plates. Mishra and 

Das [10] proposed a method of characteristic orthogonal polynomials in one dimension to 

handle rectangular plates. Pan [11] developed characteristic orthogonal polynomials in two 

variables to study flexural vibrations of polygonal plates. Rao et al. [12-13] studied vibrations of 

inhomogeneous thin plates using a high precision triangular element, and vibration of 

inhomogeneous rectangular plates by using perturbation solution. Tomar et al. [14-17] studied 

vibrations of plates of variable thickness having non-homogeneity. Chakraverty et al. [18-19] 

used two-dimensional orthogonal polynomials as shape functions in the Rayleigh-Ritz method to 

study vibration of non-homogeneous plates; they also studied effect of non-homogeneity on 

natural frequencies of vibration of elliptic plates. Lal R. et al. [20] studied free transverse 

vibrations of uniform non-homogeneous rectangular plates using boundary characteristic 

orthogonal polynomials in the Rayleigh-Ritz method on the basis of classical plate theory for 

four different combinations of clamped, simply supported and free edges. Lal R. and Dhanpati 

[21] studied effect of non-homogeneity on vibration of orthotropic rectangular plates of varying 

thickness resting on Pasternak foundation. 

From the literature of perforated plate authors found that papers [22-24] deal with equivalent 

properties of material for perforated plate. These equivalent material properties are used in 

vibration analysis to consider perforated plate as full solid plate. Burgemeister K. A. and Hansen 

C. H. [25] showed that to predict accurately the resonance frequencies of simply supported 

perforated panel, effective material constants cannot be used in classical equations. They used 
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cubic function fitted from ANSYS results to determine the effective resonance frequency ratio 

for large range of panel geometries with an error of less than 3 %. Mali K. D. and Singru P. M. 

[26] used Galerkin method for determining the fundamental frequency of rectangular perforated 

plate with rectangular perforation pattern of circular holes. Perforated plate was considered as a 

plate with uniformly distributed mass and holes were considered as concentrated negative 

masses. Mali K. D. and Singru P. M. [27] formulated an analytical model to determine 

fundamental frequency of free vibration of perforated plate by using greatest integer functions to 

express non-homogeneity. From review of the literature, authors have found no work dealing 

with analytical formulation by considering unit step function to express non-homogeneity due to 

holes (in Young’s modulus and density). Present approach can be used to predict accurately the 

fundamental frequencies of wide range of perforation geometries, for rectangular plates with 

rectangular penetration pattern for different support condition. 

In this paper, Rayleigh’s formulation for perforated plate of uniform thickness is carried out 

by considering non-homogeneity in material properties i.e. Young’s modulus and density. In this 

work perforation pattern considered is square with square perforations having ligament 

efficiency of 0.5. Boundary condition considered is clamped at all edges. To validate the 

accuracy of the mathematical model, finite element method (FEM) analysis results for different 

plates are presented. 

2. Analytical formulation 

 

Fundamental frequency expression of a thin plate of uniform thickness is formulated by 

Rayleigh’s principle [1, 28]. Rayleigh’s quotient for fundamental frequency of homogeneous 

thin plate is given by equation: 
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where ω is fundamental frequency, h is the uniform plate thickness, ρ0 is the density, ν0 is the 

Poisson’s ratio, W1 is shape function, and R is the rectangular area over which integration is 

performed. D0 is the flexural rigidity, 
2∇ is two-dimensional Laplacian operator. D0 and 

2∇  are 

given as: 
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where E0 is modulus of elasticity. 

The Rayleigh’s quotient depends on the form of the function W1. The function W1(x, y) is a 

continuous function that approximately represents the shape of the plate’s deflected middle 

surface and satisfies at least the kinematic boundary conditions and ω represents the natural 

frequency of the plate pertinent to the assumed shape function. Assume ω = ω1 be its 

fundamental frequency. 

