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Abstract. With the extensive application of blasting techniques, the prediction and hazard 

control of explosion-induced vibration is an important issue which cannot be ignored in blasting 

engineering. A numerical approach is presented to study the explosion-induced pressure load on 

the surface of C-4 explosives in a semi-infinite space, in order to explore the effectiveness of 

concave grooves in ground vibration wave barrier. Numerical simulations are carried out by 

using a widely applied explicit dynamic nonlinear finite element software LS-DYNA and 

adopted the Arbitrary Lagrangian-Eulerian method for numerical analysis to simulate the 

propagation of blast waves. The analysis shows that the concave grooves have a significant 

effect on attenuating the propagation of detonation waves. The vibration control is related to the 

width and depth of the groove, and the impact of the depth is greater than that of the width. This 

study can be used as a reference in hazard control of explosion-induced vibration. 
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1. Introduction 

 

Blasting is the main construction method for rock and soil excavation. With the extensive 

application of blasting techniques, the prediction and hazard control of explosion-induced 

vibration play a very important part in engineering design and construction, and they have 

become important issues for experts, scholars and engineering technicians. To ensure that the 

vibration cannot affect the structural safety of buildings, there is an urgent demand for hazard 

control of explosion-induced vibration. The following are 3 general methods for the hazard 

control of explosion-induced vibration [1]: 

(1) Control the explosive source. 

(2) Control the protected object and fit it with dampers. 

(3) Take measures for the propagation of seismic wave by excavating the damping groove to 

interrupt the propagation path. 

When explosives explode on or near the ground surface, the seismic waves will be triggered 

by the air shock wave. Blast waves are first transmitted in the form of underground shock 

waves, and then transformed into elastic seismic waves, inducing the vibration of the surface 

mass point. In addition, the soil stress waves generated from the compression of the air shock 

wave on the ground surface also convert into elastic seismic waves [2]. Therefore, when there is 

an explosion on the ground surface, these two types of blast waves can be detected in the soil 

simultaneously. Near the explosive point, the velocity and intensity of the air shock waves are 

higher. Relatively, the velocity and intensity of the corresponding soil stress waves are also 

higher. These are the key parameters affecting ground vibrations [3]. 

The propagation of blast waves in the soil/rock medium is subject to the medium 

characteristics and charge parameters. But the impact of surface grooves on the propagation of 

blast waves is very great. Currently, the foundation for investigating the parameters of 

explosion-induced vibration in blasting engineering lies on the perspective of energy conversion 
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in the explosion, as well as the theory of conservation of mass, energy and momentum in the 

propagation of detonation and shock waves. Based on the aforementioned engineering 

properties, the analysis of impact and damage of the explosion-induced vibration on the 

protected object can be evaluated from the velocity, acceleration, stress and displacement of the 

vibration. In engineering constructions, the peak of vibration velocity at the vertical mass point 

is often considered as the highest intensity of the explosion-induced vibration. Therefore, for 

explosions on or near ground surface, the analysis of hazard scale is mainly based on the 

propagation characteristics of the air shock wave and the vibration intensity of the ground 

surface. Varghese and Shankar (2011) [4] combined power flow balance and conventional 

acceleration matching has been used for the identification of structural parameters in the time 

domain. The results demonstrate that the proposed combined method is more accurate in 

identifying the structural parameters of a system compared to conventional acceleration based 

matching methods. Spyros and Fotis (2004) [5] used the finite element method to analyze the 

propagation of blast waves in the undulating terrain and discovered that the mass point 

vibrations were strong in protruding landforms, but weak in concave landforms. By exploring 

methods for reducing the explosion-induced vibrations, the damping rate of concave landforms 

was found to be up to 30~50 % [6]. However, the damping effect decreased with the increasing 

distance to the explosive source. From field experiments, Zhang (2000) [7] discovered that 

when the blast waves passed through the concave landforms, the attenuation coefficient of peak 

velocity was between 4.7 % and 87.0 %, and the attenuation degree was related to the scale of 

concave topography. Li Weixue et al. (1998) [8] looked into actual engineering cases to analyze 

the relationship between the attenuation of blast waves and the concave topography and 

geological structure. Real et al. (2012) [9] demonstrate the most relevant parameters in a trench 

are its width, depth and in-filled material or trench typology. 

Hazard control of explosion-induced vibration is an important issue in blasting engineering. 

When the scale of blasting vibration exceeds the safe range, it will cause damage to buildings in 

the strata layer or on the ground surface; thus, it is necessary to master and control its patterns 

in order to reduce the hazard scale. In order to understand the vibration isolation effect of 

concave grooves, the hydrodynamic code-LS-DYNA was used as the analysis tool in this study 

to simulate the impact of blast waves on the ground surface when the explosives explode on the 

ground surface. The objectives were to provide relevant vibration reduction measures for 

engineering, control the vibration effect of explosion, ensure the safety of nearby protected 

objects, and provide references to future studies and engineering applications. 

 

2. Numerical methods 

 

In order to carry out a thorough investigation on the influence of concave grooves on the 

propagation and vibration of blast waves, the Finite Element Method (FEM) in LS-DYNA was 

adopted in this study. FEM can compute both explicit and implicit solutions based on the fluid-

solid coupling Arbitrary Lagrangian-Eulerian (ALE) numerical model which adopts both 

Lagrangian and Eulerian algorithms. The ALE model can adequately describe the 

hydrodynamic behavior of the explosion-induced gases, effectively analyze their coupling with 

solids, and resolve the dynamic analysis problem of geometric nonlinearity, material 

nonlinearity and contact nonlinear for structural materials. The empirical formulas in the U.S. 

Army Technical Manual TM5-855-1 [10] are also used to simulate the explosion of explosives 

on the ground surface and verify the isolation effectiveness of concave grooves. 

 

2. 1. Arbitrary Lagrangian-Eulerian (ALE) technique  

 

This study used the Arbitrary Lagrangian-Eulerian (ALE) technique for numerical analysis 

to investigate the coupling of explosives, air and soil in an explosion. ALE description uses 
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Eulerian (spatial description) description for fluids and Lagrangian (material description) for 

solids, to avoid any severe distortion of mesh elements which can interrupt the numerical 

computation. It can effectively control boundary activities to facilitate the dynamic analysis of 

fluid and solid coupling. Hirt, Amsden, Cook (1974) proposed ALE description and solved the 

following equations [11]: 

Mass conservation equation 

 

.)(

)( )(

∫ ∫
∂

⋅−−=
ts ts

w ndsvupdv
dt

d
ρ  (1) 

 

Momentum conservation equation 
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Energy conservation equation 
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where )(tS  is an active area in space, )(ts∂  is its boundary and wv  is the velocity of )(ts∂ . 

For Eqs. (1) ~ (3), when the mesh velocity is 0 ( 0)( =tvw ), it is a Eulerian description; 

when the mesh velocity equals the material velocity ( utvw =)( ), it is a Lagrangian description; 

otherwise, the equations are between Eulerian and Lagrangian descriptions. The characteristic 

of ALE description lies in the construction of a suitable mesh according to the boundary of the 

material region, in order to avoid computations on meshes with severe distortion. ALE 

description resolves the individual drawbacks of Eulerian and Lagrangian descriptions and can 

handle problems such as explosions and high velocity impact. 

 

2. 2. Element type  

 

The analysis of the finite element method has to use different element types based on the 

characteristics of the problem. In this study, the analysis is done by using the ALE method with 

three-dimensional 8-node solid elements. Elements are defined as 8-Node. In X, Y and Z 

directions, there is a degree of freedom in translation. Together with degrees of freedom in 

velocity and acceleration, there are in total nine degrees of freedom for each node. The volume 

cannot be zero in case of compressive stress or drastic distortion. The shape function of 8-Node 

solid elements is defined as in Eq. (4) [12]; Fig. 1 is the demonstration of a solid element: 

 

( )( )( )1
1 1 1 ,

8
j j j jφ ξ ξ η η ζ ζ= + + +  (4) 

 

where ,jξ  jη  and jζ  are the natural coordinates of the unit, and depending on the 

location, the node values are 1 .±  
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Node ξ  η  ζ  

1 -1 -1 -1 

2 1 -1 -1 

3 1 1 -1 

4 -1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 1 1 1 

 8 -1 1 1 

Fig. 1. Schematic diagram of a solid element [12] 

 
2. 3. Time integration 

 

Analyzing explosion-induced vibration is a transient dynamic problem. Its differential 

equations are related to the derivatives of time and space, and the numerical solution must be 

able to deal properly with time integration. Such integral methods can be roughly divided into 

two categories: explicit time integration and implicit time integration. The explicit approach 

uses the solution of the previous time point to derive the solution of the next time point; the 

implicit approach uses iterative methods to find the solution. 