 

2. 1 Fundamental frequency estimation for plates with perforations 

In present analysis, square plate with square perforations is considered as shown in Fig. 1. 

The ligament efficiency ηl, considered for perforation, is (p/d + p) = 0.5, where p is ligament 
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length (px or py) and d is side length of square perforation. Model in the present work does not 

consider any rotary inertia of the plate. To approximate the shape of the plate’s deflected middle 

surface, function W1(x, y) used is given as: 
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where a and b are side dimensions of the plate along x and y directions respectively. 
 

 
Fig. 1. Coordinates of perforated plate 

 

The shape function W1(x, y) satisfies the following boundary conditions for the plate clamped 

on all edges: 
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From equation (1) the Rayleigh’s quotient depends on the material properties like density 

(ρ0), modulus of elasticity (E0), Poisson’s ratio (ν0). For a perforated plate as shown in Fig. 1, the 

density (ρ), and modulus of elasticity (E) are changing along the surface of the plate with 

geometric pattern of holes [27]. The pattern of the variation of these parameters along the 

surface resembles that of square waves. To evaluate the integrals involved in Rayleigh’s quotient 

the density and the modulus of elasticity need to be expressed as a function of the Cartesian co-

ordinates x and y. If the function F(x, y) represents the variation of these parameters along the 

surface, then the density and modulus of elasticity can be expressed as: 

 

0

0

( , )

( , )

F x y

E E F x y

ρ = ρ

=
 

(5) 

 

where E0 and ρ0 are the modulus of elasticity and density for a homogeneous plate. Once the 

function F(x, y) is constructed the integrals can be evaluated using above equations (1-3). The 

Rayleigh’s quotient now becomes [27-28]: 
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The function F(x, y) represents the variation of the density and modulus of elasticity. For the 

function F(x, y) to represent these parameters it must satisfy the following requirements: 

( , ) = 0 in the region corresponding to a perforation,F x y  

( , ) = 1 otherwise.F x y  

The function F(x, y) is constructed as per the geometry of the plates considered. To construct 

the function F(x, y) we assume that density at any point (x, y) is the superposition of the density 

along x and y directions [27]. This superposition is also considered for modulus of elasticity. The 

functions f(x) and g(y) represent variation of density and modulus of elasticity along x and y axes 

respectively. Equations (8) and (9) show the rectangular Heaviside function used to express the 

non-homogeneity in Young’s modulus and density of the plate due to perforations. The 

functions f(x) and g(y) are formed by using unit step functions and are superimposed to obtain 

the function F(x, y). 

The unit step as a function of a discrete variable n is given as: 
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where n is an integer. 
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where d is side length of the square perforation, px and py are ligament lengths in x and y 

directions respectively.                                                                         

In present study square plate having square perforation is considered as shown in Fig. 1. For 

plate with ηl = 0.5, px = py = d the above expressions for f(x) and g(y) become: 
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The superposition of f(x) and g(y) to obtain F(x, y) is analogous to Boolean operation of 

union. Also the functions f(x) and g(y) are independent. F(x, y) can be obtained from the 

relation: 
 

( , ) ( ) ( ) ( ) ( )F x y f x g y f x g y= + −
 

(12) 

 

F(x, y) thus obtained [27] is used in Rayleigh’s quotient, equation (6) to obtain the 

fundamental frequency. These calculations were performed for plates of different sizes. 

  

3. Numerical simulation 

 

Analytical model developed in section 2.1 is applicable to rectangular perforated plates with 

different side dimensions and having rectangular perforation and, provided that the perforation 

pattern is rectangular or square and all perforations are of same size. A square plate with simple 

geometry was considered for convenience of computation. By virtue of the symbolic forms 

presented in this work, the method can be applied to analytical studies of perforated plates with 

different boundary conditions. Numerical results have been obtained for the five specimens 

listed in Table 1 and fundamental natural frequencies are provided in Table 2. The material 

properties used for all the analyzed specimen plates:  

E0 = 2.1×10
11

 N/m
2
, υ0 = 0.3, ρ0 = 7850 kg/m

3
.  