In general, the time interval t∆  used in explicit time integration requires small time 

increments to avoid large calculation error. LS-DYNA software mainly uses explicit time 

integration, which is a conditional stability; the numerical integration is based on two basic 

concepts [13]: 

(1) Only equations in a discrete time interval t∆  can meet the equation of motion. 

(2) The changes of translation, velocity and acceleration are given in time interval t∆ : 

between jt  and j nt + , time interval t∆  is divided into n  parts. That is, j jt t T= + , 

T n t= ∆  and the solution of time t  at any point will be the initial condition of the next 

time point t t+ ∆ . The overall time integration is built on the approximate solution of 

individual time. 

Analysis of explosion-induced vibration is a transient dynamic problem, and explicit time 

integration is more suitable for solving this problem. In the finite element method, t∆  is 

related to the geometric conditions of elements and material velocity. The stability conditions of 

t∆  for 8-Node Solid Element are as follows: 
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The wave propagation velocity of regular elastic materials is defined as: 

 

( )
( )( )

1
.

1 1 2

E
c

υ

υ υ ρ

−
=

+ −
 (7) 

 

where Q  is the bulk viscosity coefficient; eL  is a characteristic length; ev  is the element 

volume; 
maxeA  is the area of the largest side; c  is the material wave velocity; ρ  is the specific 

mass density; E  is Young's modulus; and υ  is Poission's ratio. 

The minimum time interval (Eq. 8) of the element, i.e., the smallest mesh unit is used in the 

solving process and determines the calculation accuracy, stability and computation time. For 

stability, usually 0.9α ≤  is used. In explosion simulations, 0.67α ≤  is used [14]: 

 

{ }1

1 2 3
min , , , , ,

n

N
t t t t tα+∆ = ⋅ ∆ ∆ ∆ ∆⋯  (8) 

 

where N : number of elements. 

 

3. Implementation of the numerical simulation 

 

The objective of this study was to investigate the vibration isolation effect of concave 

grooves in Surface Blasts. LS-DYNA was used as the analysis tool to investigate the impact of 

blast waves on the ground surface when C-4 explosives explode on ground surface. The fluid-

solid coupling method was used to simulate the explosion experiment. The explosives and air 

were set as Eulerian meshes, and soil was the Lagrangian mesh to construct the fluid-solid 

coupling numerical analysis model in order to analyze the explosion-induced shock wave and 

acceleration of the ground surface. 

 

3. 1. Analysis model 

 

The analysis model was built on 8-Node Solid Element and adopted the ALE algorithm. The 

units were cm, g, µs.  Air dimensions were ( )450 350 450 cm× × . The boundary was defined as 

non-reflecting to simulate the explosion in the infinite zone; for rectangle C-4 explosives, 

weight was 1600 g , density was 31.601 g cm , dimensions were ( )5 10 5 cm× ×  and the model 

center contacted the ground surface; soil dimensions were ( )450 250 450 cm× × . Because of 

the model symmetry, only a 1/4-size model was used in the analysis. The finite element mesh 

dimensions of air, explosive and soil were 5 cm , 5 cm  and 10 cm , respectively. The width 

and depth of the concave groove were ( )50 50 cm ,×  ( )50 75 cm ,×  ( )50 100 cm ,×  

( )25 50 cm ,×  ( )25 75 cm ,×  ( )25 100 cm×  and ( )25 120 cm ,×  respectively, to measure the 

blast pressure in free field and the acceleration before and after the grooves in order to 

investigate its vibration isolation effectiveness. Fig. 2 is an illustration of the analysis model. 

 

3. 2. Overall material models and equation of state 

 

An equation relating the pressure, specific volume and temperature of a substance is known 

as an equation of state (EOS). In order to effectively simulate the explosion, in addition to basic 

parameters of material type, equations of state also need to be set at the same time. 
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Fig. 2. Schematic diagram of the 1/4 analysis model 

 

3. 2. 1. Soil 

 

The selection of soil composition should take into account the material porosity and its 

crushing or compacting behavior. The soil composition model of this study was proposed by 

Krieg (1972) [15], and was also called Simple Elastic-Plastic. Taking isotropic plasticity theory 

as the starting point, there is compressible plasticity in the material. This model can be used in 

porous material, such as soil, rock and concrete. Based on the above description, the 

experimental parameters of [16] were used for analysis, and the relevant parameters are given in 

Table 1. 

 
Table 1. Main parameters in the soil model 

3 (g cm )ρ   (MPa)G   (MPa)uK  0a  1a  2a   (MPa)cutp  

1.8 0.000639 0.3 3.4×10-13 7.03×10-7 0.3 -6.9×10-8 

 

3. 2. 2. Air 

 

This study used the LS-DYNA’s No. 9 *MAT_NULL material model to simulate air, and 

equations of state *EOS_LINEAR_POLYNOMIAL were used to describe the material model 

as in Eq. (9) [12]: 

 

( )2 3 2

0 1 2 3 4 5 6 ,P C C C C C C C Eµ µ µ µ µ= + + + + + +
 

(9)
 

1
1,

V
µ = −

 
 

where E  is the internal energy per initial volume, µ  is the coefficient of dynamic viscosity, 

1 2 3 4 5 6
,  ,  ,  ,  ,  C C C C C C  are constants, and V  is the relative volume. The relevant parameters are 

given in Table 2. 

 
Table 2. Main parameters in the air model 

3 (g cm )ρ  3

0
 ( J m )E  3

0
 (g cm )ν  

1.29 2.5×105 1.0 

 

The ideal-gas equation can be simplified as Eq. (10) (set 
1 2 3 4 5 6
,  ,  ,  ,  ,  0C C C C C C = , and let 

154 −== γCC ): 
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( )
0

1 ,P E
ρ

γ
ρ

= −

 

(10) 

 

where γ  is the ratio of specific heats of air, 0ρ  is the initial value of air density and ρ  is the 

current air density. 

 

3. 2. 3. Explosive 

 

The No. 8 *MAT_HIGH_EXPLOSIVE_BURN material model was used to simulate the 

high explosive model. Eq. (11) is the JWL (Jones Wilkins Lee) EOS for high explosives [17]: 

 

1 2

1 2

1 1 ,R V R V E
P A e B e

RV R V V

ω ω ω− −   
= − + − +   

   
 

(11) 

 

where A , B , 1R , 2R  and ω  are constants pertaining to the explosive, V  is the relative 

volume and 0E  is the initial energy per initial volume. The relevant parameters are shown in 

Table 3. 

 
Table 3. Main parameters in the C-4 model 

3 (g cm )ρ   (cm µsec)Dv   (Mbar)CJP   (Mbar)A   (Mbar)B  

1.601 0.8193 0.28 5.0977 0.1295 

1R  2R  ω  V  
3

0
 ( J m )E  

4.5 1.4 0.25 1.0 0.09 

 

4. Numerical results and discussion 

 

4. 1. Comparison of numerical results by the TM5-855-1 manual 

 

In general, ground vibration induced by Surface Burst consists of two parts: (1) the blast 

wave passes through air by air stress, and is called air-induced ground motion; (2) the blast 

wave propagates directly from the explosive point to the ground surface, and is called direct-

transmitted ground shock [2]. The U.S. Army Corps of Engineers in the regulations of       

TM5-855-1 manual undertook a series of field explosion tests. Based on the data obtained from 

the explosion tests, the numerical simulation concluded the empirical formulas of the 

propagation behavior of the blast wave induced by the surface explosion in soil. Therefore, this 

study used the calculated value of the empirical formulas in the manual as a reference to verify 

the reliability of the simulation. 