 

Table 1. Specimen parameters 

Specimen 

No. 

Plate size 

(a mm × b mm) 

Cutout size 

(d mm × d mm) 

h 

(mm) 

px = py 

(mm) 

1 400 × 400 80 × 80 2 80 

2 500 × 500 100 × 100 2 100 

3 600 × 600 120 × 120 2 120 

4 700 × 700 140 × 140 2 140 

5 800 × 800 160 × 160 2 160 

 
Table 2. Comparison of FEM and analytical results  

Specimen No. 
Fundamental frequency ω1, (Hz) 

% Error 
Analytical FEM 

1 102.269 94.411 8.32 

2 65.452 60.421 8.32 

3 45.452 41.961 8.31 

4 33.393 30.828 8.32 

5 25.567 23.602 8.32 

 

3. 1. FEM Analysis 
 

To verify the validity of the proposed model, modal analysis is carried out using FEM for 

clamped steel plates having 2 mm thickness and carrying nine holes at positions shown in Fig. 1. 

Parameters of the plate specimen considered in this study are listed in Table1. Modal analysis is 

carried out in ANSYS 11 using Shell63 elements. Meshing is executed by free meshing with 
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smart size option and quadrilateral elements are used. Mesh convergence for FEM results is 

checked for every specimen. This is checked by running different simulations. Final solution is 

chosen based on the mesh quality as well as mesh size [26-27]. Thus, the converged solution is 

the one with the lowest eigenfrequencies given in Table 2. It is assumed that structure is formed 

of isotropic homogeneous elastic material, i.e. mild steel with material properties same as used 

in numerical analysis.  
 

4. Results and Discussions 

 

Comparison of natural frequency of the first mode of vibration between the proposed 

analytical model and FEM is given in Table 2.  

The agreement between the analytical approach and the FEM results is reasonably good. It is 

observed that the difference between numerical and FEM results gives systematic error of     

8.32 %. In numerical simulation the mass matrix is formed using same shape function as used to 

generate stiffness matrix, i.e. the two matrices are consistent one with the other. Thus, numerical 

simulation predicts higher values of frequencies. This performance of the proposed model, for 

square/rectangular holes is due to the fact that the effects of both the different holes and their 

locations on the frequency have been accounted by constructing special function consisting unit 

step function, to express variation in density and Young’s modulus.  

Systematic error of 8.32 % occurs between numerical and FEM results because of the 

following reasons. 

1) All the specimens have the same mass remnant ratio (MRR = 0.64) i.e ratio of the mass of the 

perforated plate to the mass of the solid plate of equal outer effective dimensions.  

2) Mass remnant ratio depends upon the geometrical parameters such as specimen aspect ratio 

(a/b), perforation aspect ratio (d/d), thickness (h) of the specimen and ligament efficiency (ηl). 

All these geometrical parameters are identical for the specimens considered. 

3) Due to the geometrical similarity of the specimens the same percentage (%) error occurs 

between numerical and FEM results for each specimen, though absolute error is different. 

This systematic error demonstrates that the analytical model as given, for square plate with 

square perforations having ηl = 0.5 gives results with the same accuracy for plates with 

geometrical similarity but variation in dimensions. 

 

5. Conclusion 

 

This work presents an analytical model to estimate the fundamental frequency of thin plates 

of uniform thickness having square perforations in a square pattern. The effect of non-

homogeneity in Young’s modulus and density due to holes on the natural frequency of 

perforated plate has been modeled using unit step functions in the Rayleigh’s method. The 

proposed model has been verified by comparing the numerical results with FEM simulations 

(Table 2). It was determined that the error in the fundamental frequency is of the order of      

8.32 %. Thus, fundamental frequency of the perforated plate can be obtained by a proper choice 

of various plate parameters and shape function depending on the boundary condition. 
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