Figs. 3-6 show the variation of blast wave over time in the semi-infinite soil medium. Fig. 7 

show the pressure-time histories curves under different distances conditions. In order to 

understand the propagation pattern of the blast wave, the peak detonation pressure values at 

locations with 100 cm , 200 cm , 300 cm  and 400 cm  horizontal distance to the explosive center 

point were investigated, respectively. Fig. 8 presents the correlation between the peak 

detonation pressure and the horizontal distance; it is clear that the peak detonation pressure 

decreases with the increasing of propagation distance. The simulation results are very similar to 

the empirical formulas in TM5-855-1. The difference is caused by the different experiment 

media but as a whole, the energy attenuation characteristic of the blast wave is consistent. 

Therefore the credibility of the analysis model in this study can be verified to further investigate 

the vibration isolation effectiveness of concave groove to Surface Blast. 
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Fig. 3. Contours of pressure in t = 1017.3 µs  Fig. 4. Contours of pressure in t = 2007 µs  

 

  

Fig. 5. Contours of pressure in t = 4019 µs  Fig. 6. Contours of pressure in t = 6001.7 µs  

 
4. 2. Influence of concave groove width and depth on blast wave propagation and ground 

acceleration 

 

The simulation results of different cases are listed in Table 4. In cases 1-3, with certain 

blasting energy, fixed model depth and proportionally increasing model width, the detonation 

pressure decreases with the increasing width. In cases 4-6, with fixed model width and 

proportionally increasing depth, the detonation pressure decreases with the increasing depth, 

and the decreasing scale is larger than in cases 1-3. The experimental model of case 7 has 

greater depth and smaller width compared to the previous 3 cases, but its decreasing scale of 

detonation pressure is the largest. From the above results, the depth of concave grooves has a 

larger impact on the attenuation of detonation pressure, which is consistent with the conclusions 

of Zhang et al (2000) [7]. In conclusion, the concave groove has a significant impact on the 

attenuation of the blast wave propagation, and the attenuation degree correlates with the width 

and depth of the groove. Also, the attenuation effect of depth is larger than width. 

 

0.0

5.0

10.0

15.0

20.0

25.0

0 1000 2000 3000 4000 5000 6000

Time(µs)

P
re
ss
u
re
(M

P
a
)

50cm

100cm

150cm

200cm

250cm

300cm

350cm

400cm

 

0

5

10

15

20

25

0 100 200 300 400

Distance(cm)

P
ea

k
 p
re
ss
u
re
(M

P
a)

Numerical simulation

TM5-855-1
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Fig. 8. Comparison of the peak pressure in the 

numerical simulation and TM5-855-1 empirical 
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Table 4. The simulation results of different cases listed 

 Concave groove 

Peak pressure ( MPa ) Peak acceleration ( 2cm µs ) 

 
Depth 

(cm) 

Width 

(cm) Before 

(10 cm) 

After 

(10 cm) 

Before 

(10 cm) 

After 

(10 cm) 

Case 1 50 50 2.67 6.9521 

Case 2 50 75 2.41 6.3715 

Case 3 50 100 2.17 4.8592 

Case 4 50 25 3.32 11.3379 

Case 5 75 25 3.31 3.2297 

Case 6 100 25 3.21 0.0444 

Case 7 120 25 

4.56 

2.05 

22.5292 

0.0292 

 

5. Conclusions 

 

The propagation and attenuation of explosion-induced blast waves in the stratum medium 

depend mainly on the geological characteristics and blasting parameters. However, in highly 

undulating terrains, the propagation of the blast waves is affected by the local topography. This 

study used numerical simulation to analyze the attenuation of blast waves according to the 

changes of concave grooves, in order to explore the propagation patterns of blast waves. The 

results show that the finite element method can properly simulate the dynamic characteristics of 

soil in an explosion. From the dynamic characteristics of soil after an explosion, we can know 

that when moving away from the explosive source, the propagation of the blast wave gradually 

attenuates. This gives a preliminary understanding of the explosive phenomenon of C-4 

explosives on the ground surface. Moreover, the concave groove has a significant impact on the 

attenuation of blast wave propagation, and the attenuation scale is related to the width and depth 

of the groove; depth has a larger impact on attenuation than width. This study can be used as a 

reference in blasting protection design and damping operation for relevant engineering. 
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